花器官的ABC模型

合集下载

植物花发育的分子机理

植物花发育的分子机理

植物花器官发育的分子机理研究进展植物花的发育是植物个体从营养生长向生殖生长转变的结果,相应的分生组织属性也经历了从营养型向生殖型的转变。

首先是花序型的分生组织出现,而后产生苞片原基及花芽。

与花序型分生组织相比,花芽的发育具有决定性,即分生组织的发育最终停止在花器官原基的发育阶段,从此丧失了不断分裂形成新的次生分生组织和新的器官原基的能力。

花器官的分子遗传学主要研究与上述过程有关的一系列调控基因,进而在分子水平上阐明植物花发育的遗传机理。

现就花发育分子模型的发展和完善、不同模型之间的相互关系以及调控基因之间的相互作用等方面,对植物花器官发育的最新研究进展进行综述。

1 花器官发育的ABC模型植物花的发育可以划分为4个阶段:花序的发育、花芽的发育、花器官的发育和花型的发育。

在花发育的分子遗传学研究中,对花器官发育的研究最为深入,并且已有较为成熟的实验模型指导有关的研究工作。

双子叶植物花器官发育的基本单位是轮。

在野生型中,由外向内依次为第1轮萼片、第2轮花瓣、第3轮雄蕊和第4轮心皮。

同源异型突变体通常引起器官的错位发育。

前人通过对拟南芥和金鱼草花的同源异型突变体的研究,提出了“ABC模型”假说。

该模型是20世纪90年代植物发育生物学领域最重要的里程碑,其通俗易懂,并在被子植物中广为应用,使人们能够通过改变ABC 3类同源异型基因的表达而控制花的结构。

ABC模型认为,在花中存在A、B、C 3种类型的器官特异性基因功能区,每个功能区分别控制相邻两轮花器官的发育,即第1轮萼片的特征单独由A功能基因决定,第2轮花瓣的特性由A和B功能基因共同控制,第3轮雄蕊由B和C功能基因共同控制,而第4轮心皮单独由C功能基因决定。

这样,每一个基因或基因对控制花器官相邻两个轮的特征。

据此,ABC模型提出如下假设:(1)出现在每个花器官轮中的同源异型基因的产物相组合,决定该轮器官的发育命运;(2)A和C的功能相互拮抗,即A功能基因能够抑制C功能基因在轮l和轮2中的表达,C功能基因反过来也能抑制A功能基因在轮3和轮4中的表达。

花器官发育的“ABC”模型PPT

花器官发育的“ABC”模型PPT
5
花器官发育的“ABC”模型
2004年,通过对拟南芥的sepallata1,2,3三重突变体的描述,
研究者提出了ABCE模型。这一模型确定了E类基因对花部器官
发育的重要性,协助A/B/C三类基因将叶片转变成花瓣。
在研究MADS-BOX家族基因对花器官发育的影响时发现,被
称作AGAMOUS-LIKE(AGL)2、AGL4、AGL9基因的表达时间早于B
3
花器官发育的“ABC”模型
“ABC”模型的提出是近几年植物发育生物学研 究中的一个重要突破,可以解释多个基因在器 官发育中的作用。在A/B/C三类基因同时突变的 四重突变体ap1,ap2,ap3/pi,ag中,四轮花器 官都变成了类似叶片的结构,验证了Goethhe提 出的花器官是变态叶的假说。
4
花器官发育的“ABC”模型
对ABC模型的质疑 1、在ABC模型中不同类型器官的划分是很严格的,但在许多开 花突变体中,不同类型器官之间常常出现嵌合体。 2、ag突变体在理论上应使第三、四轮组织发育成为相同数目的 花瓣和花萼,事实上往往出现增殖现象,暗示AG可能不是一个 单独的基因而是多个同源基因,并且也在其他生命过程中起作 用。 3、AP2不具备器官的特异性,所有花器官中都存在该基因表达 的产物。 4、SUPERMAN基因能抑制AP3基因的表达,从而抑制花器官的形 成。 5、ABC模型将一个复杂的问题简单、抽象化,虽然利于人们理 解花器官的发育过程,却忽略了不同花器官发生在时间上的先 后顺序。
类和C类基因,AGL2、AGL4在4轮花器官中均有表达,而AGL9
只在里面三轮花器官中表达。
Agl2/agl4/agl9的三重突变
体表型类似于B/C类突变体且有非常多的花萼,充分表明了

(推荐)植物发育生物学被子植物花器官发育的分子模型

(推荐)植物发育生物学被子植物花器官发育的分子模型

5.边缘滑动模型
边 缘 滑动模型(shifting border model或sliding boundarymodel) (图)解释了B功能基因表达区域的可塑性, 在花发育进程中, B功能基因的表达区域扩展到外层而导 致花瓣状器官的分化, 使外轮器官与内层花瓣在形态上具 有一致性(如单子叶植物百合、郁金香; 基部核心双子叶 植物毛茛、耧斗菜等), 这种B 功能基因功能延伸到外轮 花器官的分子模型又称为修饰的ABC 模型(modified ABC model) , 但此种分子模型并不适用于所有的单子叶植物 类群。
就拟南芥而言, A+E 功能基因控制萼片发育; A+B+E 功 能基因控制花瓣发育; B+C+E功能基因控制雄蕊发育; C+E 功能基因控制雌蕊发育。
3.四分子模型
通过凝胶阻滞、酵母双杂交等分子生物学实验,人们发现 花的同源蛋白能通过聚合作用形成同源或者异源二聚体, 进而组装形成多聚复合体发挥作用。为了解释这些蛋白如 何通过相互作用来调控花器官的发育,Theissen 等结合MADS蛋白多聚体的研究,提出了“四因子”模 型(quartet model),认为花器官是由4 种同源异型蛋白复合体通过结合在目标基因启动子区域来 调节基因开闭,进而调控花器官的发育。
Wild-type:
A功能基因包括拟南芥的APETALA1 (AP1)和AP2 基因、金鱼草 的AP2-like基因LIPLESS1和LIPLESS2(LIP1、LIP2), 单独决
定第1轮萼片属性。
A-function mutant:
B功能基因包括拟南芥的APETALA3 (AP3)和PISTILLATA(PI) 基因、金鱼草的DEFICIENS (D E F) 和GLOBOSA (GLO)基因,

植物发育生物学03 (花发育)

植物发育生物学03 (花发育)

36
Inflorescence meristem identity gene
Inflorescence meristem
CEN
总状花序
Flower meristem
wild type
centroradialis mutant
37
38
LEAFY/FLO controls floral meristem identity
When mutated, there is no change in flower phenotype.
23
In a triple mutant for AGL2, AGL4 and AGL9, all organs in the Arabidopsis flower develop into sepals
51
EFFECT OF DAY LENGTH ON FLOWERING IN SDPs AND LDPs
Critical day langth
Critical day langth
52
1、光周期的感受及传导
THE SITE OF PERCEPTION OF THE PHOTOPERIODIC STIMULUS IS THE LEAF
• • • • Long-day photoperiod Gibberellins (GA) Vernalization Autonomous pathway
46
Induction of flowering
Multiple cues
47
一、光周期途径
光周期:一日之内昼夜长度的相对变化。 光周期现象:植物通过感受昼夜长短变化而调控 开花时间的现象。
wt
35
Meristem identity genes

植物花器官发育ABC模型研究进展

植物花器官发育ABC模型研究进展

植物花器官发育ABC模型研究进展摘要:花器官是陆生植物生殖过程中的重要功能器官,本文综述了花器官发育的ABC模型的产生和发展过程,包括经典ABC模型以及随后发展的ABCD、ABCDE和四聚体模型。

关键词:花发育;ABC模型The Development Research on ABC Model of Floral OrganAbstract:The flower organ is one of important function organs to the terrestrial plants in the process of the reproductive.In this paper, I summarize the the production and development process of ABC model of floral organ development, including the classic ABC model and the later ABCD, ABCDE, and tetramer models.Keywords: flower development; ABC model引言开花植物250000多种,在陆生生态系统中占明显优势[1]。

花器官是陆生植物生殖过程中的重要功能器官,已经成为进化论者和生态学家的研究焦点。

基本的花器官是明显保守的,虽然花的数目、形状、大小、颜色和器官的排列方式不同,但都是对各自授粉方式的适应而导致花结构巨大变化的进化[2]。

植物花发育是植物发育中最为引人注目的阶段,传统生物学对花发育的关注可以追溯到200多年前[3]。

长期以来,对花的研究多限于形态描述以及开花生理方面,有关分子遗传学研究只在十多年前才开始,但研究结果令人瞩目[4]。

在花发育的分子遗传学研究中,对花器官的研究最为深入,已有较为成熟的实验模型指导研究工作。

该模型就是ABC模型,即花发育的同源异型基因作用模型[5-7]。

花器官发育的ABC模型研究进展

花器官发育的ABC模型研究进展

! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! 形成萼片状、心皮状或花瓣状的器官代替心皮。 ! 类功能缺失则 "#$ 延伸表达,心皮代替萼片,雄 蕊代替花瓣。 根据在矮牵牛中的研究结果,!%& 模型被扩展
a类功能基因突变后ap2突变体ag就会在第类功能基因的表达不受影响这样在突变体中轮花器官只有c类功能基因作用发育为心皮花器官中的基因表达模式不变仍然发育成雄蕊和pi突变体轮花器官中只有ac类功能基因表达而分别发育成花萼和心皮同时第14轮花器官的发育不受影响分别发育形成花萼和心皮由此形成的花只有花萼和心皮结构
["]
面一轮是心皮,是雌性生殖器官,常常是几个心皮 结合,胚珠和种子在里面形成。尽管发育完全后萼 片、花瓣、雄蕊和心皮的结构和功能可能差异很 大,每个花器官都是由花分生组织的一些凸起(一 小团未分化细胞)开始发育的。在花原基发育过程 中每个细胞都必须获悉在花中的位置,相应地分化
[$] 成适当的细胞类型 。
[L] 的工作证实了这一点:在 6J>63 双突变体 +.K/64 中,第 *、< 轮花器官均转化成叶片(绿色,有托
究花发育的模式植物。两者有不同的优点,前者的 优点是有优良性状的移动因子短,植株体积小 。已经发现了它们已有大量的突
农业生物技术科学 中国农学通报
第 *L 卷
第I期
>&&; 年 *& 月
-11J: O O P41=Q !-246R.S7468Q 401Q !4

被子植物花器官发育的分子机制

被子植物花器官发育的分子机制

被子植物花器官发育的分子机制花发育是被子植物生命周期中一个重要的综合发育过程,涉及无限生长向有限生长及不同发育方式的转换,包括开花诱导、信号传递、属性决定、器官发生,既受环境因子(如光周期、温度等)的诱导,又受到自身内部因素的调节,经过一系列信号转导过程,启动成花决定过程中的控制基因。

在复杂的基因互作网络调控下,营养茎端分生组织(vegetative meristem,VM)转变为花序分生组织(inflorescence meristem,IM),然后在IM 的侧翼形成花分生组织(floral meristem,FM),分化出花器官。

截至目前,从拟南芥(Arabidopsis thaliana )中共有180多个参与调控开花的基因被鉴定出,并确定其中存在有6条调控开花的信号途径:即光周期途径(photoperiod pathway)、春化途径(vernalization pathway)、自主途径(autonomous pathway)、赤霉素途径(gibberellin pathway)、温敏途径(thermosensory pathway)和年龄途径(aging pathway)。

表观遗传是开花信号通路中的重要机制,对开花及花器官发育产生关键调控作用。

miRNAs 的表观遗传调控机制是植物分子发育生物研究的重要领域,例如miR172、miR156、miR159 参与了开花诱导的信号转导途径,共同开启花的发育过程。

本文综述了被子植物花器官发育的格式形成与分子调控机制。

图1 温度、光照和依赖赤霉素等途径通过抑制花形成抑制物产生和激活花的分生组织识别基因参与花发育过程1 花器官发育的ABCDE模型通过对拟南芥和金鱼草突变体研究而提出的多种发育模型, 成功地解释了被子植物花器官突变现象。

其中, 最著名的是由Bowman等及Coen和Meyerowitz提出的“ABC模型”。

该模型指出, 花器官的形成和发育由A、B和C三类功能基因决定; A类基因的表达决定了第一轮萼片的形成, 包括APETALA1 (AP1)和APETALA2 (AP2)基因等; B类[APETALA3 (AP3)和PISTILLATA (PI)基因]和A类基因的组合表达决定了第二轮花瓣的发育; C类[AGAMOUS (AG)基因]和B类基因的组合表达决定了第三轮雄蕊的形成; C类基因的表达决定了第四轮雌蕊的发育。

水稻花器官发育的基因

水稻花器官发育的基因

总结水稻花器官发育的基因结构、功能、表达及其作用机理。

ABCDE 模型认为,五类MADS 域蛋白的互作使分生组织分化出不同的花器官,其中A 类基因特化花萼和花瓣的发育,B 类基因特化花瓣和雄蕊的发育,C 类基因特化雄蕊和雌蕊的发育,D 类基因参与胚珠的发育,而E 功能基因作用在所有轮,与ABCD 类基因共同决定花器官的发育[1]。

【1】基因结构:(ABCDE 模型中的部分基因)OsMADS16基因:定位在水稻第6 染色体上,对应于日本晴测序图谱的位置(5'-3')在30176784 - 30172947区间。

由7个外显子和6个内含子组成,内含子长度分别有101, 204, 173, 448, 2168, 124 bp 。

在突变体spw1-1中,第3内含子最后一个碱基由G 突变为A ;在突变体spw1-2中,第5内含子第1个碱基由G 突变为A 。

产物OsMADS16包含225氨基酸,含有MADS 框。

OsMADS15基因:定位在水稻第7 染色体上,对应于日本晴测序图谱的位置(5'-3')在470352 - 476655区间。

cDNA 全长1289bp ,包含有8个外显子,编码一个由267 氨基酸组成含有MADS-box 结构域的转录因子。

dep 突变体:OsMADS15 基因的第94 位的G 突变成C ,导致第32 位丙氨酸突变成脯氨酸。

OsMADS6基因:定位于2号染色体,对应于日本晴测序图谱的位置(5'-3')OsMADS16基因OsMADS15基因在27870242 - 27877829区间。

cDNA 全长1134bp ,包含有8 个外显子,编码一个由250 氨基酸组成的蛋白产物。

Ohmori 等已经分离了2 个OsMADS6 的隐性突变体,分别命名为mfo1-1(MOSAIC FLORAL ORGANS1)和mfo1-2, 这些突变体的花器官形成了嵌合体表型。

被子植物花器官发育的分子模型

被子植物花器官发育的分子模型
被子植物花器官发育 的分子模型
------尹雪
段泽宇 李佳丽 梁铭 生物科学2012-02
简介
花是被子植物进化途径中最为变化多端的结构。
深入开展花部性状发育及其多样性的分子调控机 制的研究, 对于揭示被子植物花部式样的演化、 进而探讨被子植物的系统发育具有重要意义 。 所 以,近年来有关被子植物花器官发育的分子模型
导致花瓣状器官的分化, 使外轮器官与内层花瓣在形态上
具有一致性(如单子叶植物百合、郁金香; 轮花器官的分子模型又称为修饰的ABC 植物类群。 基部核心双子 模型(modified 叶植物毛茛、耧斗菜等), 这种B 功能基因功能延伸到外 ABC model) , 但此种分子模型并不适用于所有的单子叶
6.BC模型
何通过相互作用来调控花器官的发育,Theissen
等结合MADS蛋白多聚体的研究,提出了“四因子”模 型(quartet model),认为花器官是由4 种同源异型蛋白复合体通过结合在目标基因启动子区域来 调节基因开闭,进而调控花器官的发育。
4.边缘衰退模型
边缘衰减模型认为花器官的渐变现象是由于花组织形成时期花器官特 征属性基因的表达水平的梯度导致的, 花器官特征属性基因在边界处 表现为弱表达, 但会发生活性区域的重叠, 这种重叠表达模式导致所 形成的器官在形态上具有相邻两类花器官的特征, 这种形态上的渐进 与核心真子叶植物径向分明的花器官是不同的 , 睡莲B 功能基因的表 达模式是支持这一模型的有力证据。基部被子植物的器官决定是由表 达范围较广的相互重叠的花器官决定基因共同调控的 , 在活性重叠的
裸子植物中未发现A 和E 功能基因的存在, 但B 和C 功能 基因的表达模式与被子植物类似(图)。裸子植物C功能基 因在两性生殖器官内均有表达, B功能基因主要在雄性生

园艺植物育种学:5 观赏植物主要性状的遗传

园艺植物育种学:5 观赏植物主要性状的遗传
苯丙氨酸 Phenylalanin
4-香豆酸盐 4-Coumarete
柚配质(黄酮 Naringenin
图1 花色素苷合成途径
3 花色遗传受一系列基因的作用和控制
花色素基因、花色素量的基因、花色素的分布基因、助色素基因和控制花瓣内部酸度的基因等;易变基因和基因的转座:常常造成花序或花朵上形成异质条纹、斑块(彩斑);不同花色杂交的显隐性(质量性状基因、基因互作)一般,带色花显性,白色花隐性;紫色花显性,红色花隐性;蓝色花显性,紫色花隐性。亦有例外。
毛华菊花朵直径大小的遗传变异
(三)增加花径的途径
改进栽培条件;倍性育种;增加花朵重瓣性;定向选择。
二、花重瓣性的遗传
1 重瓣花的形态起源
(一)概念:花朵重瓣性指观赏植物花瓣数量的多少。(二)重瓣花的遗传积累起源 雌雄蕊起源
花序起源重复起源(套筒起源)突变起源台阁起源
木槿
芙蓉
雌雄蕊起源
山茶雌雄蕊起源
观赏植物主要性状的遗传
花色彩斑花径与重瓣性
观赏植物主要性状

株型抗性
第一节花的发育
花是观赏植物的主要观赏器官,千奇百怪、万紫千红!植物学:植物的完全花是由花萼、花瓣、雄蕊、雌蕊等四轮构成的生殖器官。植物生理学:成年植物花的诱导需要一定的光、温周期,如二年生花卉大多需要经过低温的春化作用才能开花,多数菊花需要短日照处理才能开花。
仙客来
裂叶牵牛
百合
虞美人(罂粟科罂粟属)的美丽花边
花肋:沿中脉方向具放射性彩色条纹
紫脉吊钟
(二)不规则彩斑的遗传
花嵌合体、彩斑
叶部彩斑(“花叶”),变色叶
果实彩斑
2遗传机制
1常见类型
核内
核外

简述花器官发育的abc模型

简述花器官发育的abc模型

花器官发育的abc模型是一种描述花器官形成过程的理论模型。

在这个模型中,花器官的发育被归因于三种基因类别的相互作用:A类基因、B类基因和C类基因。

这些基因在特定的模式中表达,以决定花器官的性质和排列顺序。

A类基因在花瓣和雄蕊中表达,负责花瓣的发育。

它们的表达受到B类基因的抑制,这使得在花的内部轮中没有花瓣。

同时,A类基因还与C类基因相互作用,共同调控雄蕊的发育。

B类基因在花的内部轮中表达,负责胚珠(雌蕊)的发育。

它们抑制A类基因在内部轮中的表达,从而防止花瓣在花的内部轮中形成。

同时,B类基因还与C类基因相互作用,共同调控胚珠的发育。

C类基因在花的基部和萼片中表达,负责萼片的发育。

它们抑制A类基因和B类基因在基部和萼片中的表达,从而防止花瓣和胚珠在这些区域形成。

同时,C类基因还与A类基因相互作用,共同调控雄蕊的发育。

总的来说,abc模型揭示了花器官发育过程中基因表达的复杂调控网络。

通过三种基因类别的相互作用,植物能够精确
地控制花器官的形成和排列顺序。

花朵发育的ABC模型|重瓣重谈时,想要想得起

花朵发育的ABC模型|重瓣重谈时,想要想得起

花朵发育的ABC模型|重瓣重谈时,想要想得起原文作者:Vivian Irish(Department of Molecular, Cellular and Developmental Biology, Department of Ecology and Evolutionary Biology, Yale University, 266 Whitney Ave, New Haven,CT06520-8104,USA.E-mail:*********************)花朵由外向内,由萼片(sepals),瓣片(petals),雄蕊(stamens)和心皮(carpels)4轮组成,它们每一种花的器官都对繁殖有特殊的功能(图1)。

萼片包裹并保护花芽,而瓣片通常大而显眼,可以吸引传粉者(以及人!)。

雄蕊产生花粉粒,其中含有雄配子,而雌蕊含有胚珠,受精后可以产生种子。

这些不同类型器官的大小,性状,数目和精细层度可能非常不同,但是4轮类型器官同轴排列的一般结构存在于所有的开花植物(被子植物)中。

本文我将阐述,'ABC'模型是这种保守的花朵结构如何在遗传上得以确定的一种简单又令人满意的解释。

什么是'ABC'模型?Coen ES, Meyerowitz EM(correspondence). The war of the whorls: geneticinteractions controlling flower development. Nature. 1991 Sep 5;353(6339):31-7.1991年,Enrico Coen和Elliot Meyerowitz在他们一篇影响深渊的文章中首次将ABC模型清晰的表达出来。

尽管影响花朵器官身份的同源异形突变(homeotic mutation)已经知道了快一个世纪,这份工作系统的分析了这些突变,并且双重和三重突变产生的表型是发展ABC模型的关键证据。

现代分子生物学名词解释朱 玉贤

现代分子生物学名词解释朱    玉贤

ABC模型:即控制花形态发生的模型。

该模型把四轮花器官同时发生作为基本前提,强调花形态突变体产生不同花器官的生理位置变化。

该模型中正常花的四轮结构的形成是由三组基因A、B、C共同作用完成的,每一轮花器官特征的决定分别依赖于A、B、C三组基因中的一组或两组基因的正常表达oA组基因控制萼片、花瓣的发育,B组基因控制花瓣、雄蕊的发育,C组基因控制雄蕊、心皮的发育oA、C组基因互相拮抗,抑制对方在自身所控制的区域中表达,如其中任何一组或更多的基因发生突变而丧失功能,花的形态就出现异常。

AP位点(APsite):所有细胞中都带有不同类型、能识别受损核酸位点的糖苷水解酶,它能特异性切除受损核苷酸上的N-β糖苷键,在DNA链上形成去嘌呤或去嘧啶位点,统称为AP位点。

cDNA(complementaryDNA):在体外以mRNA为模板,利用反转录酶和DNA聚合酶合成的一段双链DNA。

C值(Cvalue):通常是指一种生物单倍体基因组DNA的总量,以每细胞内的皮克(pg)数表示。

C值反常现象(Cvaluedox):也称C值谬误。

指C值往往与种系的进化复杂性不一致的现象,即基因组大小与遗传复杂性之间没有必然的联系,某些较低等的生物C值却很大,如一些两柄动物的C值甚至比哺乳动物还大。

Dane颗粒:HBV完整颗粒的直径为42nm,称为Dane颗粒,由外膜和核壳组成,有很强的感染性。

DNA(deoxyribonucleicacid):脱氧核糖核酸,是世界上所有已知高等真核生物和绝大部分低等生物的遗传物质。

DNA的半保留复制(semi-conservativereplication):DNA在复制过程中,每条链分别作为模板合成新链,产生互补的两条链。

这样新形成的两个DNA分子与原来DNA分子的碱基顺序完全一样。

因此,每个子代分子的一条链来自亲代DNA,另一条链则是新合成的,这种复制方式被称为DNA的半保留复制。

DNA的半不连续复制(serru-cliscontinuousreplication):DNA复制过程中前导链的复制是连续的,而另一条链,即后随链的复制是中断的、不连续的。

花器官发育的ABC模型

花器官发育的ABC模型
2 ABC 模型对单子叶植物花器官发育的调 控
单子叶植物花和花序的发育与双子叶植物差 别很大, 特别对于禾本科植物, 许多种类的花上带 有高度衍生的结构. 虽然它们的生殖器官( 心皮和 雄蕊) 是保守的, 但它们的不育花器官( 外稃、内稃 和浆片) 与双子叶植物花上的萼片 和花瓣明显不 同. ABC 模型 能控制这些高度衍生的花器官的发 育过程 吗? Bossinger 等认为, 浆片代表 内轮的花 被, 相当于双子叶植物的花瓣, 而通常外稃和内稃
云南 大学 学报 ( 自然 科学 版) Journal of Yunnan University
2001, 23 ( 植物学专辑) : 102~ 105
CN 53- 1045/ N ISSN 0258- 7971
花器官发育的 ABC 模型
张伟媚, 陈善娜
( 云南大学 生物系, 云南 昆明 650091)
基因
表 1 ABC 功能基因的主要功能及其突变体的表型性状 T ab. 1 Functions of ABC genes and pheno type of their mutants
主要功 能
突变体的表型
突变体的遗传变化
决定花分生组织
强烈突变体第 轮器官不发育或仅 形
强烈 突变导致器官原基不发
AP1
their g enes specify flower org ans
收稿日期: 2001- 05- 22 作者简介: 张伟媚( 1972- ) , 女, 广东人, 硕士生, 主要从事植物生理与分子生物学的研究.
植物学专辑
张伟媚等: 花器官发育的 ABC 模型
1 03
1 ABC 模型对双子叶植物花器官发育的调 控

PI
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A+2B+SEP 决定花瓣
2B+C+SEP 决定雄蕊 2C+2SEP 决定心皮
花器官发育的四聚体模型还缺少有力的实验数据证明,如 在酵母中观察到的一些四聚体并没有在植株中得以阐述。
大 千 世 界 的 奥 秘 , 等 待 你 的 探 索 。
花 器 官 的 秘 密 , 需 要 你 的 发 现
谢谢!
花器官的ABCDE模型
花器官发育的四聚体模型
研究表明,A,B,C 和SEP 蛋白可能以复合 体形式来激活下游基因。异位表达AP1- PIAP3- SEP3 和AP1- PI- AP3- SEP1- SEP2 能 够使叶片转化为花瓣,持续表达AP1- PI- AP3 和PI- AP3- SEP3 也能够使叶片转化为花瓣。 这至少表明,AP1,PI,AP3 和一SEP 基因 共同决定花瓣的发育。 由此可以推测:2A+2SEP 决定萼片
什么是花器官发育的ABC模型
同源异型基因
同源异型基因是指一类含有同源框的基 因。在胚胎发育中的表达水平对于组织 和器官的形成具有重要的调控作用。该 类基因的突变,就会在胚胎发育过程中 导致某一器官异位生长,即本来应该形 成的正常结构被其他器官取代了。
早期的ABC 模型: 指定4 种不同花器官的同一性的 基因分a、b、c 三类, 模 型用开或关来描述这三类 基因的表达状态: 在萼片 中开、关、关, 在花瓣中 开、开、关,在雄蕊中关、 开、开, 在心皮中关、关、 开。如果三类基因均不表 达则发育成叶片。
早 期 的 模 型
ABC
假定花中有ABC 三类的基因活性存 在。其作用方式为: A类基因控制第1、2 轮花器官的发育, 其功能丧失会使第一轮 的萼片变为心皮, 第二轮的花瓣变成雄蕊。 B 类基因控制第2、3 轮花器官的发育, 其功能丧失会使第二轮花瓣变为萼片, 第 三轮的雄蕊变为心皮。C 类基因控制第3、 4 轮花器官的发育,其功能丧失会使第三 轮的雄蕊变为花瓣, 第四轮的心皮变成萼 片。即同一组基因控制相邻两轮花器官 的发育。萼片(A) , 花瓣(A + B) , 雄蕊(B +C) , 心皮(C) 。这些突变体是不定的, 也 就是说,它们不断地在第四轮中形成花突 变体。另外,A、C 两类基因彼此负控 制。
经 典 的 模 型
ABC
拟南芥的1 萼片 2 花瓣
Y
Y Y Y 3 雄蕊群 Y 4 心皮
单子叶植物的ABC模型
花器官 ABCDE 模型
花器官 ABCD 模型
D类基因的出现
对矮牵牛花中影响胚珠发育突 变体的研究发现,存在有决定 胚珠发育的MADS- box 基因 FBP7和FBP11,它们同时也影 响种子的发育。FBP11 在胚珠 原基、珠被和珠柄中表达,转 基因植株的花上形成异位胚珠 或胎座。如果干扰FBP11 的表 达,就会在应该形成胚珠的地 方发育出心皮状结构。这个发 现使人们认识到还存在有与C 类基因功能部分重叠的D 类基 因。
花器官的ABCD模型
E类基因的出现
通过调控ABC 基因的表达,可以人为 地操作每轮花器官发育状态,但是, 却无法使叶片转变成花器官。由此可 见,这些基因虽然对花器官的发育至 关重要,但是它们并不是营养器官转 化成花器官的充分条件。这预示着由 营养器官向花器官转变还有另一类花 特征基因参与。最近,在寻找与ABC 类基因相互作用的蛋白时发现了这类 SEP 基因。
花器官发育的 ABC模型研究及 其进展
小组成员: 聂虎 王萍 刘江波 孙天琳 林威 张仕林
花器官的基本结构
典型的双子叶植物的花是由 4个不同器官在花托上按四轮分 布。由外到内第一轮是绿色叶 状的萼片;第二轮是花瓣,通 常为多种颜色组成而且很漂亮; 第三轮是雄蕊群,为雄性生殖 器官;第四轮是心皮,为雌性 生殖器官。
相关文档
最新文档