近世代数课件(全)--2-11图形的对称变换群、群的应用

合集下载

《近世代数》PPT课件

《近世代数》PPT课件
– 剩余类的加法和乘法运算
a b a b ,(m m )o a b d a b(m m )o
10.01.2021
编辑ppt
18
2.2 多项式剩余类环和域
1.域上多项式的定义
– 多项式与码字的关系:桥梁;
• 多项式的系数表示

• x的幂次表示

– 域上的多项式
• 针对系数定义;
• 例如二进制系数多项式,称为二元域GF(2)上的 多项式。
编辑ppt
28
(1) 常数总是多项式的因子。
(2) 一个多项式 f(x) 是否为既约多项式 与所定义的域有关。
(3) 一个多项式既约的充要条件:多项 式Pl(x) 不能分解成两个次数低于Pl(x) 的多项式的乘积。
(4) 完全分解:n次多项式最多能分解成 n个一次多项式的乘积,被称为完全分 解。
(5) 一次多项式一定是既约的。
(3)加法和乘法之间满足如下分配率 (distributive) :
a(bc) abac
(bc)a baca
则称F是一个域。
10.01.2021
编辑ppt
6
(1)域的阶(针对群中元素的个数),记 为q。
(2)有限域或伽逻华(Galois)域,表示为:
GF(q)。
–域将
10.01.2021

编辑ppt
联系在一起?
7
例2-3
– F1:有理数全体、实数全体对加法和乘法都 分别构成域,分别称为有理数域和实数域。
– F2:0、1两个元素模2加构成域;由于该域 中只有两个元素,记为GF(2)。
10.01.2021
编辑ppt
8
• 定理:
– 设p为质数,则整数全体关于p模的剩余类: 0,1,2,…,p-1,在模p的运算下(p模相 加和相乘),构成p阶有限域GF(p)。

近世代数课件--2.11 同态与不变子群

近世代数课件--2.11 同态与不变子群
不变子群,商群与同态映射之间存在几个极端 重要的关系.知道了这几个关系,我们才能看出 不变子群和商群的重要意义.
11.1 自然同态
定理1 证明 一个群 G 同它的每一个商 G 我们规定 G 到
G N
N
群同态.
的一个法则 :
(a G )
( a ) aN
这显然是 G 到 G N 的一个满射.并且,对于 G 的 任意两个元 a 和 b 来说,
N 与 G间的同构映射.因为:
1) f 无歧义
aN bN b a N b a e a b f ( aN ) f (bN )
1 1
这就是说,在 f 之下 G 的象; 2) f 是单映射.上面的过程可逆. 3) f 是满射.给了 G 的一个任意元 a ,在 G 里至少 有一个元 a 满足条件 f ( a ) a ,由定义,
定理1告诉我们,一个群G 和它的一个商群同态, 定理2告诉我么,抽象地来看, G 只能和它的商群 同态,所以我们可以说,定理2正是定理1的反 面.我们知道,当群 G 与群 G 同态的时候, G 的性质 并不同 G 的完全一样.但定理2告诉我们,这时我 们一定找得到 G 的一个不变子群 N ,使得G 的性质和 商群 G N 的完全一样.从这里我们可以看出,不变 子群和商群的重要意义.
定理4 假定 G 和 G是两个群,并且 G 与 G 同态.那 么在这个同态满射之下的 (ⅰ)G 的一个子群 H 的逆象 H 是 G 的一个子群; (ⅱ)G 的一个不变子群 N 的逆象 N 是 G 的一个不变 子群. 证明 我们用 f 来表示给定的同态满射. b (ⅰ)假定 a , 是 H 的两个任意元,并且在 f 之下, a a ,b b , 我们需要证明 ab 1 H .注意

近世代数学习教材PPT课件

近世代数学习教材PPT课件

§8.2 代数系统常见的一些性质
(3)代数系统常见性质 1)结合律:(a b) c=a (b c) 2)交换律:a b=b a 3)分配律:a (b+c)=(a b)+(a c) 4)单位元:a 1=a 5)逆元:a a-1=1 6)零元:a 0=0
7)生成元
逆元

特殊子环 (两个二元运算:,
单位元,无零因子 整环 理想 商环
)
特殊环
两个运算的结合律、交换律、吸收律
格 两个运算的分配律 分配格 布尔代数 两个运算的单位元、逆元 两个运算有单位元 有界格 两个运算有逆元 有补格
第九章 群论
§9.1 一些群的定义
(7)半群——代数系统满足交换律
§9.2 一些群的理论与半群性质:
半群的子代数也是半群。 循环半群是可换半群。 (19)关于群的基本理论 群方程可解性:a x = b(或x a = b)对x存在唯一解; 群的消去律:a b = a c(或b a = c a)必有b = c; 任一群必与变换群同构; 与一个群同构或满同态的代数系统必为群; 一个代数系统有限群满足结合律及消去律则必为群;
第三篇 近世代数
代数系统是建立在集合论基础上以代 数运算为研究对象的学科。本篇共三章, 第五章代数系统基础介绍代数系统的一般 原理与性质, 第六章群论,主要介绍具有 代表性的代数系统-群,最后第七章其它 代数系统,介绍除群外常见的一些代数系 统,如环、域、格与布尔代数等,这三章 相互配合构成了代数系统的完整的整体。
§8.3 同构与同态
(4)同构:(X, )与(Y,)存在一一对应函
数g : XY使得如x1 , x2X,则有:g(x1 x 2)=g(x1)

《近世代数》课件

《近世代数》课件

近世代数的重要性
近世代数是数学领域中的基础学科之 一,是学习其它数学分支的重要基础 。
它对于理解数学的抽象本质和掌握数 学的基本思想方法具有重要意义,有 助于培养学生的逻辑思维和抽象思维 能力。
课程大纲简介
本课程将介绍近世代数的基本概念和性质,包括集合、群、环、域等代数系统的 定义、性质和关系。
1.1 答案
对。因为$a^2$的定义是两个整数相乘,结果仍为整数。
第1章习题及解答
1.2 答案:(略)
1.3 答案:群的基本性质包括封闭性、结合律和存在单位元。
第2章习题及解答
2.1 判断题:若$a$是整数,则$a^3$也是整数。 2.2 选择题:下列哪个是环?
第2章习题及解答
要点一
2.3 简答题
编码理论中的应用
线性码
线性码是一类重要的纠错码,其生成矩阵和校验矩阵都是线性方程组的解。这 些矩阵的构造和性质都与代数理论紧密相关。
高斯-若尔当消元法
在编码理论中,经常使用高斯-若尔当消元法来求解线性方程组,这种方法在代 数中也有广泛的应用。
物理学中的应用
量子力学中的态空间
在量子力学中,态空间是一个复的向量空间,其基底对应于可观测物理量。这与代数学中的向量空间 概念非常相似。
如果E是F的一个子集,且E中的元素 都是方程f(x)=0的根,其中f(x)是F上 的一个多项式,那么E在F上形成一个 子域。
如果E是F的一个子集,且E中的元素 都是方程f(x)=0的根,其中f(x)是F上 的一个不可约多项式,那么E在F上形 成一个有限子域。
有限域
有限域的性质
有限域中的元素个数一定是某个素数的幂。
理想与商环
理想的定义与性质
介绍理想的定义,包括左理想、右理想、双边理想等 ,并讨论理想的封闭性、运算性质等。

近世代数课件群的概念

近世代数课件群的概念
ab ba e . 为了阐明这样的 b 是唯一的; 满足
ab' b'a e. 于是,我们有 b' b'e b'(ab) (b'a)b eb b .所以我 们的命题成立.□
§2 群的概念
对于命题 2.3 中所说的元素 a, b ,我们称 b 为 a 的逆元,记作 b a1 .
乘法都不构成群.
§2 群的概念
例 2 令 P nn 表示某个数域 P 上的全体 n 阶方阵构 成的集合.显然, P nn 关于矩阵的加法构成交换群, P nn 关于矩阵的乘法不构成群.但是,容易明白,数域 P 上的 全体 n 阶可逆矩阵构成的集合关于矩阵的乘法构成群, 称为 n 级一般线性群,记作 GLn (P ) .数域 P 上的全体行 列式的值等于1的 n 阶方阵构成的集合关于矩阵的乘法 构 成 群, 称为 n 级 特 殊线性群 ,记 作 SLn (P ) . 注意,当 n 1时, GLn (P ) 和 SLn (P ) 都不是交换群.
此对于任意的 nN , a 的 n 次幂 an 有意义.现在,对
于任意整数 n 0 ,我们定义 a 的 n 次幂 an 如下:
an
e, (a1)n ,
当 n 0 时; 当n 0 时.
这样一来,对于任意整数 n , an 都有意义.
§2 群的概念
不难验证,幂具有如下性质:对于任意的 a, b G 和 m, n Z ,总有
§2 群的概念
下面介绍置换的表示方法.
设 A {a1, a2 , , an} 是一个有限集, f Sn .我们
可以将 f 表示成下表的形式:
f
a1 (a1)
a2 f (a2 )
f
an (an

近世代数简介ppt

近世代数简介ppt
若R是交换环,I是R的非空子集,如满足 1. a、b I, a-b I。 2. a I、r R, a r = r a I, 则I是R的理想子环,简称理想
若理想子环的所有元素可由一个元素a的各
次幂或各次幂的线性组合生成,则称该理想子环 主理想子环,简称主理想
域(Field)
一个集合,二种运算
不能被 x5+1 整除 不能被 x6+1 整除


不能被 x14+1 整除
能被 x15+1 整除 ∴ x4+x+1 是本原多项式
而 x4+ x3+ x2+ x+1
能被 x5+1 整除
能被 x15+1 整除
∴ x4+x3+x2+x+1是既约的,但不是本原的
多项式环Rq(x)g(x)
系数GF(q),模g(x)
对于有限域GF(q)上的m次既约多项式P(x),若能 被它整除的最简首一多项式(x n -1)的次数n qm
–1, 则称该多项式为本原多项式。 本原多项式一定既约;
反之,既约多项式未必本原。
多项式循环群 Cycle Group
由多项式的各次幂所构成的群称为多项式循环群
比如, x4+x+1
(q=2, m=4, 2m-1=15)
VIP专享文档下载特权自VIP生效起每月发放一次, 每次发放的特权有效期为1个月,发放数量由您购买 的VIP类型决定。
每月专享9次VIP专享文档下载特权, 自VIP生效起每月发放一次,持续有 效不清零。自动续费,前往我的账号 -我的设置随时取消。
服务特 权
共享文档下载特权
VIP用户有效期内可使用共享文档下载特权下载任意下载券标价的文档(不含付费文档和VIP专享文档),每下载一篇共享文

近世代数课件(全)--2-11 图形的对称变换群、群的应用

近世代数课件(全)--2-11 图形的对称变换群、群的应用
2019/1/20
nm
现在考虑二面体群 D m 对集合 的作用: 设
1 2 g i1 i 2
k
ik
m Dm im
1 2 c1 c 2
,其中
ck A
k ck
m
cm
2019/1/20
定义
g
对 的作用为
g m i1 i 2 c m c1 c 2
2019/1/20
容易看出, 正方形的对称变换有两类: 第一类: 绕中心的分别旋转90度,180 度,270度,360度的旋转, 这对应于置换 (1234), (13)(24), (1432),(1). 第二类: 关于正方形的4条对称轴的反射, 这对应于置换 (1 2)(3 4), (2 4), (1 4)(2 3), (2 4), (1 3). 所以, 正方形的对称变换群有上述 8个元素. 这是四次对称群的一个子群.
2 1
1 是一个 (12345) 5 型置换 1 2 是一个 (12)(34) (12)(34)(5) 1 2 型置换
2019/1/20
二面体群中的置换类型
0 (1), k 123 n , k 1, , n 1 0 2 n (3 n 1) , d n k 的类型是 型,其中 d ( n, k ) d n 1 k 当n是奇数时,都是 112 2 型的
D
C
2019/1/20
B
A
7:
C D

D
A
C
B
2019/1/20
B
A
8:
C D

B
C
A
D
2019/1/20

近世代数基础课件

近世代数基础课件
37
第3讲 特殊的唯一分解环 1 主理想环 2 欧氏环 3 唯一分解环上的一元多项式环 4 因子分解与多项式的根
38
第六章 群论补充
39
第1讲 共轭元与共轭子群 1 第2讲 群的直积 第3讲 群在集合上的作用 第4讲 西罗定理
40
第1讲 共轭元与共轭子群
研究群内一些特殊类型的元素和子群
1 中心和中心化子 2 共轭元和共轭子群 3 共轭子群与正规化子
53
四 代数学发展的四个阶段
代数学经历了漫长的发展过程,抽象代 数(近世代数)是19世纪最后20年直到20世 纪前30年才发展起来的现代数学分支. 1 最初的文字叙述阶段 2 代数的简化文字阶段 3 符号代数阶段 4 结构代数阶段
54
1 最初的文字叙述阶段
古希腊之前直到丢番图(Diophantine,公元250年)时 代,代数学处于最初的文字叙述阶段,这一阶段除古希腊 数学之外还包括古巴比伦、古埃及与古代中国的数学. 此时算术或代数尚未形成任何简化的符号表达法,代数 运算则都采用通常的语言叙述方式表达,因而代数推理 也都采用直观的方法.在中国古代则有著名的筹算法,而 在古希腊则借助于几何图形的变换方法.最典型的代表 是毕达哥拉斯(Pythagoras,公元前585-497)几何数论方 法.例如通过图形的组合可以得到
}
} }
映射相关概念及举例
映射的运算 映射及其相关概念的推广
}
特殊映射
6
第3讲 基本概念之代数运算适应的规则 ——运算律 运算律
1 与一种代数运算发生关系的运算律 (1)结合律 (2)交换律 (3)消去律 2 与两种代数运算发生关系的运算律 (1)第一分配律 (2)第二分配律
7
第4讲 基本概念之与代数运算发生关系的映射 ——同态映射 同态映射 1 同态映射 2 同态满射 3 同构映射 4 自同构映射 5 举例

近世代数课件全21 群的定义.ppt

近世代数课件全21 群的定义.ppt
aa1 eaa1 a'a1 aa1 a' a1a a1 a'ea1 a'a1 e
2019/12/12
二、群的性质及等价判定方法 定理1 群中
1.左逆元也是右逆元(逆元); 2.左单位元也是右单位元(单位元);
aa1 a1a e ae aa1a ea a
做成交换群,称为正有理数乘群.
例3 G {全体整数},对于运算 a b ab
2
1Leabharlann 22124

2
1
2 212 2
结合律不成立,不做成群.
2019/12/12
注意:
(1)对于考察集合是否作成群: 既要考虑元素,又要考虑代数运算;
(2)将群的代数运算叫做乘法,简记
a b a b ab
近世代数 第二章 群论 §1 群的定义
2019/12/12
一、群的定义与例子
定义1设 G 是一个具有代数运算 的非空集合,
并且满足:
Ⅰ. 结合律: a,b,c G, 有
(a b) c a (b c)
Ⅱ. G 中有左单位元 e :a G, e a a Ⅲ. 对 G 中每一个元素 a , 有左逆元
左单位元1, a 1 无逆元,不能做成群;
2019/12/12
(3)对于运算 a b a b 4
a b c a b 4 c a b 4 c 4 a b c 8
a b c a b c 4 a b c 4 4 a b c 8
2019/12/12
定义4
设 G 是一个具有代数运算 的非空集合 ,并且满足结合律,则称 G 关于代数运算

近世代数教学PPT(精品)

近世代数教学PPT(精品)

两个集的并与交的概念可以推广到任意n个集合上去, 设 是给定的集合 .由 A1 , A2 ,, A n
A1 , A2 ,, 的一切元素 An
所成的集合叫做
A1 , A2 ,, 的并; An
由 A1 , A2 ,, An的一切公共元素所成的集合叫做
A1 , A2 ,, An 的交. A1 , A2 ,, An 的并和交分别记为:
诺特, 1882年3月23日生于德国埃尔朗根,1900年入埃朗 根大学,1907年在数学家哥尔丹指导下获博士学位。1916年 后,她开始由古典代数学向抽象代数学过渡。1920年,她已 引入「左模」、「右模」的概念。1921年写出的<<整环的理 想理论>>是交换代数发展的里程碑。建立了交换诺特环理论, 证明了准素分解定理。1926年发表<<代数数域及代数函数域 的理想理论的抽象构造>>,给戴德金环一个公理刻画,指出 素理想因子唯一分解定理的充分必要条件。诺特的这套理论也 就是现代数学中的“环”和“理想”的系统理论,一般认为抽 象代数形式的时间就是1926年,从此代数学研究对象从研究代 数方程根的计算与分布,进入到研究数字、文字和更一般元素 的代数运算规律和各种代数结构,完成了古典代数到抽象代数 的本质的转变。诺特当之无愧地被人们誉为抽象代数的奠基人 之一。
近世代数是在19世纪末至20世纪初发展起来的 数学分支。 1930年荷兰数学家范德瓦尔登(B.Lvan der Wearden 1930-1996) 根据该学科领域几位创始 人的演讲报告,综合了当时近世代数的研究成果, 编 著了《近世代数学》(Moderne Algebra)一书,这 是该学科领域第一本学术专著,也是第一本近世代 数的教科书。
近世代数理论的三个来源

近世代数引论PPT课件

近世代数引论PPT课件
域是近世代数中的一个基本概念,它是一个加法群和 一个乘法半群的组合,具有一些重要的性质。
详细描述
域是一个非空集合,其中定义了两种运算:加法和乘法 ,满足一定的性质。在域中,加法和乘法都是可逆的, 即每个元素都有唯一的加法逆元和乘法逆元。此外,域 中的乘法满足结合律,且每个元素都有乘法单位元。
子域与扩域
环论在几何学中的应用
环论也是近世代数的一个重要分支,它在几何学中也有着广泛的应用。例如,在代数几 何中,环论被用于描述多项式环的结构;在解析几何中,环论也被用于描述函数的性质。
数论中的应用
域论在数论中的应用
域论是近世代数中一个重要的分支,它在数论中有着广泛的应用。例如,在代数数论中,域论被用于描述代数数 的性质;在数论中,域论也被用于研究整数的性质和结构。
分式域与函数域
总结词
分式域和函数域是两种特殊的域,它们在数学和物理 中有广泛的应用。分式域是由其整环的分式组成的域 ,而函数域则是基于函数的定义域和值域形成的域。
详细描述
分式域是由一个整环的分式组成的域。整环是一个只含 有限除数的环,也就是说,如果一个元素在整环中不能 被其他元素整除,则该元素被称为不可约元素。分式环 是由整环中所有分式组成的集合,它构成一个域。函数 域是基于函数的定义域和值域形成的域。具体来说,给 定一个函数f和一个集合D,函数域是由集合D中所有可 能的函数值组成的集合,它也构成一个域。
交叉学科的研究
近世代数与其他学科的交叉研究也是未来的一个重要方向,如 代数几何、代数数论、计算机科学等学科的交叉研究,可以促
进近世代数的发展和应用。
THANKS
感谢观看
环论
环的定义和性质
要点一
总结词
环是具有加法和乘法两种运算的代数系统,满足一定的性 质。

近世代数课件2

近世代数课件2
25
代数系统(S,⊙)是否 做成半群的判断方法就是检验代数 运算⊙在集合S上是否适合结合律.
设(S , o)是一个半群, Φ ≠ T ⊆ S , 则称(T , o)是(S , o)的一个 子半群 ⇔ ∀a, b ∈ T , 有a o b ∈ T .
26
设 是 个 空 合若 S 一 非 集 , 1)在 上 在 个 数 算 ” S 存 一 代 运 “ ; 2)代 运 “ ” 集 S上 合 合 数 算 在 合 适 结 律 (也 ∀ ,b,c∈S,有 a b) c =a (b c).) 即a ( 则 集 S关 代 运 做 一 半 , 称 合 于 数 算 成 个 群 记 半 (S,. 作 群 )
37
M n(R)(实数域R上全体n阶矩阵组成 的集合)关于矩阵的乘法、加法能否做成M n(R) 上的半群、交换半群吗?若把M n(R)换为On(R), 其中 n(R) = {A∈ M n(R) AA′ = A′A = I}, 结果如 O 何?若把M n(R)换为GLn(R), 其中 ( GLn(R) = {A∈ M n(R) A ≠ 0} 另一表示形式: GL n, R)),结果如何?若把M n(R)换为SLn(R), ( ),结 其中SLn(R) = {A∈ M n(R) A = 1},结果如何?
16
GLn( R) = {A ∈ M n( R) A ≠ 0} 关于矩阵的乘法、加法能否做成 ?(另 GLn( R)上的代数系统?(另一表 示形式:GL n, R)) (
17
有理数集合关于规定 ⊕:Q × Q → Q, ∀a, b ∈ Q, 有a ⊕ b = a + b + ab 能否做成有理数集合Q上 的代数系统?
29
在半群(S, o)中, 任取n n ≥ 3)个元a1, a2,L, an, ( 只要不改变元素次序,则 a1 o a2 oLo an的任一计算方法 所得结果均相同.

近世代数ppt

近世代数ppt
8
第4讲 基本概念之与代数运算发生关系的映射 ——同态映射
1 同态映射 2 同态满射 3 同构映射 4 自同构映射 5 举例
9
第5讲 基本概念之等价关系与集合的分类 ——商集
1 商集 2 等价关系 3 集合的分类 4 集合A上的等价关系与 集合A的分类之间的联系
10
第三章 群
11
第1讲 代数系统
0下载券文档一键搜索 VIP用户可在搜索时使用专有高级功能:一键搜索0下载券文档,下载券不够用不再有压力!
内容特 无限次复制特权 权 文档格式转换
VIP有效期内可以无限次复制文档内容,不用下载即可获取文档内容 VIP有效期内可以将PDF文档转换成word或ppt格式,一键转换,轻松编辑!
阅读页去广告
第一章 绪 论
1
第1讲 绪 论
一 关于代数的观念 二 数学史的发展阶段 三 代数发展的阶段(数学发展史) 四 代数学发展的四个阶段 五 几类与近世代数的应用有关的实际
问题
2
第二章 基本概念
3
特权福利
特权说明
VIP用户有效期内可使用VIP专享文档下载特权下载或阅读完成VIP专享文档(部分VIP专享文档由于上传者设置不可下载只能 阅读全文),每下载/读完一篇VIP专享文档消耗一个VIP专享文档下载特权。
集合与元素的相关概念
集合的相关概念
集合的运算及运算律
集合的补充及说明
6
第2讲 基本概念之集合及其之间的关系 —对应关系(映射)(人造关系)
1 映射概念回忆
2 映射及相关定义 3 映射的充要条件
4 映射举例
5 符号说明
6 映射的合成及相关结论
7 映射及其映射相等概念的推广
8 集合及其之间的关系——特殊

近世代数群的概念课件

近世代数群的概念课件

反身性
任何元素与自己相乘的结果仍为该元素本身。
可交换性
对于任意$a, b$在群中,有$a cdot b = b cdot a$。
可结合性
对于任意$a, b, c$在群中,有$(a cdot b) cdot c = a cdot (b cdot c)$。
子群与商群
子群
一个子群是一个集合在某个二元运算 下构成一个群,且该子集是原群的非 空子集。
05
有限群的结构
有限群的分 类
阿贝尔群和非阿贝尔群
01
根据群中元素的乘法是否满足交换律,可以将有限群分为阿贝
尔群和非阿贝尔群。
循环群和非循环群
02
根据群中是否存在循环子群,可以将有限群分为循环群和非循
环群。
素数阶群和非素数阶群
03
根据群的阶是否为素数,可以将有限群分为素数阶群和非素数
阶群。
有限群的Sylow定理
近世代数群的概念
目 录
• 群的定义与性质 • 群的表示与同态 • 循环群与交换群 • 群的扩张与直积 • 有限群的结构 • 群的应用
contents
01
群的定义与性质
群的定 义
群的定义
一个群是由一个集合和一个 在其上的二元运算所组成, 满足结合律、存在单位元、 存在逆元的代数系统。
结合律
群中的二元运算满足结合律, 即对于任意$a, b, c$在群中, 有$(a cdot b) cdot c = a cdot (b cdot c)$。
单位元
群中存在一个元素$e$,使 得对于任意$a$在群中,有 $e cdot a = a cdot e = a$。

逆元
对于任意$a$在群中,存在 一个元素$b$,使得$a cdot b = b cdot a = e$,其中 $e$是单位元。

近世代数课件

近世代数课件
研究内容
包括群、环、域等基本概念,以及这 些概念在抽象代数、几何学、拓扑学 等领域的应用。
近世代数的发展历程
19世纪初
随着代数学的发展,人们开始研究代数的结 构,近世代数逐渐形成。
20世纪初
环论和域论的建立进一步丰富了近世代数的 内容。
19世纪中叶
群论的创立为近世代数的发展奠定了基础。
20世纪中叶至今
近世代数课件
目录
• 引言 • 群论基础 • 环论基础 • 域论基础 • 应用举例
01
引言
代数与近世代数
代数
研究数、量、结构、变换以及结构等 概念的数学分支。
近世代数
研究代数的结构、性质和分类的分支 ,是现代数学的重要分支之一。
近世代数的研究对象与内容
研究对象
代数的结构、性质和分类,以及代数 与其他数学分支的联系。
多项式的基本概念
01
多项式是由若干个单项式通过加减运算组成的代数式

多项式的因式分解
02 将一个多项式分解为若干个因式的乘积,这些因式称
为多项式的因子。
多项式因式分解的应用
03
在数学、物理、工程等领域中,多项式因式分解被广
泛应用于解决各种问题,如计算、建模、优化等。
分式域的构造与应用
分式域的基本概念
域的扩张与分解
扩张
如果一个域K包含另一个域F作为其子集,并且K在F上连续,则称K是F的扩张,或称F是 K的子域。
分解
如果一个域K可以分解为若干个子域的乘积,即K=F1×F2×…×Fn,则称K是可分解的 。如果域K没有除了单位元以外的公因子,则称K是素数域。
05
应用举例
线性方程组的解法
线性方程组的基本概念

近世代数第二章课件

近世代数第二章课件

第二章群论 20第二章群论本章讨论具有一个代数运算的代数结构——半群与群,但重点是群的基本知识及典型的两个群-变换群和循环群.群是概括性比较强的一个概念,是近世代数中比较丰富的一个分支,它产生于19世纪初人们对高次方程根号解问题的研究,发展到现在,群论已经应用到数学许多其它分支及一些别的科学领域.如在近世几何中,利用群的观点,把几何加以科学分类;在晶体学中,利用群论的方法,解决了空间晶体的分类问题;在现代通讯理论中,利用群来进行编码,有所谓的群码.我们先从半群开始来研究群.§1 群的定义及基本性质2.1 半群的定义设S是具有一个代数运算的集合,为了方便,将此代数运算叫S的乘法,并且仍用通常的乘法记号“·”来表示,把S的两个元素ba,关于“·”运算结果ba∙简记为ab.当然,这样被叫做乘法不一定就是指数的乘法,还可表示像矩阵、函数、向量的乘法,但一般来说它们都不是数的乘法.定义1如果代数结构(S,·)的乘法适合结合律,即ba∈c∀)有,S,,ab=,则称S关于它的乘法是一个半群,简称Sac(bc()是一个半群.2关于数的乘法是一个半群.关于数的加法也是一例1 偶数集Z个半群.n⨯矩阵作成的集合M n(F),关于矩阵乘法例2数域F上的所有n是一个半群.例3 A 是一个非空集合,A 的幂集}|{A x x A P ⊆=)(关于∩、∪分别是半群.例4 +Z (正整数)关于数减法不能作成一个半群,因为数的减法不是+Z 的一个代数运算;Z 虽然关于数的减法是Z 的代数运算,但结合律不成立,故),(-Z 不是一个半群.注 由于一个半群),(⋅S 的乘法适合结合律,故可以在半群),(⋅S 中可以引进一个元素a 的正整数次幂的概念,规定:, 个n n a aa a =那么,易见半群里有以下指数运算规律:ba ab b a ab a a a a a n n n nm m n n m n m =⋅===⋅+当,)(,)(,,这里+∈Z n m ,。

《近世代数》PPT课件

《近世代数》PPT课件

例2 设 A 1 { 东} , A 2 { 西 南 } , B { 高} ,低
则 1 :A 1 A 2 B ; ( 西 , 南 ) 高 不是映射.
因为映射要满足每一个元 (a1,a2) 都要有一个像.
而 2 : A 1 A 2 B ; ( 西 , 南 ) 高 ; ( 东 , 南 ) 低 是一个映射. 7
A 1A 2 A n{a1 (,a2, an)ai A i}.
即由一切从 A1,A2, ,An 里顺序取出元素组成的元素 组 (a1,a2, an),ai Ai 组成的集合.
例 A={1,2,3}, B={4,5}, 则
AB={(1,4), (1,5), (2,4), (2,5), (3,4), (3,5)},
A称为 的定义域,B称为 的值域.
注: (1) 映射定义中 “b”的唯一性:映射不能“一对多”,
但可以“多对一”.
(2) 记法: :A B ;ab (a ),aA .
(3) 一般情形,将A换成集合 A 1A 2.. .A n 的积,则
对 ( a 1 ,a 2 ,.a n .) .A ,1 A 2 . .A .n有 : A 1 A 2 . . . A n B ; ( a 1 , a 2 , . . . , a n ) b ( a 1 , a 2 , . . . , a n ) . 6
2. 元素(或元): 组成一个集合的事物.
如果a是集合A中的元素,记作a A ; 如果a不是集合A的元 素,记作 a A 或a A .
2
3.空集:没有元素的集合,记作 .
4.子集:设A,B是集合,则
B A (B是A的子集)是指 b B b A . 真子集:B是A的真子集是指 B A 且 aA,但aB .
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A a1, a2,L , an 为n种颜色的集合.
则每一个映射 : X A 代表一个有标号
的项链.
令 | : X A ,它是全部有
标号项链的集合,显然有
nm
,是全部有标号项链的数目.
2020/5/25
现在考虑二面体群 Dm 对集合 的作用:

1 2 L k L m
g i1
i2
N 1
(12) (35) 11 22
25 4 2 5 23 8
10
2020/5/25
2
a1
1 a1
6 a2
5 a3
4 a3
3 a2
1
故 1是 g 的一个不动点.
2020/5/25
反之,若对应 g 的循环置换分解式中某个
循环置换中号码的珠子有不同的颜色,例如
2
1
2
3
4
5
6
a1 a2 a2 a3 a3 a2
,则
g(1) g(2) g(3) g(4) g(5) g(6)
显然,正三角形的每一对称变换都导致正三 角形的三个顶点的唯一一个置换. 反之, 由 正三角形的三个顶点的任一置换都可得到正 三角形的唯一一个对称变换,从而可用
S3 {(1), (12), (13), (23), (123), (132)}
表示正三角形的对称变换群.
2020/5/25
其中(1)为恒等变换, (1 2), (1 3), (2 3) 分
D
2020/5/25
B
A
A
D
2:
2 Pi
Pi 2
C
D
B
C
2020/5/25
B
A
D
C
3:
2 Pi
Pi
C
D
A
B
2020/5/25
B
A
C
B
4:
2 Pi
3 Pi
----
2
C
D
D
A
2020/5/25
B
A
C
D
5:
C
D
B
A
2020/5/25
B
A
A
B
6:
C
D
D
C
2020/5/25
B
A
D
A
7:
C
D
2020/5/25
三、项链问题
问题的提法: 用n种颜色的珠子做成有m颗珠子的项链, 问可做成多少种不同类型的项链?
这里所说的不同类型的项链,指两个 项链无论怎样旋转与翻转都不能重合。
2020/5/25
数学上的确切描述
设由m颗珠子做成一个项链,可用一个正m边形 来代表它,它的每个顶点代表一颗珠子。
沿逆时针方向给珠子标号,
2
由于每一颗珠子的颜色有n种选
择,因而用乘法原理,这些有标 3
号的项链共有nm种。
4
但其中有一些可以通过旋转一个角
度或翻转180度使它们完全重合, 5 我们称为是本质相同的,我们要考
虑的是无论怎么旋转、翻转都不能
使它们重合的项链类型数。
1 8
7 6
2020/5/25
设X={1,2,…m}, 代表m颗珠子的集合, 它们逆时针排列组成一个项链,由于每颗珠子 标有标号,我们称这样的项链为有标号的项链.
近世代数
第二章 群论 §11 图形的对称变换群、群的应用
2020/5/25
一、图形的对称变换群 定义1: 使图形不变形地变到与它重合的变 换称为这个图形的对称变换. 定义2:图形的一切对称变换关于变换的乘 法构成群,称为这个图形的对称变换群.
2020/5/25
例 1 正三角形的对称变换群. 设正三角形的三个顶点分别为1、 2、 3.
这是四次对称群的一个子群.
2020/5/25
平面上正方形ABCD的对称变换群 S(K)={(1), (1234),(13)(24), (1432), (14)(23), (12)(34), (24), (13)} {1, 2, 3,4, 5, 6,7, 8}
2020/5/25
B
A
1:
2 Pi
C
n种选择.
而 g 所含的循环置换个数为
1 2 L m
所以满足条件 g 的项链颜色有
n L
12
m
种选择
2020/5/25

fg
n
1
L
2
m
将它代入Burnside公式,就得项链的种类数为
N 1
n L
12
m
Dm
D g m
其中和式是对 Dm 中每一个置换求和.
进一步表示为
L
ik L
Dm im
1
c1
2L c2 L
kL m
ck L
c
m
,其中 ck A
2020/5/25
定义 g 对 的作用为
g
g 1
c1
g 2
c2
L L
g
m
cm
i1 c1
i2 c2
L L
则 e
g g g1g2
1
1
2
1 1
g2 g1
g1 g2
g1 g 2 1
组成,则称 是一个 11 22 L nn 型置换,
其中 1 1 2 2 L n n n.
例: S5 中 (123) (123)(4)(5) 是一个1231 型置换 (12345) 是一个 51 型置换 (12)(34) (12)(34)(5)是一个1122 型置换
2020/5/25
g( 2)
a1
a2
a2
a3
a3
a2
2
1
6
5
4
3
2
a1 a2 a2 a3 a3 a2
故 2 不是 g的不动点.
2020/5/25
下面我们来进一步计算不动点数 fg
fg | , g
而满足 g 的 ,对应于 g
的同一循环置换中的珠子的颜色必须相同,
因而,每一个循环置换中的珠子颜色共有
C
B
2020/5/25
B
C
B
8:
A
C
D
A
D
2020/5/25
定理1
正n边形的对称变换群阶为2n. 这种群称
为2n 元二面体群. 记为Dn
0 2
1, 123L
1
n2
123L n,
, L ,n1
123L
n n1 ,
0 2 n (3 n 1)L , L
2020/5/25
D6
D6 {
2
1
(1), (123456),
(135)(246),
3
6
(14)(25)(36),
(153)(264),
(165432),
4
5
(26)(35), (13)(46), (15)(24),
(16)(25)(34), (12)(36)(45), (14)(23)(56)}
2020/5/25
二、置换类型
一个n次置换 ,如果其循环置换分解式 是由1 个1-循环,2 个2-循环,L , n 个n-循环
(135)(246),
3
6
(14)(25)(36),
(153)(264),
(165435), (13)(46), (15)(24),
(16)(25)(34), (12)(36)(45), (14)(23)(56)}
2020/5/25
按类型计算每一个群元素的不动点数:
16 型置换有1个,每一个元素的不动点数为 fg 36
别表示关于正三角形的三个对称轴的反射变换,
(1 2 3), (1 3 2)分别表示关于正三角形的中
心按逆时针方向旋转120度、240度的旋转变
换.
1
l4 l2
l1 l3
l3
2
1
O
O
l2
2
3
l1
3
4
2020/5/25
例 2 正方形的对称变换群. 正方形的四个顶点分别可用1、 2、 3、
4来表示. 于是正方形的每一对称变换可用一 个4次置换来表示. 显然, 不同的对称变换 所对应的置换也不同,而对称变换的乘积对 应了置换的乘积. 这说明,正方形的对称变换 群可用一置换群来表示.
g
2
1 1
g1
,所以 g1g2 g1 g2 .
im
g
1
cm
2020/5/25
其直观意义是, g Dm 对 的作用就是
对项链的点号作一个旋转变换或翻转变换,因而 g Dm使
g 1 2 1 与 2 是同一类型的
1 与 2 属于同一轨道.
因此,每一类型的项链对应一个轨道,不同
二面体群中的置换类型
二面体群 Dn 是一个n次置换群
0 (1), k 123L nk , k 1,L , n 1
0 2 n (3 n 1)L , L
k
的类型是
n d
d
型,其中 d
n1
(
n,
k)
k 当n是奇数时,都是 112 2 型的
当n是偶数时,有两种类型:
122
n 2
1
n
型和 2 2 型
N 1
c , L , 1 2,
m
L
12
m
n
c , L , 其中
Dm 1 1 2 m
2L
m
1 2, m 为同一类型的群元素个数,
和式是对所有可能的不同置换类型求和.
相关文档
最新文档