第二章静息电位第三章动作电位资料
静息电位和动作电位的概念及形成机制

静息电位和动作电位的概念及形成机制静息电位和动作电位的概念及形成机制一、静息电位的概念及形成机制1. 静息电位的概念静息电位是指神经细胞在未被刺激时的电位状态。
在静息状态下,细胞内外存在电化学梯度,使神经元内外细胞膜的电位差保持在负数水平,为-70mV左右。
2. 静息电位的形成机制静息电位的形成主要与离子的通透性和Na+/K+泵有关。
在静息状态下,细胞膜上的Na+和K+离子通道处于闭合状态,但是Na+/K+泵仍在起作用,将细胞内的Na+排出,K+输进,维持细胞内外的离子平衡,保持负电位。
3. 静息电位的重要性静息电位是神经细胞正常功能的基础,它保证了细胞对外部刺激的敏感性,使神经元能够正常传递和处理信息。
二、动作电位的概念及形成机制1. 动作电位的概念动作电位是神经元在受到刺激时产生的短暂的电位变化。
它是神经元传递信息的基本单位,具有快速传导和全或无的特点。
2. 动作电位的形成机制动作电位的形成包括兴奋、去极化和复极化三个阶段。
当神经元受到足够的刺激时,细胞膜上的Na+通道打开,Na+大量流入细胞内,使细胞内外电位逆转,形成去极化;随后Na+通道关闭,K+通道打开,K+大量流出,使细胞内外电位恢复,形成复极化。
3. 动作电位的重要性动作电位是神经元传递信息的方式,它能够在神经元内外迅速传递信息,使神经元之间能够进行有效的通讯,实现信息的处理和传递。
总结与回顾:静息电位和动作电位是神经元活动的重要基础。
静息电位维持着神经元的正常状态,使其对外部刺激保持敏感;而动作电位则实现了神经元信息的传递,是神经元活动中最基本的过程之一。
在细胞水平上,静息电位的形成主要与离子的通透性和Na+/K+泵有关,通过保持细胞内外的离子平衡来维持静息状态;而动作电位的形成则依赖于离子通道的开闭和离子内外的流动,通过电压门控离子通道的开合来实现电位的变化。
个人观点和理解:静息电位和动作电位是神经元活动的核心过程,对于理解神经元的功能和信息传递具有重要意义。
静息电位,动作电位的产生机制及影响其大小的主要因素

一、静息电位(resting potential, RP)1、概念:静息电位:细胞在静息(未受刺激)状态下膜两侧的电位差称静息电位(膜电位)2、静息时细胞的特点静息时细胞内外离子的特点:①细胞内[K+]一般比细胞外液高30倍;②细胞内带负电荷的生物大分子(主要是蛋白质)比细胞外液高10倍;③细胞外液中[Na+]和[CL-]都比细胞内高20倍。
所以,细胞内正离子主要为K+,负离子主要为带负电荷的蛋白质分子。
细胞外正离子主要为Na+,负离子主要为CL- 。
静息时细胞膜的选择通透性:①带负电荷的蛋白质分子完全不可通过;②Na+和CL-通透性极小;③K+有较大的通透性。
3、静息电位形成的机理:细胞内的K+在细胞膜内外浓度差(内高外低)作用下携带正离子外流,当膜内外K+浓度差(K+外流动力)和K+外流所形成的电位差(K+外流阻力)达到动态平衡时,K+的净通量为零,此时所形成的电位差稳定于某一数值而不再增加,即形成静息电位;所以说静息电位实质为K+外流所形成的跨膜电位。
细胞内外的K+不均衡分布和静息状态下细胞膜对K+的通透性是细胞在静息状态下保持极化状态的基础。
二、动作电位1. 动作电位的概念动作电位(action potential):可兴奋组织接受刺激而发生兴奋时,细胞膜原有的极化状态立即消失,并在膜的内外两侧发生一系列的电位变化,这种变化的电位称为动作电位。
2. 动作电位形成的机理证明:①人工地改变细胞外液Na+浓度,动作电位上升支及其幅度也随之改变,*海水实验;②用河豚毒阻断Na+通道后,动作电位幅度↓或消失;③膜片钳实验。
3.动作电位组成动作电位的扫描波形包括升支和降支两部分。
如采用慢扫描并高度放大,则升支和降支的开始部分显示为尖锐的剑锋状,故动作电位又称为锋电位。
动作电位的升支代表细胞受到刺激后膜的去极化和反极化过程,即膜内电位由静息时的-70毫伏逐渐减小到-55毫伏(由于这一膜电位可以激发动作电位产生,故把-55毫伏的膜电位称为阈电位);然后,膜电位再减小到0毫伏(去极化结束);最后膜电位由0毫伏迅速上升到+35毫伏(反极化)。
静息电位和动作电位

静息电位和动作电位及其产生机制细胞的生物电现象:细胞水平的生物电现象主要有两种表现形式,一种是在安静时所具有的静息电位,另一种是受到刺激时产生的动作电位。
(1)静息电位:指细胞在安静时存在于细胞膜两侧的电位差。
静息电位都表现为膜内较膜外为负,如规定膜外电位为0,则膜内电位大都在-10~-l00mV 之间。
细胞在安静(未受刺激)时,膜两侧所保持的内负外正的状态称为膜的极化;静息电位的数值向膜内负值增大,即膜内电位更低的方向变化,称为超极化;相反,使静息电位的数值向膜内负值减小,即膜内电位升高的方向变化,称为去极化或除极化;细胞受刺激后,细胞膜先发生去极化,然后再向正常安静时膜内所处的负值恢复,称为复极化。
静息电位的产生机制:细胞的静息电位相当于K+平衡电位,系因K+跨膜扩散达电化学平衡所引起。
正常时细胞内的K+ 浓度高于细胞外,而细胞外Na+ 浓度高于细胞内。
在安静状态下,虽然细胞膜对各种离子的通透性都很小,但相比之下,对K+ 有较高的通透性,于是细胞内的K+ 在浓度差的驱使下,由细胞内向细胞外扩散。
由于膜内带负电荷的蛋白质大分子不能随之移出细胞,所以随着带正电荷的K+ 外流将使膜内电位变负而膜外变正。
但是,K+ 的外流并不能无限制地进行下去。
因为最先流出膜外的K+ 所产生的外正内负的电场力,将阻碍K+ 的继续外流,随着K+ 外流的增加,这种阻止K+ 外流的力量(膜两侧的电位差)也不断加大。
当促使K+ 外流的浓度差和阻止K+ 外移的电位差这两种力量达到平衡时,膜对K+ 的净通量为零,于是不再有K+ 的跨膜净移动,而此时膜两侧的电位差也就稳定于某一数值不变,此电位差称为K+ 平衡电位。
除K+ 平衡电位外,静息时细胞膜对Na+ 也有极小的通透性,由于Na+ 顺浓度差内流,因而可部分抵消由K+ 外流所形成的膜内负电位。
这就是为什么静息电位的实测值略小于由Nernst公式计算所得的K+ 平衡电位的道理。
此外,钠泵活动所形成的Na+、K+ 不对等转运也可加大膜内负电位。
静息电位、动作电位

一、静息电位(RP)的产生机制: 静息电位( )的产生机制:
在静息状态下,细胞膜对 具有较高的通透性是形成 在静息状态下,细胞膜对K+具有较高的通透性是形成 静息电位的最主要因素。细胞膜内K+浓度约相当于细胞外 静息电位的最主要因素。细胞膜内 浓度约相当于细胞外 液的30倍 将顺浓度梯度跨膜扩散, 液的 倍,K+将顺浓度梯度跨膜扩散,但扩散的同时也在 将顺浓度梯度跨膜扩散 细胞膜的两侧形成逐渐增大的电位差, 细胞膜的两侧形成逐渐增大的电位差,且该电位差造成的 驱动力与浓度差的驱动力的方向相反,阻止K+进一步跨膜 驱动力与浓度差的驱动力的方向相反,阻止 进一步跨膜 扩散。当逐渐增大的电位差驱动力与逐渐减小的浓度差驱 扩散。 动力相等时,便达到了稳态。 动力相等时,便达到了稳态。
ห้องสมุดไป่ตู้
• 二、动作电位(AP)的产生机制: 动作电位( )的产生机制: • 在静息状态下,细胞膜外Na+浓度约为细胞内液的 倍余,Na+ 在静息状态下,细胞膜外 浓度约为细胞内液的10倍余, 浓度约为细胞内液的 倍余 有向膜内扩散的趋势;并且静息时膜内存在着相当数量的负电位, 有向膜内扩散的趋势;并且静息时膜内存在着相当数量的负电位,吸 引着Na+向膜内移动。但由于静息时细胞膜对 向膜内移动。 相对不通透, 引着 向膜内移动 但由于静息时细胞膜对Na+相对不通透,因此, 相对不通透 因此, Na+不能大量内流。 不能大量内流。 不能大量内流 • 当刺激引起去极化达到阈电位,细胞膜上的电压门控 当刺激引起去极化达到阈电位,细胞膜上的电压门控Na+通道大量被 通道大量被 激活,细胞膜对Na+的通透性突然增大,Na+大量内流,造成细胞膜 的通透性突然增大, 大量内流, 激活,细胞膜对 的通透性突然增大 大量内流 的进一步去极化;而膜的进一步去极化,又将导致更多的Na+通道开 的进一步去极化;而膜的进一步去极化,又将导致更多的 通道开 有更多的Na+内流,引起细胞膜迅速、自动地去极化。 内流, 放,有更多的 内流 引起细胞膜迅速、自动地去极化。 • Na+的大量内流,以至膜内负电位因正电荷的增加而迅速消失。又因 的大量内流, 的大量内流 以至膜内负电位因正电荷的增加而迅速消失。 为细胞膜外Na+浓度约为细胞内液的 倍余,使得Na+内流在膜内负 浓度约为细胞内液的10倍余 为细胞膜外Na+浓度约为细胞内液的10倍余,使得Na+内流在膜内负 电位绝对值减小到零时仍可以继续,进而出现正电位, 电位绝对值减小到零时仍可以继续,进而出现正电位,直至膜内正电 位增大到足以对抗浓度差所引起的Na+内流,便达到了平衡电位(顶 内流, 位增大到足以对抗浓度差所引起的 内流 便达到了平衡电位( 点). • 此时膜对Na+的净通量为零。但是膜内电位并不停留在正电位状态, 此时膜对 的净通量为零。但是膜内电位并不停留在正电位状态, 的净通量为零 很快Na+通道失活,膜对 通道失活, 变为相对不通透, 的通透性增加。 很快 通道失活 膜对Na+变为相对不通透,而对 的通透性增加。 变为相对不通透 而对K+的通透性增加 于是膜内K+在浓度差和电位差的驱动力下外流 在浓度差和电位差的驱动力下外流, 于是膜内 在浓度差和电位差的驱动力下外流,使膜内电位由正电 位又向负电位发展,以后再逐渐恢复到静息电位水平. 位又向负电位发展,以后再逐渐恢复到静息电位水平
静息电位和动作电位的定义和形成机制

静息电位和动作电位的定义和形成机制下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!静息电位和动作电位的定义和形成机制。
1-2 静息电位与动作电位

静息电位与动作电位一、静息电位二、动作电位三、动作电位的传导四、细胞间的兴奋传递一、静息电位(一)静息电位的概念细胞处于安静状态时,细胞膜内外所存在的电位差。
外正内负的电位差。
(甲)当A、B电极都位于细胞膜外,无电位改变,证明膜外无电位差。
(乙)当A电极位于细胞膜外, B电极插入膜内时,有电位改变,证明膜内、外间有电位差。
(丙)当A、B电极都位于细胞膜内,无电位改变,证明膜内无电位差。
静息电位证明实验4与静息电位相关的概念:静息电位:细胞处于相对安静状态时,细胞膜内外存在的电位差。
因电位差存在于膜的两侧所以又称膜电位。
静息电位值:哺乳动物的神经、骨骼肌和心肌细胞为-70~-90mV,红细胞约为-10mV左右。
K +K +K +K +K +K +K +K +K +Na +K +细胞外高钠 13:1细胞内高钾28:1K +K +K +K +K +K +K +K +(二)静息电位产生的原理静息电位产生原理K +K +K +K +K +K +K +K +K +Na +K +K +细胞外细胞内K +通道Na +通道开放关闭静息电位产生原理(三)K +Na +细胞外带正电细胞内带负电K +K +K +K +K +K +K +K +K +K +K +K +K +K +K +K +K +K +K +K +K +K +K +二、动作电位(一)动作电位的概念可兴奋细胞兴奋时,细胞内产生的可扩布的电位变化。
K +Na +K +细胞外细胞内K +通道Na +通道刺激开放关闭(二)动作电位的产生原理K +K +K +K +K +K +K +K +K +K +动作电位产生原理K +Na +K +K +K +K +K +K +K +Na +Na +Na +Na +Na +Na +Na +Na +Na +K +K +细胞外带负电细胞内带正电三、动作电位的传导动作电位一旦在细胞膜的某一点产生,就沿着细胞膜向各个方向传播,直到整个细胞膜都产生动作电位为止。
神经生物学第三章动作电位

传导机制
神经冲动的产生与传导机制
05
CHAPTER
动作电位的应用
在生理学中的应用
神经调节
动作电位是神经元之间传递信息的基础,通过动作电位的产生和传播,可以调节各种生理活动,如肌肉收缩、腺体分泌等。
心脏电生理
在心脏中,动作电位的不同阶段可以引起心肌细胞的兴奋和收缩,从而控制心脏的跳动和节律。
在阈电位水平上,部分钠离子通道开始开放,钠离子内流,引发去极化。随着刺激强度的增加,钠离子通道逐渐全部开放,钠离子大量内流。
动作电位的上升支
钠离子通道的开放
动作电位的上升支
动作电位的峰值与超射
当钠离子内流达到最大值时,膜电位达到峰值,此时膜电位接近于零,形成内正外负的极化状态。
动作电位的峰值
超射是指动作电位峰值后膜电位短暂的过极化状态。这是由于钠离子通道关闭后,钾离子外流所引起的。
钾离子通道的开放
动作电位的下降支
03
CHAPTER
动作电位的传导
传导速度
动作电位的传导速度与其所经过的神经纤维类型和直径有关。一般来说,有髓鞘包裹的神经纤维传导速度较快,而无髓鞘包裹的神经纤维传导速度较慢。直径较大的神经纤维传导速度也较快。
影响因素
传导速度还受到温度、神经纤维的兴奋性、神经递质等因素的影响。低温会降低传导速度,而兴奋性和神经递质则可能对传导速度产生促进作用。
神经调控技术
在神经科学中的应用
THANKS
感谢您的观看。
生理监测
在医学中的应用
动作电位是神经元之间信息传递的关键,研究动作电位的产生和传播机制有助于深入了解神经环路的结构和功能。
神经环路研究
动作电位与突触可塑性密切相关,突触可塑性是学习、记忆等认知功能的基础,因此研究动作电位有助于理解神经可塑性的机制。
静息电位和动作电位的测定(技术研究)

静息电位和动作电位的测定1.静息电位和动作电位:静息电位:在神经未受到刺激时,神经纤维处于静息状态,这时,由于细胞膜内外特异的离子分布特点,细胞膜两侧的电位表现为内负外正,称为静息电位。
动作电位:当神经纤维某一部位受到刺激时,这个部位的膜两侧出现暂时性的电位变化,由内负外正变为外负内正,这就是动作电位。
2.基本原理:神经细胞内K+明显高于膜外,而膜外Na+明显高于膜内。
静息时,由于膜主要对K+有通透性,造成K+外流,使膜外阳离子多于膜内,所以外正内负。
受到刺激时,细胞膜对Na+的通透性增加,钠离子内流,使膜内阳离子浓度高于外侧,所以表现为内正外负。
之后,在膜上由于存在钠钾泵,在其作用下,将外流的钾离子运输进膜内,将内流的钠离子运出膜外,从而成膜电位又慢慢恢复到静息状态。
3.神经电位差测定的常见类型:(1)静息电位测定方式:静息电位常见的测定方式是将电流表的两个电极一个放在神经纤维的外侧,另一个放在神经纤维的内侧(如右上图),由于内外两侧存在电势差,因此电流表指针会发生偏转。
(2)动作电位测定方式:①在一个神经纤维上的测定:是指将电流表的两个电极放在同一个神经纤维的外侧(A处和B处),来测定两个电极处是否有电位差。
其放置方式如右下图。
对于一个神经纤维上电位的测定,如电流表指针发生了偏转,则说明A B两点存在电势差。
一般的做法是在该神经纤维上C点给一个足够强度的刺激,从而观察电流表发生几次偏转,方向是否一致?当刺激点C到达A、B两点距离相等时,神经冲动同时到达A、B两点,两点虽然均产生了动作电位,但是仍然不存在电势差,因此电流表不会发生偏转。
只要刺激点C与A、B点在同一神经元上,且CA与CB不相等,电流表就会发生两次方向相反的偏转。
②在两个神经纤维上的测定:是指将电流表的两个电极放在两个相邻神经元的外侧,来测定两个电极处是否有电位差。
其放置方式如右图。
在A点给一个足够强度的刺激,观察电流表发生几次偏转,方向是否一致?若这个刺激发生在上游神经元上,则电流表会发生两次方向相反的偏转;若这个刺激发生在下游神经元上,则电流表只能发生一次偏转。
静息电位与动作电位ppt课件

兴奋的引起和传导
阈电位 能够造成膜对Na+通透性突然增大,
诱发动作电位产生的临界膜电位的数值,称为 阈电位(threshold membrane potential)。 阈强度与阈下刺激
兴奋在神经纤维上的传导,称为神经冲动。
有髓纤维上的兴奋传导比较特殊,因为在有髓纤维的 轴突外面包裹着一层很厚的髓鞘,髓鞘的主要成分是 脂质,而脂质是不导电或不允许带电离子通过的。只 有在髓鞘暂时中断的朗飞结处,轴突膜才能和细胞外 液接触,使跨膜离子移动得以进行。因此,当有髓纤 维受到外来刺激时,动作电位只能在邻近刺激点的朗 飞结处产生,而局部电流也就在相邻的朗飞结之间形 成(图2-12)。这一局部电流对邻近的朗飞结起着刺激 作用,使之兴奋;然后又以同样的方式使下一个朗飞 结兴奋。这样,兴奋就以跳跃的方式 ,从一个朗飞结 传至另一个朗飞结而不断向前传导。这种传导方式称 为跳跃式传导(saltatory conduction)。跳跃式传导 使冲动的传导速度大为加快,因此,有髓纤维的传导 速度远比无髓纤维为快。另外,跳跃式传导时,单位 长度内每传导一次兴奋所涉及的跨膜离子运动的总数 要少得多,因此它还是一种更“节能”的传导方式。
动作电位的产生机制
电压钳和膜片钳
电压钳 I=VG 用电压钳技术可记录细胞兴奋过程中的跨膜离
子电流曲线,进而计算出膜电导的变化曲线。实验证明,在细胞 兴奋时Na+电导和K+电导的变化过程与动作电位的变化过程是一致 的。电压钳技术的应用,进一步证明了动作电位产生机制的正确 性。
膜片钳 20世纪70年代建立起来的膜片钳实验技术,可以用直接
动作电位

静息电位和动作电位一、静息电位及其产生机制(一)静息电位静息电位是指细胞在安静状态下,存在于细胞膜的电位差。
这个差值在不同的细胞是不一样的,就神经纤维而言为膜外电位比膜内电位高70~90mv。
如规定膜外电位为0,则膜内电位当为负值(-70~-90mv)。
细胞在安静状态时,保持比较稳定的外正内负的状态,称为极化。
极化状态是细胞处于生理静息状态的标志。
以静息电位为准,膜内负电位增大,称为超极化。
膜内负电位减小,称为去或除极化。
细胞兴奋后,膜电位又恢复到极化状态,称为复极化。
(二)静息电位产生的机制“离子学说”认为,细胞水平生物电产生的前提有二:①细胞内外离子分布和浓度不同。
就正离子来说,膜内K+浓度较高,约为膜外的30倍。
膜外Na+浓度较高约为膜内的10倍。
从负离子来看,膜外以Cl-为主,膜内则以大分子有机负离子(A-)为主。
②细胞膜在不同的情况下,对不同离子的通透性并不一样,如在静息状态下,膜对K+的通透性大,对Na+的通透性则很小。
对膜内大分子A-则无通透性。
由于膜内外存在着K+浓度梯度,而且在静息状态下,膜对K+又有较大的通透性(K+通道开放),所以一部分K+便会顺着浓度梯度向膜外扩散,即K+外流。
膜内带负电荷的大分子A-,由于电荷异性相吸的作用,也应随K+外流,但因不能透过细胞膜而被阻止在膜的内表面,致使膜外正电荷增多,电位变正,膜内负电荷增多,电位变负。
这样膜内外之间便形成了电位差,它在膜外排斥K+外流,在膜内又牵制K+的外流,于是K+外流逐渐减少。
当促使K+流的浓度梯度和阻止K+外流的电梯度这两种抵抗力量相等时,K+的净外流停止,使膜内外的电位差保持在一个稳定状态。
因此,可以说静息电位主要是K+外流所形成的电一化学平衡电位。
二、动作电位及其产生机制(一)动作电位细胞受刺激时,在静息电位的基础上发生一次短暂的扩布性的电位变化,这种电位变化称为动作电位。
实验观察,动作电位包括一个上升相和一个下降相。
静息电位、动作电位

大多数细胞的静息电位表现为一种稳定的直流电位,但各种细胞的数值不同。 静息电位本质是K+平衡电位
Na+
Na+
Na+
Na+
Na+ Na+
K+ Na+
Na+ Na+
Na+
细胞外高钠
K+ K+
K+
K+
K+
K+
K+
K+ Na+
K+ K+
第一章
肌肉活动
01 静息电位
什么是静息电位?
静息电位
细胞未受刺激、处于安静状态时存在于细 胞膜内外两侧 的电位差。
特点
内负外正、相对恒定。
0
膜电位
01
极化
静息时膜两侧的 内负外正状态
02
超极化
膜内电位负值增大
03
去极化
膜内电位负值减小
04
复极息电位
K+
动作电位产生原理(下降支)
Na+ Na+
Na+
K+
K+ Na+ K+
K+ Na+
Na+
K+
Na+
Na+
K+ K+
K+
K+
Na+ K+
Na+
K+
K+
K+ Na+
K+
(完整)静息电位和动作电位及其产生原理

静息电位和动作电位及其产生原理生物电现象是指生物细胞在生命活动过程中所伴随的电现象.它与细胞兴奋的产生和传导有着密切关系。
细胞的生物电现象主要出现在细胞膜两侧,故把这种电位称为跨膜电位,主要表现为细胞在安静时所具有的静息电位和细胞在受到刺激时产生的动作电位。
心电图、脑电图等均是由生物电引导出来的。
1.静息电位及其产生原理静息电位是指细胞在安静时,存在于膜内外的电位差。
生物电产生的原理可用"离子学说”解释.该学说认为:膜电位的产生是由于膜内外各种离子的分布不均衡,以及膜在不同情况下,对各种离子的通透性不同所造成的。
在静息状态下,细胞膜对K+有较高的通透性,而膜内K+又高于膜外,K+顺浓度差向膜外扩散;细胞膜对蛋白质负离子(A—)无通透性,膜内大分子A—被阻止在膜的内侧,从而形成膜内为负、膜外为正的电位差。
这种电位差产生后,可阻止K+的进一步向外扩散,使膜内外电位差达到一个稳定的数值,即静息电位.因此,静息电位主要是K+外流所形成的电—化学平衡电位。
2.动作电位及其产生原理细胞膜受刺激而兴奋时,在静息电位的基础上,发生一次扩布性的电位变化,称为动作电位。
动作电位是一个连续的膜电位变化过程,波形分为上升相和下降相。
细胞膜受刺激而兴奋时,膜上Na+通道迅速开放,由于膜外Na+浓度高于膜内,电位比膜内正,所以,Na+顺浓度差和电位差内流,使膜内的负电位迅速消失,并进而转为正电位。
这种膜内为正、膜外为负的电位梯度,阻止Na+继续内流。
当促使Na+内流的浓度梯度与阻止Na+内流的电位梯度相等时,Na+内流停止.因此,动作电位的上升相的顶点是Na+内流所形成的电-化学平衡电位.在动作电位上升相达到最高值时,膜上Na+通道迅速关闭,膜对Na+的通透性迅速下降,Na+内流停止。
此时,膜对K+的通透性增大,K+外流使膜内电位迅速下降,直到恢复静息时的电位水平,形成动作电位的下降相。
可兴奋细胞每发生一次动作电位,膜内外的Na+、K+比例都会发生变化,于是钠—钾泵加速转运,将进入膜内的Na+泵出,同时将逸出膜外的K+泵入,从而恢复静息时膜内外的离子分布,维持细胞的兴奋性.(二)动作电位及其产生原理1.概念:细胞受刺激时在静息电位基础上产生的可传布的电位变化,细胞兴奋的标志波形:锋电位:上升相:去极化(—70mV→0mV)反极化(超射)(0mV→+30mV)下降相:复极化(+30mV→-70mV附近 )峰电位是动作电位的主要成份2。
静息电位动作电位课件

理解静息电位和动作电位的机制可以 帮助药物研发人员设计更有效的药物。
在神经科学中的应用
神经元信息传递 神经环路研究
静息电位和动作电位的研究 进展
研究历史
静息电位和动作电位的发现
1
早期研究
2
重要发现
3
研究现状
01
跨学科合作
02 先进技术应用
03 未解之谜
研究展望
未来研究方向
技术进步 临床应用
静息电位和动作电位课件
目录
• 静息电位 • 动作电位 • 静息电位与动作电位的比较 • 静息电位和动作电位的应用 • 静息电位和动作电位的研究进展
静息电位
静息电位的定义
静息电位的产生机制
静息电位的产生主要与钠钾泵活动有关。
钠钾泵是一种主动转运的蛋白质,通过消耗ATP将钠离子泵出细胞外,将钾离子 泵入细胞内,从而维持细胞内外钠钾离子的正常分布,形成和维持静息电位。
静息电位的特点Biblioteka 动作电位动作电位的定义 01 02
动作电位的产生机制
动作电位的特点
01
全或无
02
不衰减传导
03
脉冲式传导
静息电位与动作电位的比较
产生机制的比较
静息电位
主要是由于细胞内外离子分布不均所引起的,细胞膜对钾离子的通透性高,钾离子大量外流,形成内负外正的电 位差,阻止钾离子的进一步外流,造成膜电位逐渐接近钾离子的平衡电位,最终形成稳定的静息电位。
动作电位
主要是由于钠离子内流所引起的,当细胞受到有效刺激时,钠离子通道打开,钠离子内流,形成内正外负的电位 差,从而引发动作电位。
特点的比 较
静息电位
动作电位
功能比 较
静息电位和动作电位的形成

漏Na+通道 电压门控 式Na+通道
高Na+
K+
动作电位旳形成
3Na+
漏K+通
道 2K+
电压门控 式K+通道
Na+-K+泵
Na+
漏Na+通道 电压门控 式Na+通道
浓度差 电位差
K+
动作电位旳形成
电位 /mv
+35
-70
3Na+
漏K+通
道 2K+
电压门控 式K+通道
Na+-K+泵
Na+
Na+
漏Na+通道 电压门控 式Na+通道
静息电位和动作电位旳形成 机制
一、静息电位旳形成机制
钠钾泵:
又称钠钾ATP酶,进行 K+、Na+之间旳互换。每 消耗1分子ATP,逆浓度 梯度从细胞泵出3个Na+, 同步泵入2个K+。
Na+-K+泵 2K+ 高K+
3Na+
高Na+
漏K+通道 漏Na+通道
漏通道:
一直处于开放状态,允许离 子以较慢旳速度顺浓度梯度 跨膜扩散。
K+
静息电位旳形成
表达膜内电位相对 于膜外电位
电位 /mv
3Na+
Na+-K+泵
漏K+通道
2K+Biblioteka Na+高K+
漏Na+
-70
通道
高Na+
静息点位。动作电位详细内容

8.静息电位:静息时,质膜两侧存在着外正内负的电位差。
把平稳时的静息电位存在时细胞膜电位外负内正的状态称极化。
静息电位增大的过程称超极化。
静息电位减小的过程称去极化。
质膜去极化后再向静息电位方向恢复的过程称复极化。
静息电位产生机制:细胞膜两侧带电离子的分布和运动是细胞生物电产生的基础。
产生的条件:①细胞内的K+的浓度高于细胞外近30倍。
②在静息状态下,细胞膜对K+的通透性大,对其他离子通透性很小。
产生的过程:K+顺浓度差向膜外扩散,膜内C1-因不能透过细胞膜被阻止在膜内。
致使膜外正电荷增多,电位变正,膜内负电荷相对增多,电位变负,这样膜内外便形成一个电位差。
当促使K+外流的浓度差和阻止K+外流的电位差这两种拮抗力量达到平衡时,使膜内外的电位差保持一个稳定状态,即静息电位。
这就是说,细胞内外K+的不均匀分布和安静状态下细胞膜主要对K+有通透性,是使细胞能保持内负外正的极化状态的基础,所以静息电位又称为K+的平衡电位。
9.动作电位:在静息电位的基础上,给细胞一个适当的刺激,可触发其产生可传播的膜电位波动。
动作电位的产生原因和主要过程见书。
组成动作电位包括上升支(去极相,膜内电位由—90mV上升到+30mV)和下降支(复极相,恢复到接近刺激前的静息电位水平)。
上升支超过0mV的净变正部分,称为超射。
上升支持续时间很短,约0.5ms。
产生的条件:(1)细胞内外存在着Na+的浓度差,Na+在细胞外的浓度是细胞内的13倍之多。
(2)当细胞受到一定刺激时,膜对Na+的通透性增加。
产生的过程细胞外的Na+顺浓度梯度流人细胞内→当膜内负电位减小到阈电位时→Na+通道全部开放→Na+顺浓度梯度瞬间大量内流,细胞内正电荷增加→膜内负电位从减小到消失进而出现膜内正电位→膜内正电位增大到足以对抗由浓度差所致的Na+内流→跨膜离子移动和膜两侧电位达到一个新的平衡点,形成锋电位的上升支,该过程主要是Na+内流形成的平衡电位,故称Na+平衡电位。
静息电位动作电位

静息电位动作电位(一)静息电位产生机制静息电位指安静时存在于细胞两侧的外正内负的电位差。
其形成原因是膜两侧离子分布不平衡及膜对K+有较高的通透能力。
细胞内K+浓度和带负电的蛋白质浓度都大于细胞外(而细胞外Na+和Cl+浓度大于细胞内),但因为细胞膜只对K+有相对较高的通透性,K+顺浓度差由细胞内移到细胞外,而膜内带负电的蛋白质离子不能透出细胞,于是K+离子外移造成膜内变负而膜外变正。
外正内负的状态一方面可随K+的外移而增加,另一方面,K+外移形成的外正内负将阻碍K+的外移(正负电荷互相吸引,而相同方向电荷则互相排斥)。
最后达到一种K+外移(因浓度差) 和阻碍K+外移(正负电荷互相吸引,而相同方向电荷则相互排斥)。
最后达到一种K+外移(因浓度差)和阻碍K+外移(因电位差)相平衡的状态,这是的膜电位称为K+平衡电位,实际上,就是(或接近于)安静时细胞膜外的电位差。
(二)动作电位的产生机制动作电位上升支主要由Na+内流形成,接近于Na+的电-化学平衡电位。
1.细胞内外Na+和K+的分布不均匀,细胞外高Na+而细胞内高K+。
2.细胞兴奋时,膜对Na+有选择性通透,Na+顺浓度梯度内流,形成锋电位的上升支。
3.K+外流增加形成了动作电位的下降支。
在不同的膜电位水平或动作电位发生过程中,Na+通道呈现三种基本功能状态:①备用状态:其特征是通道呈关闭状态,但对刺激可发生反应而迅速开放,因此,被称作备用状态;②激活状态:此时通道开放,离子可经通道进行跨膜扩散;③失活状态:通道关闭,离子不能通过,即使再强的刺激也不能使通道开放。
细胞在静息状态即未接受刺激时,通道处于备用状态。
当刺激作用时,通道被激活而开放。
多数通道开放的时间很短,如产生锋电位上升支的Na+通道开放时间仅为1-2ms,随即进入失活状态。
必须经过一段时间,通道才能由失活状态恢复至静息的备用状态。
通道的功能状态,决定着细胞是否具有产生动作电位的能力,与不应期有密切联系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
O2 CO2 N2 NO 乙醇,尿素, 类固醇激素
二、通过膜蛋白介导的物质转运 膜蛋白包括:通道,载体,离子泵和转运体。
– Carrier-mediated
被动转运:不耗能,顺浓度差/电位差。 包括载体和通道介导的易化扩散。
主动转运:耗能,逆浓度差/电位差 包括离子泵介导的原发性主动转运 T outside E ln E ln RR= zF C zF C inside
inside
• • • • •
R 气体常数(8.31) joules/Kelvin/mole T是绝对温度 Z 是离子价数(K+为+1价) F 是法拉第常数(96500) [K+]o 和 [K+]i 分别代表细胞内外K+的浓度 EK =61.5log
去极化(depolarization):膜电位的数值向负值减少的方向变化
超极化(hyperpolarization):向负值增大的方向变化
反极化:变成内正外负的状态 复极化(repolarization):当膜电位从去极化或反极化状态 恢复到极化状态
2. K+的平衡电位(Ek)与Nernst方程 equilibrium potential • The Nernst equation :
(二)通道(channel) 介导的易化扩散
通道主要转运Na+ K+,Ca2+,Cl-等带电离子,又称离子通道 (ion channel)。 结构特点:贯穿脂质双层,中央有亲水性孔道。
转运特性: 1 顺浓度差转运,不耗能 2 离子选择性 (孔道口径,内壁的带电状态) 3 具有开和关的门控电性 4 产生跨膜离子电流
– Channel-mediated
(三)离子泵(ion pump) 介导的主动转运
原发性主动转运:膜蛋白离子泵介导的主动转运
特点:直接利用ATP功能,逆浓度差/电位差进行离子跨膜转运。
离子泵:钠泵,钙泵,质子泵。 最重要的离子泵:钠泵(钠-钾泵,Na+ K+-ATP酶)
(四)转运体介导的继发性主动转运
Characteristics of carrier-mediated diffusion net movement always depends on the concentration gradient –Specificity
–Saturation
–Competition
Glucose Amino acid
第二章
神经元膜的电学特 征和静息电位
Chapter 2 Bioelectrical phenomenon and Rest potential
第一节
细胞膜的功能:
神经元膜的物质转运
1. 隔离细胞内外液 2. 跨膜物质转运,完成细胞内外细胞物质交换 3. 电离子跨膜运动,是神经元电活动的基础 物质转运的基本原则: 简单的可直接扩散 小分子物质通过膜蛋白转运 复杂的要通过膜运动
一、产生静息电位的条件 1.细胞内外K+的不均衡分布 2. 细胞膜在静息状态时主要只对K+有通透性的假设
钠泵的活动,细胞内液的K+浓度较细胞外液高,而 Na+和Cl-的浓度则细胞外液比细胞内液高,这是细胞 生物电的产生基础。
K+平衡电位形成的离子机制
极化(polarization):神经元膜内负外正的带电状态
(一)载体(carrier) 介导的易化扩散 载体:属贯穿脂质双层的整合蛋白,转运机制不清。 在高浓度侧与被转运物质结合,载体结构蛋白变构, 低浓度侧解离,完成转运。 转运特性:1 顺浓度转运,不耗能。 2 具有化学结构的特异性 3 载体数目有限,具有饱和性 4 竞争性
主要转运物质:葡萄糖,氨基酸等。
第三节 静息电位 Resting potentials(RP)
静息电位(resting potential,RP):指未受刺激时神经元末内外 两侧的电位差。
Microelectrode 0.5um diameter
Measuring the resting membrane potential
第四节 静息电位的离子机制
Section1.Membrane Transport
Lipid Bilayer -- primary barrier, selectively permeable
一、 通过脂质双层的物质扩散
单纯扩散 Simple Diffusion 条件:膜两侧浓度差的大小, 膜通透性 膜通透性: • • • 物质的脂溶性 分子的大小 带点状态
由转运体(transporter)来介导,逆浓度差或电位差转运时, 并不直接消耗ATP,能量来源于膜内外Na+浓度差。
转运的物质: 葡萄糖,氨基酸 离子交换 神经递质
symtransport(同向转运)
(e.g. Na+-glucose, Na+-amino acid cotransport)
Countertransport(反向转运)
Endocytosis and Exocytosis
Endocytosis
生物电记录的技术概述
第一阶段:离子机制学说 生物电现象:18世纪末,Galvani 的凉台实验 1902年Bernstain提出了生物电现象产生机制: 膜学说 (membrane theory)
第二阶段:离子机制的证明和离子通道学说 1939年,Hodgin and Huxley 用枪乌鰂的神经轴突记录到了跨膜电位 证实了静息电位产生机制的正确性的同时提出了动作电位的Na+ 学说 第三阶段:离子通道机制的证明 1976年,成功建立膜片钳和单通道记录技术
(e.g. Na+-Ca2+, Na+-H+ exchange)
三、通过膜“运动”的物质转运 大分子物质或物质团块,特定功能性物质转运。 出胞(exocytosis): 将胞内的大分子物质通过分泌囊泡的 胞吐 方式向胞外排出的过程。 神经递质的释放,受体,通道蛋白镶 嵌入膜 入胞 (endocytosis): 将胞外的大分子物质甚至团块运入胞内 内化(internalization) 入胞是固体称吞噬(phagocytosis),是 液体称胞饮(pinocytosis),受体介导的 入胞(receptor-mediated endocytosis) 细胞膜上的蛋白质如离子通道,受体 可内化。