测量平差期末试题
测量平差超级试卷含答案汇总

1 / 18一、填空题(每空1分,共20分) 1、测量平差就是在 多余观测 基础上,依据 一定的 原则,对观测值进行合理的调整,即分别给以适当的 改正数 ,使矛盾消除,从而得到一组最可靠的结果,并进行 精度评估 。
2、条件平差中,条件方程式的选取要求满足 、 。
3已知条件平差的法方程为024322421=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡k k ,则PV V T = ,μ= ,1k p =,2k p = 。
4、已知某平差问题,观测值个数为79,必要观测量个数为35,则按条件平差进行求解时,条件方程式个数为 ,法方程式个数为 。
5、已知某平差问题观测值个数为50,必要观测量个数为22,若选6个独立参数按具有参数的条件平差进行求解,则函数模型个数为 ,联系数法方程式的个数为 ;若在22个独立参数的基础上,又选了4个非独立参数按具有条件的参数平差进行求解,则函数模型个数为 ,联系数法方程式的个数为 。
6、间接平差中误差方程的个数等于2 / 18________________,所选参数的个数等于_______________。
7、已知真误差向量1⨯∆n 及其权阵P ,则单位权中误差公式为 ,当权阵P 为 此公式变为中误差公式。
二、选择题(每题2分,共20分)1、观测条件是指:A)产生观测误差的几个主要因素:仪器,观测者,外界条件等的综合B)测量时的几个基本操作:仪器的对中,整平,照准,度盘配置,读数等要素的综合C)测量时的外界环境:温度,湿度,气压,大气折光……等因素的综合. D)观测时的天气状况与观测点地理状况诸因素的综合答:_____2、已知观测向量()L L L T=12的协方差阵为D L =--⎛⎝ ⎫⎭⎪3112,若有观测值函数Y 1=2L 1,Y 2=L 1+L 2,则σy y 12等于?(A)1/4 (B)23 / 181/2(D )4答:__3、已知观测向量()L L L T=12的权阵P L =--⎛⎝ ⎫⎭⎪2113,单位权方差σ025=,则观测值L1的方差σL 12等于:(A)0.4 (B)2.5(C)3 (D)253答:____4、已知测角网如下图,观测了各三角形的内角,判断下列结果,选出正确答案。
(整理)测量平差考试题

1. 若令 ⎥⎥⎦⎤⎢⎢⎣⎡=⨯⨯1211Y X Z ,其中 ⎥⎦⎤⎢⎣⎡=21Y Y Y ,已知权阵Z P 为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=211120102Z P ,试求权阵X P ,Y P 及权1Y P ,2Y P 。
需要掌握的要点:向量的协方差阵D 、协因数阵Q 、权阵P 之间的关系和它们里面元素的含义。
解:由于1-=Z ZZ P Q ,所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=12/12/12/14/34/12/14/14/3ZZQ ,通过该式子可以看出,[]4/3=XXQ ,⎥⎦⎤⎢⎣⎡=12/12/14/3YY Q ,则3/41==-XX Q P X ,⎥⎦⎤⎢⎣⎡--==-2/31121YY Q P Y 且3/41=Y P ,12=Y P2. 设已知点A、B 之间的附合水准路线长80km ,令每公里观测高差的权等于1,试求平差后线路中点C 点高程的权。
思路:该题可以有三种解法(测量学的单附合水准路线平差、条件平差、间接平差)。
千万记住:求什么量的权就一定要把给量的函数表达式子正确地写出来。
即1ˆˆh H H A C +=,或X H Cˆˆ= 方法一:(测量学的单附合水准路线平差) (1) 线路闭合差B A h H h h H f -++=21)(21)2121()(212121)(2121ˆ2121211111B A B A B A A h A A C H H h h H H h h H h h H h H f h H v h H H ++⎥⎦⎤⎢⎣⎡⋅-=++-=-++-+=-+=++=(2) 按照协因数传播定律:202/12/1400040)2121(2/12/1)2121(22122111ˆˆ=⎥⎦⎤⎢⎣⎡-⋅⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-⋅⎥⎦⎤⎢⎣⎡-=h h h h h h h h H H Q Q Q Q Q CC(3) 则 20/1/1ˆˆˆ==C C C H H H Q P方法二:(条件平差法)思路:因为C 点高程平差值是观测值平差值的函数。
测量平差经典试卷含答案

一、填空题(每空2分,共20分)1、最优估计量应具有的性质为 、 和 最优估计量主要针对观测值中仅含 误差而言。
2、间接平差中,未知参数的选取要求满足 、 。
3已知条件平差的法方程为024322421=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡k k ,则PV V T = ,μ= , 1k p = ,2k p = 。
4、已知某平差问题,观测值个数为79,必要观测量个数为35,则按间接平差进行求解时,误差方程式个数为 ,法方程式个数为 。
5、已知某平差问题观测值个数为50,必要观测量个数为22,若选6个独立参数按具有参数的条件平差进行求解,则函数模型个数为 ,联系数法方程式的个数为 ;若在22个独立参数的基础上,又选了4个非独立参数按具有条件的参数平差进行求解,则函数模型个数为 ,联系数法方程式的个数为 。
6、条件平差中条件方程的个数等于________________,所选参数的个数等于_______________。
7、已知真误差向量1⨯∆n 及其权阵P ,则单位权中误差公式为 ,当权阵P 为 此公式变为中误差公式。
二、计算题(每题2分,共20分)1、条件平差的法方程等价于:A 、0=+W K Q KB 、0=+W Q K WC 、0=+W P K WD 、0=+W P K K答:______2、水准测量中,10km 观测高差值权为8,则5km 高差之权为:A 、2B 、4C 、8D 、16答:______3、已知⎥⎦⎤⎢⎣⎡=∆3112P ,则2L p 为:A 、2B 、3C 、25D 、35答:______4、间接平差中,L Q ˆ为:A 、TA AN 1- B 、A N A T1-C 、T A AN P11--- D 、A N A P T 11---答:______5、观测条件是指:A)产生观测误差的几个主要因素:仪器,观测者,外界条件等的综合B)测量时的几个基本操作:仪器的对中,整平,照准,度盘配置,读数等要素的综合 C)测量时的外界环境:温度,湿度,气压,大气折光……等因素的综合. D)观测时的天气状况与观测点地理状况诸因素的综合答:______ 6、已知观测向量()L L L T=12的协方差阵为D L =--⎛⎝ ⎫⎭⎪3112,若有观测值函数Y 1=2L 1,Y 2=L 1+L 2,则σy y 12等于(A)1/4 (B)2 (C)1/2 (D)4 答:_____ 7、已知观测向量()L L L T=12的权阵P L =--⎛⎝ ⎫⎭⎪2113,单位权方差σ025=,则观测值L 1的方差σL 12等于:(A) (B) (C)3 (D)253答:____ 8、已知测角网如下图,观测了各三角形的内角,判断下列结果,选出正确答案。
误差理论与测量平差基础期末复习试题含答案

误差理论与测量平差基础期末复习试题含答案误差理论与测量平差基础(B) 一、填空题(每空1分,共30分)1. 测量平差就是在基础上,依据原则,对观测值进行合理的调整,即分别给以适当的,使矛盾消除,从而得到一组最可靠的结果,并进行。
2. 测量误差的定义为,按其性质可分为、和。
3. 衡量估计量优劣的标准有、、。
9km,5mm4. 在A、B两点间进行水准测量,路线长度为,每千米单程观测高差的中误差等于,则A、B两点间单程观测高差的中误差等于,往返高差中数的中误差等于,往返高差不符值的限差为。
5. 设为独立等精度偶然误差,为每个误差的均方差,则误差和的限差为,(i,1,2,?,n),,,,i。
(取2倍中误差为限差) [,],6. 若有一组观测值的函数、,设,则二L,?,Lx,aL,?,aLx,bL,?,bLQ,I1n111nn211nnL者的相关系数= ,若再设,则行列式= 。
Q,b,2a(i,1,?,n)xxXii12x3,1,,,,17. 设,,,,,则,X,,,,2Σ,z,x,x,,z,x0Xz21212,,,,1x,122,,,,,, ,。
,,zzz122T8. = 。
tr[E(ΔPΔ)]1,nn,nn,111SS9. 设观测值为,观测值的函数为,欲使的权倒数为,则的权倒数, 。
f,lgSfppfS,,ˆˆv,sinx,2cosx,L10. 设非线性误差方程,参数近似值,观测值,x,60, x,45L,2512510205线性化之后的误差方程为。
11. 平差的数学模型可分为模型和模型,前者描述观测值之间、观测值与参数之间以及参数之间数学期望的关系,后者描述的则是观测值的精度特性。
ˆ,V,AδX,l,n,tn,1n,1t,1T12. 由二次型的数学期望= 可以证明,具有条件的参数平差模型中,E(XAX),ˆBδXW0,,X,t,1r,1r,t,T= 。
E(VPV),,15cm9cm4513. 已知某点的点位中误差等于,点位误差椭圆的短半轴为,短轴的方向角为,则误差椭圆的长半轴等于,长轴的方向角等于。
测量平差复习题答案

测量平差复习题答案一、单项选择题1. 在测量平差中,观测值的改正数与观测值的符号相反,说明该观测值是()。
A. 正误差B. 负误差C. 系统误差D. 偶然误差答案:B2. 测量平差中,观测值的中误差是指()。
A. 观测值的标准差B. 观测值的均值C. 观测值的偏差D. 观测值的最大误差答案:A3. 测量平差中,单位权中误差的计算公式为()。
A. σ0 = √(Σσ²) / nB. σ0 = Σσ² / nC. σ0 = √(Σσ²) / ΣnD. σ0= Σσ² / Σn答案:A二、多项选择题1. 测量平差中,下列哪些因素会影响观测值的精度()。
A. 观测者的技能水平B. 观测仪器的精度C. 观测环境D. 观测时间答案:ABCD2. 在测量平差中,下列哪些方法可以提高观测精度()。
A. 增加观测次数B. 采用高精度仪器C. 改进观测方法D. 延长观测时间答案:ABC三、填空题1. 测量平差中,观测值的中误差是用来衡量观测值的______。
答案:精度2. 测量平差中,单位权中误差是用来衡量观测值的______。
答案:精度3. 在测量平差中,观测值的改正数是用来______观测值的系统误差。
答案:消除四、简答题1. 简述测量平差中,观测值的中误差与观测值的精度之间的关系。
答案:观测值的中误差是观测值精度的一种度量,中误差越小,说明观测值的精度越高。
2. 测量平差中,如何通过观测值的改正数来判断观测值的误差性质?答案:观测值的改正数与观测值的符号相反,说明该观测值是负误差;如果改正数与观测值的符号相同,则说明该观测值是正误差。
五、计算题1. 已知一组观测值的方差分别为2、3、4,计算该组观测值的单位权中误差。
答案:σ0 = √(2+3+4) / 3 = √9 / 3 = √32. 假设在一次测量中,观测者得到了一组观测值,其改正数分别为-0.1、0.2、-0.3,计算该组观测值的平均改正数。
测量平差期末试题

测量平差期末试题⼀、填空。
(每空1分,共22分)1.与的⽐值称为相对中误差。
2.误差椭圆的三个参数是________、________、_________。
3.闭合导线按条件平差时条件⽅程式的个数等于___个,分别是____个____________________条件和____对_______________________条件。
4 .设某平差问题中,观测值个数为n个,必要观测数为t个,若按条件平差,条件⽅程的个数等于______个,法⽅程的个数等于_______个。
若按间接平差,误差⽅程式的个数等于______个,未知数的个数等于______个,法⽅程的个数等于____个。
5.根据误差传播定律,若某⼀站观测⾼差的中误差为2mm,在A、B两点间共观测了4站,则A、B两点间⾼差的中误差为mm。
6.导线⽹按条件平差,所列条件⽅程中的未知数,既有___________的改正数,也有___________的改正数。
7.在⽔准测量中若已知每公⾥观测⾼差的中误差均相等,且⼜知各⽔准路线的长度为Si(I=1,2,……n),则观测⾼差的权可⽤公式_________求出。
8.偶然误差的特性为:绝对值较⼩的误差出现的可能性;绝对值相等的正负误差出现的可能性;偶然误差的理论平均值。
1.__________、_________和_________合称为观测条件。
2.⽔准路线的定权⽅法有两种:根据_________定权和根据_________定权。
3.由三⾓形闭合差来计算测⾓中误差的公式为,称其为菲列罗公式。
4.由不等精度的双观测值之差计算单位权中误差的公式为σ0= ,由等精度的双观测值之差计算观测值中误差的公式为。
5 .单导线按条件平差时条件⽅程的个数永远等于个,附合导线中个坐标⽅位⾓条件和⼀对条件,闭合导线中⼀个条件和对闭合条件。
6.常⽤的衡量精度的指标有、、、1.独⽴边⾓同测⽹条件⽅程式的种类,除了具有测⾓⽹和测边⽹的条件式外,还具有反映边⾓关系的⼆种条件,它们是和。
《误差理论与测量平差基础》试卷A(答案)

《误差理论与测量平差基础》期末考试试题A(参考答案)一、名词解释(每题2分,共10分)1、偶然误差——在相同的观测条件系作一系列的观测,如果误差在大小和符号上都表现出偶然性。
即从单个误差看,该误差的大小和符号没有规律性,但就大量误差的总体而言,具有一定的统计规律。
这种误差称为偶然误差。
2、函数模型线性化——在各种平差模型中,所列出的条件方程或观测方程,有的是线性形式,有的是非线性形式。
在进行平差计算时,必须首先把非线性形式的函数方程按台劳公式展开,取至一次项,转换成线性方程。
这一转换过程,称之为函数模型的线性化。
3、点位误差椭圆——以点位差的极大值方向为横轴轴方向,以位差的极值分别为椭圆的长、短半轴,这样形成的一条椭圆曲线,即为点位误差椭圆。
4、协方差传播律——用来阐述观测值的函数的中误差与观测值的中误差之间的运算规律的数学公式。
如,若观测向量的协方差阵为,则按协方差传播律,应有。
5、权——表示各观测值方差之间比例关系的数字特征,。
二、判断正误(只判断)(每题1分,共10分)参考答案:X √X √X X X √√X三、选择题(每题3分,共15分)参考答案:CCDCC四.填空题(每空3分,共15分)参考答案:1. 6个2. 13个3.1/n4. 0.45. ,其中五、问答题(每题4分,共12分)1. 几何模型的必要元素与什么有关?必要元素数就是必要观测数吗?为什么?答:⑴几何模型的必要元素与决定该模型的内在几何规律有关;(1分) ⑵必要元素数就是必要观测数;(1分)⑶几何模型的内在规律决定了要确定该模型,所必须具备的几何要素,称为必要元素,必要元素的个数,称为必要元素数。
实际工程中为了确定该几何模型,所必须观测的要素个数,称为必要观测数,X F E 、0K KL Z +=LL D T LL ZZ K KD D =220ii P σσ=0)()()()(4320020=''+∆+∆+-''+-''-W y SX X x SY Y C ACA C C ACA C ρρABAC AC X X Y Y W αββ-++--=''4300arctan其类型是由必要元素所决定的,其数量,必须等于必要元素的个数。
测量平差经典试卷含答案

1一、填空题(每空2分,共20分)1、最优估计量应具有的性质为 、 和 最优估计量主要针对观测值中仅含 误差而言。
2、间接平差中,未知参数的选取要求满足 、 。
3已知条件平差的法方程为024322421=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡k k ,则PV V T = ,μ= , 1k p = ,2k p = 。
4、已知某平差问题,观测值个数为79,必要观测量个数为35,则按间接平差进行求解时,误差方程式个数为 ,法方程式个数为 。
5、已知某平差问题观测值个数为50,必要观测量个数为22,若选6个独立参数按具有参数的条件平差进行求解,则函数模型个数为 ,联系数法方程式的个数为 ;若在22个独立参数的基础上,又选了4个非独立参数按具有条件的参数平差进行求解,则函数模型个数为 ,联系数法方程式的个数为 。
6、条件平差中条件方程的个数等于________________,所选参数的个数等于_______________。
7、已知真误差向量1⨯∆n 及其权阵P ,则单位权中误差公式为 ,当权阵P 为此公式变为中误差公式。
二、计算题(每题2分,共20分)1、条件平差的法方程等价于:A 、0=+W K Q KB 、0=+W Q K WC 、0=+W P K WD 、0=+W P K K答:______2、水准测量中,10km 观测高差值权为8,则5km 高差之权为:A 、2B 、4C 、8D 、16答:______ 3、已知⎥⎦⎤⎢⎣⎡=∆3112P ,则2L p 为:A 、2B 、3C 、25D 、35 答:______4、间接平差中,L Q ˆ为:A 、TA AN 1- B 、A N A T1-C 、T A AN P11--- D 、A N A P T 11---答:______5、观测条件是指:A)产生观测误差的几个主要因素:仪器,观测者,外界条件等的综合B)测量时的几个基本操作:仪器的对中,整平,照准,度盘配置,读数等要素的综合 C)测量时的外界环境:温度,湿度,气压,大气折光……等因素的综合.D)观测时的天气状况与观测点地理状况诸因素的综合 答:______ 6、已知观测向量()L L L T=12的协方差阵为D L =--⎛⎝ ⎫⎭⎪3112,若有观测值函数Y 1=2L 1,Y 2=L 1+L 2,则σy y 12等于(A)1/4 (B)2 (C)1/2 (D)4 答:_____7、已知观测向量()L L L T=12的权阵P L =--⎛⎝ ⎫⎭⎪2113,单位权方差σ025=,则观测值L 1的方差σL 12等于:(A) (B) (C)3 (D)253答:____ 8、已知测角网如下图,观测了各三角形的内角,判断下列结果,选出正确答案。
平差期末试题及答案

平差期末试题及答案一、选择题1. 以下哪项不是平差的基本原理?A. 最小二乘法B. 应力平衡法C. 非平衡调整法D. 平差法答案:B2. 平差的基本任务是什么?A. 求出各个未知量的近似值B. 求出各观测值的精确值C. 求出各个未知量的精确值D. 检验各观测值的合理性答案:C3. 以下哪项不是平差的基本要求?A. 观测条件要满足平差要求B. 观测值的精度应满足精度要求C. 未知量的个数应大于观测值的个数D. 观测量之间应相互独立答案:C4. 平差中的误差分析和检验是为了什么?A. 评估观测数据的可靠性B. 评估平差结果的可靠性C. 检查未知量的合理性D. 检查观测装置的准确性答案:B二、填空题1. 平差的基本原理是利用 ________ 求解未知量的最优估计值。
答案:最小二乘法2. 平差的核心思想是达到观测 ________ 和观测 ________ 的双重平衡。
答案:方程、误差3. 平差中,误差方程的个数应大于等于 ________ 方程数量。
答案:未知量4. 平差中,未知量的个数应大于等于 ________ 数量。
答案:观测值三、解答题1. 试述平差的基本步骤及其适用范围。
平差的基本步骤如下:1)建立观测方程,将观测值与未知量之间的关系用数学方程表示。
2)编写误差方程,将观测方程中的观测值与未知量的函数关系转化为观测值和未知量的误差关系。
3)求解误差方程,利用最小二乘法求解未知量的最优估计值。
4)误差分析和检验,评估平差结果的可靠性。
平差适用的范围包括但不限于以下情况:- 大地测量中的测量数据处理;- 工程测量中的控制网调整;- 精密工程测量中的测量结果分析;- 地质勘探中的断层滑坡分析等。
2. 举例说明平差中的最小二乘法原理及其应用。
最小二乘法原理是平差中常用的处理方法之一,其核心思想是使平差结果使得所有观测值的残差平方和最小。
例如,我们进行了一组斜距观测,并欲求解各个未知点的坐标。
根据最小二乘法原理,我们可以建立观测方程和误差方程,并通过求解误差方程得到未知点的最优估计值。
测量平差试卷及答案

A1《 误差理论与测量平差 》试卷一、填空题 (共20分,每空 2 分)1、观测误差产生的原因为:仪器、 、2、已知一水准网如下图,其中A 、B 为已知点,观测了8段高差,若设E 点高程的平差值与B 、E 之间高差的平差值为未知参数21ˆˆX X 、,按附有限制条件的条件平差法(概括平差法)进行平差时,必要观测个数为 ,多余观测个数为 ,一般条件方程个数为 ,限制条件方程个数为C3、取一长度为d 的直线之丈量结果的权为1,则长度为D 的直线之丈量结果的权为 ,若长度为D 的直线丈量了n 次,则其算术平均值的权为 。
4、已知某点(X 、Y)的协方差阵如下,其相关系数ρXY = ,其点位方差为2σ= mm2⎪⎪⎭⎫⎝⎛=00.130.030.025.0XX D二、设对某量分别进行等精度了n 、m 次独立观测,分别得到观测值),2,1(,n i L i =,),2,1(,m i L i =,权为p p i =,试求:1)n 次观测的加权平均值][][p pL x n =的权n p 2)m 次观测的加权平均值][][p pL x m =的权m p 3)加权平均值mn mm n n p p x p x p x ++=的权x p (15分)三、 已知某平面控制网中待定点坐标平差参数y xˆˆ、的协因数为 ⎪⎪⎭⎫⎝⎛=2115.1ˆˆX X Q 其单位为()2s dm ,并求得2ˆ0''±=σ,试用两种方法求E 、F 。
(15分)四、得到如下图所示,已知A 、B 点,等精度观测8个角值为:L1L2L3L4L5L6L7L8ABCD若选择∠ABC平差值为未知参数Xˆ,用附有参数的条件平差法列出其平差值条件方程式。
(10分)五、如图所示水准网,A、B、C三点为已知高程点,P1,P2为未知点,各观测高差及路线长度如下表所列。
(20分)用条件平差法计算未知点P1,P2的高程平差值及其中误差;C A六、如下图所示,A,B点为已知高程点,试按间接平差法求证在单一附合水准路线中,平差后高程最弱点在水准路线中央。
测量平差复习题答案

测量平差复习题答案一、选择题1. 平差的目的是什么?A. 确定测量数据的准确度B. 消除测量误差C. 计算未知点的坐标D. 以上都是2. 测量平差中,观测值的权值与什么有关?A. 观测值的精度B. 观测条件C. 测量仪器的精度D. 观测者的经验3. 测量误差的来源主要包括哪些?A. 仪器误差B. 人为误差C. 环境误差D. 所有以上4. 测量平差中,最小二乘法的基本原理是什么?A. 误差平方和最小B. 误差绝对值和最小C. 误差乘积最小D. 误差平均值最小5. 测量平差中,如何确定观测值的权?A. 根据观测者的经验和直觉B. 根据观测值的精度C. 根据测量仪器的精度D. 根据观测条件二、填空题6. 平差过程中,测量误差的改正数通常用________表示。
7. 测量平差中,权的概念是指________。
8. 测量误差的类型包括系统误差和________。
9. 最小二乘法中,观测值的权值通常与________成反比。
10. 测量平差中,常用的权函数有________和________。
三、简答题11. 简述测量平差中,最小二乘法的计算步骤。
12. 说明测量平差中,如何确定观测值的权值。
13. 描述测量平差中,误差传播的概念及其重要性。
四、计算题14. 假设有一组观测数据,其观测值为:x1=100.2mm, x2=100.3mm, x3=100.1mm。
已知观测误差的标准差为σ=0.1mm,试计算这组数据的平均值及其标准误差。
五、论述题15. 论述测量平差在工程测量中的重要性及其应用。
【答案】1. D2. A3. D4. A5. B6. 改正数7. 观测值的相对重要性8. 随机误差9. 观测误差的方差10. 倒数权函数,倒数平方权函数11. 略(根据最小二乘法的基本原理和计算步骤回答)12. 略(根据观测值的精度和误差方差来确定权值)13. 略(描述误差传播的概念,以及在测量平差中的重要性)14. 平均值 = (100.2 + 100.3 + 100.1) / 3 = 100.2mm;标准误差= σ / √3 = 0.1 / √3 mm15. 略(根据测量平差在工程测量中的重要性和应用进行论述)【结束语】测量平差是确保测量结果准确性的重要手段,通过本复习题的练习,希望能够帮助大家更好地理解和掌握测量平差的基本理论、方法和应用。
测量平差复习题及答案

测量平差复习题及答案一、综合题1.已知两段距离(de)长度及中误差分别为cm m 5.4465.300±及cm m 5.4894.660±,试说明这两段距离(de)真误差是否相等他们(de)精度是否相等答:它们(de)真误差不一定相等;相对精度不相等,后者高于前者.2.已知观测值向量⎪⎪⎭⎫ ⎝⎛=2121L L L (de)权阵为⎥⎥⎦⎤⎢⎢⎣⎡=32313132LL P ,现有函数21L L X +=,13L Y =,求观测值(de)权1L P ,2L P ,观测值(de)协因数阵XY Q .答:12/3L P =;22/3L P =;3XY Q =3.在下图所示三角网中,A .B 为已知点,41~P P 为待定点,已知32P P 边(de)边长和方位角分别为0S 和0α,今测得角度1421,,,L L L 和边长21,S S ,若按条件平差法对该网进行平差:(1)共有多少个条件方程各类条件方程各有多少个(2)试列出除图形条件和方位角条件外(de)其它条件方程(非线性条件方程不要求线性化)答:(1)14216,6,10n t r =+=== ,所以图形条件:4个;极条件:2个;边长条件:2个;基线条件:1个;方位角条件:1个 (2)四边形14ABPP (de)极条件(以1P 为极): 34131241314ˆˆˆˆsin()sin sin 1ˆˆˆˆsin sin sin()L L L L L L L L +⋅⋅=+ 四边形1234PP P P (de)极条件(以4P 为极): 10116891167ˆˆˆˆsin()sin sin 1ˆˆˆˆsin sin sin()L L L L L L L L +⋅⋅=+ 边长条件(1ˆAB S S - ):123434ˆˆˆˆˆˆsin()sin()AB S S L L L L L =+++ 边长条件(12ˆˆS S - ):1121314867ˆˆˆsin ˆˆˆˆˆsin()sin sin()S L S L L L L L ⋅=++ 基线条件(0AB S S - ):02101191011ˆˆˆˆˆsin()sin()S S L L L L L =+++4.A .B .C 三点在同一直线上,测出了AB .BC 及AC(de)距离,得到4个独立观测值,m L 010.2001=,m L 050.3002=,m L 070.3003=,m L 090.5004=,若令100米量距(de)权为单位权,试按条件平差法确定A .C 之间各段距离(de)平差值Lˆ.答:ˆ[200.0147,300.0635,300.0635,500.0782]T L=5.在某航测像片上,有一块矩形稻田.为了确定该稻田(de)面积,现用卡规量测了该矩形(de)长为cm L 501=,方差为22136.0cm =σ,宽为cm L 302=,方差为22236.0cm =σ,又用求积仪量测了该矩形(de)面积231535cm L =,方差为42336cm =σ,若设该矩形(de)长为参数1ˆX ,宽为参数2ˆX ,按间接平差法平差:(1)试求出该长方形(de)面积平差值;(2)面积平差值(de)中误差.答:(1)令0111ˆX X x =+,0222ˆX X x =+,011X L =,022X L =,误差方程式为: 1122312ˆˆ305035v xv xv v v ===+-令:10013050B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,0035L ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,单位权方差为2036σ=,则法方程为:T TB PBX B PL=,可得:120.30.5x X x ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦,则0111ˆ50.3X X x =+=,0222ˆ30.5X X x =+= 所以面积平差值为2312ˆˆˆ50.3*30.51534L X X cm ===(2)2200.35T V PVcm rσ== ()12112212ˆˆˆˆˆˆˆˆˆdXdS X dX X dX X X dX ⎛⎫=+= ⎪ ⎪⎝⎭,所以ˆˆ98.94SS Q =则2ˆ 3.4814S cm σσ==±6.如图水准网中,A 为已知点,高程为10.000A H m =,观测高差及路线长度为:m h 563.21=,km S 11=;m h 326.12-=,km S 12=;m h 885.33-=,km S 23=;m h 883.34-=,km S 24=;若设参数12334ˆˆˆˆˆˆˆTTBX X X X H h h ⎡⎤⎡⎤==⎣⎦⎣⎦,定权时C= 2 km ,试列出:(1)、误差方程和限制条件; (2)、法方程式.答:(1)误差方程为:112231243ˆˆˆˆ4ˆv xv x v x x v x=⎧⎪=⎪⎨=++⎪⎪=⎩ 限制条件为:13ˆˆ20xx --= (2)法方程为:1234ˆ31004ˆ130140ˆ00110ˆ01102x x xx-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦ 7.设对某量进行了两组观测,得到观测值(de)真误差如下: 第一组:3,-3,2,4,-2,-1,0,-4,3,-2 第二组:0,-1,-7,2,1,-1,8,0,-3,1 试回答如下问题:(1)两组值(de)平均误差1ˆθ、2ˆθ和中误差1ˆσ、2ˆσ(2)这两组观测值(de)精度,哪一组精度高,为什么答:(1)1ˆθ=,2ˆθ=;1ˆσ=,2ˆσ=(2)两组观测值(de)平均误差相同,而中误差不同,由于中误差对大(de)误差反应敏感,故通常采用中误差作为衡量精度(de)指标,本题中1ˆσ<2ˆσ,故第一组观测值精度高.8.设对丈量10km(de)距离同精度丈量10次,令其平均值(de)权为5,现以同样等级(de)精度丈量(de)距离.问丈量此距离一次(de)权是多少.(问答题,10分)答:一次观测值(de)权倒数1025N C P === ,所以每次丈量10km 距离(de)权为:100.5P =长度为i S 距离(de)权为:1i i C P S = ,则112.510,2.510C C P P == ,所以15C = 故12.522.5C P == 9.下列各式中(de)()1,2,3i L i =均为等精度独立观测值,其中误差为σ,试求下列函数(de)中误差:(1)()12312X L L L =++;(2)321L L L Y =答:(1)x σ= (2)3x σ=10.在图一所示测角网中,A 、B 、C 为待定点,同精度观测了1L 、2L 、3L 和4L 共四个角度观测值.设平差后BAC ∠为参数Xˆ. (1)试指出采用何种平差模型; (2)写出函数模型和法方程.答:采用附有参数(de)条件平差模型;平差方程为:123ˆˆˆ1800L L L ++-= 34ˆˆ3600L L +-= 1ˆˆ0L X -= 则条件方程为:12313421300ˆ0v v v w v v w v x w +++=⎧⎪++=⎨⎪-+=⎩ ,其中闭合差方程为1123234031w L L L w L L w L X ⎧=++⎪=+⎨⎪=-⎩,建立法方程为: 1122333110120001011ˆ0100k w k w k w x⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎪+= ⎪ ⎪ ⎪- ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ 11.有水准网如下图,网中A .B 为已知水准点,高程m H A 013.12+=.m H B 013.10+=可视为无误差,C .D 为待定点,共观测了四个高差,高差观测值及相应水准路线(de)距离为:km S 21=,m h 004.11-=,km S 12=,m h 516.12+=,km S 23=,m h 512.23+=,km S 5.14=,m h 520.14+=.试用条件平差法求C 和D 两点高程(de)平差值.答:4,2n t == ,所以2r = ,条件方程如下:12324ˆˆˆ0ˆˆ0A Bh h h H H h h ⎧+-+-=⎪⎨-=⎪⎩ 以ˆi i ih h v =+ 代入上式,可得上述方程(de)最终形式为: 123411100001014v v v v ⎛⎫⎪-⎛⎫⎛⎫ ⎪-= ⎪ ⎪ ⎪-⎝⎭⎝⎭⎪ ⎪⎝⎭ ,以1km 观测高差为单位权观测,则法方程为: 1212502.540k k k k +=⎧⎨+-=⎩ ,解得120.35, 1.74k k =-= 进而求得()0.74 1.40.7 2.6TV mm =--观测值(de)平差值为:1234ˆˆˆˆ1.0047, 1.5174, 2.5127, 1.5174L m L m L m L m =-=== 则C 、D 两点(de)平差高程为:11.0083,12.5257C D H m H m ==12.设在三角形ABC 中,观测三内角321,,L L L ,将闭合差平均分配后得到(de)各角之值为014489ˆ,025050ˆ,030140ˆ321'''='''='''= L L L ,如下图.它们(de)协方差阵为⎪⎪⎪⎭⎫⎝⎛------=633363336LLD ,已知边长m S 000.15000=(无误差),试求ba S S ,(de)长度和它们(de)协方差SS D .答:013023ˆˆˆˆsin /sin 967.679,sin /sin 1150.573a b S S L L m S S L L m ==== 对函数式取自然对数,并微分得:331213231323ˆˆˆˆcos cos cos cos ˆˆˆˆ,ˆˆˆˆsin sin sin sin a b a b dS L dS L L L dL dL dL dL S S L L L L ====即1132233ˆˆˆ0ˆˆˆ0ˆa a a b b b dLdS S ctgL S ctgL dS dL dS S ctgL S ctgL dL ⎛⎫ ⎪⎛⎫-⎛⎫== ⎪ ⎪ ⎪ ⎪- ⎪⎝⎭⎝⎭ ⎪⎝⎭则23263311460114604 1.860.7713630962096250.77 1.32(20610)33645SS D cm --⎛⎫⎛⎫--⎛⎫⎛⎫ ⎪⎪=--⨯= ⎪ ⎪ ⎪⎪--⨯⎝⎭⎝⎭⎪⎪----⎝⎭⎝⎭。
平差试卷及答案

中南大学考试试卷一-- 学年 学期期末考试试题 时间110分钟误差理论与测量平差基础 课程 学时学分 考试形式:卷专业年级: 总分100分,占总评成绩 70 %注:此页不作答题纸,请将答案写在答题纸上一、设有一五边形导线环,等精度观测了各内角,共观测了八组结果,而计算出该导线环的八组闭合差(即真误差)为-16″、+18″、+22″、-13″、-14″、+16″、 -10″、-12″,试求该导线环之中误差及各角观测中误差。
(本题10分)二、(1)有了误差椭圆为何还要讨论误差曲线?两者有什么关系?(2)已知某平面控制网中有一待定点P ,以其坐标为参数,经间接平差得法方程为:1.2870.4110.53400.411 1.7620.3940x y x y δδδδ++=+-=单位权中误差0ˆ 1.0σ''=,,x y δδ以dm 为单位,试求: 1) 该点误差椭圆参数;2) 该点坐标中误差ˆˆ,x y σσ以及点位中误差ˆp σ; 3) 060ϕ=的位差值。
(本题共20分)三、试证明间接平差中平差值ˆL 与改正数V 的相关性。
(本题10分)四、下图水准网中,P1、P2为待定点,A 、B 、C 、为已知水准点,已测得水准网中各段高差见下表:且12.000,12.500,14.000A B C H m H m H m ===。
试任选一种平差方法,求:(1)P1、P2点高程平差值;(2)平差后P1、P2点间高差协因数。
(本题共25分)五、下图一平面控制网,试按四种平差方法分别说明:(1)参数的个数?函数模型的个数?(2)函数模型的类型?各种类型的个数?并对不同类型的形式举例说明。
(3)各种平差方法精度评定时有何异同?(本题共25分)六、产生秩亏的原因是什么?水准网、测角网、边角网以及GPS网的秩亏数各是多少?简述秩亏自由网平差的过程。
(本题10分)试卷一参考答案一、解:导线环中误差为:ˆσ=ˆ43.92σ=;测角中误差为:19.64σ==二、解:由法方程可以得到参数的协因数阵为:1ˆˆ0.83950.19580.19580.6132BBXX Q N --⎛⎫== ⎪-⎝⎭从而得:0.452291()0.95249521()0.5002052ˆ0.97596ˆ0.70725EE XX YY FF XX YY K Q Q Q K Q Q Q K E F σσ===++==+-=====由tan EE XXE XY Q Q Q ϕ-=得: 001500221406Eϕ''=或 tan FF XXF XYQ Q Q ϕ-=得:0F 24001ϕ'=或06001'则:ˆ0ˆ0ˆ0ˆ0.91624ˆ0.78307ˆ 1.20518x y p σσσσσσ======将060ϕ=代入 22220(cos sin sin 2)XX yyXY Q Q Q ϕσσϕϕϕ=++中得: 0.71dm ϕσ= 三、证明:基本关系式为:1ˆˆˆT BB L l L x N B Plv Bx l LL V -=+==-=+由协因数传播律得:111ˆˆ11ˆˆ11ˆˆˆˆ1ˆ1111ˆˆˆˆ0T xx BB BB BB T T T xL BB BB Lx vx xx Lx BB BB T T VL xL BB LVT T T T T T VV xx xL Lx BB BB BB BB Q N B PQPBN N Q N B PQ N B Q Q BQ Q BN BN Q BQ Q BN B Q Q Q BQ B BQ Q B Q BN B BN B BN B Q Q BN B------------======-=-==-=-==--+=--+=-所以 ˆ0LV VV LV Q Q Q =+= 即:平差值与各改正数是不相关的。
测量平差考试题

1. 若令 ⎥⎥⎦⎤⎢⎢⎣⎡=⨯⨯1211Y X Z ,其中 ⎥⎦⎤⎢⎣⎡=21Y Y Y ,已知权阵Z P 为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=211120102Z P ,试求权阵X P ,Y P 及权1Y P ,2Y P 。
需要掌握的要点:向量的协方差阵D 、协因数阵Q 、权阵P 之间的关系和它们里面元素的含义。
解:由于1-=Z ZZ P Q ,所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=12/12/12/14/34/12/14/14/3ZZQ ,通过该式子可以看出,[]4/3=XXQ ,⎥⎦⎤⎢⎣⎡=12/12/14/3YY Q ,则3/41==-XX Q P X ,⎥⎦⎤⎢⎣⎡--==-2/31121YY Q P Y 且3/41=Y P ,12=Y P2. 设已知点A、B 之间的附合水准路线长80km ,令每公里观测高差的权等于1,试求平差后线路中点C 点高程的权。
思路:该题可以有三种解法(测量学的单附合水准路线平差、条件平差、间接平差)。
千万记住:求什么量的权就一定要把给量的函数表达式子正确地写出来。
即1ˆˆh H H A C +=,或X H Cˆˆ=方法一:(测量学的单附合水准路线平差) (1) 线路闭合差B A h H h h H f -++=21)(21)2121()(212121)(2121ˆ2121211111B A B A B A A h A A C H H h h H H h h H h h H h H f h H v h H H ++⎥⎦⎤⎢⎣⎡⋅-=++-=-++-+=-+=++=(2) 按照协因数传播定律:202/12/1400040)2121(2/12/1)2121(22122111ˆˆ=⎥⎦⎤⎢⎣⎡-⋅⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-⋅⎥⎦⎤⎢⎣⎡-=h h h h h h h h H H Q Q Q Q Q CC(3) 则 20/1/1ˆˆˆ==C C C H H H Q P方法二:(条件平差法)思路:因为C 点高程平差值是观测值平差值的函数。
误差理论与测量平差期末试卷及答案(1)

《误差理论与测量平差》期末试卷(1)班级____________学号____________________姓名____________题号一二三四五六总分成绩一、填空题(每题3分,共计30分)1.观测误差的来源主要有测量仪器、观测者、外界环境三个方面。
2.根据观测误差对观测结果的影响性质,可将观测误差分为系统误差、偶然误差和粗差。
3.在测量平差中,常用的衡量精度的指标主要有中误差、相对误差和限差。
4.在1:1000的地形图上,量得a、b 两点间的距离d=40.6mm,量测中误差为d σ=0.2mm,则该两点间的实际距离中误差为200mm 。
5.在测量中权为1的观测值称为单位权观测值,与之对应的中误差称为单位权中误差。
6.间接平差中,未知参数X 的选取要求满足相互独立和参数个数等于必要观测个数。
7.在条件平差中,已知观测总量n=7,其中t=3,r=4,则条件方程的个数为4。
8.已知观测值L 的方差D LL =4,单位权中误差为2,则该观测值的权为P L =1。
9.不论在条件平差还是间接平差中,单位权中误差的计算公式都为0ˆσ=t n PV V T -=0σ。
10.若某待定点P 两个相互垂直方向上的坐标方差为2x σ、2y σ,则该点的点位中误差P σ=22y x P σσσ+=。
二、简答题:(每题5分,共25分)1、什么叫测量误差?产生测量误差的原因有哪些?答:(1)对某量进行多次观测,所得的各次观测结果都存在差异,通常将每次测量所得的观测值与该量的真值之间的差值称为测量误差,即测量误差=真值-观测值。
(2)产生测量误差的原因主要有:观测仪器,观测者和外界环境。
2、系统误差、偶然误差各自的特性?并举例说明。
答:系统误差指在相同的观测条件下作一系列的观测时,大小和符号表现出系统性,或按一定规律变化,或者为某一常数的误差,其具有累积性,如水准尺的刻画不准确、水准仪的视准轴误差、温度对钢尺量距的误差、尺长误差等;偶然误差指在相同的观测条件下作一系列的观测时,从单个误差看,该列误差的大小和符号表现出偶然性,无规律,但就大量误差的总体而言,具有一定的统计规律,主要表现为有界性、对称性,单峰性和抵偿性,如对中整平误差、照准目标误差、读数时估读误差等。
测量平差复习题2

[△△] 《测量平差》复习题 1、观测误差产生的原因有哪些? 2、观测条件包括哪些?观测条件与观测质量之间的关系是什么? 3、根据误差对观测结果的影响性质,可将观测误差分为 和 两类。
4、在相同的观测条件下,对同一个量进行了若干次观测,这些观测值的精度是否相同?误差小的观测值比误差大的观测值的精度高吗,为什么?5、测量平差所要研究的内容是对仅带有 误差的观测值进行适当的处理。
6、测量平差的任务是 和 。
7、真误差通常用符号 表示,其表达式可写为△= 。
8、偶然误差的四个特性。
9、精度的含义。
10、常用的衡量精度的的标准有 、 、 。
11、中误差的计算式即估值为[]n∆∆±=σ 中, n 和△分别表示什么含义? 12、中误差的计算(如P 8例1)。
13、在我国统一采用 作为衡量精度的标准,通常用L ±δ的形式来表示某值及其 。
14、 与 的比值称为相对中误差。
15、已知观测值S=500.000m ±10㎜,试求观测值S 的相对中误差。
16、已知S 1=500.000m ±20㎜,S 2=1000.000m ±20㎜,试说明:它们的中误差是否相等?它们的精度是否相同?17、设观测两个长度,结果分别为S 1=500.000m ±20㎜,S 2=800.000m ±25㎜。
试计算两个长度的和及差的相对中误差,并比较和与差哪个精度高?18、误差传播定律即协方差传播律的公式1、3及应用(例1、2、3)。
19.在一个三角形中观测了两个角度,其值分别为α=30º20′22″±4″,β=60º24′18″±3″,试求第三个角度γ的角值及其中误差σγ。
20、如图1所示的四边形中,独立观测α、β、γ三内角,它们的中误差分别为3.0″、4.0″、5.0″,试求:(1) 第四角的中误差;(2) F=α+β+γ+δ的中误差。
华北水利水电大学测量平差基础期末考试试题及答案

2012~2013华北水利水电大学测量平差基础期末考试试题及答案一、选择题:1、已知观测向量()L L L T=12的协方差阵为D L =--⎛⎝ ⎫⎭⎪3112,若有观测值函数Y 1=2L 1,Y 2=L 1+L 2,则σy y 12等于?D(A)1/4 (B)2 (C)1/2 (D)42、已知条件方程: v v v v v v 1253457080-++=-++=⎧⎨⎩,观测值协因数阵()Q diag =21121,通过计算求得[]()K q TT=--=-1333166718940781..,.., 据此可求得改正数v 5为:A)-3.0 B)-1.113 C)-1.333 D)-1.894答:_A ____ 3、已知观测向量()L L L T=12的权阵P L =--⎛⎝ ⎫⎭⎪2113,单位权方差σ025=,则观测值L 1的方差σL 12等于: (C);(A)0.4 (B)2.5 (C)3 (D)253答:____ 4、已知测角网如下图,观测了各三角形的内角,判断下列结果,选出正确答案。
ABCDA)应列出4个条件方程, B)应列出5个线性方程C)有5个多余观测 , D)应列出5个角闭合条件 答 (C);5、已知误差方程为 v x v x p p 12125646=-=+==⎧⎨⎩,由此组成法方程为:A) 2x+1=0 , B) 10x+16=0c)40065600⎛⎝ ⎫⎭⎪--⎛⎝ ⎫⎭⎪=⎛⎝ ⎫⎭⎪x , D)400620360012⎛⎝ ⎫⎭⎪⎡⎣⎢⎤⎦⎥+-⎡⎣⎢⎤⎦⎥=⎛⎝ ⎫⎭⎪x x 答:__B___ 二、列方程题: 1、下图为测角三角网,由图列出改正数条件方程及求CD 边相对中误差时的权函数式。
AB C 198623475D、(12分)、条件方程:v v v w w L L L v v v w w L L L v v v w w L L L v v v w w L L L ctgL v ctgL v ctgL v ctgL v ctgL v ctgL v w w a a b b c c d d e e 123123045645607897890268268011334455779901800180018001800+++==++-+++==++-+++==++-+++==++--+-+-+==,,,,()()()ρ''sin sin sin /sin sin sin 1359147-L L L L L L权函数式:dS S ctgL dL ctgL dL ctgL dL ctgL dL CD CD=-+-11224455 2、如图控制网,A 和B 为已知点,C 、D 、E 、F 为待定点,观测了全网中的14个内角、两个边长S 1和S 2,回答或计算下列问题(12分)。
测量平差期末考试题及答案

测量平差期末考试题及答案一、选择题(每题2分,共20分)1. 平差的基本目的是()。
A. 确定测量数据的准确度B. 确定测量误差的来源C. 消除测量误差D. 优化测量数据的分布答案:C2. 测量误差的来源主要包括()。
A. 测量仪器的误差B. 测量方法的误差C. 测量环境的误差D. 以上都是答案:D3. 测量平差中,权的概念是指()。
A. 测量数据的可靠性B. 测量数据的准确性C. 测量数据的重要性D. 测量数据的稳定性答案:A4. 测量平差中,最小二乘法的基本原理是()。
A. 使得测量误差的绝对值之和最小B. 使得测量误差的平方和最小C. 使得测量误差的平均值最小D. 使得测量误差的方差最小答案:B5. 在测量平差中,观测值的改正数是指()。
A. 观测值与真值之差B. 观测值与平均值之差C. 观测值与预测值之差D. 观测值与估计值之差答案:A...(此处省略其他选择题)二、填空题(每空2分,共20分)1. 平差的基本任务是_________测量误差,以获得_________的测量结果。
答案:消除或减小;准确可靠2. 测量误差可以分为系统误差和_________误差。
答案:随机3. 权的倒数称为_________。
答案:权的倒数4. 最小二乘法是一种常用的平差方法,其核心思想是使观测值的_________达到最小。
答案:残差平方和5. 测量平差中,观测值的改正数是指观测值与_________之差。
答案:平差值...(此处省略其他填空题)三、简答题(每题10分,共30分)1. 简述最小二乘法在测量平差中的应用。
答案:最小二乘法在测量平差中是一种常用的数据处理方法,它通过最小化观测值的残差平方和来寻找最佳估计值。
在应用时,首先需要建立观测方程,然后通过求解线性方程组来得到未知参数的估计值。
这种方法在处理多个观测数据时,能够合理地分配误差,使得所有观测数据的误差总和最小,从而得到更加准确的测量结果。
2. 解释什么是权,它在测量平差中的作用是什么。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、填空。
(每空1分,共22分)1.与的比值称为相对中误差。
2.误差椭圆的三个参数是________、________、_________。
3.闭合导线按条件平差时条件方程式的个数等于___个,分别是____个____________________条件和____对_______________________条件。
4 .设某平差问题中,观测值个数为n个,必要观测数为t个,若按条件平差,条件方程的个数等于______个,法方程的个数等于_______个。
若按间接平差,误差方程式的个数等于______个,未知数的个数等于______个,法方程的个数等于____个。
5.根据误差传播定律,若某一站观测高差的中误差为2mm,在A、B两点间共观测了4站,则A、B两点间高差的中误差为mm。
6.导线网按条件平差,所列条件方程中的未知数,既有___________的改正数,也有___________的改正数。
7.在水准测量中若已知每公里观测高差的中误差均相等,且又知各水准路线的长度为Si(I=1,2,……n),则观测高差的权可用公式_________求出。
8.偶然误差的特性为:绝对值较小的误差出现的可能性;绝对值相等的正负误差出现的可能性;偶然误差的理论平均值。
1.__________、_________和_________合称为观测条件。
2.水准路线的定权方法有两种:根据_________定权和根据_________定权。
3.由三角形闭合差来计算测角中误差的公式为,称其为菲列罗公式。
4.由不等精度的双观测值之差计算单位权中误差的公式为σ0= ,由等精度的双观测值之差计算观测值中误差的公式为。
5 .单导线按条件平差时条件方程的个数永远等于个,附合导线中个坐标方位角条件和一对条件,闭合导线中一个条件和对闭合条件。
6.常用的衡量精度的指标有、、、1.独立边角同测网条件方程式的种类,除了具有测角网和测边网的条件式外,还具有反映边角关系的二种条件,它们是和。
2.按间接平差时,首先要设定个独立未知数,在进行水准网的平差时,可以选择作为未知数,也可以选择为未知数,但最好选择为未知数。
3.间接平差中,误差方程式的个数等于个;法方程式的个数等于的个数。
5.单一附合导线的条件方程式的种类有类,分别是条件和条件。
6.条件平差,条件方程式的个数等于的个数,改正数方程的个数等于的个数。
条件方程式的个数与的个数相同。
8.协因数又称为,阐述观测值的协因数与它们的函数的协因数之间的关系的式子称为。
1.独立测边网条件方程式仅存在于和二种基本图形中,故独立测边网条件方程式的总个数等于网中和的个数之和。
2.非独立三角网按条件平差,其条件方程式的种类,除可能具有独立网的各种条件外,还可能具有、、等三类条件。
3.间接平差中选择未知数时应该注意的是:未知数应足数且相互;所选择的未知数应便于判断其;所选择的未知数应方便于。
5.若对某测量问题进行平差计算时所选未知数个数多于必要观测数t,则所选未知数之间存在,或者说在未知数的真值之间存在。
6.有一条五个未知点的附合导线,观测了所有的转折角和未知边长,用条件平差法平差计算该导线,其条件方程式的总个数为,其中条件个;条件个。
7.误差分布的密集和离散的程度,称为。
1.水准路线的定权方法有两种:根据定权和根据定权。
,路线长为S公里,则路线观测高2.在水准测量中,已知每公里的观测高差中误差为公里差的中误差为。
4.一个平差问题中,条件方程的个数为个,条件方程中的未知数是。
5.一个共有8个点的独立三角网,共观测了21个观测角,网中已知数据为二个点的平差坐标,必要观测数为个。
用条件平差法平差计算,应列独立条件方程为个,可以组成个法方程。
法方程中的未知数称为。
若用间接平差法平差计算,应选择个独立的未知数,列个误差方程式。
应组成法方程。
6.导线网按条件平差,所列条件方程中的未知数,既有的改正数,也有的改正数。
7.偶然误差的特性是:在一定的观测条件下,误差的绝对值不会超过一定的;绝对值的正负误差出现的相等;偶然误差的理论平均值等于。
1.观测误差产生的原因有___________、___________和___________。
2.测量平差所要研究的内容是对仅带有误差的观测值进行适当的处理。
L,最或然值为x,则真误差△= ,4.设某量的真值为X,观测值为iv= 。
改正数i5.单一附和导线按条件平差时条件方程式的个数等于______个,分别是一个_____________条件和一对____________条件。
6.若按间接平差法求出图1所示的水准网中水准点B、C、D的高程平差值。
则未知数的个数等于______个,误差方程的个数等于______个,组成法方程的个数等于_____个,即可以选择________________________________________作为未知数,又可以选择_______________________________________作为未知数,但最好设____________________________________为未知数,这样便不须考虑未知数之间是否独立的问题。
图11.观测误差按其对观测结果的影响性质可将其分为______误差和_______误差两类。
3.闭合导线按条件平差时条件方程式的个数等于___个,分别是____个____________________条件和____对_______________________条件。
4 .设某平差问题中,观测值个数为n个,必要观测数为t个,若按条件平差,条件方程的个数等于______个,法方程的个数等于_______的个数。
若按间接平差,误差方程式的个数等于______个,未知数的个数等于______个,法方程的个数等于____个。
7.独立三角网按条件平差时条件方程式的种类有__________、__________、__________。
4.方差是表征精度的一个 的数字指标, 是表征精度的相对数字指标。
5.单一附和导线按条件平差时条件方程式的个数等于______个,分别是一个_____________条件和一对____________条件。
5.根据误差传播定律,若某一站观测高差的中误差为2mm ,在A 、B 两点间共观测了4站,则A 、B 两点间高差的中误差为 mm 。
7.在水准测量中若已知每公里观测高差的中误差均相等,且又知各水准路线的长度为Si (I=1,2,……n ),则观测高差的权可用公式_________求出。
2.水准路线的定权方法有两种:根据_________定权和根据_________定权。
4.由不等精度的双观测值之差计算单位权中误差的公式为σ0= ,由等精度的双观测值之差计算观测值中误差的公式为 。
(1)每一个观测值与其真值X 之间必然存在一差数,这个差数称为 。
(2)通常也就将偶然误差的概率分布看成是正态分布。
(3)常用的精度指标有 、 、 。
(4)阐述观测值的中误差与其函数的中误差之间的关系的定律,称为 。
(5)引起观测误差的主要原因有 、 、 三个方面的因素,我们称这些因素为 。
(6)根据对观测结果的影响性质,观测误差分为 、 、 三类,观测误差通过由于 引起的闭合差反映出来。
(7)观测值的精度是指观测误差分布的 。
若已知正态分布的观测误差落在区间(mm 4 ,mm 4)的概率为95.5%,则误差的方差为 ,中误差为 。
(8)观测值的权的定义式为 。
(9)对某一量等精度进行了N 次观测,则算术平均值的中误差x m 与单次观测值中误差m 的关系是 。
填空题:下列不属于误差产生的原因的是()。
A.观测者B.观测仪器C.外界条件D.数据处理(1)下列误差中( )属于偶然误差。
A .照准误差和估读误差B .横轴误差和指标差C.视准轴误差 D.水准管轴误差(2)经纬仪对中误差属于( )。
A .容许误差B .系统误差C .中误差D .偶然误差(3)尺长误差和温度误差属于( )。
A .系统误差B .偶然误差 C.中误差 D .容许误差(4)在等精度观测的条件下,正方形一条边a 的观测中误差为1mm ,则正方形的周长(a S 4=)的中误差为( )。
A .1mmB . 2mm C. 4mm D .8mm(5)丈量某长方形的长m 004.020±=a ,宽为m 003.015±=b ,它们的丈量精度( )。
A .相同;B .长的精度低; C.宽的精度低 D .不能比较(6)衡量一组观测值的精度的指标是( )。
A .允许误差B .系统误差 C.偶然误差 D .中误差(7)在距离丈量中,衡量其丈量精度的标准是( )。
A .相对误差B .中误差 C.往返误差 D .真误差(8)一条直线分两段丈量,它们的中误差分别为1m 和2m ,该直线丈量的中误差为( )。
A .2221m m + B .2221m m ⋅ C.2221m m + D . 1m +2m (9)一条附和水准路线共设n 站,若每站水准测量中误差为m ,则该路线水准测量中误差为( )。
A .m n ⨯B .n m / C.n m ⨯ D .n m /(10)下面是三个小组丈量距离的结果,只有( )组测量的相对误差不低于1/5000的要求。
A .m 025.0m 100±B .m 060.0m 2500±C. m 035.0m 150± D .m 040.0m 200±4.在水准测量中,每站观测高差的中误差为cm 1±,若要求从已知点推算待定点的高程中误差不大于cm 5±,则可以设()站。
A .5B .10 C.20 D .258.对某一个角度观测了12次,得到它们的平均值中误差为75.0''±,若使平均值中误差小于03.0''±,应观测()次。
A .23B .44 C.24 D .431.若A 点为已知坐标点,则应用南方平差易软件平差计算时,测站信息区的属性值应输入()。
A.00B.01C.10D.113. 经纬仪测角时,若每一方向一次观测中误差为σ,试证一测回的测角中误差βσ仍等于()。
A. σB. σ2C. σ2D. σ44. ()的精度可以用相对误差来衡量。
A.角度B.距离C.高差D.高程5.由等精度双观测之差计算观测值中误差的公式为()。
A. []n dd d ±=σB. []n dd L 2±=σC. []n pdd 20±=σD. LL p 10σσ= 6.下列关于偶然误差的说法不正确的是()A.在一定的观测条件下,偶然误差的绝对值具有一定的限值,也可以说,偶然误差的大小是有一定范围的;B.绝对值较小的误差比绝对值较大的误差出现的可能性(概率)小;C.绝对值相等的正、负误差出现的可能性(概率)相同;D.当n →∞时,偶然误差的理论平均值等于零.7.算术平均值精度比观测值精度()A.高B.低C.相同D.不确定8.设9km 水准路线观测高差的权为单位权,其单位权中误差为6mm ,则每千米水准测量的中误差为()A. 2B. 3C. 1.5D.19.设一个三角形观测了三个内角,每一个角的测角中误差5.8''±=ασ,则三角形内角和的中误差为()。