近世代数课件(全)--2-11图形的对称变换群、群的应用
《近世代数》PPT课件
a b a b ,(m m )o a b d a b(m m )o
10.01.2021
编辑ppt
18
2.2 多项式剩余类环和域
1.域上多项式的定义
– 多项式与码字的关系:桥梁;
• 多项式的系数表示
;
• x的幂次表示
;
– 域上的多项式
• 针对系数定义;
• 例如二进制系数多项式,称为二元域GF(2)上的 多项式。
编辑ppt
28
(1) 常数总是多项式的因子。
(2) 一个多项式 f(x) 是否为既约多项式 与所定义的域有关。
(3) 一个多项式既约的充要条件:多项 式Pl(x) 不能分解成两个次数低于Pl(x) 的多项式的乘积。
(4) 完全分解:n次多项式最多能分解成 n个一次多项式的乘积,被称为完全分 解。
(5) 一次多项式一定是既约的。
(3)加法和乘法之间满足如下分配率 (distributive) :
a(bc) abac
(bc)a baca
则称F是一个域。
10.01.2021
编辑ppt
6
(1)域的阶(针对群中元素的个数),记 为q。
(2)有限域或伽逻华(Galois)域,表示为:
GF(q)。
–域将
10.01.2021
和
编辑ppt
联系在一起?
7
例2-3
– F1:有理数全体、实数全体对加法和乘法都 分别构成域,分别称为有理数域和实数域。
– F2:0、1两个元素模2加构成域;由于该域 中只有两个元素,记为GF(2)。
10.01.2021
编辑ppt
8
• 定理:
– 设p为质数,则整数全体关于p模的剩余类: 0,1,2,…,p-1,在模p的运算下(p模相 加和相乘),构成p阶有限域GF(p)。
近世代数课件--2.11 同态与不变子群
11.1 自然同态
定理1 证明 一个群 G 同它的每一个商 G 我们规定 G 到
G N
N
群同态.
的一个法则 :
(a G )
( a ) aN
这显然是 G 到 G N 的一个满射.并且,对于 G 的 任意两个元 a 和 b 来说,
N 与 G间的同构映射.因为:
1) f 无歧义
aN bN b a N b a e a b f ( aN ) f (bN )
1 1
这就是说,在 f 之下 G 的象; 2) f 是单映射.上面的过程可逆. 3) f 是满射.给了 G 的一个任意元 a ,在 G 里至少 有一个元 a 满足条件 f ( a ) a ,由定义,
定理1告诉我们,一个群G 和它的一个商群同态, 定理2告诉我么,抽象地来看, G 只能和它的商群 同态,所以我们可以说,定理2正是定理1的反 面.我们知道,当群 G 与群 G 同态的时候, G 的性质 并不同 G 的完全一样.但定理2告诉我们,这时我 们一定找得到 G 的一个不变子群 N ,使得G 的性质和 商群 G N 的完全一样.从这里我们可以看出,不变 子群和商群的重要意义.
定理4 假定 G 和 G是两个群,并且 G 与 G 同态.那 么在这个同态满射之下的 (ⅰ)G 的一个子群 H 的逆象 H 是 G 的一个子群; (ⅱ)G 的一个不变子群 N 的逆象 N 是 G 的一个不变 子群. 证明 我们用 f 来表示给定的同态满射. b (ⅰ)假定 a , 是 H 的两个任意元,并且在 f 之下, a a ,b b , 我们需要证明 ab 1 H .注意
近世代数学习教材PPT课件
§8.2 代数系统常见的一些性质
(3)代数系统常见性质 1)结合律:(a b) c=a (b c) 2)交换律:a b=b a 3)分配律:a (b+c)=(a b)+(a c) 4)单位元:a 1=a 5)逆元:a a-1=1 6)零元:a 0=0
7)生成元
逆元
域
特殊子环 (两个二元运算:,
单位元,无零因子 整环 理想 商环
)
特殊环
两个运算的结合律、交换律、吸收律
格 两个运算的分配律 分配格 布尔代数 两个运算的单位元、逆元 两个运算有单位元 有界格 两个运算有逆元 有补格
第九章 群论
§9.1 一些群的定义
(7)半群——代数系统满足交换律
§9.2 一些群的理论与半群性质:
半群的子代数也是半群。 循环半群是可换半群。 (19)关于群的基本理论 群方程可解性:a x = b(或x a = b)对x存在唯一解; 群的消去律:a b = a c(或b a = c a)必有b = c; 任一群必与变换群同构; 与一个群同构或满同态的代数系统必为群; 一个代数系统有限群满足结合律及消去律则必为群;
第三篇 近世代数
代数系统是建立在集合论基础上以代 数运算为研究对象的学科。本篇共三章, 第五章代数系统基础介绍代数系统的一般 原理与性质, 第六章群论,主要介绍具有 代表性的代数系统-群,最后第七章其它 代数系统,介绍除群外常见的一些代数系 统,如环、域、格与布尔代数等,这三章 相互配合构成了代数系统的完整的整体。
§8.3 同构与同态
(4)同构:(X, )与(Y,)存在一一对应函
数g : XY使得如x1 , x2X,则有:g(x1 x 2)=g(x1)
《近世代数》课件
近世代数的重要性
近世代数是数学领域中的基础学科之 一,是学习其它数学分支的重要基础 。
它对于理解数学的抽象本质和掌握数 学的基本思想方法具有重要意义,有 助于培养学生的逻辑思维和抽象思维 能力。
课程大纲简介
本课程将介绍近世代数的基本概念和性质,包括集合、群、环、域等代数系统的 定义、性质和关系。
1.1 答案
对。因为$a^2$的定义是两个整数相乘,结果仍为整数。
第1章习题及解答
1.2 答案:(略)
1.3 答案:群的基本性质包括封闭性、结合律和存在单位元。
第2章习题及解答
2.1 判断题:若$a$是整数,则$a^3$也是整数。 2.2 选择题:下列哪个是环?
第2章习题及解答
要点一
2.3 简答题
编码理论中的应用
线性码
线性码是一类重要的纠错码,其生成矩阵和校验矩阵都是线性方程组的解。这 些矩阵的构造和性质都与代数理论紧密相关。
高斯-若尔当消元法
在编码理论中,经常使用高斯-若尔当消元法来求解线性方程组,这种方法在代 数中也有广泛的应用。
物理学中的应用
量子力学中的态空间
在量子力学中,态空间是一个复的向量空间,其基底对应于可观测物理量。这与代数学中的向量空间 概念非常相似。
如果E是F的一个子集,且E中的元素 都是方程f(x)=0的根,其中f(x)是F上 的一个多项式,那么E在F上形成一个 子域。
如果E是F的一个子集,且E中的元素 都是方程f(x)=0的根,其中f(x)是F上 的一个不可约多项式,那么E在F上形 成一个有限子域。
有限域
有限域的性质
有限域中的元素个数一定是某个素数的幂。
理想与商环
理想的定义与性质
介绍理想的定义,包括左理想、右理想、双边理想等 ,并讨论理想的封闭性、运算性质等。
近世代数课件群的概念
ab' b'a e. 于是,我们有 b' b'e b'(ab) (b'a)b eb b .所以我 们的命题成立.□
§2 群的概念
对于命题 2.3 中所说的元素 a, b ,我们称 b 为 a 的逆元,记作 b a1 .
乘法都不构成群.
§2 群的概念
例 2 令 P nn 表示某个数域 P 上的全体 n 阶方阵构 成的集合.显然, P nn 关于矩阵的加法构成交换群, P nn 关于矩阵的乘法不构成群.但是,容易明白,数域 P 上的 全体 n 阶可逆矩阵构成的集合关于矩阵的乘法构成群, 称为 n 级一般线性群,记作 GLn (P ) .数域 P 上的全体行 列式的值等于1的 n 阶方阵构成的集合关于矩阵的乘法 构 成 群, 称为 n 级 特 殊线性群 ,记 作 SLn (P ) . 注意,当 n 1时, GLn (P ) 和 SLn (P ) 都不是交换群.
此对于任意的 nN , a 的 n 次幂 an 有意义.现在,对
于任意整数 n 0 ,我们定义 a 的 n 次幂 an 如下:
an
e, (a1)n ,
当 n 0 时; 当n 0 时.
这样一来,对于任意整数 n , an 都有意义.
§2 群的概念
不难验证,幂具有如下性质:对于任意的 a, b G 和 m, n Z ,总有
§2 群的概念
下面介绍置换的表示方法.
设 A {a1, a2 , , an} 是一个有限集, f Sn .我们
可以将 f 表示成下表的形式:
f
a1 (a1)
a2 f (a2 )
f
an (an
近世代数简介ppt
若理想子环的所有元素可由一个元素a的各
次幂或各次幂的线性组合生成,则称该理想子环 主理想子环,简称主理想
域(Field)
一个集合,二种运算
不能被 x5+1 整除 不能被 x6+1 整除
…
…
不能被 x14+1 整除
能被 x15+1 整除 ∴ x4+x+1 是本原多项式
而 x4+ x3+ x2+ x+1
能被 x5+1 整除
能被 x15+1 整除
∴ x4+x3+x2+x+1是既约的,但不是本原的
多项式环Rq(x)g(x)
系数GF(q),模g(x)
对于有限域GF(q)上的m次既约多项式P(x),若能 被它整除的最简首一多项式(x n -1)的次数n qm
–1, 则称该多项式为本原多项式。 本原多项式一定既约;
反之,既约多项式未必本原。
多项式循环群 Cycle Group
由多项式的各次幂所构成的群称为多项式循环群
比如, x4+x+1
(q=2, m=4, 2m-1=15)
VIP专享文档下载特权自VIP生效起每月发放一次, 每次发放的特权有效期为1个月,发放数量由您购买 的VIP类型决定。
每月专享9次VIP专享文档下载特权, 自VIP生效起每月发放一次,持续有 效不清零。自动续费,前往我的账号 -我的设置随时取消。
服务特 权
共享文档下载特权
VIP用户有效期内可使用共享文档下载特权下载任意下载券标价的文档(不含付费文档和VIP专享文档),每下载一篇共享文
近世代数课件(全)--2-11 图形的对称变换群、群的应用
nm
现在考虑二面体群 D m 对集合 的作用: 设
1 2 g i1 i 2
k
ik
m Dm im
1 2 c1 c 2
,其中
ck A
k ck
m
cm
2019/1/20
定义
g
对 的作用为
g m i1 i 2 c m c1 c 2
2019/1/20
容易看出, 正方形的对称变换有两类: 第一类: 绕中心的分别旋转90度,180 度,270度,360度的旋转, 这对应于置换 (1234), (13)(24), (1432),(1). 第二类: 关于正方形的4条对称轴的反射, 这对应于置换 (1 2)(3 4), (2 4), (1 4)(2 3), (2 4), (1 3). 所以, 正方形的对称变换群有上述 8个元素. 这是四次对称群的一个子群.
2 1
1 是一个 (12345) 5 型置换 1 2 是一个 (12)(34) (12)(34)(5) 1 2 型置换
2019/1/20
二面体群中的置换类型
0 (1), k 123 n , k 1, , n 1 0 2 n (3 n 1) , d n k 的类型是 型,其中 d ( n, k ) d n 1 k 当n是奇数时,都是 112 2 型的
D
C
2019/1/20
B
A
7:
C D
D
A
C
B
2019/1/20
B
A
8:
C D
B
C
A
D
2019/1/20
近世代数基础课件
第3讲 特殊的唯一分解环 1 主理想环 2 欧氏环 3 唯一分解环上的一元多项式环 4 因子分解与多项式的根
38
第六章 群论补充
39
第1讲 共轭元与共轭子群 1 第2讲 群的直积 第3讲 群在集合上的作用 第4讲 西罗定理
40
第1讲 共轭元与共轭子群
研究群内一些特殊类型的元素和子群
1 中心和中心化子 2 共轭元和共轭子群 3 共轭子群与正规化子
53
四 代数学发展的四个阶段
代数学经历了漫长的发展过程,抽象代 数(近世代数)是19世纪最后20年直到20世 纪前30年才发展起来的现代数学分支. 1 最初的文字叙述阶段 2 代数的简化文字阶段 3 符号代数阶段 4 结构代数阶段
54
1 最初的文字叙述阶段
古希腊之前直到丢番图(Diophantine,公元250年)时 代,代数学处于最初的文字叙述阶段,这一阶段除古希腊 数学之外还包括古巴比伦、古埃及与古代中国的数学. 此时算术或代数尚未形成任何简化的符号表达法,代数 运算则都采用通常的语言叙述方式表达,因而代数推理 也都采用直观的方法.在中国古代则有著名的筹算法,而 在古希腊则借助于几何图形的变换方法.最典型的代表 是毕达哥拉斯(Pythagoras,公元前585-497)几何数论方 法.例如通过图形的组合可以得到
}
} }
映射相关概念及举例
映射的运算 映射及其相关概念的推广
}
特殊映射
6
第3讲 基本概念之代数运算适应的规则 ——运算律 运算律
1 与一种代数运算发生关系的运算律 (1)结合律 (2)交换律 (3)消去律 2 与两种代数运算发生关系的运算律 (1)第一分配律 (2)第二分配律
7
第4讲 基本概念之与代数运算发生关系的映射 ——同态映射 同态映射 1 同态映射 2 同态满射 3 同构映射 4 自同构映射 5 举例
近世代数课件全21 群的定义.ppt
2019/12/12
二、群的性质及等价判定方法 定理1 群中
1.左逆元也是右逆元(逆元); 2.左单位元也是右单位元(单位元);
aa1 a1a e ae aa1a ea a
做成交换群,称为正有理数乘群.
例3 G {全体整数},对于运算 a b ab
2
1Leabharlann 22124
2
1
2 212 2
结合律不成立,不做成群.
2019/12/12
注意:
(1)对于考察集合是否作成群: 既要考虑元素,又要考虑代数运算;
(2)将群的代数运算叫做乘法,简记
a b a b ab
近世代数 第二章 群论 §1 群的定义
2019/12/12
一、群的定义与例子
定义1设 G 是一个具有代数运算 的非空集合,
并且满足:
Ⅰ. 结合律: a,b,c G, 有
(a b) c a (b c)
Ⅱ. G 中有左单位元 e :a G, e a a Ⅲ. 对 G 中每一个元素 a , 有左逆元
左单位元1, a 1 无逆元,不能做成群;
2019/12/12
(3)对于运算 a b a b 4
a b c a b 4 c a b 4 c 4 a b c 8
a b c a b c 4 a b c 4 4 a b c 8
2019/12/12
定义4
设 G 是一个具有代数运算 的非空集合 ,并且满足结合律,则称 G 关于代数运算
近世代数教学PPT(精品)
两个集的并与交的概念可以推广到任意n个集合上去, 设 是给定的集合 .由 A1 , A2 ,, A n
A1 , A2 ,, 的一切元素 An
所成的集合叫做
A1 , A2 ,, 的并; An
由 A1 , A2 ,, An的一切公共元素所成的集合叫做
A1 , A2 ,, An 的交. A1 , A2 ,, An 的并和交分别记为:
诺特, 1882年3月23日生于德国埃尔朗根,1900年入埃朗 根大学,1907年在数学家哥尔丹指导下获博士学位。1916年 后,她开始由古典代数学向抽象代数学过渡。1920年,她已 引入「左模」、「右模」的概念。1921年写出的<<整环的理 想理论>>是交换代数发展的里程碑。建立了交换诺特环理论, 证明了准素分解定理。1926年发表<<代数数域及代数函数域 的理想理论的抽象构造>>,给戴德金环一个公理刻画,指出 素理想因子唯一分解定理的充分必要条件。诺特的这套理论也 就是现代数学中的“环”和“理想”的系统理论,一般认为抽 象代数形式的时间就是1926年,从此代数学研究对象从研究代 数方程根的计算与分布,进入到研究数字、文字和更一般元素 的代数运算规律和各种代数结构,完成了古典代数到抽象代数 的本质的转变。诺特当之无愧地被人们誉为抽象代数的奠基人 之一。
近世代数是在19世纪末至20世纪初发展起来的 数学分支。 1930年荷兰数学家范德瓦尔登(B.Lvan der Wearden 1930-1996) 根据该学科领域几位创始 人的演讲报告,综合了当时近世代数的研究成果, 编 著了《近世代数学》(Moderne Algebra)一书,这 是该学科领域第一本学术专著,也是第一本近世代 数的教科书。
近世代数理论的三个来源
近世代数引论PPT课件
详细描述
域是一个非空集合,其中定义了两种运算:加法和乘法 ,满足一定的性质。在域中,加法和乘法都是可逆的, 即每个元素都有唯一的加法逆元和乘法逆元。此外,域 中的乘法满足结合律,且每个元素都有乘法单位元。
子域与扩域
环论在几何学中的应用
环论也是近世代数的一个重要分支,它在几何学中也有着广泛的应用。例如,在代数几 何中,环论被用于描述多项式环的结构;在解析几何中,环论也被用于描述函数的性质。
数论中的应用
域论在数论中的应用
域论是近世代数中一个重要的分支,它在数论中有着广泛的应用。例如,在代数数论中,域论被用于描述代数数 的性质;在数论中,域论也被用于研究整数的性质和结构。
分式域与函数域
总结词
分式域和函数域是两种特殊的域,它们在数学和物理 中有广泛的应用。分式域是由其整环的分式组成的域 ,而函数域则是基于函数的定义域和值域形成的域。
详细描述
分式域是由一个整环的分式组成的域。整环是一个只含 有限除数的环,也就是说,如果一个元素在整环中不能 被其他元素整除,则该元素被称为不可约元素。分式环 是由整环中所有分式组成的集合,它构成一个域。函数 域是基于函数的定义域和值域形成的域。具体来说,给 定一个函数f和一个集合D,函数域是由集合D中所有可 能的函数值组成的集合,它也构成一个域。
交叉学科的研究
近世代数与其他学科的交叉研究也是未来的一个重要方向,如 代数几何、代数数论、计算机科学等学科的交叉研究,可以促
进近世代数的发展和应用。
THANKS
感谢观看
环论
环的定义和性质
要点一
总结词
环是具有加法和乘法两种运算的代数系统,满足一定的性 质。
近世代数课件2
代数系统(S,⊙)是否 做成半群的判断方法就是检验代数 运算⊙在集合S上是否适合结合律.
设(S , o)是一个半群, Φ ≠ T ⊆ S , 则称(T , o)是(S , o)的一个 子半群 ⇔ ∀a, b ∈ T , 有a o b ∈ T .
26
设 是 个 空 合若 S 一 非 集 , 1)在 上 在 个 数 算 ” S 存 一 代 运 “ ; 2)代 运 “ ” 集 S上 合 合 数 算 在 合 适 结 律 (也 ∀ ,b,c∈S,有 a b) c =a (b c).) 即a ( 则 集 S关 代 运 做 一 半 , 称 合 于 数 算 成 个 群 记 半 (S,. 作 群 )
37
M n(R)(实数域R上全体n阶矩阵组成 的集合)关于矩阵的乘法、加法能否做成M n(R) 上的半群、交换半群吗?若把M n(R)换为On(R), 其中 n(R) = {A∈ M n(R) AA′ = A′A = I}, 结果如 O 何?若把M n(R)换为GLn(R), 其中 ( GLn(R) = {A∈ M n(R) A ≠ 0} 另一表示形式: GL n, R)),结果如何?若把M n(R)换为SLn(R), ( ),结 其中SLn(R) = {A∈ M n(R) A = 1},结果如何?
16
GLn( R) = {A ∈ M n( R) A ≠ 0} 关于矩阵的乘法、加法能否做成 ?(另 GLn( R)上的代数系统?(另一表 示形式:GL n, R)) (
17
有理数集合关于规定 ⊕:Q × Q → Q, ∀a, b ∈ Q, 有a ⊕ b = a + b + ab 能否做成有理数集合Q上 的代数系统?
29
在半群(S, o)中, 任取n n ≥ 3)个元a1, a2,L, an, ( 只要不改变元素次序,则 a1 o a2 oLo an的任一计算方法 所得结果均相同.
近世代数ppt
第4讲 基本概念之与代数运算发生关系的映射 ——同态映射
1 同态映射 2 同态满射 3 同构映射 4 自同构映射 5 举例
9
第5讲 基本概念之等价关系与集合的分类 ——商集
1 商集 2 等价关系 3 集合的分类 4 集合A上的等价关系与 集合A的分类之间的联系
10
第三章 群
11
第1讲 代数系统
0下载券文档一键搜索 VIP用户可在搜索时使用专有高级功能:一键搜索0下载券文档,下载券不够用不再有压力!
内容特 无限次复制特权 权 文档格式转换
VIP有效期内可以无限次复制文档内容,不用下载即可获取文档内容 VIP有效期内可以将PDF文档转换成word或ppt格式,一键转换,轻松编辑!
阅读页去广告
第一章 绪 论
1
第1讲 绪 论
一 关于代数的观念 二 数学史的发展阶段 三 代数发展的阶段(数学发展史) 四 代数学发展的四个阶段 五 几类与近世代数的应用有关的实际
问题
2
第二章 基本概念
3
特权福利
特权说明
VIP用户有效期内可使用VIP专享文档下载特权下载或阅读完成VIP专享文档(部分VIP专享文档由于上传者设置不可下载只能 阅读全文),每下载/读完一篇VIP专享文档消耗一个VIP专享文档下载特权。
集合与元素的相关概念
集合的相关概念
集合的运算及运算律
集合的补充及说明
6
第2讲 基本概念之集合及其之间的关系 —对应关系(映射)(人造关系)
1 映射概念回忆
2 映射及相关定义 3 映射的充要条件
4 映射举例
5 符号说明
6 映射的合成及相关结论
7 映射及其映射相等概念的推广
8 集合及其之间的关系——特殊
近世代数群的概念课件
反身性
任何元素与自己相乘的结果仍为该元素本身。
可交换性
对于任意$a, b$在群中,有$a cdot b = b cdot a$。
可结合性
对于任意$a, b, c$在群中,有$(a cdot b) cdot c = a cdot (b cdot c)$。
子群与商群
子群
一个子群是一个集合在某个二元运算 下构成一个群,且该子集是原群的非 空子集。
05
有限群的结构
有限群的分 类
阿贝尔群和非阿贝尔群
01
根据群中元素的乘法是否满足交换律,可以将有限群分为阿贝
尔群和非阿贝尔群。
循环群和非循环群
02
根据群中是否存在循环子群,可以将有限群分为循环群和非循
环群。
素数阶群和非素数阶群
03
根据群的阶是否为素数,可以将有限群分为素数阶群和非素数
阶群。
有限群的Sylow定理
近世代数群的概念
目 录
• 群的定义与性质 • 群的表示与同态 • 循环群与交换群 • 群的扩张与直积 • 有限群的结构 • 群的应用
contents
01
群的定义与性质
群的定 义
群的定义
一个群是由一个集合和一个 在其上的二元运算所组成, 满足结合律、存在单位元、 存在逆元的代数系统。
结合律
群中的二元运算满足结合律, 即对于任意$a, b, c$在群中, 有$(a cdot b) cdot c = a cdot (b cdot c)$。
单位元
群中存在一个元素$e$,使 得对于任意$a$在群中,有 $e cdot a = a cdot e = a$。
逆元
对于任意$a$在群中,存在 一个元素$b$,使得$a cdot b = b cdot a = e$,其中 $e$是单位元。
近世代数课件
包括群、环、域等基本概念,以及这 些概念在抽象代数、几何学、拓扑学 等领域的应用。
近世代数的发展历程
19世纪初
随着代数学的发展,人们开始研究代数的结 构,近世代数逐渐形成。
20世纪初
环论和域论的建立进一步丰富了近世代数的 内容。
19世纪中叶
群论的创立为近世代数的发展奠定了基础。
20世纪中叶至今
近世代数课件
目录
• 引言 • 群论基础 • 环论基础 • 域论基础 • 应用举例
01
引言
代数与近世代数
代数
研究数、量、结构、变换以及结构等 概念的数学分支。
近世代数
研究代数的结构、性质和分类的分支 ,是现代数学的重要分支之一。
近世代数的研究对象与内容
研究对象
代数的结构、性质和分类,以及代数 与其他数学分支的联系。
多项式的基本概念
01
多项式是由若干个单项式通过加减运算组成的代数式
。
多项式的因式分解
02 将一个多项式分解为若干个因式的乘积,这些因式称
为多项式的因子。
多项式因式分解的应用
03
在数学、物理、工程等领域中,多项式因式分解被广
泛应用于解决各种问题,如计算、建模、优化等。
分式域的构造与应用
分式域的基本概念
域的扩张与分解
扩张
如果一个域K包含另一个域F作为其子集,并且K在F上连续,则称K是F的扩张,或称F是 K的子域。
分解
如果一个域K可以分解为若干个子域的乘积,即K=F1×F2×…×Fn,则称K是可分解的 。如果域K没有除了单位元以外的公因子,则称K是素数域。
05
应用举例
线性方程组的解法
线性方程组的基本概念
近世代数第二章课件
第二章群论 20第二章群论本章讨论具有一个代数运算的代数结构——半群与群,但重点是群的基本知识及典型的两个群-变换群和循环群.群是概括性比较强的一个概念,是近世代数中比较丰富的一个分支,它产生于19世纪初人们对高次方程根号解问题的研究,发展到现在,群论已经应用到数学许多其它分支及一些别的科学领域.如在近世几何中,利用群的观点,把几何加以科学分类;在晶体学中,利用群论的方法,解决了空间晶体的分类问题;在现代通讯理论中,利用群来进行编码,有所谓的群码.我们先从半群开始来研究群.§1 群的定义及基本性质2.1 半群的定义设S是具有一个代数运算的集合,为了方便,将此代数运算叫S的乘法,并且仍用通常的乘法记号“·”来表示,把S的两个元素ba,关于“·”运算结果ba∙简记为ab.当然,这样被叫做乘法不一定就是指数的乘法,还可表示像矩阵、函数、向量的乘法,但一般来说它们都不是数的乘法.定义1如果代数结构(S,·)的乘法适合结合律,即ba∈c∀)有,S,,ab=,则称S关于它的乘法是一个半群,简称Sac(bc()是一个半群.2关于数的乘法是一个半群.关于数的加法也是一例1 偶数集Z个半群.n⨯矩阵作成的集合M n(F),关于矩阵乘法例2数域F上的所有n是一个半群.例3 A 是一个非空集合,A 的幂集}|{A x x A P ⊆=)(关于∩、∪分别是半群.例4 +Z (正整数)关于数减法不能作成一个半群,因为数的减法不是+Z 的一个代数运算;Z 虽然关于数的减法是Z 的代数运算,但结合律不成立,故),(-Z 不是一个半群.注 由于一个半群),(⋅S 的乘法适合结合律,故可以在半群),(⋅S 中可以引进一个元素a 的正整数次幂的概念,规定:, 个n n a aa a =那么,易见半群里有以下指数运算规律:ba ab b a ab a a a a a n n n nm m n n m n m =⋅===⋅+当,)(,)(,,这里+∈Z n m ,。
《近世代数》PPT课件
例2 设 A 1 { 东} , A 2 { 西 南 } , B { 高} ,低
则 1 :A 1 A 2 B ; ( 西 , 南 ) 高 不是映射.
因为映射要满足每一个元 (a1,a2) 都要有一个像.
而 2 : A 1 A 2 B ; ( 西 , 南 ) 高 ; ( 东 , 南 ) 低 是一个映射. 7
A 1A 2 A n{a1 (,a2, an)ai A i}.
即由一切从 A1,A2, ,An 里顺序取出元素组成的元素 组 (a1,a2, an),ai Ai 组成的集合.
例 A={1,2,3}, B={4,5}, 则
AB={(1,4), (1,5), (2,4), (2,5), (3,4), (3,5)},
A称为 的定义域,B称为 的值域.
注: (1) 映射定义中 “b”的唯一性:映射不能“一对多”,
但可以“多对一”.
(2) 记法: :A B ;ab (a ),aA .
(3) 一般情形,将A换成集合 A 1A 2.. .A n 的积,则
对 ( a 1 ,a 2 ,.a n .) .A ,1 A 2 . .A .n有 : A 1 A 2 . . . A n B ; ( a 1 , a 2 , . . . , a n ) b ( a 1 , a 2 , . . . , a n ) . 6
2. 元素(或元): 组成一个集合的事物.
如果a是集合A中的元素,记作a A ; 如果a不是集合A的元 素,记作 a A 或a A .
2
3.空集:没有元素的集合,记作 .
4.子集:设A,B是集合,则
B A (B是A的子集)是指 b B b A . 真子集:B是A的真子集是指 B A 且 aA,但aB .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A a1, a2,L , an 为n种颜色的集合.
则每一个映射 : X A 代表一个有标号
的项链.
令 | : X A ,它是全部有
标号项链的集合,显然有
nm
,是全部有标号项链的数目.
2020/5/25
现在考虑二面体群 Dm 对集合 的作用:
设
1 2 L k L m
g i1
i2
N 1
(12) (35) 11 22
25 4 2 5 23 8
10
2020/5/25
2
a1
1 a1
6 a2
5 a3
4 a3
3 a2
1
故 1是 g 的一个不动点.
2020/5/25
反之,若对应 g 的循环置换分解式中某个
循环置换中号码的珠子有不同的颜色,例如
2
1
2
3
4
5
6
a1 a2 a2 a3 a3 a2
,则
g(1) g(2) g(3) g(4) g(5) g(6)
显然,正三角形的每一对称变换都导致正三 角形的三个顶点的唯一一个置换. 反之, 由 正三角形的三个顶点的任一置换都可得到正 三角形的唯一一个对称变换,从而可用
S3 {(1), (12), (13), (23), (123), (132)}
表示正三角形的对称变换群.
2020/5/25
其中(1)为恒等变换, (1 2), (1 3), (2 3) 分
D
2020/5/25
B
A
A
D
2:
2 Pi
Pi 2
C
D
B
C
2020/5/25
B
A
D
C
3:
2 Pi
Pi
C
D
A
B
2020/5/25
B
A
C
B
4:
2 Pi
3 Pi
----
2
C
D
D
A
2020/5/25
B
A
C
D
5:
C
D
B
A
2020/5/25
B
A
A
B
6:
C
D
D
C
2020/5/25
B
A
D
A
7:
C
D
2020/5/25
三、项链问题
问题的提法: 用n种颜色的珠子做成有m颗珠子的项链, 问可做成多少种不同类型的项链?
这里所说的不同类型的项链,指两个 项链无论怎样旋转与翻转都不能重合。
2020/5/25
数学上的确切描述
设由m颗珠子做成一个项链,可用一个正m边形 来代表它,它的每个顶点代表一颗珠子。
沿逆时针方向给珠子标号,
2
由于每一颗珠子的颜色有n种选
择,因而用乘法原理,这些有标 3
号的项链共有nm种。
4
但其中有一些可以通过旋转一个角
度或翻转180度使它们完全重合, 5 我们称为是本质相同的,我们要考
虑的是无论怎么旋转、翻转都不能
使它们重合的项链类型数。
1 8
7 6
2020/5/25
设X={1,2,…m}, 代表m颗珠子的集合, 它们逆时针排列组成一个项链,由于每颗珠子 标有标号,我们称这样的项链为有标号的项链.
近世代数
第二章 群论 §11 图形的对称变换群、群的应用
2020/5/25
一、图形的对称变换群 定义1: 使图形不变形地变到与它重合的变 换称为这个图形的对称变换. 定义2:图形的一切对称变换关于变换的乘 法构成群,称为这个图形的对称变换群.
2020/5/25
例 1 正三角形的对称变换群. 设正三角形的三个顶点分别为1、 2、 3.
这是四次对称群的一个子群.
2020/5/25
平面上正方形ABCD的对称变换群 S(K)={(1), (1234),(13)(24), (1432), (14)(23), (12)(34), (24), (13)} {1, 2, 3,4, 5, 6,7, 8}
2020/5/25
B
A
1:
2 Pi
C
n种选择.
而 g 所含的循环置换个数为
1 2 L m
所以满足条件 g 的项链颜色有
n L
12
m
种选择
2020/5/25
故
fg
n
1
L
2
m
将它代入Burnside公式,就得项链的种类数为
N 1
n L
12
m
Dm
D g m
其中和式是对 Dm 中每一个置换求和.
进一步表示为
L
ik L
Dm im
1
c1
2L c2 L
kL m
ck L
c
m
,其中 ck A
2020/5/25
定义 g 对 的作用为
g
g 1
c1
g 2
c2
L L
g
m
cm
i1 c1
i2 c2
L L
则 e
g g g1g2
1
1
2
1 1
g2 g1
g1 g2
g1 g 2 1
组成,则称 是一个 11 22 L nn 型置换,
其中 1 1 2 2 L n n n.
例: S5 中 (123) (123)(4)(5) 是一个1231 型置换 (12345) 是一个 51 型置换 (12)(34) (12)(34)(5)是一个1122 型置换
2020/5/25
g( 2)
a1
a2
a2
a3
a3
a2
2
1
6
5
4
3
2
a1 a2 a2 a3 a3 a2
故 2 不是 g的不动点.
2020/5/25
下面我们来进一步计算不动点数 fg
fg | , g
而满足 g 的 ,对应于 g
的同一循环置换中的珠子的颜色必须相同,
因而,每一个循环置换中的珠子颜色共有
C
B
2020/5/25
B
C
B
8:
A
C
D
A
D
2020/5/25
定理1
正n边形的对称变换群阶为2n. 这种群称
为2n 元二面体群. 记为Dn
0 2
1, 123L
1
n2
123L n,
, L ,n1
123L
n n1 ,
0 2 n (3 n 1)L , L
2020/5/25
D6
D6 {
2
1
(1), (123456),
(135)(246),
3
6
(14)(25)(36),
(153)(264),
(165432),
4
5
(26)(35), (13)(46), (15)(24),
(16)(25)(34), (12)(36)(45), (14)(23)(56)}
2020/5/25
二、置换类型
一个n次置换 ,如果其循环置换分解式 是由1 个1-循环,2 个2-循环,L , n 个n-循环
(135)(246),
3
6
(14)(25)(36),
(153)(264),
(165435), (13)(46), (15)(24),
(16)(25)(34), (12)(36)(45), (14)(23)(56)}
2020/5/25
按类型计算每一个群元素的不动点数:
16 型置换有1个,每一个元素的不动点数为 fg 36
别表示关于正三角形的三个对称轴的反射变换,
(1 2 3), (1 3 2)分别表示关于正三角形的中
心按逆时针方向旋转120度、240度的旋转变
换.
1
l4 l2
l1 l3
l3
2
1
O
O
l2
2
3
l1
3
4
2020/5/25
例 2 正方形的对称变换群. 正方形的四个顶点分别可用1、 2、 3、
4来表示. 于是正方形的每一对称变换可用一 个4次置换来表示. 显然, 不同的对称变换 所对应的置换也不同,而对称变换的乘积对 应了置换的乘积. 这说明,正方形的对称变换 群可用一置换群来表示.
g
2
1 1
g1
,所以 g1g2 g1 g2 .
im
g
1
cm
2020/5/25
其直观意义是, g Dm 对 的作用就是
对项链的点号作一个旋转变换或翻转变换,因而 g Dm使
g 1 2 1 与 2 是同一类型的
1 与 2 属于同一轨道.
因此,每一类型的项链对应一个轨道,不同
二面体群中的置换类型
二面体群 Dn 是一个n次置换群
0 (1), k 123L nk , k 1,L , n 1
0 2 n (3 n 1)L , L
k
的类型是
n d
d
型,其中 d
n1
(
n,
k)
k 当n是奇数时,都是 112 2 型的
当n是偶数时,有两种类型:
122
n 2
1
n
型和 2 2 型
N 1
c , L , 1 2,
m
L
12
m
n
c , L , 其中
Dm 1 1 2 m
2L
m
1 2, m 为同一类型的群元素个数,
和式是对所有可能的不同置换类型求和.