高中物理选修测试题及答案

合集下载

高中物理选修3 2 电磁感应,交流电测试题及答案

高中物理选修3 2   电磁感应,交流电测试题及答案

高中物理选修3 2 电磁感应,交流电测试题及答案高中物理选修3-2-电磁感应,交流电测试题及答案高二物理测试时间:第一卷(选择题48分)一、选择题:(本题共12小题,每小题4分)1.在电磁感应现象中,下列陈述中正确的一个是()a.当闭合线框和磁场之间有相对运动时,线框中一定会有感应电流b.感应电流的磁场总是跟原来磁场的方向相反c.感应电流的磁场总是跟原来磁场的方向相同d、感应电流的磁场总是阻碍引起感应电流的磁通量的变化。

2.如右图所示,水平放置的矩形线圈ABCD垂直落在细长水平磁铁的S极附近,从位置I到位置II再到位置III。

位置II与磁铁在同一平面上,位置I和位置III非常接近位置II。

在下降过程中,线圈中的感应电流方向为()a、abcdab和adcbac、从abcda到adcbad、从adcba到abcda3.如图所示,这是早期制造的发电机和电机的示意图。

盘A和盘B是两个铜盘,可以分别围绕固定旋转轴旋转。

盘A的中心和盘B的边缘通过一根导线连接,盘B的中心和盘A的边缘通过另一根导线连接。

当圆盘a在外力作用下旋转时,圆盘B也会旋转。

那么下面陈述中正确的一个是()A。

连续旋转圆盘A可以获得连续电流。

原因是整个铜盘被视为沿径向排列的无数铜棒,它们切断磁感应线并产生感应电动势。

B.当磁盘a旋转时,磁盘B也可以旋转,因为电流在磁场力的作用下旋转c.当a盘顺时针转动时,b盘逆时针转动d.当a盘顺时针转动时,b盘也顺时针转动4、交流发电机的线圈转到线圈平面与中性面垂直时,下列说法正确的是()a、电流将改变方向B,磁场方向平行于线圈平面C,通过线圈的磁通量最大D,线圈中产生的感应电动势最大5、矩形导线框abcd固定在匀强磁场中,磁感线的方向与导线框所在平面垂直,规定磁场的正方向垂直纸面向里,磁感应强度b随时间变化的规律如图所示。

若规定顺时针方向为感应电流i的正方向,则下列表示电流变化的各图中正确的是()一6、如图所示,a、b是两个完全相同的灯泡,l是自感系数较大的线圈,其直流电阻忽略不计。

高中物理选修三综合测试题知识点归纳总结(精华版)(带答案)

高中物理选修三综合测试题知识点归纳总结(精华版)(带答案)

高中物理选修三综合测试题知识点归纳总结(精华版)单选题1、若粒子(电荷为2e)在磁感应强度为B均匀磁场中沿半径为R的圆形轨道运动,则粒子的德布罗意波长是()A.ℎ2eRB B.ℎeRBC.12eRBℎD.1eRBℎ答案:A粒子在磁场中做匀速圆周运动有2evB=m v2 R可得粒子的动量为p=2eBR 德布罗意波长为λ=ℎp=ℎ2eBR故选A。

2、如图所示,汽缸和活塞与外界均无热交换,汽缸中间有一个固定的导热性良好的隔板,封闭着两部分气体A和B,活塞处于静止平衡状态。

现通过电热丝对气体A加热一段时间,后来活塞达到新的平衡。

不计气体分子势能,不计活塞与汽缸壁间的摩擦,大气压强保持不变。

下列判断正确的是()A.气体A吸热,内能减少B.气体B吸热,对外做功,内能不变C .气体A 分子的平均动能增大D .气体A 和气体B 内每个分子的动能都增大答案:CACD .由题意可知气体A 发生等容变化,则W =0,根据ΔU =W +Q 可知,气体A 吸收热量,内能增加,温度升高,气体A 分子的平均动能变大,但并不是每个分子的动能都增大,C 正确,AD 错误;B .因为中间是导热隔板,所以气体B 吸收热量,温度升高,内能增加,根据pV T =C ,又因为压强不变,故体积变大,气体对外做功,B 错误。

故选C 。

3、下列说法正确的是( )A .原子核在衰变时,它在元素周期表中的位置改变B .β衰变是原子核外电子的电离C .把放射性元素放在低温处,可以减缓放射性元素的衰变D .某原子核衰变时,放出一个β粒子后,原子核的中子数少1,原子序数少1E .氡的半衰期是3.8天,若有4个氡原子核,则经过7.6天后只剩下一个氡原子核答案:AA .原子核在衰变时,它在元素周期表中的位置改变。

A 正确;BD .β衰变是原子核内的一个中子衰变成一个质子和一个β粒子,原子核的中子数少1,原子序数加1。

β衰变不是原子核外电子的电离。

B 错误,D 错误;C .把放射性元素放在低温处,不可以减缓放射性元素的衰变。

部编版高中物理选修三综合测试题带答案知识点题库

部编版高中物理选修三综合测试题带答案知识点题库

(名师选题)部编版高中物理选修三综合测试题带答案知识点题库单选题1、氢原子的能级如图所示,已知可见光的光子的能量范围为1.62~3.11eV ,下列说法正确的是( )A .玻尔模型可以解释氦原子光谱B .氢原子从n =3能级向n =2能级跃迁时,发出的是可见光C .大量处于n =4能级的氢原子向低能级跃迁时,可能发出3种不同频率的光D .处于n =1能级的氢原子可以吸收能量为10eV 的光子的能量2、一群处于n =4能级的激发态的氧原子,向低能级跃迁时,最多发射出的谱线为( )A .3种B .4种C .5种D .6种3、轻核的聚变反应会释放大量的能量,同时核聚变产物一般不会污染环境,是人类获得能源的理想方式。

核聚变反应过程主要是以下四种:H 12+H 12→23He+X 1+3.27MeVH 12+H 12→H 13+X 2+4.04MeVH 12+H 13→24He+X 3+17.85MeV H 12+23He→24He+X 4+18.34MeV 对上面的反应中的X 1、X 2、X 3、X 4,属于中子的是( )A .X 1、X 2、X 3、X 4B .X 2、X 3、X 4C .X 3、X 4D .X 1、X 34、两个分子间的距离发生变化引起分子势能增大,则这一过程中()A.一定克服分子间相互作用力做了功B.两分子间的相互作用力一定减小C.分子间的距离一定变小D.分子间的相互作用力一定是引力5、关于银的性质描述中,属于化学性质的是()A.银是银白色的B.银不易与氧气反应C.银具有优良的导电性D.银具有良好的延展性6、如图所示,用F表示两分子间的作用力,用E p表示分子间的分子势能,在两个分子之间的距离为10r0变由r0的过程中,以下判断正确的是()A.F不断增大,E p不断减小B.F先增大后减小,E p不断减小C.F不断增大,E p先增大后减小D.F、E p都是先增大后减小7、在自然界中,一切温度高于绝对零度的物体都在不停地向周围空间辐射红外线。

选修1高中物理《动量守恒定律》测试题(含答案)

选修1高中物理《动量守恒定律》测试题(含答案)

选修1高中物理《动量守恒定律》测试题(含答案)一、动量守恒定律 选择题1.如图所示,质量为M 的长木板静止在光滑水平面上,上表面OA 段光滑,AB 段粗糙且长为l ,左端O 处固定轻质弹簧,右侧用不可伸长的轻绳连接于竖直墙上,轻绳所能承受的最大拉力为F .质量为m 的小滑块以速度v 从A 点向左滑动压缩弹簧,弹簧的压缩量达最大时细绳恰好被拉断,再过一段时间后长木板停止运动,小滑块恰未掉落.则( )A .细绳被拉断瞬间木板的加速度大小为F M B .细绳被拉断瞬间弹簧的弹性势能为212mv C .弹簧恢复原长时滑块的动能为212mv D .滑块与木板AB 间的动摩擦因数为22v gl2.如图所示,光滑的半圆槽置于光滑的地面上,且一定高度自由下落的小球m 恰能沿半圆槽的边缘的切线方向滑入原先静止的槽内,对此情况,以下说法正确的是( )A .小球第一次离开槽时,将向右上方做斜抛运动B .小球第一次离开槽时,将做竖直上抛运动C .小球离开槽后,仍能落回槽内,而槽将做往复运动D .槽一直向右运动3.如图所示,弹簧的一端固定在竖直墙壁上,质量为m 的光滑弧形槽静止在光滑水平面上,底部与水平面平滑连接,一个质量也为m 的小球从槽高h 处开始下滑,则A .在小球从圆弧槽上下滑过程中,小球和槽组成的系统水平方向的动量始终守恒B .在小球从圆弧槽上下滑运动过程中小球的机械能守恒C .在小球压缩弹簧的过程中小球与弹簧组成的系统机械能守恒D .小球离开弹簧后能追上圆弧槽4.如图,在光滑的水平面上有一个长为L 的木板,小物块b 静止在木板的正中间,小物块a 以某一初速度0v 从左侧滑上木板。

已知物块a 、b 与木板间的摩擦因数分别为a 、b μ,木块与木板质量均为m ,a 、b 之间的碰撞无机械能损失,滑动摩擦力等于最大静摩擦力。

下列说法正确的是( )A .若没有物块从木板上滑下,则无论0v 多大整个过程摩擦生热均为2013mvB .若22ab a μμμ<≤,则无论0v 多大,a 都不会从木板上滑落 C .若032a v gL μ≤,则ab 一定不相碰 D .若2b a μμ>,则a 可能从木板左端滑落5.如图甲所示,质量M =2kg 的木板静止于光滑水平面上,质量m =1kg 的物块(可视为质点)以水平初速度v 0从左端冲上木板,物块与木板的v -t 图象如图乙所示,重力加速度大小为10m/s 2,下列说法正确的是( )A .物块与木板相对静止时的速率为1m/sB .物块与木板间的动摩擦因数为0.3C .木板的长度至少为2mD .从物块冲上木板到两者相对静止的过程中,系统产生的热量为3J6.质量分别为3m 和m 的两个物体,用一根细绳相连,中间夹着一根被压缩的轻弹簧,在光滑的水平面上以速度v 0匀速运动.某时刻剪断细绳,质量为m 的物体离开弹簧时速度变为v= 2v 0,如图所示.则在这一过程中弹簧做的功和两物体之间转移的动能分别是A .2083mv2023mv B .20mv 2032mv C .2012mv 2032mv D .2023mv 2056mv 7.一物体在外力的作用下从静止开始做直线运动,合外力方向不变,大小随时间的变化如图所示.设该物体在0t 和02t 时刻相对于出发点的位移分别是1x 和2x ,速度分别是1v 和2v ,合外力从开始至o t 时刻做的功是1W ,从0t 至02t 时刻做的功是2W ,则A .215x x =,213v v =B .1221,95x x v v ==C .2121,58x x W W ==D .2121,39v v W W ==8.如图所示,质量为M 的木板静止在光滑水平面上,木板左端固定一轻质挡板,一根轻弹簧左端固定在挡板上,质量为m 的小物块从木板最右端以速度v 0滑上木板,压缩弹簧,然后被弹回,运动到木板最右端时与木板相对静止。

高中物理选修二综合测试题总结(重点)超详细(带答案)

高中物理选修二综合测试题总结(重点)超详细(带答案)

高中物理选修二综合测试题总结(重点)超详细单选题1、质谱仪是一种测定带电粒子质量和分析同位素的重要工具。

图中的铅盒A中的放射源放出大量的带正电粒子(可认为初速度为零),从狭缝S1进入电压为U的加速电场区加速后,再通过狭缝S2从小孔G垂直于MN射入偏转磁场,该偏转磁场是以直线MN为切线、磁感应强度为B,方向垂直于纸面向外半径为R的圆形匀强磁场,现在MN上的F点(图中未画出)接收到该粒子,且GF=√3R,则该粒子的比荷为(粒子的重力忽略不计)()A.3UR2B2B.4UR2B2C.6UR2B2D.2UR2B2答案:C设粒子被加速后获得的速度为v,由动能定理有qU=12mv2根据题意,粒子在磁场中运动轨迹,如图所示由几何关系可得,粒子在磁场中做匀速圆周运动的轨道半径r=√3R 3由牛顿第二定律有qvB=m v2 r解得q m =6U R2B2故选C。

2、如图所示是一水平放置的绝缘环形管,管内壁光滑,内有一直径略小于管内径的带正电的小球,开始时小球静止。

有一变化的磁场竖直向下穿过管所在的平面,磁感应强度B随时间成正比例增大,设小球的带电量不变,则()A.顺着磁场方向看,小球受顺时针方向的力,沿顺时针方向运动B.顺着磁场方向看,小球受顺时针方向的力,沿逆时针方向运动C.顺着磁场方向看,小球受逆时针方向的力,沿逆时针方向运动D.小球不受力,不运动答案:C因为绝缘环形管面内有均匀增大的磁场,在其周围会产生稳定的涡旋电场,对带电小球做功,由楞次定律判断电场方向为逆时针方向。

在电场力作用下,带正电小球沿逆时针方向运动,C正确;ABD错误。

故选C。

3、空间被等分成8个区域,每隔1个区域分布着匀强磁场,磁感应强度大小和磁场方向如图所示。

半径为l、电阻为r、圆心角为45°的扇形线框绕圆心O在纸面内逆时针匀速转动,角速度大小为,则线框内电流的有效值为()A.√10Bωl28r B.√10Bωl24rC.√10Bωl22rD.√5Bωl24r答案:B线圈从图示位置转过第一个和第四个90°时,感应电动势E1=12Bωl2线圈转过第二个和第三个90°时,感应电动势E2=12⋅2Bωl2=Bωl2则一个周期内电动势有效值E满足E2 r T=E12r⋅T2+E22r⋅T2解得E=√10Bωl24则电流的有效值I=√10Bωl24r故选B。

高中物理选修3-5综合测试题及答案

高中物理选修3-5综合测试题及答案

高中物理选修3-5综合测试题及答案1.原子核式结构理论认为,原子的中心有原子核,包括带正电的质子和不带电的中子;原子的全部正电荷和几乎全部质量都集中在原子核里;带负电的电子在核外绕着核在不同轨道上旋转。

2.符合物理学史的叙述有:XXX通过研究阴极射线实验,发现了电子和质子的存在;XXX通过对α粒子散射实验现象的分析,证实了原子是可以再分的;XXX根据氢原子光谱分析,总结出了氢原子光谱可见光区波长公式。

3.根据玻尔理论,氢原子辐射出一个光子后,电子绕核旋转的半径增大。

4.原子从a能级状态跃迁到c能级状态时将要发出波长为λ1-λ2的光子。

5.照射氢原子的单色光的光子能量为 12.09eV。

6.氢原子的发射光谱不是连续光谱,而是只发出特定频率的光,说明氢原子能级是分立的,光谱的频率与氢原子能级的能量差有关。

7.正确的说法是,先放开右手,后放开左手,两车的总动量向右。

8.水平推力F1和F2合成的力的大小为√(F1²+F2²)。

1.分别作用于水平面上的同一物体,分别作用一段时间后撤去,使物体都从静止开始运动到最后停下。

如果物体在两种情况下的总位移相等,且F1>F2,则F2的冲量大。

2.在任何相等的时间内,物体动量变化相等的是匀速圆周运动。

3.在光滑水平面上有一质量为m的物体,在与水平方向成θ角的恒定拉力F作用下运动,物体动量的变化量等于Ftcosθ。

4.质量相等的两个滑块位于光滑水平桌面上。

其中,弹簧两端分别与静止的滑块N和挡板P相连接,弹簧与挡板P的质量均不计;滑块M以初速度V向右运动,它与挡板P碰撞(不粘连)后开始压缩弹簧,最后,滑块N以速度V向右运动。

在此过程中,M的速度为V/2时,弹簧的长度最长。

5.一质量为m=2kg的可以看作质点的物体,受到一个变力的作用,从静止开始做变加速直线运动,其加速度随时间的变化关系如图,则该物体4.0s末的动量大小为40kg.m/s。

6.关于原子核的衰变,下列说法中正确的是用任何方法都不能改变原子核的半衰期。

部编版高中物理选修一综合测试题带答案知识点归纳超级精简版

部编版高中物理选修一综合测试题带答案知识点归纳超级精简版

(名师选题)部编版高中物理选修一综合测试题带答案知识点归纳超级精简版单选题1、如图1是用光传感器研究激光通过单缝或双缝后光强分布的装置图,铁架台上从上到下依次为激光光源、偏振片、缝、光传感器。

实验中所用的单缝缝距为0.08mm,双缝间距为0.25mm。

光源到缝的距离为17cm,缝到传感器的距离为40cm,实验得到的图像如图2、图3所示,则()A.题图2所用的缝为双缝,题图3所用的缝为单缝B.旋转偏振片,题2、题3两幅图像不会发生明显变化C.仅减小缝到传感器的距离,题2、题3两幅图像不会发生明显变化D.实验中所用的激光波长约为620nm2、位于同一高度的两个相同小球A、B,A球自由释放,B球以速度v0平抛,不计空气阻力,下列说法正确的是()A.A,B两球落地时动量相同B.A,B两球落地时动能相同C.A球运动过程中,相等时间内动量改变量相同D.A球运动过程中,相等时间内动能变化相同3、波在传播过程中,下列说法正确的是()A.介质中的质点随波的传播而迁移B.波源的能量随波传递C.振动质点的频率随着波的传播而减小D.波源的能量靠振动质点的迁移来传播4、质量为m的某质点在恒力F1作用下从A点由静止出发,当其速度为v m时立即将F1改为相反方向的恒力F2,质点总共经历时间t运动至B点刚好停下。

若该质点以速度v匀速通过A、B两点时,其经历的时间也为t,则()A.无论F1、F2为何值,v m均为2vB.随着F1、F2的取值不同,v m可能大于2vC.F1、F2的冲量大小不相等D.F1、F2的冲量一定大小相等、方向相同5、一列简谐横波沿x轴传播,t=0时的波形如图中实线所示,t=0.6s时的波形如图中虚线所示,则其波速大小的可能值是()A.15m/sB.25m/sC.30m/sD.45m/s6、由均匀透明材料制成的半圆柱的截面如图所示,AB为直径边界,O为圆心,半径为R;有一点光源嵌于P 点,在纸面内向各个方向发射黄光,该材料对黄光的折射率n=2。

最新人教版高中物理选修3-5测试题及答案全套

最新人教版高中物理选修3-5测试题及答案全套

最新人教版高中物理选修3-5测试题及答案全套单元测评(一)动量守恒定律(时间:90分钟满分:100分)第Ⅰ卷(选择题,共48分)一、选择题(本题有12小题,每小题4分,共48分.)1.在下列几种现象中,所选系统动量守恒的有()A.原来静止在光滑水平面上的车,从水平方向跳上一个人,人车为一系统B.运动员将铅球从肩窝开始加速推出,以运动员和铅球为一系统C.从高空自由落下的重物落在静止于地面上的车厢中,以重物和车厢为一系统D.光滑水平面上放一斜面,斜面也光滑,一个物体沿斜面滑下,以重物和斜面为一系统解析:判断动量是否守恒的方法有两种:第一种,从动量守恒的条件判定,动量守恒定律成立的条件是系统受到的合外力为零,故分析系统受到的外力是关键.第二种,从动量的定义判定.B选项叙述的系统,初动量为零,末动量不为零.C选项末动量为零而初动量不为零.D选项,在物体沿斜面下滑时,向下的动量增大等.答案:A2.一物体竖直向下匀加速运动一段距离,对于这一运动过程,下列说法正确的是()A.物体的机械能一定增加B.物体的机械能一定减少C.相同时间内,物体动量的增量一定相等D.相同时间内,物体动能的增量一定相等解析:不知力做功情况,A、B项错;由Δp=F合·t=mat知C项正确;由ΔE k=F合·x=max知,相同时间内动能增量不同,D错误.答案:C3.(多选题)如果物体在任何相等的时间内受到的冲量都相同,那么这个物体的运动()A.运动方向不可能改变B.可能是匀速圆周运动C.可能是匀变速曲线运动D.可能是匀变速直线运动解析:由题意可知,物体受到的合外力为恒力,物体不可能做匀速圆周运动,B项错误;物体的加速度不变,可能做匀变速直线运动,其运动方向可能反向,也可能做匀变速曲线运动,A项错误,C、D项正确.答案:CD4.(多选题)质量为m的物体以初速度v0开始做平抛运动,经过时间t,下降的高度为h,速率变为v,在这段时间内物体动量变化量的大小为() A.m(v-v0)B.mgtC.m v2-v20D.m gh解析:平抛运动的合外力是重力,是恒力,所以动量变化量的大小可以用合外力的冲量计算,也可以用初末动量的矢量差计算.答案:BC5.质量M=100 kg的小船静止在水面上,船头站着质量m甲=40 kg的游泳者甲,船尾站着质量m乙=60 kg的游泳者乙,船头指向左方.若甲、乙两游泳者同时在同一水平线上甲朝左、乙朝右以3 m/s的速率跃入水中,则() A.小船向左运动,速率为1 m/sB.小船向左运动,速率为0.6 m/sC.小船向右运动,速率大于1 m/sD.小船仍静止解析:选向左的方向为正方向,由动量守恒定律得m甲v-m乙v+M v′=0,船的速度为v′=(m乙-m甲)vM=(60-40)×3100m/s=0.6 m/s,船的速度向左,故选项B正确.答案:B6.如图所示,两带电的金属球在绝缘的光滑水平桌面上,沿同一直线相向运动,A带电-q,B带电+2q,下列说法正确的是()A.相碰前两球运动中动量不守恒B.相碰前两球的总动量随距离减小而增大C.两球相碰分离后的总动量不等于相碰前的总动量,因为碰前作用力为引力,碰后为斥力D.两球相碰分离后的总动量等于碰前的总动量,因为两球组成的系统合外力为零解析:两球组成的系统,碰撞前后相互作用力,无论是引力还是斥力,合外力总为零,动量守恒,故D选项对,A、B、C选项错.答案:D7.在光滑的水平面的同一直线上,自左向右地依次排列质量均为m的一系列小球,另一质量为m的小球A以水平向右的速度v运动,依次与上述小球相碰,碰后即粘合在一起,碰撞n 次后,剩余的总动能为原来的18,则n 为( ) A .5 B .6C .7D .8解析:整个过程动量守恒,则碰撞n 次后的整体速度为v =m v 0(n +1)m =v 0n +1,对应的总动能为:E k =12(n +1)m v 2=m v 202(n +1),由题可知E k =m v 202(n +1)=18×12m v 20,解得:n =7,所以C 选项正确.答案:C8.两名质量相等的滑冰人甲和乙都静止在光滑的水平冰面上.现在,其中一人向另一人抛出一个篮球,另一人接球后再抛回.如此反复进行几次后,甲和乙最后速率关系是( )A .若甲最先抛球,则一定是v 甲>v 乙B .若乙最后接球,则一定是v 甲>v 乙C .只有甲先抛球,乙最后接球,才有v 甲>v 乙D .无论怎样抛球和接球,都是v 甲>v 乙解析:将甲、乙、篮球视为系统,则满足系统动量守恒,系统动量之和为零,若乙最后接球,即(m 乙+m 篮)v 乙=m 甲v 甲,则v 甲v 乙=m 乙+m 篮m 甲,由于m 甲=m 乙,所以v 甲>v 乙.答案:B9.(多选题)如图所示,一根足够长的水平滑杆SS′上套有一质量为m的光滑金属圆环,在滑杆的正下方与其平行放置一足够长的光滑水平的绝缘轨道PP′,PP′穿过金属环的圆心.现使质量为M的条形磁铁以水平速度v0沿绝缘轨道向右运动,则()A.磁铁穿过金属环后,两者将先后停下来B.磁铁将不会穿越滑环运动C.磁铁与圆环的最终速度为M v0 M+mD.整个过程最多能产生热量Mm2(M+m)v20解析:磁铁向右运动时,金属环中产生感应电流,由楞次定律可知磁铁与金属环间存在阻碍相对运动的作用力,且整个过程中动量守恒,最终二者相对静止.M v0=(M+m)v,v=M v0M+m;ΔE损=12M v20-12(M+m)v2=Mm v202(M+m);C、D项正确,A、B项错误.答案:CD10.如图所示,在光滑的水平地面上有一辆平板车,车的两端分别站着人A 和B ,A 的质量为m A ,B 的质量为m B ,m A >m B .最初人和车都处于静止状态.现在,两人同时由静止开始相向而行,A 和B 对地面的速度大小相等,则车( )A .静止不动B .左右往返运动C .向右运动D .向左运动解析:两人与车为一系统,水平方向不受力,竖直方向合外力为零,所以系统在整个过程中动量守恒.开始总动量为零,运动时A 和B 对地面的速度大小相等,m A >m B ,所以AB 的合动量向右,要想使人车系统合动量为零,则车的动量必向左,即车向左运动.答案:D11.如图所示,质量为0.5 kg 的小球在距离车底面高20 m 处以一定的初速度向左平抛,落在以7.5 m/s 速度沿光滑水平面向右匀速行驶的敞篷小车中,车底涂有一层油泥,车与油泥的总质量为4 kg ,设小球在落到车底前瞬时速度是25 m/s ,g 取10 m/s 2,则当小球与小车相对静止时,小车的速度是( )A .5 m/sB .4 m/sC .8.5 m/sD .9.5 m/s解析:对小球落入小车前的过程,平抛的初速度设为v 0,落入车中的速度设为v ,下落的高度设为h ,由机械能守恒得:12m v 20+mgh =12m v 2,解得v 0=15 m/s ,车的速度在小球落入前为v 1=7.5 m/s ,落入后相对静止时的速度为v 2,车的质量为M ,设向左为正方向,由水平方向动量守恒得:m v 0-M v 1=(m +M )v 2,代入数据可得:v2=-5 m/s,说明小车最后以5 m/s的速度向右运动.答案:A12.如图所示,小车AB放在光滑水平面上,A端固定一个轻弹簧,B端粘有油泥,AB总质量为M,质量为m的木块C放在小车上,用细绳连接于小车的A端并使弹簧压缩,开始时AB和C都静止,当突然烧断细绳时,C被释放,C离开弹簧向B端冲去,并跟B端油泥粘在一起,忽略一切摩擦,以下说法正确的是()A.弹簧伸长过程中C向右运动,同时AB也向右运动B.C与B碰前,C与AB的速率之比为m∶MC.C与油泥粘在一起后,AB立即停止运动D.C与油泥粘在一起后,AB继续向右运动解析:依据系统动量守恒,C向右运动时,A、B向左运动,或由牛顿运动定律判断,AB受向左的弹力作用而向左运动,故A项错;又M v AB=m v C,得v C vAB ,即B项错;根据动量守恒得:0=(M+m)v′,所以v′=0,故选C.=Mm答案:C第Ⅱ卷(非选择题,共52分)二、实验题(本题有2小题,共14分.请按题目要求作答)13.(5分)某同学利用计算机模拟A、B两球碰撞来验证动量守恒,已知A、B两球质量之比为2∶3,用A作入射球,初速度为v1=1.2 m/s,让A球与静止的B球相碰,若规定以v1的方向为正,则该同学记录碰后的数据中,肯定不合理的是________.解析:根据碰撞特点:动量守恒、碰撞后机械能不增加、碰后速度特点可以判断不合理的是BC.答案:BC(5分)14.(9分)气垫导轨是常用的一种实验仪器,它是利用气泵使带孔的导轨与滑块之间形成气垫,使滑块悬浮在导轨上,滑块在导轨上的运动可视为没有摩擦.我们可以用带竖直挡板C 和D 的气垫导轨以及滑块A 和B 来探究碰撞中的不变量,实验装置如图所示(弹簧的长度忽略不计),采用的实验步骤如下:a .用天平分别测出滑块A 、B 的质量m A 、m B .b .调整气垫导轨,使导轨处于水平.c .在A 和B 间放入一个被压缩的轻弹簧,用电动卡销锁定,静止地放置在气垫导轨上.d .用刻度尺测出A 的左端至C 板的距离L 1.e .按下电钮放开卡销,同时使分别记录滑块A 、B 运动时间的计时器开始工作.当A 、B 滑块分别碰撞C 、D 挡板时停止计时,记下A 、B 分别到达C 、D 的运动时间t 1和t 2.(1)实验中还应测量的物理量是______________________________.(2)利用上述测量的实验数据,得出关系式________成立,即可得出碰撞中守恒的量是m v 的矢量和,上式中算得的A 、B 两滑块的动量大小并不完全相等,产生误差的原因是________________________.解析:(1)本实验要测量滑块B 的速度,由公式v =L t 可知,应先测出滑块B的位移和发生该位移所用的时间t ,而滑块B 到达D 端所用时间t 2已知,故只需测出B 的右端至D 板的距离L 2.(2)碰前两物体均静止,即系统总动量为零.则由动量守恒可知0=m A ·L 1t 1-m B ·L 2t 2即m A L 1t 1=m B L 2t 2产生误差的原因有:测量距离、测量时间不准确;由于阻力、气垫导轨不水平等造成误差.答案:(1)测出B 的右端至D 板的距离L 2(3分)(2)m A L 1t 1=m B L 2t 2(3分) 测量距离、测量时间不准确;由于阻力、气垫导轨不水平等造成误差(3分)三、计算题(本题有3小题,共38分.解答应写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位)15.(10分)课外科技小组制作一只“水火箭”,用压缩空气压出水流使火箭运动.假如喷出的水流流量保持为2×10-4 m 3/s ,喷出速度保持为对地10 m/s.启动前火箭总质量为1.4 kg ,则启动2 s 末火箭的速度可以达到多少?已知火箭沿水平轨道运动阻力不计,水的密度是1.0×103 kg/m 3.解析:“水火箭”喷出水流做反冲运动.设火箭原来总质量为M ,喷出水流的流量为Q ,水的密度为ρ,水流的喷出速度为v ,火箭的反冲速度为v ′,由动量守恒定律得(M -ρQt )v ′=ρQt v (6分)代入数据解得火箭启动后2 s 末的速度为v ′=ρQt v M -ρQt =103×2×10-4×2×101.4-103×2×10-4×2m/s =4 m/s. (4分) 答案:4 m/s16.(12分)如图所示,有A 、B 两质量均为M =100 kg 的小车,在光滑水平面上以相同的速率v 0=2 m/s 在同一直线上相对运动,A 车上有一质量为m =50 kg 的人至少要以多大的速度(对地)从A 车跳到B 车上,才能避免两车相撞?解析:要使两车避免相撞,则人从A 车跳到B 车上后,B 车的速度必须大于或等于A 车的速度,设人以速度v 人从A 车跳离,人跳到B 车后,A 车和B 车的共同速度为v ,人跳离A 车前后,以A 车和人为系统,由动量守恒定律:(M +m )v 0=M v +m v 人(5分)人跳上B 车后,以人和B 车为系统,由动量守恒定律:m v 人-M v 0=(m +M )v (5分)联立以上两式,代入数据得:v 人=5.2 m/s. (2分)答案:5.2 m/s17.(16分)如图所示,质量m 1=0.3 kg 的小车静止在光滑的水平面上,车长L =1.5 m ,现有质量m 2=0.2 kg 可视为质点的物块,以水平向右的速度v 0=2 m/s 从左端滑上小车,最后在车面上某处与小车保持相对静止.物块与车面间的动摩擦因数μ=0.5,取g =10 m/s 2,求:(1)物块在车面上滑行的时间t ;(2)要使物块不从小车右端滑出,物块滑上小车左端的速度v 0′不超过多少. 解析:(1)设物块与小车共同速度为v ,以水平向右为正方向,根据动量守恒定律有m 2v 0=(m 1+m 2)v (3分)设物块与车面间的滑动摩擦力为F ,对物块应用牛顿定律有F =m 2v 0-v t (2分)又F =μm 2g (1分)解得t =m 1v 0μ(m 1+m 2)g(1分) 代入数据得t =0.24 s. (1分)(2)要使物块恰好不从车面滑出,须使物块到达车面最右端时与小车有共同的速度,设其为v ′,则m 2v 0′=(m 1+m 2)v ′(3分)由功能关系有12m 2v ′20=12(m 1+m 2)v ′2+μm 2gL (3分) 代入数据解得v 0′=5 m/s故要使物块不从车右端滑出,物块滑上小车左端的速度v 0′不超过5 m/s. (2分)答案:(1)0.24 s (2)5 m/s单元测评(二) 波粒二象性(时间:90分钟 满分:100分)第Ⅰ卷(选择题,共48分)一、选择题(本题有12小题,每小题4分,共48分.)1.能正确解释黑体辐射实验规律的是( )A .能量的连续经典理论B .普朗克提出的能量量子化理论C .以上两种理论体系任何一种都能解释D .牛顿提出的能量微粒说解析:根据黑体辐射的实验规律,随着温度的升高,一方面各种波长的辐射强度都增加;另一方面,辐射强度的极大值向波长较短的方向移动,只能用普朗克提出的能量量子化理论才能得到较满意的解释,故B 项正确.答案:B2.硅光电池是利用光电效应将光辐射的能量转化为电能.若有N 个频率为ν的光子打在光电池极板上,这些光子的总能量为(h 为普朗克常量)( )A .hν B.12Nhν C .Nhν D .2Nhν解析:光子能量与频率有关,一个光子能量为ε=hν,N 个光子能量为Nhν,故C 正确.答案:C3.经150 V 电压加速的电子束,沿同一方向射出,穿过铝箔后射到其后的屏上,则( )A .所有电子的运动轨迹均相同B .所有电子到达屏上的位置坐标均相同C .电子到达屏上的位置坐标可用牛顿运动定律确定D .电子到达屏上的位置受波动规律支配,无法用确定的坐标来描述它的位置解析:电子被加速后其德布罗意波波长λ=h p =1×10-10 m ,穿过铝箔时发生衍射.电子的运动不再遵守牛顿运动定律,不可能同时准确地知道电子的位置和动量,不可能用“轨迹”来描述电子的运动,只能通过概率波来描述.所以A 、B 、C 项均错.答案:D4.关于黑体辐射的强度与波长的关系,下图正确的是( )A BC D 解析:根据黑体辐射的实验规律:随温度升高,各种波长的辐射强度都有增加,故图线不会有交点,选项C 、D 错误.另一方面,辐射强度的极大值会向波长较短方向移动,选项A 错误,B 正确.答案:B5.科学研究证明,光子有能量也有动量,当光子与电子碰撞时,光子的一些能量转移给了电子.假设光子与电子碰撞前的波长为λ,碰撞后的波长为λ′,则碰撞过程中( )A.能量守恒,动量守恒,且λ=λ′B.能量不守恒,动量不守恒,且λ=λ′C.能量守恒,动量守恒,且λ<λ′D.能量守恒,动量守恒,且λ>λ′解析:能量守恒和动量守恒是自然界的普遍规律,适用于宏观世界也适用于微观世界,光子与电子碰撞时遵循这两个守恒定律.光子与电子碰撞前,光子的能量E=hν=h cλ,当光子与电子碰撞时,光子的一些能量转移给了电子,光子的能量E′=hν′=h cλ′,由E>E′,可知λ<λ′,选项C正确.答案:C6.在做双缝干涉实验时,发现100个光子中有96个通过双缝后打到了观察屏上的b处,则b处可能是()A.亮纹B.暗纹C.既有可能是亮纹也有可能是暗纹D.以上各种情况均有可能解析:按波的概率分布的特点去判断,由于大部分光子都落在b点,故b 处一定是亮纹,选项A正确.答案:A7.(多选题)关于不确定性关系ΔxΔp≥h4π有以下几种理解,其中正确的是()A.微观粒子的动量不可能确定B.微观粒子的坐标不可能确定C.微观粒子的动量和坐标不可能同时确定D.不确定性关系不仅适用于电子和光子等微观粒子,也适用于其他宏观粒子解析:不确定性关系ΔxΔp≥h4π表示确定位置、动量的精度互相制约,此长彼消,当粒子位置不确定性变小时,粒子动量的不确定性变大;粒子位置不确定性变大时,粒子动量的不确定性变小.故不能同时准确确定粒子的动量和坐标.不确定性关系也适用于其他宏观粒子,不过这些不确定量微乎其微.答案:CD8.(多选题)用极微弱的可见光做双缝干涉实验,随着时间的增加,在屏上先后出现如图甲、乙、丙所示的图像,则()A.图像甲表明光具有粒子性B.图像丙表明光具有波动性C.用紫外光观察不到类似的图像D.实验表明光是一种概率波解析:从题图甲可以看出,少数粒子打在底片上的位置是随机的,没有规律性,显示出粒子性;而题图丙是大量粒子曝光的效果,遵循了一定的统计性规律,显示出波动性;单个光子的粒子性和大量粒子的波动性就是概率波的思想.答案:ABD9.近年来,数码相机几近家喻户晓,用来衡量数码相机性能的一个非常重要的指标就是像素,1像素可理解为光子打在光屏上的一个亮点,现知300万像素的数码相机拍出的照片比30万像素的数码相机拍出的等大的照片清晰得多,其原因可以理解为( )A .光是一种粒子,它和物质的作用是一份一份的B .光的波动性是大量光子之间的相互作用引起的C .大量光子表现光具有粒子性D .光具有波粒二象性,大量光子表现出光的波动性解析:由题意知像素越高形成照片的光子数越多,表现的波动性越强,照片越清晰,D 项正确.答案:D10.现用电子显微镜观测线度为d 的某生物大分子的结构.为满足测量要求,将显微镜工作时电子的德布罗意波长设定为d n ,其中n >1.已知普朗克常量为h 、电子质量为m 和电子电荷量为e ,电子的初速度不计,则显微镜工作时电子的加速电压应为( )A.n 2h 2med 2 B.md 2h 23n 2e 3 C.d 2h 22men 2 D.n 2h 22med 2解析:由德布罗意波长λ=h p 知,p 是电子的动量,则p =m v =2meU =h λ,而λ=d n ,代入得U =n 2h 22med 2. 答案:D11.对于微观粒子的运动,下列说法中正确的是( )A .不受外力作用时光子就会做匀速运动B .光子受到恒定外力作用时就会做匀变速运动C .只要知道电子的初速度和所受外力,就可以确定其任意时刻的速度D .运用牛顿力学无法确定微观粒子的运动规律解析:光子不同于宏观力学的粒子,不能用宏观粒子的牛顿力学规律分析光子的运动,选项A、B错误;根据概率波、不确定关系可知,选项C错误,故选D.答案:D12.(多选题)如图所示是某金属在光的照射下,光电子最大初动能E k与入射光频率ν的关系图像,由图像可知()A.该金属的逸出功等于EB.该金属的逸出功等于hν0C.入射光的频率为ν0时,产生的光电子的最大初动能为ED.入射光的频率为2ν0时,产生的光电子的最大初动能为2E解析:题中图象反映了光电子的最大初动能E k与入射光频率ν的关系,根据爱因斯坦光电效应方程E k=hν-W0,知当入射光的频率恰为该金属的截止频率ν0时,光电子的最大初动能E k=0,此时有hν0=W0,即该金属的逸出功等于hν0,选项B正确.根据图线的物理意义,有W0=E,故选项A正确,而选项C、D错误.答案:AB第Ⅱ卷(非选择题,共52分)二、计算题(本题有4小题,共52分.解答应写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分.有数值计算的题,答案中必须明确写出数值和单位)13.(10分)一颗近地卫星质量为m,求其德布罗意波长为多少?(已知地球半径为R ,重力加速度为g )解析:由万有引力提供向心力计算速度,根据德布罗意波长公式计算.对于近地卫星有:G Mm R 2=m v 2R (2分) 对地球表面物体m 0有:G Mm 0R 2=m 0g (2分) 所以v =gR ,(2分)根据德布罗意波长λ=h p (2分)整理得:λ=h m v =h m gR. (2分) 答案:h m gR14.(13分)波长λ=0.71Å的伦琴射线使金箔发射光电子,电子在磁感应强度为B 的匀强磁场区域内做最大半径为r 的匀速圆周运动,已知rB =1.88×10-4 m·T ,电子质量m =9.1×10-3 kg.试求:(1)光电子的最大初动能;(2)金属的逸出功;(3)该电子的物质波的波长是多少?解析:(1)电子在匀强磁场中做匀速圆周运动的向心力为洛伦兹力m v 2r =e v B所以v =erB m (3分) 电子的最大初动能E k =12m v 2=e 2r 2B 22m=(1.6×10-19)2×(1.88×10-4)22×9.1×10-31J ≈4.97×10-16 J ≈3.1×103 eV(2分) (2)入射光子的能量ε=hν=h c λ= 6.63×10-34×3×1087.1×10-11×1.6×10-19 eV ≈1.75×104eV(3分) 根据爱因斯坦光电效应方程得金属的逸出功为W 0=hν-E k =1.44×104 eV(2分)(3)物质波的波长为λ=h m v =h erB = 6.63×10-341.6×10-19×1.88×10-4m ≈2.2×10-11 m(3分) 答案:(1)3.1×103 eV (2)1.44×104 eV (3)2.2×10-11 m15.(14分)如图所示,相距为d 的两平行金属板A 、B 足够大,板间电压恒为U ,有一波长为λ的细激光束照射到B 板中央,使B 板发生光电效应,已知普朗克常量为h ,金属板B 的逸出功为W ,电子质量为m ,电荷量为e .求:(1)从B 板运动到A 板所需时间最短的光电子,到达A 板时的动能;(2)光电子从B 板运动到A 板时所需的最长时间.解析:(1)根据爱因斯坦光电效应方程E k =hν-W ,光子的频率为ν=c λ.(3分)所以,光电子的最大初动能为E k =hc λ-W .(3分)能以最短时间到达A 板的光电子,是初动能最大且垂直于板面离开B 板的电子,设到达A 板的动能为E k1,由动能定理,得eU =E k1-E k ,所以E k1=eU+hcλ-W.(3分)(2)能以最长时间到达A板的光电子,是离开B板时的初速度为零或运动方向平行于B板的光电子.则d=12at2=Uet22dm,得t=d2mUe.(5分)答案:(1)eU+hcλ-W(2)d2mUe16.(15分)光子具有能量,也具有动量.光照射到物体表面时,会对物体产生压强,这就是“光压\”.光压的产生机理如同气体压强;大量气体分子与器壁的频繁碰撞产生了持续均匀的压力,器壁在单位面积上受到的压力就是气体的压强.设太阳光每个光子的平均能量为E,太阳光垂直照射地球表面时,在单位面积上的辐射功率为P0.已知光速为c,光子的动量为E/c.(1)若太阳光垂直照射到地球表面,则在时间t内照射到地球表面上半径为r 的圆形区域内太阳光的总能量及光子个数分别是多少?(2)若太阳光垂直照射到地球表面,在半径为r的某圆形区域内光子被完全反射(即所有光子均被反射,且被反射前后的能量变化可忽视不计),则太阳光在该区域表面产生的光压(用I表示光压)是多少?(3)有科学家建议把光压与太阳帆的作用作为未来星际旅行的动力来源.一般情况下,太阳光照射到物体表面时,一部分会被反射,还有一部分被吸收.若物体表面的反射系数为ρ,则在物体表面产生的光压是全反射时产生光压的1+ρ2倍.设太阳帆的反射系数ρ=0.8,太阳帆为圆盘形,其半径r=15 m,飞船的总质量m=100 kg,太阳光垂直照射在太阳帆表面单位面积上的辐射功率P0=1.4 kW,已知光速c=3.0×108m/s.利用上述数据并结合第(2)问中的结果,求:太阳帆飞船仅在上述光压的作用下,能产生的加速度大小是多少?不考虑光子被反射前后的能量变化.(结果保留2位有效数字)解析:(1)在时间t 内太阳光照射到面积为S 的圆形区域上的总能量E 总=P 0St ,解得E 总=πr 2P 0t .照射到此圆形区域的光子数n =E 总/E .解得n =πr 2P 0t /E .(2)因光子的能量p =E /c ,到达地球表面半径为r 的圆形区域的光子总动量p 总=np .因太阳光被完全反射,所以在时间t 内光子总动量的改变量Δp =2p 总.设太阳光对此圆形区域表面的压力为F ,依据动量定理Ft =Δp ,太阳光在圆形区域表面产生的光压I =F /S ,解得I =2P 0/c .(3)在太阳帆表面产生的光压I ′=1+ρ2I , 对太阳帆产生的压力F ′=I ′S .设飞船的加速度为a ,依据牛顿第二定律F ′=ma .解得a =5.9×10-5 m/s 2.答案:(1)πr 2P 0t πr 2P 0t /E (2)2P 0/c(3)5.9×10-5 m/s 2单元测评(三) 原子结构(时间:90分钟 满分:100分)第Ⅰ卷(选择题,共48分)一、选择题(本题有12小题,每小题4分,共48分.)1.(多选题)下列叙述中符合物理史实的有( )A .爱因斯坦提出光的电磁说B.卢瑟福提出原子核式结构模型C.麦克斯韦提出光子说D.汤姆孙发现了电子解析:爱因斯坦提出光子说,麦克斯韦提出光的电磁说.答案:BD2.如果阴极射线像X射线一样,则下列说法正确的是()A.阴极射线管内的高电压能够对其加速,从而增加能量B.阴极射线通过偏转电场时不会发生偏转C.阴极射线通过偏转电场时能够改变方向D.阴极射线通过磁场时方向可能发生改变解析:X射线是电磁波,不带电,通过电场、磁场时不受力的作用,不会发生偏转、加速,B正确.答案:B3.α粒子散射实验中α粒子经过某一原子核附近时的两种轨迹如图所示,虚线为原子核的等势面,α粒子以相同的速率经过电场中的A点后,沿不同的径迹1和2运动,由轨迹不能断定的是()A.原子核带正电B.整个原子空间都弥漫着带正电的物质C.粒子在径迹1中的动能先减少后增大D.经过B、C两点两粒子的速率相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

选修3-1第一章检测卷
一、选择题(本题共有10小题,每小题4分,共40分。

在每小题给出的4个选项中,至少有一项是正确的。

全部选对的给4分,选对但不全的得2分,有选错的或不选的得0分)
1.两个用相同材料制成的半径相等的带电金属小球,其中一个球的带电量的绝对值是另一个的5倍,它们间的库仑力大小是F ,现将两球接触后再放回原处,它们间库仑力的大小可能是( )
A.5 F /9
B.4F /5
C.5F /4
D.9F /5
2.点电荷A 和B ,分别带正电和负电,电量分别为4Q 和Q ,在AB 连线上,如图1-69所示,电场强度为零的地方在 ( )
A .A 和
B 之间 B .A 右侧
C .B 左侧
D .A 的右侧及B 的左侧
3.如图1-70所示,平行板电容器的两极板A 、B 接于电池两极,一带正电的小球悬挂在电容器内部,闭合S ,电容器充电,这时悬线偏离竖直方向的夹角为θ,则下列说法正确的是( ) A .保持S 闭合,将A 板向B 板靠近,则θ增大
B .保持S 闭合,将A 板向B 板靠近,则θ不变
C .断开S ,将A 板向B 板靠近,则θ增大
D .断开S ,将A 板向B 板靠近,则θ不变
4.如图1-71所示,一带电小球用丝线悬挂在水平方向的匀强电场中,当小球静止后把悬线烧断,则小球在电场中将作( )
A .自由落体运动
B .曲线运动
C .沿着悬线的延长线作匀加速运动
D .变加速直线运动
5.如图是表示在一个电场中的a 、b 、c 、d 四点分别引入检验电荷时,测得的检验电荷的电量跟它所受电场力的函数关系图象,那么下列叙述正确的是( )
A .这个电场是匀强电场
B .a 、b 、c 、d 四点的场强大小关系是E d >E a >E b >E c
C .a 、b 、c 、d 四点的场强大小关系是E a >E b >E c >E d
D .无法确定这四个点的场强大小关系
6.以下说法正确的是( )
A .由q
F E =可知此场中某点的电场强度E 与F 成正比 B .由公式q E P =
φ可知电场中某点的电势φ与q 成反比 C .由U ab =Ed 可知,匀强电场中的任意两点a 、b 间的距离越大,则两点间的电势差也一定越大
D .公式C=Q/U ,电容器的电容大小C 与电容器两极板间电势差U 无关
7. A 、B 在两个等量异种点电荷连线的中垂线上,且到连线的距离相等,如图1-73所示,
则( )
图1-69 B A Q 4Q
图1-70 图1-71 F q
O
a b c
d
A.同一点电荷在A 、B 两点的电势能相等
B.把正电荷从A 点移到B 点,电势能先增大后减小
C.把正电荷从A 点移到B 点,电势能先减小后增大
D. A 、B 两点的连线上任意两点的电势差为零
8.一个电子在电场中A 点具有80eV 的电势能,当它由A 运动到B 克服电场力做功30eV ,则( )
A .电子在
B 点的电势能是50eV B .电子的电势能增加了30eV
C .B 点的电势为110V
D .B 点的电势为-110V
9.如图1-74所示,实线是一个电场中的电场线,虚线是一个负检验电荷在这个电场中的轨迹,若电荷是从a 处运动到b 处,以下判断正确的是( )
A .电荷从a 到b 加速度减小
B .b 处电势能大
C .b 处电势高
D .电荷在b 处速度小
10.如图1-75所示,质量为m ,带电量为q 的粒子,以初速度v 0,从A 点竖直向上射入真空中的沿水平方向的匀强电场中,粒子通过电场中B 点时,速率v B =2v 0,方向与电场的方向一致,则A ,B 两点的电势差为:( )
二、填空题(本
大题共15分,把答案
填在题中的横线上或按题目的要求作答) 11.氢原子中电子绕核做匀速圆周运动,当电子运动轨道半径增大时,电子的电势能 , 电子的动能增 , 运动周期 .(填增大、减小、不变)
12.如图1-76所示,两平行金属板间电场是匀强电场,场强大小为1.0×104V /m ,A 、
B 两板相距1cm ,
C 点与A 相距0.4cm ,若B 接地,则A 、C 间电势差U AC =____,将带电量为
-1.0×10-12C 的点电荷置于C 点,其电势能为____ .
13.带正电1.0×10-3C 的粒子,不计重力,在电场中先后经过A 、B 两点,飞经A 点时动
能为10J ,飞经B 点时动能为4J ,则带电粒子从A 点到B 点过程中电势能增加了______,AB 两点电势差为____.
三、计算题(本大题共45分, 解答应写出必要的文字说明、
方程式和重要演算步骤.只写出最后答案的不能得分。

有数值计算
的题,答案中必须明确写出数值和单位)
14.如图1-77所示,在匀强电场中的M 、N 两点距离为2 cm ,
两点间的电势差为5 V,M 、N 连线与场强方向成60°角,则此电场
的电场强度多大 15.如图1-78所示,Q A =3×10-8C ,Q B =-3×10-8C ,A ,B 两球相
距5cm ,在水平方向外电场作用下,A ,B 保持静止,悬线竖直,求
A ,
B 连线中点场强。

(两带电小球可看作质点)
16.如图1-79所示,质量m =5.0X10-8千克的带电粒子,以初速Vo=2m/s 的速度从水平放置的平行金属板A 、B 的中央,水平飞入电场,已知金属板长0.1m ,板间距离d
=2X10-2m ,当U AB =1000V 时,带电粒子恰好沿直线穿过电场,
图1-75
A B 图1-76 图1-77
A B
图1-79
图1-78 A B
若两极板间的电势差可调,要使粒子能从两板间飞出,U AB 的变化范围是多少?(g 取10m /s 2)
17.如图1-80所示,质量为m 、带电量为-q 的小球在光滑导轨上运动,半圆形滑环的半径为R ,小球在A 点时的初速为V 0,方向和斜轨平行.整个装置放在方向竖直向下,强度为E 的匀强电场中,斜轨的
高为H ,试问:(1)小球离开A 点后将作怎样的运动? (2)
设小球能到达B 点,那么,小球在B 点对圆环的压力为多少? (3)在什么条件下,小球可以以匀速沿半圆环到达最高点,这时小球的速度多大?
18.如图1-81所示,一个电子以速度v 0=6.0×106m/s 和仰角α=45°从带电平行板电容器的下板边缘向上板飞行。

两板间场强E= 2.0×104V/m ,方向自下向上。

若板间
距离d=2.0×10-2m ,板长L=10cm ,问此电子能否从下板射
至上板它将击中极板的什么地方
第一章检测答案: 1. BD 2. C 3.9. BD 10. C 11. 增大、减小、增大 12. 40V -6.0×10J 13. 6J 6000V
14.500V/m 15. 7.56×105N/C 方向向左 16. 大于200V 小于1800V 17.当mg=qE 时,
小球做匀速直线运动; 当mg>qE 时, 小球做匀加速直线运动; 当mg<qE 时, 小球做类似斜抛的曲线运动 qE mg R qEh mv mgh -+-+2220
当mg=qE 时,小球做匀速圆周运动,速率
为V 0 18. 电子不能射至上板,最后落在下板上,落点与出发点相距1.03cm.
新课标第一网 图1-80。

相关文档
最新文档