5数列-1981-2019年历年数学联赛50套真题WORD版分类汇编含详细答案

合集下载

11复数1981-2019年历年数学联赛50套真题WORD版分类汇编含详细答案

11复数1981-2019年历年数学联赛50套真题WORD版分类汇编含详细答案

1981年~2019年全国高中数学联赛试题分类汇编复数部分2019A 11、称一个复数数列{}n z 为“有趣的”,若11z =,且对任意正整数n ,均有2211420n n n n z z z z ++++=,求最大的常数C ,使得对一切有趣的数列{}n z 及任意正整数m ,均有12m z z z C +++≥。

★解析:考虑有趣的复数数列{}n z .归纳地可知0n z ≠ .由条件得2114210n n n n z z z z ++⎛⎫⎛⎫++= ⎪ ⎪⎝⎭⎝⎭(n N *∈),解得114n n z z +-±=(n N *∈),因此112n n z z +=,故1111122n n n z z --=⋅=(n N *∈)①进而有1111122n n n n n n n z z z z z ++-+=⋅+==② 记12m m T z z z =+++(m N *∈)则当m 为偶数时,记2m s =,由②得12212212222sm k kk k k k k T z z z z z z ∞∞--===≥+-+>-+==∑∑。

当m 为奇数时,记21m s =+,由①②得2121221112s k k s k s k s z z z ∞∞+-=+=+=<==+∑∑,故12212212122223sm k k s k kk k T z z z z z z z ∞-+-==⎛⎫≥+-+->-+= ⎪⎝⎭∑∑ 当1m =时,1113T z ==>,综上知3C =满足要求。

另一方面,当11z =,2kz =,21k z +=k N *∈),时,易验证得{}n z 为“有趣的”数列,此时()2112211134lim lim lim 11833sss k k s s s k k T z z z ++→∞→∞→∞==-+=++=+=+⋅=∑,这表明C ≤C =2019B 11. (本题满分20分)设复数数列{}n z 满足:11z =,且对任意正整数n ,均有2211420n n n n z z z z ++++=,证明:对任意正整数m,均有123m z z z +++<。

14数论历年数学联赛50套真题WORD版分类汇编含详细答案

14数论历年数学联赛50套真题WORD版分类汇编含详细答案

1981年~2019年全国高中数学联赛二试试题分类汇编数论部分2019A 5、在1,2,3,,10中随机选出一个数a ,在1,2,3,,10----中随机选出一个数b ,则2a b +被3整除的概率为 .◆答案:37100★解析:首先数组(),a b 有1010100⨯= 种等概率的选法. 考虑其中使2a b +被3整除的选法数N .①若a 被 3 整除,则b 也被 3 整除.此时,a b 各有3种选法,这样的(),a b 有339⨯=组.若a 不被 3 整除,则()21mod3a ≡,从而()1mod3b ≡-.此时a 有7 种选法,b 有4种选法,这样的(),a b 有7428⨯=组. 因此92837N =+=.于是所求概率为37100。

2019A 三、(本题满分 50 分)设m 为整数,2m ≥.整数数列12,,a a 满足:12,a a 不全为零,且对任意正整数n ,均有21n n n a a ma ++=-.证明:若存在整数,r s , (2r s >≥ )使得1r s a a a ==,则r s m -≥.★解析:证明:不妨设12,a a 互素(否则,若()12,1a a d =>,则12,1a a d d ⎛⎫=⎪⎝⎭互素,并且用12,,a a d d代替12,,a a ,条件与结论均不改变).由数列递推关系知()234mod a a a m ≡≡≡. ①以下证明:对任意整数3n ≥,有()()2123mod n a a a n a m m ≡-+-⎡⎤⎣⎦. ② ………10 分 事实上,当3n =时②显然成立.假设n k =时②成立(其中k 为某个大于2的整数),注意到①,有()212mod k ma ma m -≡,结合归纳假设知()()()21122221232mod k k k a a ma a k a m ma a a k a m +-≡-≡+--=-+-⎡⎤⎡⎤⎣⎦⎣⎦,即1n k =+时②也成立.因此②对任意整数3n ≥均成立. ………………20 分注意,当12a a =时,②对2n =也成立. 设整数,r s , (2r s >≥ ),满足1r s a a a ==. 若12a a =,由②对2n ≥均成立,可知()()()221221233mod r s a a r a m a a a a s a m m -+-≡≡≡-+-⎡⎤⎡⎤⎣⎦⎣⎦即()()()121233mod a r a a s a m +-≡+-,即 ()()20mod r s a m -≡. ③ 若12a a ≠,则12r s a a a a ==≠故3r s >≥.此时由于②对3n ≥均成立, 故类似可知③仍成立. ………………30 分 我们证明2,a m 互素.事实上,假如2a 与m 存在一个公共素因子p ,则由①得p 为23,,a a 的公因子,而12,a a 互素,故/|p 1a ,这与1r s a a a ==矛盾.因此,由③得()0mod r s m -≡.又r s >,所以r s m -≥. ………………50分2018A 四、(本题满分50分)数列{}n a 定义如下:1a 是任意正整数,对整数1≥n ,1+n a 与∑=ni ia1互素,且不等于n a a a ,.,,21 的最小正整数,证明:每个正整数均在数列{}n a 中出现。

历年全国高中数学联赛(1981-2019)试题分类汇编: 12不定方程

历年全国高中数学联赛(1981-2019)试题分类汇编: 12不定方程

1981年~2019年全国高中数学联赛试题分类汇编不定方程部分2011B 一、(本题满分40分)求所有三元整数组(,,)x y z ,使其满足333320111515x y z xyz x y ⎧++-=⎪≥⎨⎪≥⎩★解析:由20113333=-++xyz z y x ,得()()()()[]4022222=-+-+-++x z z y y x z y x ①因220114022⨯=,且()()()0222≡-+-+-x z z y y x ()2m od ,所以①等价于()()()⎩⎨⎧=-+-+-=++40221222x z z y y x z y x ②或()()()⎩⎨⎧=-+-+-=++22011222x z z y y x z y x ③ 对方程组②,消去z 得()()()40221212222=-++-++-y x y x y x ,即67022=--++y x xy y x ④⑴若15=x ,15=y ,则67064522<=--++y x xy y x 与④矛盾;⑵若16≥x ,15≥y ,则670690434256))(1(2>=+≥+-+y x y x 与④矛盾;⑶若15≥x ,16≥y ,则670690434256))(1(2>=+≥+-+y x x y 与④矛盾;综上方程组②无解;对方程组③,由()()()2222=-+-+-x z z y y x 可得y x -,z y -,x z -中有两个为1,一个为0。

⑴若1=-y x ,1=-z y ,0=-x z ,则z x y ==+1或z x y ==-1,z x y ==+1代入③的第一个方程,无解;z x y ==-1代入③的第一个方程,解得671=y ,670==z x ⑵若1=-y x ,0=-z y ,1=-x z ,同理可得671=x ,670==z y ⑶若0=-y x ,1=-z y ,1=-x z ,同理可得671=z ,670==y x综上,满足条件的三元数组为()670,670,671,()670,671,670,()671,670,6702010AB 8、方程2010=++z y x 满足z y x ≤≤的正整数解),,(z y x 的个数是 ◆答案: 336675★解析:首先易知2010=++z y x 的正整数解的个数为 1004200922009⨯=C . 把2010=++z y x 满足z y x ≤≤的正整数解分为三类: (1)z y x ,,均相等的正整数解的个数显然为1;(2)z y x ,,中有且仅有2个相等的正整数解的个数,易知为1003; (3)设z y x ,,两两均不相等的正整数解为k . 易知 100420096100331⨯=+⨯+k , 所以110033*********-⨯-⨯=k 200410052006123200910052006-⨯=-⨯+-⨯=, 即3356713343351003=-⨯=k .从而满足z y x ≤≤的正整数解的个数为33667533567110031=++.2010B 二、(本题满分40分)设m 和n 是大于1的整数,求证:11111112(1)().1m m n m mm k k jj m m k j i n n C n C i m -+===⎧⎫+++=+-⎨⎬+⎩⎭∑∑∑ ★证明:1111)m m jj m j q Cq +++=+=∑由(得到1110(1),mm m j jm j q qC q +++=+-=∑ 1,2,,q n =分别将代入上式得:11021,m m jm j C ++=-=∑1110322,mm m j jm j C +++=-=∑1110(1)(1),mm m j jm j nn C n +++=--=-∑ 1110(1).mm m j j m j n nC n +++=+-=∑ n 将上面个等式两边分别相加得到: 111(1)1(),mnm jjm j i n Ci++==+-=∑∑ (20分)11111(1)(1)1(1),m nnmj j m m j i i n nn C i m i-+===++-=+++∑∑∑()11111112(1)().1m m nmmmk k j j m m k j i n n C n C i m -+===⎧⎫+++=+-⎨⎬+⎩⎭∑∑∑ (40分)2008A B5、方程组⎪⎩⎪⎨⎧=+++=+=++000y xz yz xy z xyz z y x 的有理数解),,(z y x 的个数为( ) A. 1 B. 2 C. 3 D. 4◆答案: B★解析:若0z =,则00.x y xy y +=⎧⎨+=⎩,解得00x y =⎧⎨=⎩,或11.x y =-⎧⎨=⎩, 若0z ≠,则由0xyz z +=得1xy =-. ① 由0x y z ++=得z x y =--. ②将②式代入0xy yz xz y +++=得220x y xy y ++-=. ③由①式得1x y=-,代入③式化简得3(1)(1)0y y y ---=.易知310y y --=无有理数根,故1y =,由①式得1x =-,由②式得0z =,与0z ≠矛盾,故该方程组共有两组有理数解0,0,0x y z =⎧⎪=⎨⎪=⎩或1,1,0.x y z =-⎧⎪=⎨⎪=⎩2008B 二、(本题满分50分)求满足下列关系式组2222,50,x y z z y z ⎧+=⎨<≤+⎩的正整数解组(,,)x y z 的个数.★解析:令r y z =-,由条件知050r <≤,方程化为222()2x z r z ++=,即2222x zr r z ++=. (1)因0y z r -=>,故22222z x y z x =+->,从而z x >.设0p z x =->.因此(1)化为22220zp p zr r -+++=.(2) 下分r 为奇偶讨论,(ⅰ)当r 为奇数时,由(2)知p 为奇数.令121r r =+,121p p =+,代入(2)得221111112()10p p zp zr r r +-++++=. (3)(3)式明显无整数解.故当r 为奇数时,原方程无正整数解.(ⅱ)当r 为偶数时,设12r r =,由方程(2)知p 也为偶数.从而可设12p p =,代入(2)化简得2211110p zp zr r -++=. (4)由(4)式有221111()0z p r p r -=+>,故11p r >,从而可设11p r a =+,则(4)可化为2211()0r a za r +-+=,2211220r ar za a +-+=. (5)因21122r z r a a=++为整数,故212a r ,又1122()z z x p r a >-==+,因此22111()2()r a r za r a a ++=>+,得2212a r <,即a <.因此,对给定的11,2,,25r =⋅⋅⋅,解的个数恰是满足条件1a 的212r 的正因数a 的个数1()N r .因212r 不是完全平方数,从而1()N r 为212r 的正因数的个数21(2)r σ的一半.即211()(2)/2N r r σ=.由题设条件,1125r ≤≤.而25以内有质数9个:2,3,5,7,11,13,17,19,23.将25以内的数分为以下八组:012341{2,2,2,2,2}A =,2{23,25,27,211}A =⨯⨯⨯⨯,223{23,25}A =⨯⨯,34{23}A =⨯,25{23}A =⨯,1{3,5,7,11,13,17,19,23}B =, 222{3,5}B =,3{35,37}B =⨯⨯,从而易知012341()(2)(2)(2)(2)(2)1234515N A N N N N N =++++=++++=,2()(23)46424N A N =⨯⨯=⨯=,3()9218N A =⨯=,4()12N A =,5()10N A =,1()3824N B =⨯=,2()5210N B =⨯=,3()9218N B =⨯=,将以上数相加,共131个.因此解的个数共131.2006*11、方程()()20052004422006200611x x x x x=+++++ 的实数解的个数为 ◆答案:1 ★解析:200520044220062006)1)(1(x x x x x=+++++24200420051()(1)2006x x x x x⇔+++++= 35200520052003200111112006x x x x x x xx⇔+++++++++= 32005320051112006210032006x x x x x x⇔=++++++≥=要使等号成立,必须 3200532005111,,,x x xx x x===,即1x =±。

1981年~2019年全国高中数学联赛试题分类汇编:5数列 Word版含答案

1981年~2019年全国高中数学联赛试题分类汇编:5数列 Word版含答案

a ,而此时对任意正整数 n ,a + a + + a = na + n (n - 1) d = a + ⎢(n - 1)(k - 2)+ ⎥ d ,确实为 {a n }中的2 2 ⎣ ⎦★证明:由条件可知 k ≥ 4 ,且 d - dn n dd - dn2 = 22 11981 年~2019 年全国高中数学联赛试题分类汇编数列部分2019B 8. 设等差数列{a n}的各项均为整数,首项 a 1= 2019 ,且对任意正整数 n ,总存在正整数 m ,使得 a + a +12◆答案: 5+ a = a .这样的数列{a }的个数为 .n m n★解析:设 {a n}的公差为 d .由条件知 a 1+ a = a ( k 是某个正整数), 2 k则 2a + d = a + (k -1)d ,即 (k - 2)d = a ,因此必有 k ≠ 2 ,且 d = 1 1 1 n - 1这样就有 a = a + (n - 1)d = a +k - 2 1n 1 1a1 k - 2.⎡ n (n - 1)⎤ 1 2n11一项.因此,仅需考虑使 (k - 2)| a 成立的正整数 k 的个数.注意到 2019 = 3 ⨯ 673 ,易知1k - 2 可取 -1,1,3,673,2019 这 5 个值,对应得到 5 个满足条件的等差数列.2019B 二、(本题满分 40 分)求满足以下条件的所有正整数 n :(1) n 至少有 4 个正约数;(2) 若 d < d << d 是 n 的所有正约数,则 d - d , d - d , ,d - d 1 2 k 2 1 3 2 kk -1 构成等比数列。

d - d3 2 = k k -1 d - d d - d21k -1k -2……………10 分易得 d = 1,d = n , d 1kk -1 =d2, dk -2 n - n d - d d =,代入上式得 3 ,3 -d d2 3n即 (d - d32)2 = (d2- 1)2 d ,由此可知 d 是完全平方数.由于 d = p 是 n 的最小素因3 3 2子, d 是平方数,故只能 d = p 2 . ………………30 分3 3从而序列 d - d , d - d , 2 132d , d , , d12k,d - d kk -1为 p - 1, p 2 - p , p 3 - p 2 , ,p k -1 - p k -2 ,即为1, p , p 2 , , p k -1 ,而此时相应的 n 为 p k -1 .1下面用 t 表示 b , b , b 中 2 的项数。

14数论1981-2019年历年数学联赛50套真题WORD版分类汇编含详细答案

14数论1981-2019年历年数学联赛50套真题WORD版分类汇编含详细答案

1981年~2019年全国高中数学联赛二试试题分类汇编数论部分2019A 5、在1,2,3,,10 中随机选出一个数a ,在1,2,3,,10---- 中随机选出一个数b ,则2a b +被3整除的概率为 .◆答案:37100★解析:首先数组(),a b 有1010100⨯= 种等概率的选法. 考虑其中使2a b +被3整除的选法数N .①若a 被 3 整除,则b 也被 3 整除.此时,a b 各有3种选法,这样的(),a b 有339⨯=组.若a 不被 3 整除,则()21mod3a ≡,从而()1mod3b ≡-.此时a 有7 种选法,b 有4种选法,这样的(),a b 有7428⨯=组. 因此92837N =+=.于是所求概率为37100。

2019A 三、(本题满分 50 分)设m 为整数,2m ≥.整数数列12,,a a 满足:12,a a 不全为零,且对任意正整数n ,均有21n n n a a ma ++=-.证明:若存在整数,r s , (2r s >≥ )使得1r s a a a ==,则r s m -≥.★解析:证明:不妨设12,a a 互素(否则,若()12,1a a d =>,则12,1a a d d ⎛⎫=⎪⎝⎭互素,并且用12,,a a d d代替12,,a a ,条件与结论均不改变).由数列递推关系知()234mod a a a m ≡≡≡. ①以下证明:对任意整数3n ≥,有()()2123mod n a a a n a m m ≡-+-⎡⎤⎣⎦. ② ………10 分 事实上,当3n =时②显然成立.假设n k =时②成立(其中k 为某个大于2的整数),注意到①,有()212mod k ma ma m -≡,结合归纳假设知()()()21122221232mod k k k a a ma a k a m ma a a k a m +-≡-≡+--=-+-⎡⎤⎡⎤⎣⎦⎣⎦,即1n k =+时②也成立.因此②对任意整数3n ≥均成立. ………………20 分注意,当12a a =时,②对2n =也成立. 设整数,r s , (2r s >≥ ),满足1r s a a a ==. 若12a a =,由②对2n ≥均成立,可知()()()221221233mod r s a a r a m a a a a s a m m -+-≡≡≡-+-⎡⎤⎡⎤⎣⎦⎣⎦即()()()121233mod a r a a s a m +-≡+-,即 ()()20mod r s a m -≡. ③ 若12a a ≠,则12r s a a a a ==≠故3r s >≥.此时由于②对3n ≥均成立, 故类似可知③仍成立. ………………30 分 我们证明2,a m 互素.事实上,假如2a 与m 存在一个公共素因子p ,则由①得p 为23,,a a 的公因子,而12,a a 互素,故/|p 1a ,这与1r s a a a ==矛盾.因此,由③得()0mod r s m -≡.又r s >,所以r s m -≥. ………………50分2018A 四、(本题满分50分)数列{}n a 定义如下:1a 是任意正整数,对整数1≥n ,1+n a 与∑=ni ia1互素,且不等于n a a a ,.,,21 的最小正整数,证明:每个正整数均在数列{}n a 中出现。

1981年~2019年全国高中数学联赛试题分类汇编(2)函数与方程(Word版,含答案)

1981年~2019年全国高中数学联赛试题分类汇编(2)函数与方程(Word版,含答案)

1981年~2019年全国高中数学联赛试题分类汇编函数与方程部分2019A1、已知正实数a 满足()89aaa a =,则()log 3a a 的值为 .◆答案:916★解析:由条件知189a a =,故91639a a a a =⨯=,所以()9log 316a a =。

2019A 二、(本题满分 40 分)设整数122019,,,a a a 满足122019199a a a =≤≤≤= . 记()()22212201913243520172019f a a a a a a a a a a a =+++-++++,求f 的最小值0f .并确定使0f f =成立的数组()122019,,,a a a 的个数.★解析:由条件知()()2017222221220182019212i i i f a a aaaa +==++++-∑. ①由于12,a a 及2i i a a +-(1,2,2016i =)均为非负整数,故有221122,a a a a ≥≥且()222i i i i a a a a ++-≥-.于是()()()201620162221221222017201811i i i i i i aaaa a a a a a a ++==++-≥++-=+∑∑②………………10 分由①、②得()2222017201820192017201820192f a a a a a a ≥++-++,结合20192019a =及201820170a a ≥>,可知()()2222201720172017201712999949740074002f a a a a ⎡⎤≥+-++=-+≥⎣⎦ .③ (20)分 另一方面,令1219201a a a ====,19202119202k k a a k +-+==(1,2,,49k =),201999a =此时验证知上述所有不等式均取到等号,从而f 的最小值07400f =.………………30 分以下考虑③的取等条件.此时2018201749a a ==,且②中的不等式均取等, 即121a a ==,{}20,1i i a a +-∈(1,2,2016i =)。

全国高中数学联赛试题分类汇编-组合与构造部分(1981年~2019年)

全国高中数学联赛试题分类汇编-组合与构造部分(1981年~2019年)

全国高中数学联赛试题分类汇编——组合与构造部分(1981年~2019年)2019A 四、(本题满分 50 分)设V 是空间中 2019 个点构成的集合,其中任意四点不共面.某些点之间连有线段,记 E 为这些线段构成的集合.试求最小的正整数n ,满足条件:若 E 至少有n 个元素,则 E 一定含有 908 个二元子集,其中每个二元子集中的两条线段有公共端点,且任意两个二元子集的交为空集.解析:为了叙述方便,称一个图中的两条相邻的边构成一个“角”.先证明一个引理:设(),G V E =是一个简单图,且G 是连通的,则G 含有2E ⎡⎤⎢⎥⎣⎦个两两无公共边的角(这里[]a 表示实数a 的整数部分).引理的证明:对的元素个数E 归纳证明.当0,1,2,3E =时,结论显然成立.下面假设,并且结论在较小时均成立.只需证明,在G 中可以选取两条边,a b 构成一个角,在G 中删去,a b 这两条边后,剩下的图含有一个连通分支包含2E -条边.对这个连通分支应用归纳假设即得结论成立.考虑G 中的最长路12:k P v v v ,其中12k v v v 是互不相同的顶点.因为G 连通,故3k ≥.情形1:()1deg 2v ≥,由于P 是最长路,1v 的邻点均在2k v v 中,设1i v v E ∈,其中3i k ≤≤.则{}121,i v v v v 是一个角,在E 中删去这两条边.若1v 处还有第三条边,则剩下的图是连通的;若1v 处仅有被删去的两条边,则1v 成为孤立点,其余顶点仍互相连通.总之在剩下的图中有一个连通分支含有2E -条边.情形 2:()1deg 1v =, ()2deg 2v =.则{}1223,vv vv是一个角,在G 中删去这两条边后,12,v v 都成为孤立点,其余的点互相连通,因此有一个连通分支含有2E -条边.情形 3:()1deg 1v =,()2deg 3v ≥,且2v 与4k v v 中某个点相邻.则{}1223,v v v v 是一个角,在G 中删去这两条边后,1v 成为孤立点,其余点互相连通,因此有一个连通分支含有 2E -条边.情形 4:()1deg 1v =,()2deg 3v ≥,且2v 与某个{}13,,k u v v v ∉相邻.由于P 是最长路,故u 的邻点均在2k v v 之中.因{}122,v v v u 是一个角,在G 中删去这两条边,则1v 是孤立点.若u处仅有边2uv ,则删去所述边后u 也是孤立点,而其余点互相连通.若u 处还有其他边i uv ,3i k ≤≤,则删去所述边后,除1v 外其余点互相连通.总之,剩下的图中有一个连通分支含有2E -.引理获证.………………20 分回到原题,题中的V 和E 可看作一个图(),G V E . 首先证明2795n ≥. 设{}122019,,V v v v =.在1261,,,v v v 中,首先两两连边,再删去其中15条边(例如{}1213116,v v v v v v ),共连了261151815C -=条边,则这61个点构成的图是连通图.再将剩余的2019611958-=个点配成979对,每对两点之间连一条边,则图G 中一共连了181********+=条线段.由上述构造可见,G 中的任何一个角必须使用1261,,,v v v 相连的边,因此至多有18159072⎡⎤=⎢⎥⎣⎦个两两无公共边的角.故满足要求的n 不小于2795.……30 分 另一方面,若2795E ≥,可任意删去若干条边,只考虑2795E =的情形.设G 有k 个连通分支,分别有12,,,k m m m 个点,及12,,,k e e e 条边.下面证明12,,,k e e e 中至多有979个奇数.反证法,假设12,,,k e e e 中有至少980个奇数,由于122795k e e e +++=是奇数, 故12,,,k e e e 中至少有 981 个奇数,故981k ≥.不妨设12981,,,e e e 都是奇数,显然129812m m m +++≥.令122k m m m m =+++≥,则有2i m i C e ≥(1980i ≤≤),2981980m k C e e e ≥+++,故98022112795i kimm i i eC C ===≤+∑∑,利用组合数的凸性,即对3x y ≥≥,有222211x y x y C C C C +-+≤+。

7立体几何-1981-2019年历年数学联赛50套真题WORD版分类汇编含详细答案

7立体几何-1981-2019年历年数学联赛50套真题WORD版分类汇编含详细答案

1981年~2019年全国高中数学联赛试题分类汇编立体几何部分2019A7、如图,正方体ABCD EFGH -的一个截面经过顶点,A C 及棱EF 上一点K ,且将正方体分成体积比为3:1的两部分,则EKKF的值为 .★解析:作图延长,AK BF 交于点P ,连接CP 交FG 于点N ,则 截面为ACNK ,由于面//ABC 面KFN ,知ABC KFN -为棱台,则EK AEKF PF=. 不妨设正方体棱长为1,则正方体体积为1,结合条件知棱台ABC KFN -的体积为14, 设PF x =,则1KF NF PF xAB BC PB x ===+,由于 11113232ABC KFN V AB BC PB KF FN PF -⎛⎫⎛⎫=⨯⨯⨯⨯-⨯⨯⨯⨯ ⎪ ⎪⎝⎭⎝⎭所以()()322113311146161x x x x x x ⎛⎫++⎛⎫=⋅+-= ⎪ ⎪ ⎪+⎝⎭+⎝⎭,解得3x =。

所以1EK AE KF PF x===2019B 4. 设三棱锥P ABC -满足3PA PB ==,2AB BC CA ===,则该三棱锥的体积的最大值为 .◆答案:3★解析:设三棱锥P ABC -的高为h .取M 为棱AB的中点,则h PM ≤==当平面PAB 垂直于平面ABC 时,h取到最大值P ABC -的体积取到最大值为11323⨯=。

2018A 2、设点P 到平面α的距离为3,点Q 在平面α上,使得直线PQ 与平面α所成角不小于030且不大于060,则这样的点Q 所构成的区域的面积为◆答案:π8★解析:设点P 在平面α上的射影为O ,由条件知⎥⎦⎤⎢⎣⎡∈=∠3,33tan OQ OP OQP ,即[]3,1∈OQ ,所以区域的面积为πππ81322=⨯-⨯。

2018B 2、已知圆锥的顶点为P ,底面半径长为2,高为1.在圆锥底面上取一点Q ,使得直线PQ 与底面所成角不大于045,则满足条件的点Q 所构成的区域的面积为 ◆答案: π3★解析:记圆锥的顶点P 在底面的投影为O ,则O 为底面中心,且1tan ≤=∠OQOPOQP ,即1≥OQ ,故所以区域的面积为πππ31222=⨯-⨯。

2函数与方程-1981-2019年历年数学联赛50套真题WORD版分类汇编含详细答案

2函数与方程-1981-2019年历年数学联赛50套真题WORD版分类汇编含详细答案

1981年~2019年全国高中数学联赛试题分类汇编函数与方程部分2019A1、已知正实数a 满足()89aa a a =,则()log 3a a 的值为 . ◆答案:916★解析:由条件知189a a =,故9163a a ==,所以()9log 316a a =。

2019A 二、(本题满分 40 分)设整数122019,,,a a a L 满足122019199a a a =≤≤≤=L . 记()()22212201913243520172019f a a a a a a a a a a a =+++-++++L L ,求f 的最小值0f .并确定使0f f =成立的数组()122019,,,a a a L 的个数.★解析:由条件知()()2017222221220182019212i i i f a a aaa a +==++++-∑. ①由于12,a a 及2i i a a +-(1,2,2016i =L )均为非负整数,故有221122,a a a a ≥≥且()222i i i i a a a a ++-≥-.于是()()()201620162221221222017201811i i i i i i a a a a a a a a a a ++==++-≥++-=+∑∑②………………10 分由①、②得()2222017201820192017201820192f a a a a a a ≥++-++,结合20192019a =及201820170a a ≥>,可知()()2222201720172017201712999949740074002f a a a a ⎡⎤≥+-++=-+≥⎣⎦ .③ ………20 分另一方面,令1219201a a a ====L ,19202119202k k a a k +-+==(1,2,,49k =L ),201999a = 此时验证知上述所有不等式均取到等号,从而f 的最小值07400f =.………………30 分 以下考虑③的取等条件.此时2018201749a a ==,且②中的不等式均取等, 即121a a ==,{}20,1i i a a +-∈(1,2,2016i =L )。

1集合-1981-2019年历年数学联赛50套真题WORD版分类汇编含详细答案

1集合-1981-2019年历年数学联赛50套真题WORD版分类汇编含详细答案

1981年~2019年全国高中数学联赛试题分类汇编1、集合部分2019A 2、若实数集合{}1,2,3,x 的最大元素与最小元素之差等于该集合的所有元素之和,则x 的值为 .◆答案:32-★解析:假如0x ≥,则最大、最小元素之差不超过{}max 3,x ,而所有元素之和大于{}max 3,x ,不符合条件.故0x <,即x 为最小元素.于是36x x -=+,解得32x =-。

2019B1. 若实数集合{}1,2,3,x 的最大元素等于该集合的所有元素之和,则x 的值为 .◆答案:3-★解析:条件等价于1,2,3,x 中除最大数以外的另三个数之和为0 .显然0<,从而120x ++=,得3x =-.2018A1、设集合{}99,,3,2,1 =A ,集合{}A x x B ∈=|2,集合{}A x x C ∈=2|,则集合C B 的元素个数为 ◆答案:24★解析:由条件知,{}48,,6,4,2 =C B ,故C B 的元素个数为24。

2018B1、设集合{}8,1,0,2=A ,集合{}A a a B ∈=|2,则集合B A 的所有元素之和是 ◆答案: 31 ★解析:易知{}16,2,0,4=B ,所以{}16,8,4,2,1,0=B A ,元素之和为31.2018B 三、(本题满分50分)设集合{}n A ,,2,1 =,Y X ,均为A 的非空子集(允许Y X =).X中的最大元与Y 中的最小元分别记为Y X min ,max .求满足Y X min max >的有序集合对),(Y X 的数目。

★解析:先计算满足Y X min max ≤的有序集合对),(Y X 的数目.对给定的X m max =,集合X 是集合{}1,,2,1-m 的任意一个子集与{}m 的并,故共有12-m 种取法.又Y m min ≤,故Y 是{}n m m m ,,2,1, ++的任意一个非空子集,共有121--+m n 种取法.因此,满足Y X min max ≤的有序集合对),(Y X 的数目是:()[]()12122122111111+⋅-=-=-∑∑∑=-==-+-n nm m n m nnm mn m n由于有序集合对),(Y X 有()()()2121212-=--n n n 个,于是满足Y X min max >的有序集合对),(Y X 的数目是()()124122122+-=-+⋅--n n n n n n n2017B 二、(本题满分40分)给定正整数m ,证明:存在正整数k ,使得可将正整数集+N 分拆为k 个互不相交的子集k A A A ,,,21 ,每个子集i A 中均不存在4个数d c b a ,,,(可以相同),满足m cd ab =-.★证明:取1k m =+,令{(mod 1),}i A x x i m x N +=≡+∈,1,2,,1i m =+设,,,i a b c d A ∈,则0(mod 1)ab cd i i i i m -≡∙-∙=+,故1m ab cd +-,而1m m +,所以在i A 中不存在4个数,,,a b c d ,满足ab cd m -=2017B 四、(本题满分50分)。

1981-2019年全国高中数学联赛50套真题分类汇编《组合与构造部分》含详细答案

1981-2019年全国高中数学联赛50套真题分类汇编《组合与构造部分》含详细答案

1981年~2019年全国高中数学联赛试题分类汇编组合与构造部分2019A 四、(本题满分 50 分)设V 是空间中 2019 个点构成的集合,其中任意四点不共面.某些点之间连有线段,记 E 为这些线段构成的集合.试求最小的正整数n ,满足条件:若 E 至少有n 个元素,则 E 一定含有 908 个二元子集,其中每个二元子集中的两条线段有公共端点,且任意两个二元子集的交为空集.★解析:为了叙述方便,称一个图中的两条相邻的边构成一个“角”.先证明一个引理:设(),G V E =是一个简单图,且G 是连通的,则G 含有2E ⎡⎤⎢⎥⎣⎦个两两无公共边的角(这里[]a 表示实数a 的整数部分).引理的证明:对的元素个数E 归纳证明.当0,1,2,3E =时,结论显然成立.下面假设,并且结论在较小时均成立.只需证明,在G 中可以选取两条边,a b 构成一个角,在G 中删去,a b 这两条边后,剩下的图含有一个连通分支包含2E -条边.对这个连通分支应用归纳假设即得结论成立.考虑G 中的最长路12:k P v v v L ,其中12k v v v L 是互不相同的顶点.因为G 连通,故3k ≥. 情形1:()1deg 2v ≥,由于P 是最长路,1v 的邻点均在2k v v L 中,设1i v v E ∈,其中3i k ≤≤.则{}121,i v v v v 是一个角,在E 中删去这两条边.若1v 处还有第三条边,则剩下的图是连通的;若1v 处仅有被删去的两条边,则1v 成为孤立点,其余顶点仍互相连通.总之在剩下的图中有一个连通分支含有2E -条边.情形 2:()1deg 1v =, ()2deg 2v =.则{}1223,v v v v 是一个角,在G 中删去这两条边后,12,v v 都成为孤立点,其余的点互相连通,因此有一个连通分支含有2E -条边.情形 3:()1deg 1v =,()2deg 3v ≥,且2v 与4k v v L 中某个点相邻.则{}1223,v v v v 是一个角,在G中删去这两条边后,1v 成为孤立点,其余点互相连通,因此有一个连通分支含有 2E -条边. 情形 4:()1deg 1v =,()2deg 3v ≥,且2v 与某个{}13,,k u v v v ∉L 相邻.由于P 是最长路,故u 的邻点均在2k v v L 之中.因{}122,v v v u 是一个角,在G 中删去这两条边,则1v 是孤立点.若u 处仅有边2uv ,则删去所述边后u 也是孤立点,而其余点互相连通.若u 处还有其他边i uv ,3i k ≤≤,则删去所述边后,除1v 外其余点互相连通.总之,剩下的图中有一个连通分支含有2E -. 引理获证.………………20 分回到原题,题中的V 和E 可看作一个图(),G V E . 首先证明2795n ≥.设{}122019,,V v v v =L .在1261,,,v v v L 中,首先两两连边,再删去其中15条边(例如{}1213116,v v v v v v L),共连了261151815C -=条边,则这61个点构成的图是连通图.再将剩余的2019611958-=个点配成979对,每对两点之间连一条边,则图G 中一共连了181********+=条线段.由上述构造可见,G 中的任何一个角必须使用1261,,,v v v L 相连的边,因此至多有18159072⎡⎤=⎢⎥⎣⎦个两两无公共边的角.故满足要求的n 不小于2795.……30 分 另一方面,若2795E ≥,可任意删去若干条边,只考虑2795E =的情形.设G 有k 个连通分支,分别有12,,,k m m m L 个点,及12,,,k e e e L 条边.下面证明12,,,k e e e L 中至多有979个奇数.反证法,假设12,,,k e e e L 中有至少980个奇数,由于122795k e e e +++=L 是奇数, 故12,,,k e e e L 中至少有 981 个奇数,故981k ≥.不妨设12981,,,e e e L 都是奇数,显然129812m m m +++≥L .令122k m m m m =+++≥L ,则有2i m i C e ≥(1980i ≤≤),2981980m k C e e e ≥+++L ,故98022112795ikimm i i eC C ===≤+∑∑,利用组合数的凸性,即对3x y ≥≥,有222211x y x y C C C C +-+≤+。

12不定方程1981-2019年历年数学联赛50套真题WORD版分类汇编含详细答案

12不定方程1981-2019年历年数学联赛50套真题WORD版分类汇编含详细答案

1981年~2019年全国高中数学联赛试题分类汇编不定方程部分2011B 一、(本题满分40分)求所有三元整数组(,,)x y z ,使其满足333320111515x y z xyz x y ⎧++-=⎪≥⎨⎪≥⎩★解析:由20113333=-++xyz z y x ,得()()()()[]4022222=-+-+-++x z z y y x z y x ①因220114022⨯=,且()()()0222≡-+-+-x z z y y x ()2m od ,所以①等价于()()()⎩⎨⎧=-+-+-=++40221222x z z y y x z y x ②或()()()⎩⎨⎧=-+-+-=++22011222x z z y y x z y x ③ 对方程组②,消去z 得()()()40221212222=-++-++-y x y x y x ,即67022=--++y x xy y x ④⑴若15=x ,15=y ,则67064522<=--++y x xy y x 与④矛盾;⑵若16≥x ,15≥y ,则670690434256))(1(2>=+≥+-+y x y x 与④矛盾;⑶若15≥x ,16≥y ,则670690434256))(1(2>=+≥+-+y x x y 与④矛盾;综上方程组②无解;对方程组③,由()()()2222=-+-+-x z z y y x 可得y x -,z y -,x z -中有两个为1,一个为0。

⑴若1=-y x ,1=-z y ,0=-x z ,则z x y ==+1或z x y ==-1,z x y ==+1代入③的第一个方程,无解;z x y ==-1代入③的第一个方程,解得671=y ,670==z x ⑵若1=-y x ,0=-z y ,1=-x z ,同理可得671=x ,670==z y ⑶若0=-y x ,1=-z y ,1=-x z ,同理可得671=z ,670==y x综上,满足条件的三元数组为()670,670,671,()670,671,670,()671,670,6702010AB 8、方程2010=++z y x 满足z y x ≤≤的正整数解),,(z y x 的个数是 ◆答案: 336675★解析:首先易知2010=++z y x 的正整数解的个数为 1004200922009⨯=C . 把2010=++z y x 满足z y x ≤≤的正整数解分为三类: (1)z y x ,,均相等的正整数解的个数显然为1;(2)z y x ,,中有且仅有2个相等的正整数解的个数,易知为1003; (3)设z y x ,,两两均不相等的正整数解为k .易知 100420096100331⨯=+⨯+k ,所以110033*********-⨯-⨯=k 200410052006123200910052006-⨯=-⨯+-⨯=, 即3356713343351003=-⨯=k .从而满足z y x ≤≤的正整数解的个数为33667533567110031=++.2010B 二、(本题满分40分)设m 和n 是大于1的整数,求证:11111112(1)().1m m nmmmk k j j m m k j i n n C n C i m -+===⎧⎫+++=+-⎨⎬+⎩⎭∑∑∑L ★证明:1111)m m jj m j q Cq +++=+=∑由(得到1110(1),mm m j jm j q qC q +++=+-=∑ 1,2,,q n =L 分别将代入上式得: 11021,mm jm j C ++=-=∑1110322,m m m j jm j C +++=-=∑ L L 1110(1)(1),mm m j jm j nn C n +++=--=-∑ 111(1).mm m j j m j n nC n +++=+-=∑ n 将上面个等式两边分别相加得到: 111(1)1(),mnm jjm j i n Ci++==+-=∑∑ (20分)11111(1)(1)1(1),m n nmj j mm j i i n n n Ci m i -+===++-=+++∑∑∑()11111112(1)().1m m nmmmk k j j m m k j i n n C n C i m -+===⎧⎫+++=+-⎨⎬+⎩⎭∑∑∑L (40分)2008A B5、方程组⎪⎩⎪⎨⎧=+++=+=++000y xz yz xy z xyz z y x 的有理数解),,(z y x 的个数为( ) A. 1 B. 2 C. 3 D. 4◆答案: B★解析:若0z =,则00.x y xy y +=⎧⎨+=⎩,解得00x y =⎧⎨=⎩,或11.x y =-⎧⎨=⎩, 若0z ≠,则由0xyz z +=得1xy =-. ① 由0x y z ++=得z x y =--. ②将②式代入0xy yz xz y +++=得220x y xy y ++-=. ③由①式得1x y=-,代入③式化简得3(1)(1)0y y y ---=.易知310y y --=无有理数根,故1y =,由①式得1x =-,由②式得0z =,与0z ≠矛盾,故该方程组共有两组有理数解0,0,0x y z =⎧⎪=⎨⎪=⎩或1,1,0.x y z =-⎧⎪=⎨⎪=⎩2008B 二、(本题满分50分)求满足下列关系式组2222,50,x y z z y z ⎧+=⎨<≤+⎩的正整数解组(,,)x y z 的个数.★解析:令r y z =-,由条件知050r <≤,方程化为222()2x z r z ++=,即2222x zr r z ++=. (1)因0y z r -=>,故22222z x y z x =+->,从而z x >.设0p z x =->.因此(1)化为22220zp p zr r -+++=.(2) 下分r 为奇偶讨论,(ⅰ)当r 为奇数时,由(2)知p 为奇数.令121r r =+,121p p =+,代入(2)得221111112()10p p zp zr r r +-++++=. (3)(3)式明显无整数解.故当r 为奇数时,原方程无正整数解.(ⅱ)当r 为偶数时,设12r r =,由方程(2)知p 也为偶数.从而可设12p p =,代入(2)化简得2211110p zp zr r -++=. (4)由(4)式有221111()0z p r p r -=+>,故11p r >,从而可设11p r a =+,则(4)可化为2211()0r a za r +-+=,2211220r ar za a +-+=. (5)因21122r z r a a=++为整数,故212a r ,又1122()z z x p r a >-==+,因此22111()2()r a r za r a a ++=>+,得2212a r <,即a <.因此,对给定的11,2,,25r =⋅⋅⋅,解的个数恰是满足条件a 的212r 的正因数a 的个数1()N r .因212r 不是完全平方数,从而1()N r 为212r 的正因数的个数21(2)r σ的一半.即211()(2)/2N r r σ=.由题设条件,1125r ≤≤.而25以内有质数9个:2,3,5,7,11,13,17,19,23.将25以内的数分为以下八组:012341{2,2,2,2,2}A =,2{23,25,27,211}A =⨯⨯⨯⨯,223{23,25}A =⨯⨯,34{23}A =⨯,25{23}A =⨯,1{3,5,7,11,13,17,19,23}B =, 222{3,5}B =,3{35,37}B =⨯⨯,从而易知012341()(2)(2)(2)(2)(2)1234515N A N N N N N =++++=++++=,2()(23)46424N A N =⨯⨯=⨯=,3()9218N A =⨯=,4()12N A =,5()10N A =,1()3824N B =⨯=,2()5210N B =⨯=,3()9218N B =⨯=,将以上数相加,共131个.因此解的个数共131.2006*11、方程()()20052004422006200611x x x x x=+++++Λ的实数解的个数为 ◆答案:1 ★解析:200520044220062006)1)(1(x x x x x=+++++Λ24200420051()(1)2006x x x x x⇔+++++=L 35200520052003200111112006x x x x x x xx⇔+++++++++=L L 320051112006210032006x x x ⇔=++++++≥=L g要使等号成立,必须 3200532005111,,,x x x x x x===L ,即1x =±。

10逻辑1981-2019年历年数学联赛50套真题WORD版分类汇编含详细答案

10逻辑1981-2019年历年数学联赛50套真题WORD版分类汇编含详细答案

1981年~2019年全国高中数学联赛试题分类汇编逻辑部分2014B 3、对于实数R 的任意子集U ,我们在R 上定义函数Ux Ux x f U ∉∈⎩⎨⎧=,,01)(,如果B A ,是实数R的两个子集,则1)()(≡+x f x f B A ,的充分必要条件是◆答案:B A ,互为补集★解析:对于任意的R x ∈,1)()(≡+x f x f B A ,这说明)(),(x f x f B A 中至少有一个是1,即B A x ∈,所以R B A = ,另一方面,)(),(x f x f B A 中仅有一个是1,即φ=B A ,从而BA ,互为补集。

2001*15、(本题满分20分)用电阻值分别为654321,,,,,a a a a a a (654321a a a a a a >>>>>) 的电阻组装成一个如图的组件,在组装中应如何选取电阻,才能使该组件总电阻值最小?证明你的结论.★解析:首先,对电路图进行截取分段考虑,如下三个图设6个电阻的组件(如图3)的总电阻为FG R .当i i a R = ,6,5,4,3=i ,1R ,2R 是1a ,2a 的任意排列时,FG R 最小. 证明如下:1°设当两个电阻1R ,2R 并联时,所得组件阻值为R :则21111R R R +=.故交换二电阻的位置,不改变R 值,且当1R 或2R 变小时,R 也减小,因此不妨取1R >2R .2°设3个电阻的组件(如图1)的总电阻为R AB :2132********1R R R R R R R R R R R R R R AB +++=++=.显然1R +2R 越大,AB R 越小,所以为使AB R 最小必须取3R 为所取三个电阻中阻值最小的一个. 3°设4个电阻的组件(如图2)的总电阻为CD R :43243142142324131214111R R R R R R R R R R R R R R R R R R R R R R AB CD ++++++=+=.若记∑≤<≤=411j i j i R R S ,∑≤<<≤=412k j i kjiRR R S .则S 1、S 2为定值.于是4313212R R S R R R S R CD --=.只有当43R R 最小,321R R R 最大时,CD R 最小,故应取34R R <,23R R <,13R R <,即得总电阻的阻值最小.4°对于图3,把由321,,R R R 组成的组件用等效电阻AB R 代替.要使FG R 最小,由3°必需使56R R <;且由1°,应使CE R 最小.由2°知要使CE R 最小,必需使45R R <,且应使CD R 最小.而由3°,要使CD R 最小,应使234R R R <<且134R R R <<. 这就说明,要证结论成立1998*4、设命题P :关于x 的不等式01121>++c x b x a 与02222>++c x b x a 的解集相同;命题Q :212121c c b b a a ==。

12不定方程1981-2019年历年数学联赛50套真题WORD版分类汇编含详细答案

12不定方程1981-2019年历年数学联赛50套真题WORD版分类汇编含详细答案

1981年~2019年全国高中数学联赛试题分类汇编不定方程部分2011B 一、(本题满分40分)求所有三元整数组(,,)x y z ,使其满足333320111515x y z xyz x y ⎧++-=⎪≥⎨⎪≥⎩★解析:由20113333=-++xyz z y x ,得()()()()[]4022222=-+-+-++x z z y y x z y x ①因220114022⨯=,且()()()0222≡-+-+-x z z y y x ()2m od ,所以①等价于()()()⎩⎨⎧=-+-+-=++40221222x z z y y x z y x ②或()()()⎩⎨⎧=-+-+-=++22011222x z z y y x z y x ③ 对方程组②,消去z 得()()()40221212222=-++-++-y x y x y x ,即67022=--++y x xy y x ④⑴若15=x ,15=y ,则67064522<=--++y x xy y x 与④矛盾;⑵若16≥x ,15≥y ,则670690434256))(1(2>=+≥+-+y x y x 与④矛盾;⑶若15≥x ,16≥y ,则670690434256))(1(2>=+≥+-+y x x y 与④矛盾;综上方程组②无解;对方程组③,由()()()2222=-+-+-x z z y y x 可得y x -,z y -,x z -中有两个为1,一个为0。

⑴若1=-y x ,1=-z y ,0=-x z ,则z x y ==+1或z x y ==-1,z x y ==+1代入③的第一个方程,无解;z x y ==-1代入③的第一个方程,解得671=y ,670==z x ⑵若1=-y x ,0=-z y ,1=-x z ,同理可得671=x ,670==z y ⑶若0=-y x ,1=-z y ,1=-x z ,同理可得671=z ,670==y x综上,满足条件的三元数组为()670,670,671,()670,671,670,()671,670,6702010AB 8、方程2010=++z y x 满足z y x ≤≤的正整数解),,(z y x 的个数是 ◆答案: 336675★解析:首先易知2010=++z y x 的正整数解的个数为 1004200922009⨯=C .把2010=++z y x 满足z y x ≤≤的正整数解分为三类: (1)z y x ,,均相等的正整数解的个数显然为1;(2)z y x ,,中有且仅有2个相等的正整数解的个数,易知为1003; (3)设z y x ,,两两均不相等的正整数解为k .易知 100420096100331⨯=+⨯+k ,所以110033*********-⨯-⨯=k 200410052006123200910052006-⨯=-⨯+-⨯=, 即3356713343351003=-⨯=k .从而满足z y x ≤≤的正整数解的个数为33667533567110031=++.2010B 二、(本题满分40分)设m 和n 是大于1的整数,求证: 11111112(1)().1m m nmmm k k j j m m k j i n n C n C i m -+===⎧⎫+++=+-⎨⎬+⎩⎭∑∑∑ ★证明:1111)m m jj m j q Cq +++=+=∑由(得到1110(1),mm m j jm j q qC q +++=+-=∑ 1,2,,q n =分别将代入上式得:11021,m m jm j C ++=-=∑1110322,mm m j jm j C +++=-=∑111(1)(1),mm m j jm j nn C n +++=--=-∑ 1110(1).mm m j j m j n nC n +++=+-=∑ n 将上面个等式两边分别相加得到: 111(1)1(),mnm jjm j i n Ci++==+-=∑∑ (20分)11111(1)(1)1(1),m n nmj j mm j i i n n n Ci m i -+===++-=+++∑∑∑()11111112(1)().1m m nm mmk k j j m m k j i n n C n C i m -+===⎧⎫+++=+-⎨⎬+⎩⎭∑∑∑ (40分)2008A B5、方程组⎪⎩⎪⎨⎧=+++=+=++000y xz yz xy z xyz z y x 的有理数解),,(z y x 的个数为( ) A. 1 B. 2 C. 3 D. 4◆答案: B★解析:若0z =,则00.x y xy y +=⎧⎨+=⎩,解得00x y =⎧⎨=⎩,或11.x y =-⎧⎨=⎩, 若0z ≠,则由0xyz z +=得1xy =-. ① 由0x y z ++=得z x y =--. ②将②式代入0xy yz xz y +++=得220x y xy y ++-=. ③由①式得1x y=-,代入③式化简得3(1)(1)0y y y ---=.易知310y y --=无有理数根,故1y =,由①式得1x =-,由②式得0z =,与0z ≠矛盾,故该方程组共有两组有理数解0,0,0x y z =⎧⎪=⎨⎪=⎩或1,1,0.x y z =-⎧⎪=⎨⎪=⎩2008B 二、(本题满分50分)求满足下列关系式组2222,50,x y z z y z ⎧+=⎨<≤+⎩的正整数解组(,,)x y z 的个数.★解析:令r y z =-,由条件知050r <≤,方程化为222()2x z r z ++=,即2222x zr r z ++=. (1)因0y z r -=>,故22222z x y z x =+->,从而z x >.设0p z x =->.因此(1)化为22220zp p zr r -+++=.(2) 下分r 为奇偶讨论,(ⅰ)当r 为奇数时,由(2)知p 为奇数.令121r r =+,121p p =+,代入(2)得221111112()10p p zp zr r r +-++++=. (3)(3)式明显无整数解.故当r 为奇数时,原方程无正整数解.(ⅱ)当r 为偶数时,设12r r =,由方程(2)知p 也为偶数.从而可设12p p =,代入(2)化简得2211110p zp zr r -++=. (4)由(4)式有221111()0z p r p r -=+>,故11p r >,从而可设11p r a =+,则(4)可化为2211()0r a za r +-+=,2211220r ar za a +-+=. (5)因21122r z r a a=++为整数,故212a r ,又1122()z z x p r a >-==+,因此22111()2()r a r za r a a ++=>+,得2212a r <,即a <.因此,对给定的11,2,,25r =⋅⋅⋅,解的个数恰是满足条件a 的212r 的正因数a 的个数1()N r .因212r 不是完全平方数,从而1()N r 为212r 的正因数的个数21(2)r σ的一半.即211()(2)/2N r r σ=.由题设条件,1125r ≤≤.而25以内有质数9个:2,3,5,7,11,13,17,19,23.将25以内的数分为以下八组:012341{2,2,2,2,2}A =,2{23,25,27,211}A =⨯⨯⨯⨯,223{23,25}A =⨯⨯,34{23}A =⨯,25{23}A =⨯,1{3,5,7,11,13,17,19,23}B =, 222{3,5}B =,3{35,37}B =⨯⨯,从而易知012341()(2)(2)(2)(2)(2)1234515N A N N N N N =++++=++++=,2()(23)46424N A N =⨯⨯=⨯=,3()9218N A =⨯=,4()12N A =,5()10N A =,1()3824N B =⨯=,2()5210N B =⨯=,3()9218N B =⨯=,将以上数相加,共131个.因此解的个数共131.2006*11、方程()()20052004422006200611x x x x x =+++++ 的实数解的个数为◆答案:1 ★解析:200520044220062006)1)(1(x x x x x=+++++24200420051()(1)2006x x x x x⇔+++++= 35200520052003200111112006x x x x x x x x⇔+++++++++=32005320051112006210032006x x x x x x⇔=++++++≥=要使等号成立,必须 3200532005111,,,x x x x x x===,即1x =±。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1981年~2019年全国高中数学联赛试题分类汇编数列部分2019B 8. 设等差数列{}n a 的各项均为整数,首项12019a =,且对任意正整数n ,总存在正整数m ,使得12n m a a a a +++=.这样的数列{}n a 的个数为 .◆答案:5★解析:设{}n a 的公差为d .由条件知12k a a a +=(k 是某个正整数),则()1121a d a k d +=+-,即()12k d a -=,因此必有2k ≠,且12a d k =-. 这样就有()111112n n a a n d a a k -=+-=+-,而此时对任意正整数n ,()()()()1211111222n n n n n a a a na d a n k d --⎡⎤+++=+=+--+⎢⎥⎣⎦,确实为{}n a 中的一项.因此,仅需考虑使()12|k a -成立的正整数k 的个数.注意到20193673=⨯,易知2k -可取1,1,3,673,2019-这5个值,对应得到5个满足条件的等差数列.2019B 二、(本题满分40分)求满足以下条件的所有正整数n :(1) n 至少有 4 个正约数; (2) 若12k d d d <<<是n 的所有正约数,则21321,,,k k d d d d d d ----构成等比数列。

★证明:由条件可知4k ≥,且3212112k k k k d d d d d d d d -----=--……………10 分 易得11,k d d n ==,12k nd d -=,23k nd d -=,代入上式得3222123nn d d d n n d d d d --=--, 即()()2232231d d d d -=-,由此可知3d 是完全平方数.由于2d p =是n 的最小素因子,3d是平方数,故只能23d p =. ………………30 分 从而序列21321,,,k k d d d d d d ----为232121,,,,k k p p p p p p p ------,即12,,,k d d d为211,,,,k p p p -,而此时相应的n 为1k p -.综上可知,满足条件的n 为所有形如a p 的数,其中p 是素数,整数3a ≥.………40分。

2018A 8、设整数数列1021,,,a a a 满足1103a a =,5822a a a =+,且{}i i i a a a ++∈+2,11,9,,2,1 =i ,则这样的数列的个数为◆答案:80★解析:记{}2,11∈-=+i i i a a b (9,,2,1 =i ),则有92111012b b b a a a +++=-= ① 7655825432b b b a a a a b b b ++=-=-=++②下面用t 表示432,,b b b 中2的项数。

由②知,t 也是765,,b b b 中2的项数,其中{}3,2,1,0∈t ,因此432,,b b b ,765,,b b b 的取法数为()()()()20233223213203=+++C C C C ;接下来,确定98,b b ,有422=种方式,最后由①知,应取{}2,11∈b 使得921b b b +++ 为偶数,这样的1b 的取法是唯一的,并且确定了整数1a 的值,进而数列921,,,b b b 唯一对应一个满足条件的数列1021,,,a a a 。

综上可知,满足条件的数列的个数为80420=⨯。

2018A 一、(本题满分40分)设n 是正整数,n a a a ,,,21 ,n b b b ,,,21 ,B A ,均为正实数,满足:i i b a ≤,A a i ≤,n i ,,2,1 =,且ABa a ab b b n n ≤ 2121。

证明:11)1()1)(1()1()1)(1(2121++≤++++++A B a a a b b b n n 。

★证明:记i i i a b k =,则1≥i k ,(n i ,,2,1 =) ,记k AB=,则不等式A B a a a b b b n n ≤ 2121即k k k k n ≤ 21,要证11)1()1)(1()1()1)(1(2121++≤++++++A B a a a b b b n n 成立,也就转化为证:11)1()1)(1()1()1)(1(212211++≤++++++A kA a a a a k a k a k n n n 。

对于n i ,,2,1 =,1≥i k 及A a i ≤<0知,11111111++=+--≤+--=++A A k A k k a k k a a k i i i i i i i i i . 由k k k k n ≤ 21,则只需证11)1()1)(1()1()1)(1(2121++≤++++++A A k k k A A A A k A k A k n n下面用数学归纳法证明之:①当1=n 时,不等式显然成立; ②当2=n 时,()()()011111)1)(1()1)(1(2212121≤+---=++-++++A A k k A A k k A A A k A k ,所以2=n 时也成立;③设m n =时结论成立,即11)1()1)(1()1()1)(1(2121++≤++++++A A k k k A A A A k A k A k m m ,则当1+=m n 时,1111)1)(1()1)(1()1)(1()1)(1(121121++⨯++≤++++++++++A A k A A k k k A A A A A k A k A k A k m m m m11121++≤+A A k k k k m m (将m k k k 21看成一个整体,与1+m k 一起替换2=n 时的做法一样可得) 所以1+=m n 结论也成立。

由数学归纳法可知,原命题成立。

2018A 三、(本题满分50分)设m k n ,,是正整数,满足2≥k ,且n kk m n 12-<≤,设A 是{}m ,,2,1 的n 元子集,证明:区间⎪⎭⎫ ⎝⎛-1,0k n 中的每个整数均可表示为/a a -,其中A a a ∈/,。

★证明:用反证法。

假设存在整数⎪⎭⎫ ⎝⎛-∈1,0k n x 不可表示为/a a -,其中A a a ∈/,。

作带余除法r xq m +=,其中x r <≤0.将m ,,2,1 按模x 的同余类划分成x 个公差为x 的等差数列,其中r 个等差数列有1+q 项,r x -个等差数列有q 项.由于A 中没有两数之差为x ,故A 不能包含公差为x 的等差数列的相邻两项.从而()qq r q x q x q r x q r A n |2|2221221/⎪⎩⎪⎨⎧+⋅+⋅=⎥⎦⎤⎢⎣⎡-+⎥⎦⎤⎢⎣⎡+≤=①。

由条件,我们有()r xq k km k k n +-=->1212② 又⎪⎭⎫ ⎝⎛-∈1,0k n x ,故()x k n 1->③⑴若q 是奇数,则由①知,21+⋅≤q x n ④,结合②知xq k kn q x 1221->≥+⋅,从而12-<k q , 再由q 是奇数得32-≤k q ,于是()x k q x n 121-≤+⋅≤,与③矛盾;⑴若q 是偶数,则由①知,r q x n +⋅≤2⑤,结合②知()r xq k kn r q x +->≥+⋅122 从而12)1(121)12(2--<--<-k xk r k k k xq ,得)1(2-<k q .再由q 是偶数得42-≤k q ,于是()x k r x k r qx n )1(22-<+-≤+⋅≤,与③矛盾;综上,反证法得到的结论不成立,即原命题成立。

2018B 4、在平面直角坐标系xOy 中,直线l 通过原点,)1,3(=n 是l 的一个法向量.已知数列{}n a 满足:对任意正整数n ,点),(1n n a a +均在l 上.若62=a ,则54321a a a a a 的值为 ◆答案: 32-★解析:易知直线l 的方程为x y 3-=,因此对任意正整数n ,有n n a a 311-=+,故{}n a 是以31-为公比的等比数列.于是23123-=-=a a ,由等比数列的性质知325354321-==a a a a a a2017A 8、设两个严格递增的正整数数列{}n a ,{}n b 满足20171010<=b a ,对任意正整数n ,有n n n a a a +=++12,n n b b 21=+ ,则11b a +的所有可能值为◆答案: 13,20★解析:由条件可知,1a ,2a ,1b 均为正整数,且<1a 2a 。

由于1191052122017b b b =⋅=>,所以{}3,2,11∈b ,重复使用{}n a 的递推关系可得: 12677889102134232a a a a a a a a a +==+=+=+=因此()34m od 2512211110101b b b a a ≡==≡,而18342113+⨯=⨯,故()34m od 2621321131111b b a a =⨯≡⨯≡①又<1a 2a ,得1121512213455b a a a =+<,即1155512b a <② 当11=b 时,①②即()34m od 261≡a ,555121<a ,无解; 当21=b 时,①②即()34m od 521≡a ,5510241<a ,解得181=a ,此时2011=+b a ;当31=b 时,①②即()34m od 781≡a ,5515361<a ,解得101=a ,此时1311=+b a ;综上所述,11b a +的所有可能值为13,20。

2017B1、在等比数列{}n a 中,22=a ,333=a ,则2017720111a a a a ++为◆答案:89★解析:数列{}n a的公比为32a q a ==,故120111201166720171201118()9a a a a a a q a a q ++===++.2017A 二、(本题满分40分)设数列{}n a 定义为11=a ,⎩⎨⎧-+=+,,1n a n a a n n n na na n n >≤, ,2,1=n求满足20173≤<a a r 的正整数r 的个数★解析:由题意知11=a ,22=a 。

假设对某个整数2≥r ,有r a r =,我们证明对1,,2,1-=r t 有,121212-+>-+=-+t r t r a t r ,t r t r a t r 22+<-=+。

相关文档
最新文档