数据结构课程实验(树和二叉树的建立和应用)
数据结构树和二叉树实验报告

树和二叉树
小组合作
否
姓名
班级
学 号
一、实验目的
(1)掌握树的相关概念,包括树、结点的度、树的度、分支结点、叶子结点、儿子结点、双亲结点、树的深度、森林等定义。
(2)掌握二叉树的概念,包括二叉树、满二叉树和完全二叉树的定义。
(3)掌握哈夫曼树的定义、哈夫曼树的构造过程和哈夫曼编码产生方法。
二.实验环境
return 0;
}
假设二叉树采用二叉树链式存储结构,设计一个算法输出从根结点到每个叶子结点的路径之逆(因为树中路径是从根结点到其他结点的结点序列,就是求叶子结点及其双亲结点、该双亲结点的双亲结点,直到根结点的序列,或者说求叶子结点及其所有祖先结点的序列)。要求采用后根遍历非递归算法。
#include "stdafx.h"
AllPath1(b);
return 0;
}
设计一个算法将二叉树的顺序存储结构转换成二叉链式存储结构。
#include "stdafx.h"
#include "exam7-14.cpp"
int main(int argc, char* argv[])
{
int i,n=10;
BTNode *b;
SqBTree a;
#include "exam7-12.cpp"
int main(int argc, char* argv[])
{
BTNode *b;
CreateBTNode(b,"A(B(D(,G)),C(E,F))");
printf("b:");DispBTNode(b);printf("\n");
数据结构实验报告二叉树

数据结构实验报告二叉树《数据结构与算法》实验报告专业班级姓名学号实验项目实验三二叉树。
实验目的1、掌握用递归方法实现二叉树的遍历。
2、加深对二叉树的理解,逐步培养解决实际问题的编程能力。
题目:(1)编写二叉树的遍历操作函数。
①先序遍历,递归方法re_preOrder(TREE *tree)②中序遍历,递归方法re_midOrder(TREE *tree)③后序遍历,递归方法re_postOrder(TREE *tree)(2)调用上述函数实现先序、中序和后序遍历二叉树操作。
算法设计分析(一)数据结构的定义要求用c语言编写一个演示程序,首先建立一个二叉树,让用户输入一个二叉树,实现该二叉树的便利操作。
二叉树型存储结构定义为:typedef struct TNode{ char data;//字符型数据struct TNode *lchild,*rchild;//左右孩子指针}TNode,* Tree;(二)总体设计程序由主函数、二叉树建立函数、先序遍历函数、中序遍历函数、后序遍历函数五个函数组成。
其功能描述如下:(1)主函数:统筹调用各个函数以实现相应功能。
int main()(2)二叉树建立函数:根据用户意愿运用先序遍历建立一个二叉树。
int CreateBiTree(Tree &T)(3)先序遍历函数:将所建立的二叉树先序遍历输出。
void PreOrder(Tree T)(4)中序遍历函数:将所建立的二叉树中序遍历输出。
void InOrder(Tree T)(5)后序遍历函数:将所建立的二叉树后序遍历输出。
void PostOrder(Tree T)(三)各函数的详细设计:(1)建立一个二叉树,按先序次序输入二叉树中结点的值(一个字符),‘#’表示空树。
对T动态分配存储空间,生成根节点,构造左、右子树(2)编写先序遍历函数,依次访问根节点、左子结点、右子节点(3)编写中序遍历函数,依次访问左子结点、根节点、右子节点(4)编写后序遍历函数,依次访问左子结点、右子节点、根节点(5)编写主函数,调用各个函数,以实现二叉树遍历的基本操作。
树和二叉树的建立和遍历-数据结构试验报告

实验报告一:预习要求预习树和二叉树的存储结构、以递归为基本思想的相应遍历操作。
二:实验目的1、通过实验,掌握二叉树的建立与存储方法。
2、掌握二叉树的结构特性,以及各种存储结构的特点和适用范围。
3、掌握用指针类型描述、访问和处理二叉树的运算。
4、理解huffman编解码的算法三:实验内容以括号表示法输入一棵二叉树,编写算法建立二叉树的二叉链表结构;编写先序、中序、后序、层次遍历二叉树的算法;编写算法计算二叉树的结点数,叶子结点数,以及二叉树的深度。
四:实验原理及试验方法ADT BinaryTree{数据对象:D:D是具有相同特征的数据元素的集合数据结构:R:若D= 空集,则R=空集,称BinaryTree为空二叉树;若D不等于空集,则R={H},H是如下二元关系:(1)在D中存在唯一的称为根的数据元素root,它在关系H下无前驱;(2)若D-{root}不等于空集,则存在D-{root}={D1,Dr},且D1∩Dr=空集;(3)若D1不等于空集,则D1中存在唯一的元素x1,<root,x1>∈H,且存在D1上的关系H1包含于H;若Dr≠空集,则Dr中存在唯一的元素xr,<root,xr>∈H,且存在Dr上的关系Hr包含于H;H={<root,x1>,<root,xr>,H1,Hr};(4) (D1,{H1})是一颗符合本定义的二叉树,称为根的左子树,(Dr,{Hr})是一颗符合本定义的二叉树,称为根的右子树。
基本操作P:CreateBiTree(&T,definition);初始条件:definition给出二叉树的定义。
操作结果:按definition构造二叉树T。
PreOrderTraverse(T);初始条件:二叉树T存在。
操作结果:先序遍历T 。
InOrderTraverse(T);初始条件:二叉树T存在。
操作结果:中序遍历T。
PostOrderTraverse(T);初始条件:二叉树T存在。
树及其应用实验报告(3篇)

第1篇一、实验目的本次实验旨在让学生掌握树的基本概念、数据结构及其应用,包括二叉树、树型结构、哈夫曼树等。
通过实验,加深对数据结构理论知识的理解,提高编程能力和实际应用能力。
二、实验环境1. 操作系统:Windows 102. 编程语言:Python3. 开发工具:PyCharm三、实验内容1. 实现二叉树2. 中序先序序列构造二叉树3. 决策树4. 表达式树5. 实现二叉查找树6. 红黑树源码分析7. 哈夫曼树及其应用四、实验步骤及结果1. 实现二叉树实现二叉树的基本操作,包括创建节点、插入节点、删除节点、查找节点、遍历等。
```pythonclass TreeNode:def __init__(self, value):self.value = valueself.left = Noneself.right = Nonedef insert_node(root, value):if root is None:return TreeNode(value)if value < root.value:root.left = insert_node(root.left, value) else:root.right = insert_node(root.right, value) return rootdef inorder_traversal(root):if root:inorder_traversal(root.left)print(root.value, end=' ')inorder_traversal(root.right)创建二叉树并插入节点root = Nonevalues = [8, 3, 10, 1, 6, 14, 4, 7, 13]for value in values:root = insert_node(root, value)中序遍历二叉树print("中序遍历结果:")inorder_traversal(root)```2. 中序先序序列构造二叉树根据给定的中序和先序序列构造二叉树。
树和二叉树的实验报告

《数据结构》实验报告题目: 树和二叉树一、用二叉树来表示代数表达式(一)需求分析输入一个正确的代数表达式, 包括数字和用字母表示的数, 运算符号+ - * / ^ =及括号。
系统根据输入的表达式建立二叉树, 按照先括号里面的后括号外面的, 先乘后除的原则, 每个节点里放一个数字或一个字母或一个操作符, 括号不放在节点里。
分别先序遍历, 中序遍历, 后序遍历此二叉树, 并输出表达式的前缀式, 中缀式和后缀式。
(二)系统设计1.本程序中用到的所有抽象数据类型的定义;typedef struct BiNode //二叉树的存储类型{char s[20];struct BiNode *lchild,*rchild;}BiTNode,*BiTree;2.主程序的流程以及各程序模块之间的层次调用关系, 函数的调用关系图:3. 列出各个功能模块的主要功能及输入输出参数void push(char cc)初始条件: 输入表达式中的某个符号操作结果: 将输入的字符存入buf数组中去BiTree Create_RTree()初始条件: 给出二叉树的定义表达式操作结果:构造二叉树的右子树, 即存储表达式等号右侧的字符组BiTree Create_RootTree()初始条件: 给出二叉树的定义表达式操作结果:构造存储输入表达式的二叉树, 其中左子树存储‘X’, 根节点存储‘:=’void PreOrderTraverse(BiTree T)初始条件: 二叉树T存在操作结果:先序遍历T, 对每个节点调用函数Visit一次且仅一次void InOrderTraverse(BiTree T)初始条件: 二叉树T存在操作结果:中序遍历T, 对每个节点调用函数Visit一次且仅一次void PostOrderTraverse(BiTree T)初始条件: 二叉树T存在操作结果:后序遍历T, 对每个节点调用函数Visit一次且仅一次int main()主函数, 调用各方法, 操作成功后返回0(三)调试分析调试过程中还是出现了一些拼写错误, 经检查后都能及时修正。
树和二叉树的实验报告

树和二叉树的实验报告树和二叉树的实验报告一、引言树和二叉树是计算机科学中常用的数据结构,它们在各种算法和应用中都有广泛的应用。
本实验旨在通过实际操作和观察,深入了解树和二叉树的特性和操作。
二、树的构建与遍历1. 树的概念和特性树是一种非线性的数据结构,由节点和边组成。
每个节点可以有零个或多个子节点,其中一个节点没有父节点的称为根节点。
树的特点包括层次结构、唯一根节点和无环等。
2. 树的构建在本实验中,我们使用Python语言构建了一棵树。
通过定义节点类和树类,我们可以方便地创建树的实例,并添加节点和连接节点之间的边。
3. 树的遍历树的遍历是指按照一定顺序访问树中的所有节点。
常见的遍历方式有前序遍历、中序遍历和后序遍历。
我们在实验中实现了这三种遍历方式,并观察了它们的输出结果。
三、二叉树的实现与应用1. 二叉树的概念和特性二叉树是一种特殊的树,每个节点最多有两个子节点,分别称为左子节点和右子节点。
二叉树的特点包括唯一根节点、每个节点最多有两个子节点和子节点的顺序等。
2. 二叉树的实现我们使用Python语言实现了二叉树的数据结构。
通过定义节点类和二叉树类,我们可以创建二叉树的实例,并实现插入节点、删除节点和查找节点等操作。
3. 二叉树的应用二叉树在实际应用中有很多用途。
例如,二叉搜索树可以用于实现快速查找和排序算法。
AVL树和红黑树等平衡二叉树可以用于高效地插入和删除操作。
我们在实验中实现了这些应用,并通过实际操作验证了它们的效果。
四、实验结果与讨论通过实验,我们成功构建了树和二叉树的数据结构,并实现了它们的基本操作。
通过观察和分析实验结果,我们发现树和二叉树在各种算法和应用中的重要性和灵活性。
树和二叉树的特性使得它们适用于解决各种问题,例如搜索、排序、图算法等。
同时,我们也发现了一些问题和挑战,例如树的平衡性和节点的插入和删除操作等。
这些问题需要进一步的研究和优化。
五、总结本实验通过实际操作和观察,深入了解了树和二叉树的特性和操作。
数据结构实验报告—二叉树

数据结构实验报告—二叉树数据结构实验报告—二叉树引言二叉树是一种常用的数据结构,它由节点和边构成,每个节点最多有两个子节点。
在本次实验中,我们将对二叉树的基本结构和基本操作进行实现和测试,并深入了解它的特性和应用。
实验目的1. 掌握二叉树的基本概念和特性2. 熟练掌握二叉树的基本操作,包括创建、遍历和查找等3. 了解二叉树在实际应用中的使用场景实验内容1. 二叉树的定义和存储结构:我们将首先学习二叉树的定义,并实现二叉树的存储结构,包括节点的定义和节点指针的表示方法。
2. 二叉树的创建和初始化:我们将实现二叉树的创建和初始化操作,以便后续操作和测试使用。
3. 二叉树的遍历:我们将实现二叉树的前序、中序和后序遍历算法,并测试其正确性和效率。
4. 二叉树的查找:我们将实现二叉树的查找操作,包括查找节点和查找最大值、最小值等。
5. 二叉树的应用:我们将探讨二叉树在实际应用中的使用场景,如哈夫曼编码、二叉搜索树等。
二叉树的定义和存储结构二叉树是一种特殊的树形结构,它的每个节点最多有两个子节点。
节点被表示为一个由数据和指向其左右子节点的指针组成的结构。
二叉树可以分为三类:满二叉树、完全二叉树和非完全二叉树。
二叉树可以用链式存储结构或顺序存储结构表示。
- 链式存储结构:采用节点定义和指针表示法,通过将节点起来形成一个树状结构来表示二叉树。
- 顺序存储结构:采用数组存储节点信息,通过计算节点在数组中的位置来进行访问和操作。
二叉树的创建和初始化二叉树的创建和初始化是二叉树操作中的基础部分。
我们可以通过手动输入或读取外部文件中的数据来创建二叉树。
对于链式存储结构,我们需要自定义节点和指针,并通过节点的方式来构建二叉树。
对于顺序存储结构,我们需要定义数组和索引,通过索引计算来定位节点的位置。
一般来说,初始化一个二叉树可以使用以下步骤:1. 创建树根节点,并赋初值。
2. 创建子节点,并到父节点。
3. 重复步骤2,直到创建完整个二叉树。
树和二叉树实验报告

树和二叉树、实验目的1. 掌握二叉树的结构特征,以及各种存储结构的特点及适用范围。
2. 掌握用指针类型描述、访问和处理二叉树的运算。
、实验要求1. 认真阅读和掌握本实验的程序。
2. 上机运行本程序。
3. 保存和打印出程序的运行结果,并结合程序进行分析。
4. 按照二叉树的操作需要,重新改写主程序并运行,打印出文件清单和运行结果。
、实验内容1. 输入字符序列,建立二叉链表。
2. 按先序、中序和后序遍历二叉树(递归算法)。
3. 按某种形式输出整棵二叉树。
4. 求二叉树的高度。
5. 求二叉树的叶节点个数。
6. 交换二叉树的左右子树。
7. 借助队列实现二叉树的层次遍历。
8. 在主函数中设计一个简单的菜单,分别调试上述算法。
为了实现对二叉树的有关操作,首先要在计算机中建立所需的二叉树。
建立二叉树有各种不同的方法。
一种方法是利用二叉树的性质5来建立二叉树,输入数据时要将节点的序号(按满二叉树编号)和数据同时给出:(序号,数据元素0)。
另一种方法是主教材中介绍的方法,这是一个递归方法,与先序遍历有点相似。
数据的组织是先序的顺序,但是另有特点,当某结点的某孩子为空时以字符“#”来充当,也要输入。
若当前数据不为“#”则申请一个结点存入当前数据。
递归调用建立函数,建立当前结点的左右子树。
四、解题思路1、先序遍历:O访问根结点,G先序遍历左子树,C3先序遍历右子树2、中序遍历:O中序遍历左子树,C2访问根结点,。
中序遍历右子树3、后序遍历:O后序遍历左子树,C2后序遍历右子树,C3访问根结点4、层次遍历算法:采用一个队列q,先将二叉树根结点入队列,然后退队列,输出该结点;若它有左子树,便将左子树根结点入队列;若它有右子树,便将右子树根结点入队列,直到队列空为止。
因为队列的特点是先进后出,所以能够达到按层次遍历二叉树的目的。
五、程序清单#in clude<stdio.h>#in clude<stdlib.h>#defi ne M 100typedef char Etype; //定义二叉树结点值的类型为字符型typedef struct BiTNode {//树结点结构Etype data;struct BiTNode *lch,*rch;}BiTNode,*BiTree;BiTree que[M];int fron t=0,rear=0;//函数原型声明BiTNode *creat_bt1();BiTNode *creat_bt2();void preorder(BiTNode *p);void ino rder(BiTNode *p);void postorder(BiTNode *p);void enq ueue(BiTree);BiTree delqueue();void levorder(BiTree);int treedepth(BiTree);void prtbtree(BiTree,i nt);void excha nge(BiTree);in t leafco un t(BiTree);void pain tleaf(BiTree);BiTNode *t;int coun t=0;//主函数void mai n() {char ch;int k;do{prin tf("\n\n\n");prin tf("\n=================== 主菜单===================");prin tf("\n\n 1.建立二叉树方法1");prin tf("\n\n 2.建立二叉树方法2");prin tf("\n\n 3•先序递归遍历二叉树”);prin tf("\n\n 4•中序递归遍历二叉树”);prin tf("\n\n 5.后序递归遍历二叉树”);printf("\n\n 6.层次遍历二叉树”);prin tf("\n\n 7.计算二叉树的高度”);prin tf("\n\n 8.计算二叉树中叶结点个数”);prin tf("\n\n 9.交换二叉树的左右子树”);printf("\n\n 10.打印二叉树”);printf("\n\n 0.结束程序运行”);prin tf("\n============================================");printf("\n 请输入您的选择(0,1,2,3,4,5,6,7,8,9,10)");sea nf("%d",&k);switch(k){case 1:t=creat_bt1( );break; //调用性质5建立二叉树算法case 2:pri ntf("\n 请输入二叉树各结点值:");fflush(stdi n);t=creat_bt2();break; //调用递归建立二叉树算法case 3:if(t){printf("先序遍历二叉树:");preorder(t);prin tf("\n");}else printf(” 二叉树为空!\n");break;case 4:if(t){printf("中序遍历二叉树:");ino rder(t);prin tf("\n");}else printf("二叉树为空!\n");break;case 5:if(t)postorder(t);{printf("后序遍历二叉树:");prin tf("\n");}else printf(” 二叉树为空!\n");break;case 6:if(t){printf("层次遍历二叉树:");levorder(t);prin tf("\n");}else printf("二叉树为空!\n");break;case 7:if(t){printf("二叉树的高度为:%d",treedepth(t));prin tf("\n");}else printf("二叉树为空!\n");break;case 8:if(t){printf("二叉树的叶子结点数为:%d\n",leafcount(t));prin tf("\n");printf("二叉树的叶结点为:");pai ntleaf(t);else printf(” 二叉树为空!\n");break;case 9:if(t){printf("交换二叉树的左右子树:\n");excha nge(t);prtbtree(t,0);prin tf("\n");}else printf("二叉树为空!\n");break;case 10:if(t){printf("逆时针旋转90度输出的二叉树:\n");prtbtree(t,0);prin tf("\n");}else printf("二叉树为空!\n");break;case 0:exit(0);} //switch}while(k>=1 &&k<=10);printf("\n再见!按回车键,返回… \n");ch=getchar();} //main//利用二叉树性质5,借助一维数组V建立二叉树BiTNode *creat_bt1(){ BiTNode *t,*p,*v[20];i nt i,j;Etype e;/*输入结点的序号i、结点的数据e*/printf("\n请输入二叉树各结点的编号和对应的值(如1,a):");sca nf("%d,%c",&i,&e);while(i!=0&&e!='#') {//当i为0, e为#时,结束循环p=(BiTNode*)malloc(sizeof(BiTNode));p->data=e;p->lch=NULL;p->rch=NULL;v[i]=p;if(i==1)t=p; //序号为1的结点是根else{j=i/2;if(i%2==0)v[j]->lch=p;//序号为偶数,作为左孩子else v[j]_>rch=p; //序号为奇数,作为右孩子}printf("\n请继续输入二叉树各结点的编号和对应的值:”);scan f("%d,%c",&i, &e);}return(t);}//creat_bt1;//模仿先序递归遍历方法,建立二叉树BiTNode *creat_bt2(){BiTNode *t;Etype e;scan f("%c",&e);if(e==' #')t=NULL; //对于#值,不分配新结点else{t=(BiTNode *)malloc(sizeof(BiTNode));t->data=e;t->lch=creat_bt2(); //左孩子获得新指针值t->rch=creat_bt2(); //右孩子获得新指针值return(t);} 〃creat_bt2//先序递归遍历二叉树void preorder(BiTNode *p) {if(P){prin tf("%3c",p->data);preorder(p_>lch);preorder(p->rch);}} //preorder〃中序递归遍历二叉树void ino rder(BiTNode *p){if(p){ino rder(p->lch);prin tf("%3c",p->data);ino rder(p->rch);}} //ino rder//后序递归遍历二叉树void postorder(BiTNode *p){ if(p){ postorder(p->lch);postorder(p->rch);prin tf("%3c",p->data);}} //postorder void enq ueue(BiTree T){if(fron t!=(rear+1)%M){rear=(rear+1)%M;que[rear]=T;}}BiTree delqueue(){if(fron t==rear)return NULL;fron t=(fro nt+1)%M;return(que[fro nt]);}void levorder(BiTree T)//层次遍历二叉树{BiTree p;if(T){enq ueue(T);while(fro nt!=rear){p=delqueue( );prin tf("%3d",p->data);if(p->lch!=NULL)e nqueue(p->lch); if(p->rch!=NULL)e nq ueue(p->rch);}}} int treedepth(BiTree bt){int hl,hr,max;if(bt!=NULL){ hl=treedepth(bt->lch); hr=treedepth(bt->rch);max=(hl>hr)?hl:hr; return (max+1);}else return (0);} void prtbtree(BiTree bt,i nt level)形{int j;if(bt){prtbtree(bt->rch,level+1);for(j=0;j<=6*level;j++)pri ntf(" ”);prin tf("%c\n",bt->data);prtbtree(bt->lch,level+1);}}//计算二叉树的高度〃逆时针旋转90度输出二叉树树void excha nge(BiTree bt) // 交换二叉树左右子树{BiTree p;if(bt){p=bt->lch;bt->lch=bt->rch;bt->rch=p;excha nge(bt->lch);excha nge(bt->rch);}}in t leafcou nt(BiTree bt) // 计算叶结点数{if(bt!=NULL){leafc oun t(bt->lch);leafc oun t(bt->rch);if((bt->lch==NULL) &&(bt->rch==NULL))coun t++;}return(co unt);void pai ntleaf(BiTree bt) // 输出叶结点{if(bt!=NULL) {if(bt->lch==NULL&&bt->rch==NULL)prin tf("%3c",bt->data);pain tleaf(bt->lch);pain tleaf(bt->rch);}}图11.2所示二叉树的输入数据顺序应该是:abd#g###ce#h##f##图11.2 二叉树示意图运行结果:=================王采单1. 建立二叉树方法12. 建立二叉树方法23•先序递归遍历二叉树4•中序递归遍历二叉树5. 后序递归遍历二叉树6. 层次遍历二叉树7. 计算二叉树的高度8. 计算二叉树中叶结点个数9. 交换二叉树的左右子树10. 打印二叉树0.结束程序运行请输入您的选择(0,1,2,3,4,5,6,7,8,9,10) 1请输入二叉树各结点的编号和对应的值(如1,a):1,a 请继续输入二叉树各结点的编号和对应的值:2,b请继续输入二叉树各结点的编号和对应的值:3,c请继续输入二叉树各结点的编号和对应的值:4,d请继续输入二叉树各结点的编号和对应的值:6,e请继续输入二叉树各结点的编号和对应的值:7,f请继续输入二叉树各结点的编号和对应的值:9,g请继续输入二叉树各结点的编号和对应的值:13,h请继续输入二叉树各结点的编号和对应的值:===================主菜单===================");1. 建立二叉树方法12. 建立二叉树方法23•先序递归遍历二叉树4•中序递归遍历二叉树5. 后序递归遍历二叉树6. 层次遍历二叉树7. 计算二叉树的高度8. 计算二叉树中叶结点个数9. 交换二叉树的左右子树10. 打印二叉树0.结束程序运行请输入您的选择(0,1,2,3,4,5,6,7,8,9,10) 3先序遍历二叉树:abdgcehf===================主菜单===================");1. 建立二叉树方法12. 建立二叉树方法23•先序递归遍历二叉树4•中序递归遍历二叉树5. 后序递归遍历二叉树6. 层次遍历二叉树7. 计算二叉树的高度8. 计算二叉树中叶结点个数9. 交换二叉树的左右子树10. 打印二叉树0.结束程序运行请输入您的选择(0,1,2,3,4,5,6,7,8,9,10) 4中序遍历二叉树:dgbaehcf===================主菜单===================");1. 建立二叉树方法12. 建立二叉树方法23. 先序递归遍历二叉树4. 中序递归遍历二叉树5. 后序递归遍历二叉树6. 层次遍历二叉树7. 计算二叉树的高度8. 计算二叉树中叶结点个数9. 交换二叉树的左右子树10. 打印二叉树0.结束程序运行请输入您的选择(0,1,2,3,4,5,6,7,8,9,10) 5后序遍历二叉树:gdbhefca===================主菜单===================");1. 建立二叉树方法12. 建立二叉树方法23•先序递归遍历二叉树4•中序递归遍历二叉树5. 后序递归遍历二叉树6. 层次遍历二叉树7. 计算二叉树的高度8. 计算二叉树中叶结点个数9. 交换二叉树的左右子树10. 打印二叉树0.结束程序运行请输入您的选择(0,1,2,3,4,5,6,7,8,9,10) 6层次遍历二叉树:97 98 99100101102103104===================主菜单===================");1. 建立二叉树方法12. 建立二叉树方法23•先序递归遍历二叉树4•中序递归遍历二叉树5. 后序递归遍历二叉树6. 层次遍历二叉树7. 计算二叉树的高度8. 计算二叉树中叶结点个数9. 交换二叉树的左右子树10. 打印二叉树0.结束程序运行请输入您的选择(0,1,2,3,4,5,6,7,8,9,10) 7 二叉树的高度为:4王采单 1. 建立二叉树方法 12. 建立二叉树方法 23•先序递归遍历二叉树4•中序递归遍历二叉树5. 后序递归遍历二叉树6. 层次遍历二叉树7. 计算二叉树的高度8. 计算二叉树中叶结点个数9. 交换二叉树的左右子树10. 打印二叉树0.结束程序运行请输入您的选择(0,1,2,3,4,5,6,7,8,9,10) 8 二叉树的叶子结点数为:3二叉树的叶结点为: g h f1. 建立二叉树方法 12. 建立二叉树方法 23. 先序递归遍历二叉树===================王采单"); ”);4•中序递归遍历二叉树5. 后序递归遍历二叉树6. 层次遍历二叉树7. 计算二叉树的高度8. 计算二叉树中叶结点个数9. 交换二叉树的左右子树10. 打印二叉树0.结束程序运行请输入您的选择(0,1,2,3,4,5,6,7,8,9,10) 9交换二叉树的左右子树:dgbaehc===================王采单");1. 建立二叉树方法12. 建立二叉树方法23•先序递归遍历二叉树4•中序递归遍历二叉树5. 后序递归遍历二叉树6. 层次遍历二叉树7. 计算二叉树的高度8. 计算二叉树中叶结点个数9. 交换二叉树的左右子树10. 打印二叉树0.结束程序运行请输入您的选择(0,1,2,3,4,5,6,7,8,9,10) 10 逆时针旋转90度输出的二叉树:dgbaehc王采单”);1. 建立二叉树方法12. 建立二叉树方法23•先序递归遍历二叉树4•中序递归遍历二叉树5. 后序递归遍历二叉树6. 层次遍历二叉树7. 计算二叉树的高度8. 计算二叉树中叶结点个数9. 交换二叉树的左右子树10. 打印二叉树0.结束程序运行请输入您的选择(0,1,2,3,4,5,6,7,8,9,10) 2请输入二叉树各结点值:abd#g###ce#h##f##===================主菜单===================");1. 建立二叉树方法12. 建立二叉树方法23•先序递归遍历二叉树4•中序递归遍历二叉树5. 后序递归遍历二叉树6. 层次遍历二叉树7. 计算二叉树的高度8. 计算二叉树中叶结点个数9. 交换二叉树的左右子树10. 打印二叉树0.结束程序运行请输入您的选择(0,1,2,3,4,5,6,7,8,9,10) 0请按任意键继续•• •六、调试心得及收获建立二叉树有两种方法:一种方法是利用二叉树的性质5来建立二叉树;另一种方法是主教材中介绍的方法,这是一个递归方法,与先序遍历有点相似。
数据结构实验三——二叉树基本操作及运算实验报告

《数据结构与数据库》实验报告实验题目二叉树的基本操作及运算一、需要分析问题描述:实现二叉树(包括二叉排序树)的建立,并实现先序、中序、后序和按层次遍历,计算叶子结点数、树的深度、树的宽度,求树的非空子孙结点个数、度为2的结点数目、度为2的结点数目,以及二叉树常用运算。
问题分析:二叉树树型结构是一类重要的非线性数据结构,对它的熟练掌握是学习数据结构的基本要求。
由于二叉树的定义本身就是一种递归定义,所以二叉树的一些基本操作也可采用递归调用的方法。
处理本问题,我觉得应该:1、建立二叉树;2、通过递归方法来遍历(先序、中序和后序)二叉树;3、通过队列应用来实现对二叉树的层次遍历;4、借用递归方法对二叉树进行一些基本操作,如:求叶子数、树的深度宽度等;5、运用广义表对二叉树进行广义表形式的打印。
算法规定:输入形式:为了方便操作,规定二叉树的元素类型都为字符型,允许各种字符类型的输入,没有元素的结点以空格输入表示,并且本实验是以先序顺序输入的。
输出形式:通过先序、中序和后序遍历的方法对树的各字符型元素进行遍历打印,再以广义表形式进行打印。
对二叉树的一些运算结果以整型输出。
程序功能:实现对二叉树的先序、中序和后序遍历,层次遍历。
计算叶子结点数、树的深度、树的宽度,求树的非空子孙结点个数、度为2的结点数目、度为2的结点数目。
对二叉树的某个元素进行查找,对二叉树的某个结点进行删除。
测试数据:输入一:ABC□□DE□G□□F□□□(以□表示空格),查找5,删除E预测结果:先序遍历ABCDEGF中序遍历CBEGDFA后序遍历CGEFDBA层次遍历ABCDEFG广义表打印A(B(C,D(E(,G),F)))叶子数3 深度5 宽度2 非空子孙数6 度为2的数目2 度为1的数目2查找5,成功,查找的元素为E删除E后,以广义表形式打印A(B(C,D(,F)))输入二:ABD□□EH□□□CF□G□□□(以□表示空格),查找10,删除B预测结果:先序遍历ABDEHCFG中序遍历DBHEAGFC后序遍历DHEBGFCA层次遍历ABCDEFHG广义表打印A(B(D,E(H)),C(F(,G)))叶子数3 深度4 宽度3 非空子孙数7 度为2的数目2 度为1的数目3查找10,失败。
数据结构实验二叉树

实验六:二叉树及其应用一、实验目的树是数据结构中应用极为广泛的非线性结构,本单元的实验达到熟悉二叉树的存储结构的特性,以及如何应用树结构解决具体问题。
二、问题描述首先,掌握二叉树的各种存储结构和熟悉对二叉树的基本操作。
其次,以二叉树表示算术表达式的基础上,设计一个十进制的四则运算的计算器。
如算术表达式:a+b*(c-d)-e/f三、实验要求如果利用完全二叉树的性质和二叉链表结构建立一棵二叉树,分别计算统计叶子结点的个数。
求二叉树的深度。
十进制的四则运算的计算器可以接收用户来自键盘的输入。
由输入的表达式字符串动态生成算术表达式所对应的二叉树。
自动完成求值运算和输出结果。
四、实验环境PC微机DOS操作系统或Windows 操作系统Turbo C 程序集成环境或Visual C++ 程序集成环境五、实验步骤1、根据二叉树的各种存储结构建立二叉树;2、设计求叶子结点个数算法和树的深度算法;3、根据表达式建立相应的二叉树,生成表达式树的模块;4、根据表达式树,求出表达式值,生成求值模块;5、程序运行效果,测试数据分析算法。
六、测试数据1、输入数据:2.2*(3.1+1.20)-7.5/3正确结果:6.962、输入数据:(1+2)*3+(5+6*7);正确输出:56七、表达式求值由于表达式求值算法较为复杂,所以单独列出来加以分析:1、主要思路:由于操作数是任意的实数,所以必须将原始的中缀表达式中的操作数、操作符以及括号分解出来,并以字符串的形式保存;然后再将其转换为后缀表达式的顺序,后缀表达式可以很容易地利用堆栈计算出表达式的值。
例如有如下的中缀表达式:a+b-c转换成后缀表达式为:ab+c-然后分别按从左到右放入栈中,如果碰到操作符就从栈中弹出两个操作数进行运算,最后再将运算结果放入栈中,依次进行直到表达式结束。
如上述的后缀表达式先将a 和b 放入栈中,然后碰到操作符“+”,则从栈中弹出a 和b 进行a+b 的运算,并将其结果d(假设为d)放入栈中,然后再将c 放入栈中,最后是操作符“-”,所以再弹出d和c 进行d-c 运算,并将其结果再次放入栈中,此时表达式结束,则栈中的元素值就是该表达式最后的运算结果。
数据结构实验报告-树(二叉树)

实验5:树(二叉树)(采用二叉链表存储)一、实验项目名称二叉树及其应用二、实验目的熟悉二叉树的存储结构的特性以及二叉树的基本操作。
三、实验基本原理之前我们都是学习的线性结构,这次我们就开始学习非线性结构——树。
线性结构中结点间具有唯一前驱、唯一后继关系,而非线性结构中结点的前驱、后继的关系并不具有唯一性。
在树结构中,节点间关系是前驱唯一而后继不唯一,即结点之间是一对多的关系。
直观地看,树结构是具有分支关系的结构(其分叉、分层的特征类似于自然界中的树)。
四、主要仪器设备及耗材Window 11、Dev-C++5.11五、实验步骤1.导入库和预定义2.创建二叉树3.前序遍历4.中序遍历5.后序遍历6.总结点数7.叶子节点数8.树的深度9.树根到叶子的最长路径10.交换所有节点的左右子女11.顺序存储12.显示顺序存储13.测试函数和主函数对二叉树的每一个操作写测试函数,然后在主函数用while+switch-case的方式实现一个带菜单的简易测试程序,代码见“实验完整代码”。
实验完整代码:#include <bits/stdc++.h>using namespace std;#define MAX_TREE_SIZE 100typedef char ElemType;ElemType SqBiTree[MAX_TREE_SIZE];struct BiTNode{ElemType data;BiTNode *l,*r;}*T;void createBiTree(BiTNode *&T){ElemType e;e = getchar();if(e == '\n')return;else if(e == ' ')T = NULL;else{if(!(T = (BiTNode *)malloc(sizeof (BiTNode)))){cout << "内存分配错误!" << endl;exit(0);}T->data = e;createBiTree(T->l);createBiTree(T->r);}}void createBiTree2(BiTNode *T,int u) {if(T){SqBiTree[u] = T->data;createBiTree2(T->l,2 * u + 1);createBiTree2(T->r,2 * u + 2); }}void outputBiTree2(int n){int cnt = 0;for(int i = 0;cnt <= n;i++){cout << SqBiTree[i];if(SqBiTree[i] != ' ')cnt ++;}cout << endl;}void preOrderTraverse(BiTNode *T) {if(T){cout << T->data;preOrderTraverse(T->l);preOrderTraverse(T->r);}}void inOrderTraverse(BiTNode *T) {if(T){inOrderTraverse(T->l);cout << T->data;inOrderTraverse(T->r);}}void beOrderTraverse(BiTNode *T){if(T){beOrderTraverse(T->l);beOrderTraverse(T->r);cout << T->data;}}int sumOfVer(BiTNode *T){if(!T)return 0;return sumOfVer(T->l) + sumOfVer(T->r) + 1;}int sumOfLeaf(BiTNode *T){if(!T)return 0;if(T->l == NULL && T->r == NULL)return 1;return sumOfLeaf(T->l) + sumOfLeaf(T->r);}int depth(BiTNode *T){if(!T)return 0;return max(depth(T->l),depth(T->r)) + 1;}bool LongestPath(int dist,int dist2,vector<ElemType> &ne,BiTNode *T) {if(!T)return false;if(dist2 == dist)return true;if(LongestPath(dist,dist2 + 1,ne,T->l)){ne.push_back(T->l->data);return true;}else if(LongestPath(dist,dist2 + 1,ne,T->r)){ne.push_back(T->r->data);return true;}return false;}void swapVer(BiTNode *&T){if(T){swapVer(T->l);swapVer(T->r);BiTNode *tmp = T->l;T->l = T->r;T->r = tmp;}}//以下是测试程序void test1(){getchar();cout << "请以先序次序输入二叉树结点的值,空结点用空格表示:" << endl; createBiTree(T);cout << "二叉树创建成功!" << endl;}void test2(){cout << "二叉树的前序遍历为:" << endl;preOrderTraverse(T);cout << endl;}void test3(){cout << "二叉树的中序遍历为:" << endl;inOrderTraverse(T);cout << endl;}void test4(){cout << "二叉树的后序遍历为:" << endl;beOrderTraverse(T);cout << endl;}void test5(){cout << "二叉树的总结点数为:" << sumOfVer(T) << endl;}void test6(){cout << "二叉树的叶子结点数为:" << sumOfLeaf(T) << endl; }void test7(){cout << "二叉树的深度为:" << depth(T) << endl;}void test8(){int dist = depth(T);vector<ElemType> ne;cout << "树根到叶子的最长路径:" << endl;LongestPath(dist,1,ne,T);ne.push_back(T->data);reverse(ne.begin(),ne.end());cout << ne[0];for(int i = 1;i < ne.size();i++)cout << "->" << ne[i];cout << endl;}void test9(){swapVer(T);cout << "操作成功!" << endl;}void test10(){memset(SqBiTree,' ',sizeof SqBiTree);createBiTree2(T,0);cout << "操作成功!" << endl;}void test11(){int n = sumOfVer(T);outputBiTree2(n);}int main(){int op = 0;while(op != 12){cout << "-----------------menu--------------------" << endl;cout << "--------------1:创建二叉树--------------" << endl;cout << "--------------2:前序遍历----------------" << endl;cout << "--------------3:中序遍历----------------" << endl;cout << "--------------4:后序遍历----------------" << endl;cout << "--------------5:总结点数----------------" << endl;cout << "--------------6:叶子节点数--------------" << endl;cout << "--------------7:树的深度----------------" << endl;cout << "--------------8:树根到叶子的最长路径----" << endl;cout << "--------------9:交换所有节点左右子女----" << endl;cout << "--------------10:顺序存储---------------" << endl;cout << "--------------11:显示顺序存储-----------" << endl;cout << "--------------12:退出测试程序-----------" << endl;cout << "请输入指令编号:" << endl;if(!(cin >> op)){cin.clear();cin.ignore(INT_MAX,'\n');cout << "请输入整数!" << endl;continue;}switch(op){case 1:test1();break;case 2:test2();break;case 3:test3();break;case 4:test4();break;case 5:test5();break;case 6:test6();break;case 7:test7();break;case 8:test8();break;case 9:test9();break;case 10:test10();break;case 11:test11();break;case 12:cout << "测试结束!" << endl;break;default:cout << "请输入正确的指令编号!" << endl;}}return 0;}六、实验数据及处理结果测试用例:1.创建二叉树(二叉链表形式)2.前序遍历3.中序遍历4.后序遍历5.总结点数6.叶子结点数7.树的深度8.树根到叶子的最长路径9.交换所有左右子女10.顺序存储七、思考讨论题或体会或对改进实验的建议通过这次实验,我掌握了二叉树的顺序存储和链式存储,体会了二叉树的存储结构的特性,掌握了二叉树的树上相关操作。
数据结构实验报告(二叉树的基本操作)

else LeafNum=LeafCount(root->LChild)+LeafCount(root->RChild);
//叶子数为左右子树数目之和
return LeafNum;
printf("\n菜单选择\n\n");
printf(" 1.树状输出二叉树2.先序遍历二叉树\n");
printf(" 3.中序遍历二叉树4.后序遍历二叉树\n");
printf(" 5.输出叶子结点6.输出叶子结点的个数\n");
printf(" 7.输出二叉树的深度8.退出\n");
printf("\n----------------------------------------------------------------------\n");
{
printf("\n\n");
j=j+1; k=0;
while(k<nlocate)
{
printf(" ");
k++;
}
}
while(k<(nlocate-1))
{
printf(" ");
k++;
}
printf("%c",bt->data );
q.front=q.front+1;
if(bt->LChild !=NULL)//存在左子树,将左子树根节点入队列
数据结构实验三树与二叉树的操作实验指导

实验六树与二叉树6.1实验目的:(1)掌握二叉树链表的结构和二叉树的建立过程;(2)掌握二叉树的基本操作,加深对二叉树的理解,逐步培养解决实际问题的编程能力。
6.2实验要求:(1)复习课本中有关树与二叉树的知识;(2)用C语言完成算法和程序设计并上机调试通过;(3)撰写实验报告,给出算法思路或流程图和具体实现(源程序)、算法分析结果(包括时间复杂度、空间复杂度以及算法优化设想)、输入数据及程序运行结果(必要时给出多种可能的输入数据和运行结果)。
6.3基础实验[实验1] 二叉树的构造实验内容与要求:按先序序列构造一棵二叉链表表示的二叉树T;分析:二叉树是每个结点至多只有两棵子树,并有左、右之分,顺序不能任意颠倒的一种非线性结构。
二叉树常用的存储结构是二叉链表形式,二叉链表由一个数据项data(用于存放结点的值)和两个指针项lchild、rchild(分别指向该结点的左、右子树)。
结点及结构如图6-1所示://- - - - - - 二叉树的二叉链表存储表示模型- - - - - - -typedef struct BiTNode{TElemType data;Struct BiTNode * lchild, * rchild; //左右孩子指针}BiTNode, * BiTree;将此结构定义放在一个头文件BiTNode.h里,可避免在后面的参考程序中代码重复书写,另外在该头文件里给出二叉链表的初始化及常量的定义。
实现提示按先序序列建立一棵二叉树,先构造根结点,再构造根的左、右子树;每一棵子树又都是一颗二叉树,所以构造一棵子树的过程与构造整棵二叉树的过程完全相同,按照先序序列,先构造根,再构造左子树,然后构造右子树;采用递归形式直到叶子结点为止。
以下是算法描述:Status CreateBiTree(BiTree &T)//按先序次序输入二叉树中结点的值(一个字符),#字符表示空树,//构造二叉链表表示的二叉树T。
树和二叉树实验报告

●实验内容:实验三树和二叉树1.编写函数,输入字符序列,建立二叉树的二叉链表。
2.编写函数,实现二叉树的中序递归遍历算法。
(最好也能实现前缀和后缀遍历算法)3.编写函数,实现二叉树的中序非递归遍历算法。
4.编写函数,借助队列实现二叉树的层次遍历算法。
5.编写函数,求二叉树的高度。
6.编写函数,求二叉树的结点个数。
7.编写函数,求二叉树的叶子个数。
8.编写函数,交换二叉树每个结点的左子树和右子树。
9.编写一个主函数,在主函数中设计一个简单的菜单,分别调试上述算法。
●实验目的及要求:1.掌握二叉树的存储实现2.掌握二叉树的遍历思想3.掌握二叉树的常见算法的程序实现●实验内容、方法与步骤:(使用附页填写并附在本页后)见附页●实验结果:见附页●小结:通过本次实验,我基本掌握了二叉树的存储实现和二叉树的遍历思想,并且实现了二叉树的几种常见算法。
分数:批阅老师:200 年月日第 1 页/ 共13 页实验报告(附页)#include <stdio.h>#include <stdlib.h>#define OK 1#define ERROR 0#define OVERFLOW -2typedef int status;typedef struct BiNode//二叉链表{char Data;struct BiNode* lChild;struct BiNode* rChild;}BiNode,*pBiNode;typedef struct SNode/*链栈的结点类型*/{pBiNode elem; /*栈中的元素是指向二叉链表结点的指针*/struct SNode *next;}SNode;struct link //队列链表{struct BiNode *p;struct link *next;};status CreateTree(BiNode** pTree);status PreOrderTraval(BiNode* pTree);//前序递归status InOrderTraval(BiNode* pTree);//中序递归status PostOrderTraval(BiNode* pTree);//后序递归status st_InOrderTraverse(BiNode* pTree);//中序非递归遍历void TreeLink(BiNode* pTree); //队列实现层次遍历int TreeHeight (BiNode* pTree);//二叉树的高度int Count(BiNode* pTree);//结点个数int TreeNumber(BiNode* pTree);//叶子个数void Exchange (BiNode* pTree);//交换左右子树status Visit(char Data);void Display(BiNode* pTree,int Level);BiNode *pRoot=NULL;status CreateTree(BiNode** pTree) /*Input Example: abd##e##cf##g##*/ {char ch;scanf("%c",&ch);if(ch=='#'){(*pTree)=NULL;}else{if(!((*pTree)=(BiNode*)malloc(sizeof(BiNode)))) {exit(OVERFLOW);}(*pTree)->Data=ch;CreateTree(&((*pTree)->lChild));CreateTree(&((*pTree)->rChild));}return OK;}status PreOrderTraval(BiNode* pTree)//前序递归{if(pTree){if(Visit(pTree->Data)){if(PreOrderTraval(pTree->lChild)){if(PreOrderTraval(pTree->rChild)){return OK;}}}return ERROR;}else{return OK;}}status InOrderTraval(BiNode* pTree)//中序递归{if(pTree){if(InOrderTraval(pTree->lChild)){if(Visit(pTree->Data)){if(InOrderTraval(pTree->rChild)){return OK;}}return ERROR;}return ERROR;}else{return OK;}}status PostOrderTraval(BiNode* pTree)//后序递归{if(pTree){if(PostOrderTraval(pTree->lChild)){if(PostOrderTraval(pTree->rChild)){if(Visit(pTree->Data)){return OK;}return ERROR;}}return ERROR;}else{return OK;}}status st_InOrderTraverse(BiNode* pTree)//中序非递归遍历{BiNode *p;SNode *q,*Stop=NULL; /*用不带头结点的单链表作为栈的存储结构*/ p=pTree;while(p!=NULL||Stop!=NULL) /*不是空树*/{if(p!=NULL){q=(SNode*)malloc(sizeof(SNode));if(q==NULL)return ERROR;q->next=Stop;q->elem=p;Stop=q; /*根结点指针入栈*/p=p->lChild; /*进入根的左子树*/}else{q=Stop;Stop=Stop->next; /*栈顶元素出栈*/printf("%c ",q->elem->Data);/*访问根结点*/p=q->elem->rChild; /*进入根的右子树*/free(q); /*释放原栈顶元素的结点空间*/}}return OK;}void TreeLink(BiNode* pTree) //队列实现层次遍历{struct link *head,*rear,*temp;head=(struct link *)malloc(sizeof(struct link));head->p=pTree;head->next=NULL;rear=head;do{if(head->p->lChild!=NULL){temp=(struct link *)malloc(sizeof(struct link));temp->p=head->p->lChild;temp->next=NULL;rear->next=temp;rear=temp;}if(head->p->rChild!=NULL){temp=(struct link *)malloc(sizeof(struct link));temp->p=head->p->rChild;temp->next=NULL;rear->next=temp;rear=temp;}temp=head;printf("%c ",head->p->Data);head=head->next;free(temp);}while(head!=NULL);}int TreeHeight(BiNode* pTree)//二叉树的高度{int hl ,hr ; //左右子树的高度if (pTree == NULL)return 0 ;elsehl = TreeHeight(pTree-> lChild);hr = TreeHeight (pTree-> rChild);if (hl>hr)return (hl +1);elsereturn (hr +1);}int Count(BiNode* pTree)//结点个数{return pTree == NULL ? 0 : Count(pTree->lChild) + Count(pTree->rChild) + 1;}int TreeNumber(BiNode* pTree)//叶子个数{if (pTree==NULL)return 0;if (pTree->lChild ==NULL && pTree->rChild == NULL)return 1;return TreeNumber(pTree->lChild)+TreeNumber(pTree->rChild);//+1就可以求出结点个数}void Exchange (BiNode* pTree )//交换左右子树{BiNode* temp;if ( pTree->lChild != NULL || pTree->rChild != NULL ){temp = pTree->lChild;pTree->lChild = pTree->rChild;pTree->rChild = temp;Exchange ( pTree->lChild );Exchange ( pTree->rChild );}}status Visit(char Data){printf("%c ",Data);return OK;}void Display(BiNode* pTree,int Level)//显示整个树{int i;if(pTree==NULL) return;Display(pTree->rChild,Level+1);for(i=0;i<Level-1;i++){printf(" ");}if(Level>=1){printf("--");}printf("%c\n",pTree->Data);Display(pTree->lChild,Level+1);}void CmdList() //显示命令列表{printf("\n_____________________________________________\n");printf(" 请选择操作: \n");printf(" 1.前序递归遍历\n"); //前序递归遍历printf(" 2.中序递归遍历\n"); //中序递归遍历printf(" 3.后序递归遍历\n"); //后序递归遍历printf(" 4.中序非递归遍历\n"); //中序非递归遍历printf(" 5.层次遍历\n"); //层次遍历printf(" 6.求二叉树高度\n"); //二叉树高度printf(" 7.求结点个数\n"); //二叉树的结点个数printf(" 8.求叶子个数\n"); //二叉树的叶子个数printf(" 9.交换左右子树\n"); //交换左右子树printf(" 0.退出程序\n"); //退出printf("\n______________________________________________\n");}void init(){system ("cls");printf("* * * * * * * * * * * * * * * * * * * * * * * * *\n");printf("实验三树和二叉树\n");printf("03计本3班\n");printf("樊海军 2B0324151138\n");printf("* * * * * * * * * * * * * * * * * * * * * * * * *\n");printf("本程序实现二叉树的常见算法。
数据结构实验报告二叉树

数据结构实验报告二叉树二叉树是一种重要的数据结构,广泛应用于计算机科学和算法设计中。
在本次实验中,我们通过实际编程实践,深入理解了二叉树的基本概念、性质和操作。
一、二叉树的定义和基本性质二叉树是一种特殊的树结构,每个节点最多有两个子节点。
它具有以下基本性质:1. 根节点:二叉树的顶部节点称为根节点,它没有父节点。
2. 子节点:每个节点最多有两个子节点,分别称为左子节点和右子节点。
3. 叶节点:没有子节点的节点称为叶节点。
4. 深度:从根节点到某个节点的路径长度称为该节点的深度。
5. 高度:从某个节点到其叶节点的最长路径长度称为该节点的高度。
6. 层次遍历:按照从上到下、从左到右的顺序遍历二叉树的节点。
二、二叉树的实现在本次实验中,我们使用C++语言实现了二叉树的基本操作,包括创建二叉树、插入节点、删除节点、查找节点等。
通过这些操作,我们可以方便地对二叉树进行增删改查。
三、二叉树的遍历二叉树的遍历是指按照某种顺序访问二叉树的所有节点。
常用的遍历方式有三种:前序遍历、中序遍历和后序遍历。
1. 前序遍历:先访问根节点,然后依次递归遍历左子树和右子树。
2. 中序遍历:先递归遍历左子树,然后访问根节点,最后递归遍历右子树。
3. 后序遍历:先递归遍历左子树,然后递归遍历右子树,最后访问根节点。
四、二叉树的应用二叉树在计算机科学和算法设计中有广泛的应用。
以下是一些常见的应用场景:1. 二叉搜索树:二叉搜索树是一种特殊的二叉树,它的左子树的值都小于根节点的值,右子树的值都大于根节点的值。
它可以高效地支持插入、删除和查找操作,常用于有序数据的存储和检索。
2. 堆:堆是一种特殊的二叉树,它的每个节点的值都大于(或小于)其子节点的值。
堆常用于实现优先队列等数据结构。
3. 表达式树:表达式树是一种用二叉树表示数学表达式的方法。
通过对表达式树的遍历,可以实现对数学表达式的计算。
4. 平衡树:平衡树是一种特殊的二叉树,它的左右子树的高度差不超过1。
二叉树实现及应用实验报告

二叉树实现及应用实验报告实验名称:二叉树实现及应用实验目的:1. 实现二叉树的创建、插入和删除操作。
2. 学习二叉树的遍历方法,并能够应用于实际问题。
3. 掌握二叉树在数据结构和算法中的一些常用应用。
实验内容:1. 实现二叉树的创建、插入和删除操作,包括二叉树的构造函数、插入函数和删除函数。
2. 学习二叉树的三种遍历方法:前序遍历、中序遍历和后序遍历,并应用于实际问题。
3. 掌握二叉树的一些常用应用,如二叉搜索树、平衡二叉树和哈夫曼树等。
实验步骤:1. 创建二叉树的结构体,包括树节点和树的根节点。
2. 实现二叉树的构造函数,用于创建二叉树的根节点。
3. 实现二叉树的插入函数,用于将元素插入到二叉树中的合适位置。
4. 实现二叉树的删除函数,用于删除二叉树中的指定元素。
5. 学习并实现二叉树的前序遍历、中序遍历和后序遍历函数。
6. 运用二叉树的遍历方法解决实际问题,如查找二叉树中的最大值和最小值。
7. 学习并应用二叉搜索树、平衡二叉树和哈夫曼树等常用二叉树结构。
实验结果:1. 成功创建、插入和删除二叉树中的元素,实现了二叉树的基本操作。
2. 正确实现了二叉树的前序遍历、中序遍历和后序遍历,并能够正确输出遍历结果。
3. 通过二叉树的遍历方法成功解决了实际问题,如查找二叉树中的最大值和最小值。
4. 学习并熟练应用了二叉搜索树、平衡二叉树和哈夫曼树等常用二叉树结构,丰富了对二叉树的理解。
实验分析:1. 二叉树是一种重要的数据结构,具有较好的数据存储和查找性能,广泛应用于计算机科学和算法领域。
2. 通过实验,我们深入了解了二叉树的创建、插入和删除操作,以及前序遍历、中序遍历和后序遍历的原理和应用。
3. 实际问题往往可以转化为二叉树的遍历问题进行求解,通过实验,我们成功应用了二叉树的遍历方法解决了实际问题。
4. 熟练掌握二叉搜索树、平衡二叉树和哈夫曼树的原理和应用,对于提高我们在数据结构和算法方面的设计能力具有重要意义。
数据结构实验5 树和二叉树

四、分析与讨论
对上机实践结果进行分析,上机的心得体会。
五、教师评语
签名:
日期:Biblioteka 成绩附源程序清单:5、其他二叉树的算法,特别是利用书的结构进行递归的算法。
二、实验设备(环境)及要求
微型计算机;
windows操作系统;
Microsoft Visual Studio 6.0集成开发环境。
三、实验内容与步骤
1、定义二叉树节点;
2、实现二叉树的生成、遍历(前序,中序和后序)、查询二叉树中某个节点、统计二叉树节点个数、统计二叉树叶子节点个数、求二叉树的深度、复制二叉树等函数。这些函数,如有可能,尽量实现递归和非递归的版本。
《数据结构》实验报告
实验序号:5实验项目名称:树和二叉树的操作
学 号
姓 名
专业、班
实验地点
指导教师
实验时间
一、实验目的及要求
1、进一步掌握指针变量、动态变量的含义。
2、掌握二叉树的结构特征,以及各种存储结构的特点及适用范围。
3、掌握用指针类型描述、访问和处理二叉树的运算。
4、掌握用二叉树前序、中序、后序、层次遍历的方法。
树和二叉树实验报告_2

实验报告班级: 软本101 学号: 2010417133姓名: 张明宇日期: 10月20号1.实验题目2.编辑一个程序, 用来演示树和二叉树的建立、遍历等操作。
3.需求分析本演示程序在Microsoft Visual C++ 6.0环境下编写调试, 完成二叉树的建立、遍历、深度求解等。
(1)建立二叉树: 进入程序运行界面后, 提示我们输入要建立的二叉树, 并默认以先序序列输入。
若第一个输入为“#”, 则为空树。
否则按照从左子树到右子树的顺序建立该二叉树, 用#代表虚结点, 如ABD###CE##F##。
建立完二叉树后按“ENTER”键自动进入下一个功能模块的实现。
(2)实现各个遍历递归算法: 实现该二叉树的先序遍历、中序遍历和后序遍历递归算法, 逐个访问该二叉树的左右子树, 并输出各遍历序列。
(3)统计出该二叉树中叶子节点个数和高度:只要该二叉树的移动指针t 所指向的节点非空, 进一步判断其左右子树是否也都为空, 让表示节点的变量能够记录叶子节点个数和深度。
(4)实现层次遍历算法:利用队列“先进先出”的原则, 按照“根左右”的顺序前后将整棵树入队, 并输出。
概要设计(1)为了实现上述程序功能, 需要定义二叉树的数据结构。
二叉树单个元素的结构如图1.1所示。
图1.1 二叉树元素的数据结构(2)本程序包含7个函数:①主函数main()。
②树的建立函数CreatBinTree()。
③先序遍历函数Preorder()。
④中序遍历函数Inorder()。
⑤后序遍历函数Postorder()。
⑥求叶子深度和二叉树深度函数TreeDepth()。
⑦层次遍历函数Levelorder()。
各函数间的关系如图1.2所示。
图1.2 程序所包含各函数之间的关系4.详细设计(1)实现概要设计中定义的所有的数据类型, 对每个操作给出具体的算法;对主程序和其他模块也都需要写出具体算法。
数据类型。
用C语言描述如下:typedef struct BinTNode{char data;struct BinTNode *lchild,*rchild;}BinTNode,*BinTree;(2)线性表的基本操作函数的具体算法。
数据结构树和二叉树实验报告

《数据结构〉课程实验报告实验名称树与二叉树实验序号5实验日期姓名院系班级学号指导教师成绩专业教师评语一、实验目得与要求(1)掌握树得相关概念,包括树、结点得度、树得度、分支结点、叶子结点、儿子结点、双亲结点、树得深度、森林等定义。
(2)掌握树得表示,包括树形表示法、文氏图表示法、凹入表示法与括号表示法等。
(3)掌握二叉树得概念,包括二叉树、满二叉树与完全二叉树得定义。
(4)掌握二叉树得性质。
(5)重点掌握二叉树得存储结构,包括二叉树顺序存储结构与链式存储结构。
(6)重点掌握二叉树得基本运算与各种遍历算法得实现。
(7)掌握线索二叉树得概念与相关算法得实现。
(8)掌握哈夫曼树得定义、哈夫曼树得构造过程与哈夫曼编码产生方法。
(9)掌握并查集得相关概念与算法。
(1 0)灵活掌握运用二叉树这种数据结构解决一些综合应用问题。
二、实验项目摘要1编写一程序,实现二叉树得各种基本运算,并在此基础上设计一个主程序完成如下功能:(1)输出二叉树b;(2)输出H结点得左、右孩子结点值;(3)输出二叉树b得深度;(4)输出二叉树b得宽度;(5)输出二叉树b得结点个数;(6)输出二叉树b得叶子结点个数。
2编写一程序,实现二叉树得先序遍历、中序遍历与后序遍历得各种递归与非递归算法,以及层次遍历得算法。
三、实验预习内容二叉树存储结构,二叉树基本运算(创建二叉树、寻找结点、找孩子结点、求高度、输出二叉树)三、实验结果与分析7-1#incl u d e < s tdio、h>#incl u d e<m a1 l o c、h># d e f in e M axS i z e 100typedef cha r E l emT y p e;ty p ed e f struct n o d e{o ElemTy p e data;。
str u c t n ode * 1 c h i 1 d ;0struct no d e * r chi l d;0}BT N ode;void Cr e a teBTNod e(BTNod e *&b,c h ar *s t r){o B TNod e* S t[M a x S ize] , *p=NULL;o i n t t o p=-1,k,j = 0:ch a r ch;b=N U L L;oo0ch= s tr廿];wh i l e C ch!='\O')叶s wit c h(ch){o ca s e'(':to p ++; St[t o p]=p;k=l;b rea k;。
实验三 树和二叉树的建立和应用

实验三 二叉树的建立和应用
1、实验目的
(1)熟练掌握树的基本概念、二叉树的基本操作及在链式存储结构上的实现;
(2)重点掌握二叉树的生成、遍历及求叶子结点算法;
(3)掌握运用递归方式描述算法及编写递归C 程序的方法,提高算法分析和程序设计能力。
2、实验内容
1)按照已知二叉树,从键盘读入节点字符,建立二叉树(例如,ABD#G###CE##FH###) 2)分别采用先序、中序、后序及层次遍历该二叉树,分别输出遍历结果。
3)应用:求出该数的叶子结点数。
3、实验步骤
(1)仔细分析实验内容,给出其算法和流程图;
(2)用C 语言实现该算法;
(3)给出测试数据,并分析其结果;
(4)在实验报告册上写出实验过程。
4、测试数据 1)所创建的树如右图所示:
2)遍历结果: 先序序列: ABDGCEFH
中序序列: DGBAECHF
后序序列: GDBEHFCA 层次遍历:ABCDEFGH
3)叶子结点数:3
5、树的结点结构定义如下: typedef struct BiTNode
{
char data;
struct BiTNode *lchild,*rchild;
}BiTNode,*BiTree;
6、实验报告要求
实验三 二叉树的建立和应用
G H B C D E F A
姓名:班级:学号:日期:实验目的:
实验内容:
基本思想、原理和算法描述:
源程序:
运行结果分析:
实验总结:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验四 二叉树的建立和应用
1、实验目的
(1)熟练掌握树的基本概念、二叉树的基本操作及在链式存储结构上的实现;
(2)重点掌握二叉树的生成、遍历及求深度等算法;
(3)掌握运用递归方式描述算法及编写递归C 程序的方法,提高算法分析和程序设计能力。
2、实验内容
按照已知二叉树,从键盘读入节点字符,建立二叉树(ABD#G###CE##FH###)
;分别采用先序、中序、后序遍历该二叉树,分别输出遍历结果。
3、实验步骤
(1)仔细分析实验内容,给出其算法和流程图;
(2)用C 语言实现该算法;
(3)给出测试数据,并分析其结果;
(4)在实验报告册上写出实验过程。
4、测试数据
先序序列: ABDGCEFHjfkdkfakf
中序序列: DGBAECHF
后序序列: GDBEHFCA 5、结构定义 typedef struct BiTNode
{ char data;
struct BiTNode *lchild,*rchild;
}BiTNode,*BiTree;
6、实验报告要求
实验报告要求书写整齐,步骤完整,实验报告格式如下:
1、[实验目的]
2、[实验设备]
3、[实验步骤]
4、[实验内容]
5、[实验结果(结论)]
G H
B C
D E F A
程序如下:
#include "stdio.h"
#include "string.h"
typedef char TElemType ;
typedef struct BiNode
{
TElemType data;
struct BiNode * lchild ,* rchild;
}BiNode ,*BiTree;
BiTree CreateBiTree(BiTree bt)
{ char ch;
B iTree h=NULL;
c h=getchar();
i f(ch=='#') bt=NULL;
e lse {
if((bt=(BiNode *)malloc(sizeof(BiNode)))==NULL) exit(-2);
bt->data=ch;
bt->lchild=CreateBiTree(h);
bt->rchild=CreateBiTree(h);
}
r eturn(bt);
}
void PreOrderTraverse(BiTree bt)
{if(bt)
{printf("%c",bt->data); PreOrderTraverse(bt->lchild); PreOrderTraverse(bt->rchild);
}
return;
}
void InOrderTraverse(BiTree bt) {if(bt)
{InOrderTraverse(bt->lchild); printf("%c",bt->data); InOrderTraverse(bt->rchild);
}
return;
}
void PostOrderTraverse(BiTree bt) {if(bt)
{PostOrderTraverse(bt->lchild); PostOrderTraverse(bt->rchild); printf("%c",bt->data);
}
return;
}
main()
{
BiTree T;
T=CreateBiTree(NULL);
printf("\nthe PreOrder is:"); PreOrderTraverse(T);
printf("\nthe InOrder is:"); InOrderTraverse(T);
printf("\nPostOrder is:"); PostOrderTraverse(T);
}。