数学物理方程答案谷超豪
数学物理方程(谷超豪)-第三、四章 课后习题答案
第三章调和方程§1建立方程定解条件1.设)(),,,(21r f x x x u n = )(221n x x r ++=是n 维调和函数(即满足方程022212=∂∂++∂∂nx ux u),试证明221)(-+=n rc c r f )2(≠n rInc c r f 1)(21+=)2(=n 其中21,c c 为常数。
证:)(r f u =,rx r f x rr f x u i i i ⋅=∂∂⋅=∂∂)()(''32''22"22)(1)()(r x r f r r f rx r f x ui i i ⋅-⋅+⋅=∂∂312''212"122)()()(rx r f r nr f rx r f x uni i ni i ni i∑∑∑===⋅-⋅+⋅=∂∂)(1)('"r f rn r f -+=即方程0=∆u 化为0)(1)('"=-+r f rn r f rn r f r f 1)()('"--=所以)1(1')(--=n r A r f 若2≠n ,积分得1212)(c r n A r f n ++-=+-即2≠n ,则221)(-+=n r c c r f 若2=n ,则rA r f 1')(=故Inr A c r f 11)(+=即2=n ,则rInc c r f 1)(21+=2.证明拉普拉斯算子在球面坐标),,(ϕθr 下,可以写成sin 1)(sin sin 1(12222222=∂∂⋅+∂∂∂∂⋅+∂∂∂∂⋅=∆ϕθθθθθur u r r u r r r u 证:球坐标),,(ϕθr 与直角坐标),,(z y x 的关系:ϕθcos sin r x =,ϕθsin sin r y =,θcos r z =(1)222222z u yu xu u ∂∂+∂∂+∂∂=∆为作变量的置换,首先令θρsin r =,则变换(1)可分作两步进行ϕρcos =x ,ϕρsin =y (2)θρsin r =,θcos r z =(3)由(2)⎪⎪⎭⎪⎪⎬⎫∂∂+-∂∂=∂∂∂∂+∂∂=∂∂)cos ()sin (sin cos ϕρϕρϕϕϕρy ux u u y u x u u 由此解出⎪⎭⎪⎪⎬⎫⋅∂∂+∂∂=∂∂⋅∂∂-∂∂=∂∂ρϕϕϕρρϕϕϕρcos sin sin cos u u y u u u x u (4)再微分一次,并利用以上关系,得)sin cos (22ρϕϕϕρ⋅∂∂-∂∂∂∂=∂∂u u x xu)sin cos (sin )sin cos (cos ρϕϕϕρϕρϕρϕϕϕρρϕ⋅∂∂-∂∂∂∂⋅-⋅∂∂-∂∂∂∂=u u u u +∂∂⋅+∂∂∂⋅-∂∂=22222222sin cos sin 2cos ϕρϕϕρρϕϕρϕuu u ρρϕϕρϕϕ∂∂⋅+∂∂⋅+u u 22sin cos sin 2cos sin (22ρϕϕϕρ⋅∂∂+∂∂∂∂=∂∂u u y yu)cos sin (cos )cos sin (sin ρϕϕϕρϕρϕρϕϕϕρρϕ⋅∂∂+∂∂∂∂++⋅∂∂+∂∂∂∂=u u u u ρρϕϕρϕϕϕρϕϕρρϕϕρ∂∂⋅+∂∂⋅--∂∂⋅+∂∂∂+∂∂=u u uu u2222222222cos cos sin 2cos cos sin 2sin 所以ρρϕρρ∂∂⋅+∂∂⋅+∂∂=∂∂+∂∂uu u yu xu 11222222222(5)ρρϕρρ∂∂⋅+∂∂⋅+∂∂+∂∂=∂∂+∂∂+∂∂uuz uu z u y u x u112222222222222再用(3)式,变换2222zu u ∂∂+∂∂ρ。
数学物理方程第二版(谷超豪)前三章习题答案
由 (1), (2) 两式解出
其中 F,G 为任意的单变量可微函数,并由此求解它的初值问题:
1 1 h d c F x h x x 2 2a x 2
o
x
t 0 : u x ,
解:令 h x u v 则
u x . t
即为初值问题的解散。 2.问初始条件 ( x) 与 ( x) 满足怎样的条件时,齐次波动方程初值问题的解仅由右传播波
3
组成? 解:波动方程的通解为 u=F(x-at)+G(x+at) 其中 F,G 由初始条件 ( x) 与 ( x) 决定。初值问题的解仅由右传播组成,必须且只须对 于任何 x,
x h
u x u [ E (1 ) 2 ] 2 x h x t
2
二阶连续偏导数。且
u (t 2 x 2 y 2 ) 2 t t
3
x u x 2u E [(1 ) 2 ] (1 ) 2 2 x h x h t
4. 绝对柔软逐条而均匀的弦线有一端固定,在它本身重力作用下,此线处于铅垂平衡位置, 试导出此线的微小横振动方程。 解:如图 2,设弦长为 l ,弦的线密度为 ,则 x 点处的张力 T ( x) 为
利用微分中值定理,消去 x ,再令 x 0 得
u u g [(l x) ] 。 2 x x t
2
5. 验证
u ( x, y , t )
1 t x y
2 2 2
在锥 t x y >0 中都满足波动方程
2 2 2
u ,故 x, x x 上所受摩阻力为 t u b px sx x t
其中 E ( x) 是在点 x 的杨氏模量。
数学物理方程_谷超豪_第二章答案
数学物理方程谷超豪第二章答案1. 引言本文档是《数学物理方程》一书中第二章的答案。
该章节主要涵盖了偏微分方程的分类和解法。
在本文中,我们将解答课后习题和深入讨论相关概念,以帮助读者更好地理解和应用这些知识。
2. 偏微分方程的分类在第二章中,我们学习了偏微分方程的分类方法。
根据方程中未知函数的阶数和自变量的个数,偏微分方程可以分为以下几类:1.一阶偏微分方程:只涉及一阶导数的方程,如线性一阶波动方程和拟线性一阶方程等。
2.二阶偏微分方程:涉及二阶导数的方程,如线性二阶波动方程和拉普拉斯方程等。
3.高阶偏微分方程:涉及高阶导数的方程,如线性高阶波动方程和椭圆方程等。
根据自变量的个数,偏微分方程还可以分为以下两类:1.单自变量偏微分方程:只含有一个自变量的方程,如一维波动方程和一维热传导方程。
2.多自变量偏微分方程:含有多个自变量的方程,如二维波动方程和三维热传导方程。
3. 课后习题答案3.1 第一题题目:求解一维波动方程 $\\frac{\\partial^2 u}{\\partial t^2} = c^2 \\frac{\\partial^2 u}{\\partial x^2}$,其中c为常数。
解答:我们可以使用分离变量法求解这个一维波动方程。
首先,假设c=c(c)c(c),代入原方程得到:$$\\frac{T''(t)}{c^2T(t)} = \\frac{X''(x)}{X(x)}$$两边同时等于一个常数 $-\\lambda^2$,即:$$\\begin{cases} T''(t) + \\lambda^2 c^2 T(t) = 0 \\\\ X''(x) + \\lambda^2 X(x) = 0 \\end{cases}$$解这个常微分方程得到:$$\\begin{cases} T(t) = A\\cos(\\lambda c t) +B\\sin(\\lambda c t) \\\\ X(x) = C\\cos(\\lambda x) +D\\sin(\\lambda x) \\end{cases}$$其中c,c,c,c都是常数。
数学物理方程(谷超豪)第三章调和方程习题解答
∆u
=
1 r2
⋅
∂ ∂r
(r 2
∂u ) ∂r
+
r2
1 sin θ
⋅
∂ ∂θ
(sin θ
∂u ∂θ
)
+
r2
1 sin
2
θ
⋅
∂2u ∂ϕ 2
=0
证:球坐标 (r,θ ,ϕ) 与直角坐标 (x, y, z) 的关系:
x = r sinθ cosϕ , y = r sin θ sin ϕ , z = r cosθ
f
(r)
=
−
A1 n+
2
r −n+2
+
c1
即 n ≠ 2 ,则
f
(r)
=
c1
+
c2 r n−2
若 n = 2 ,则 即 n = 2 ,则
f ' (r) = A1 故 f (r) = c1 + A1Inr r
f (r) = c1 + c2 In 1 r
2. 证明拉普拉斯算子在球面坐标 (r,θ ,ϕ) 下,可以写成
⋅
∂u ∂ρ
(5)
∂ 2u ∂x 2
+
∂2u ∂y 2
+
∂2u ∂z 2
=
∂2u ∂ρ 2
+
∂2u ∂z 2
+
1 ρ2
⋅
∂2u ∂ϕ 2
+
1 ρ
⋅
∂u ∂ρ
∂2u 再用(3)式,变换 ∂ρ 2
+
∂ 2u ∂z 2
。这又可以直接利用(5)式,得
∂2u ∂ρ 2
数学物理方程 谷超豪 第四章答案
61
(1 x) 2 u xx (1 y 2 )u yy xu x yu y 0
(1 x 2 )(1 y 2 ) 0 为椭圆形。特征方程为
(
即 解之得
dy 2 1 y 2 ) 0 dx 1 x2
因
dy 1 y2 i dx 1 x2
2u 2u y 2u 1 1 u 2 ( 3 ) xy x x x 2
2
因此引变换
代入化简即得 (3)
x 2u 0 u 0 ( x 0)
有
u u u 2 x
u xx u yy 0
60
因
0 y 0 0
2u y 2
2u 2
2
2u 2u 2
2u 2u 2u 2u (2 cos x) 2 (2 cos x) (2 cos x) 2 xy
代入化简得
2u
2
2 u u u ( )0 32
所以
D( , ) a11a 22 ( x 2 y 2 x 2 y 2 ) (a 212 a11a 22 )( x y y x ) 2 D( x, y )
D( , ) 因 0 ,故 与 同号,即类型不变。 D ( x, y )
(4) sgn yu xx 2u xy sgn xu yy 0 因 1 sgn x sgn y, 在坐标轴上 0 ,为双曲型;在一,三象限内 0 ,为抛物型;在二,四 象限内 0 ,为双曲型。 (5) u xx 4u xy 2u xz 4u yy u zz 0 因对应二次型为
数学物理方程 谷超豪 调和方程习题解答
(shny sin nx) xx = −(shny sin nx) yy 即∆(shny sin nx) = 0
故 shny sin nx为调和函数
同理,其余三个函数也是调和的
(5) shx(chx + cos y)−1和sin y(chx + cos y)−1
证: 令
u = shx(chx + cos y)−1 ∂u = chx(chx + cos y)−1 − sh2 x(chx + cos y)−2 ∂x
f
(r)
=
−
A1 n+
2
r −n+2
+
c1
即 n ≠ 2 ,则
f
(r)
=
c1
+
c2 r n−2
若 n = 2 ,则 即 n = 2 ,则
f ' (r) = A1 故 f (r) = c1 + A1Inr r
f (r) = c1 + c2 In 1 r
2. 证明拉普拉斯算子在球面坐标 (r,θ ,ϕ) 下,可以写成
证:令 u = ax + by + c , 显然
∂2u ∂x 2
=
0,
∂2u ∂y 2
=
0.
故 ∆u = 0 ,所以 u 为调和函数
(2) x 2 − y 2和2xy
∂2u ∂x 2
=
2,
∂2u ∂y 2
=
2, 。所以 ∆u
=
0 。u 为调和函数
令
v = 2xy 则
∂2v ∂x 2
=
0,
∂2v ∂y 2
−
r sin θ
数学物理方程谷超豪版第二章课后规范标准答案
,.第 二 章 热 传 导 方 程§1 热传导方程及其定解问题的提1. 一均匀细杆直径为l ,假设它在同一截面上的温度是相同的,杆的表面和周围介质发生热交换,服从于规律dsdt u u k dQ )(11-=又假设杆的密度为ρ,比热为c ,热传导系数为k ,试导出此时温度u 满足的方程。
解:引坐标系:以杆的对称轴为x 轴,此时杆为温度),(t x u u =。
记杆的截面面积42l π为S 。
由假设,在任意时刻t 到t t ∆+内流入截面坐标为x 到x x ∆+一小段细杆的热量为t x s xu kts xu k t s xukdQ xx xx ∆∆∂∂=∆∂∂-∆∂∂=∆+221 杆表面和周围介质发生热交换,可看作一个“被动”的热源。
由假设,在时刻t 到t t ∆+在截面为x 到x x ∆+一小段中产生的热量为()()t x s u u lkt x l u u k dQ ∆∆--=∆∆--=111124π又在时刻t 到t t ∆+在截面为x 到x x ∆+这一小段内由于温度变化所需的热量为()()[]t x s tuc x s t x u t t x u c dQ t ∆∆∂∂=∆-∆+=ρρ,,3由热量守恒原理得:()t x s u u lk t x s x uk t x s t u c x t ∆∆--∆∆∂∂=∆∆∂∂11224ρ消去t x s ∆∆,再令0→∆x ,0→∆t 得精确的关系:()11224u u l k xu k t u c --∂∂=∂∂ρ 或 ()()11222112244u u l c k xu a u u l c k x u c k t u --∂∂=--∂∂=∂∂ρρρ 其中 ρc k a =22. 试直接推导扩散过程所满足的微分方程。
解:在扩散介质中任取一闭曲面s ,其包围的区域 为Ω,则从时刻1t 到2t 流入此闭曲面的溶质,由dsdt nuDdM ∂∂-=,其中D 为扩散系数,得 ⎰⎰⎰∂∂=21t t sdsdt nuDM 浓度由u 变到2u 所需之溶质为()()[]⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ∂∂=∂∂=-=2121121,,,,,,t t tt dvdt t uC dtdv t u C dxdydz t z y x u t z y x u C M两者应该相等,由奥、高公式得:⎰⎰⎰⎰⎰⎰⎰⎰ΩΩ∂∂==⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂=21211t t t t dvdt t uC M dvdt z uD z y u D y x u D x M 其中C 叫做孔积系数=孔隙体积。
数学物理方程(谷超豪)课后答案
第一章.波动方程§1方程的导出。
定解条件1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x 点处的点在时刻t 离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明满足方程),(t x u ()⎟⎠⎞⎜⎝⎛∂∂∂∂=⎟⎠⎞⎜⎝⎛∂∂∂∂x u E x t u x t ρ其中为杆的密度,为杨氏模量。
ρE 证:在杆上任取一段,其中两端于静止时的坐标分别为与。
现在计算这段杆在时x +x x ∆刻的相对伸长。
在时刻这段杆两端的坐标分别为:t t ),();,(t x x u x x t x u x ∆++∆++其相对伸长等于),()],([)],([t x x u xxt x u x t x x u x x x ∆+=∆∆−+−∆++∆+θ令,取极限得在点的相对伸长为。
由虎克定律,张力等于0→∆x x x u ),(t x ),(t x T ),()(),(t x u x E t x T x =其中是在点的杨氏模量。
)(x E x 设杆的横截面面积为则作用在杆段两端的力分别为),(x S ),(x x x ∆+x u x S x E )()(x u x x S x x E t x )()();,(∆+∆+).,(t x x ∆+于是得运动方程tt u x x s x ⋅∆⋅)()(ρx ESu t x =),(x x x x x ESu x x |)(|)(−∆+∆+利用微分中值定理,消去,再令得x ∆0→∆x tt u x s x )()(ρx∂∂=x ESu ()若常量,则得=)(x s =22)(tu x ∂∂ρ)((x u x E x ∂∂∂∂即得所证。
2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。
解:(1)杆的两端被固定在两点则相应的边界条件为l x x ==,0.0),(,0),0(==t l u t u (2)若为自由端,则杆在的张力|等于零,因此相应的边l x =l x =xux E t l T ∂∂=)(),(l x =界条件为|=0xu∂∂l x =同理,若为自由端,则相应的边界条件为∣0=x xu∂∂00==x (3)若端固定在弹性支承上,而弹性支承固定于某点,且该点离开原来位置的偏移l x =由函数给出,则在端支承的伸长为。
数学物理方程(谷超豪)-第三、四章 课后习题答案
第三章调和方程§1建立方程定解条件1.设)(),,,(21r f x x x u n = )(221n x x r ++=是n 维调和函数(即满足方程022212=∂∂++∂∂nx ux u),试证明221)(-+=n rc c r f )2(≠n rInc c r f 1)(21+=)2(=n 其中21,c c 为常数。
证:)(r f u =,rx r f x rr f x u i i i ⋅=∂∂⋅=∂∂)()(''32''22"22)(1)()(r x r f r r f rx r f x ui i i ⋅-⋅+⋅=∂∂312''212"122)()()(rx r f r nr f rx r f x uni i ni i ni i∑∑∑===⋅-⋅+⋅=∂∂)(1)('"r f rn r f -+=即方程0=∆u 化为0)(1)('"=-+r f rn r f rn r f r f 1)()('"--=所以)1(1')(--=n r A r f 若2≠n ,积分得1212)(c r n A r f n ++-=+-即2≠n ,则221)(-+=n r c c r f 若2=n ,则rA r f 1')(=故Inr A c r f 11)(+=即2=n ,则rInc c r f 1)(21+=2.证明拉普拉斯算子在球面坐标),,(ϕθr 下,可以写成sin 1)(sin sin 1(12222222=∂∂⋅+∂∂∂∂⋅+∂∂∂∂⋅=∆ϕθθθθθur u r r u r r r u 证:球坐标),,(ϕθr 与直角坐标),,(z y x 的关系:ϕθcos sin r x =,ϕθsin sin r y =,θcos r z =(1)222222z u yu xu u ∂∂+∂∂+∂∂=∆为作变量的置换,首先令θρsin r =,则变换(1)可分作两步进行ϕρcos =x ,ϕρsin =y (2)θρsin r =,θcos r z =(3)由(2)⎪⎪⎭⎪⎪⎬⎫∂∂+-∂∂=∂∂∂∂+∂∂=∂∂)cos ()sin (sin cos ϕρϕρϕϕϕρy ux u u y u x u u 由此解出⎪⎭⎪⎪⎬⎫⋅∂∂+∂∂=∂∂⋅∂∂-∂∂=∂∂ρϕϕϕρρϕϕϕρcos sin sin cos u u y u u u x u (4)再微分一次,并利用以上关系,得)sin cos (22ρϕϕϕρ⋅∂∂-∂∂∂∂=∂∂u u x xu)sin cos (sin )sin cos (cos ρϕϕϕρϕρϕρϕϕϕρρϕ⋅∂∂-∂∂∂∂⋅-⋅∂∂-∂∂∂∂=u u u u +∂∂⋅+∂∂∂⋅-∂∂=22222222sin cos sin 2cos ϕρϕϕρρϕϕρϕuu u ρρϕϕρϕϕ∂∂⋅+∂∂⋅+u u 22sin cos sin 2cos sin (22ρϕϕϕρ⋅∂∂+∂∂∂∂=∂∂u u y yu)cos sin (cos )cos sin (sin ρϕϕϕρϕρϕρϕϕϕρρϕ⋅∂∂+∂∂∂∂++⋅∂∂+∂∂∂∂=u u u u ρρϕϕρϕϕϕρϕϕρρϕϕρ∂∂⋅+∂∂⋅--∂∂⋅+∂∂∂+∂∂=u u uu u2222222222cos cos sin 2cos cos sin 2sin 所以ρρϕρρ∂∂⋅+∂∂⋅+∂∂=∂∂+∂∂uu u yu xu 11222222222(5)ρρϕρρ∂∂⋅+∂∂⋅+∂∂+∂∂=∂∂+∂∂+∂∂uuz uu z u y u x u112222222222222再用(3)式,变换2222zu u ∂∂+∂∂ρ。
数学物理方程第二版谷超豪主编的课本的课后答案
1、一个偏微分方程所含有的未知函数最高阶导数的阶数称为这个偏微分方程的阶。
2、如果方程对未知函数及其各阶导数总体来说是线性的,则称这个方程是线性方程,否则称这个方程是非线性方程。
3、几种不同原因的综合所产生的效果等于这些不同原因单独产生的效果(即假设其他原因不存在时,该原因所产生的效果)的累加。
这个原理称为叠加原理。
4、I 【22222//0u t a u x ∂∂-∂∂=0:(),/()t u x u t x ϕψ==∂∂=】初值问题I 的解为(,)[()()]/2(1/2)()x atx atu x t x at x at a d ϕϕψαα+-=-+-+⎰此公式称为达朗贝尔公式5、依赖区间(x-at,x+at ) 第一章课后题2.8求解波动方程的初边值问题222200{//sin |0,/|sin }t t u t u x t x u u t x ==∂∂-∂∂==∂∂=解:()0()11(,)sin sin sin 22x t x tt x t x t u x t d d t xττξξτξξ+-+---=+=⎰⎰⎰sin(1,2,...)k k C x k l π=为常微分方程()()0X x X x λ''+=满足边界条件(0)0,()0X X l ==的固有函数(或特征函数)而222k lπλ=称为相应的固有值。
2222200:(),()0,:0u u a t x ut u x x tx x l u ϕψ∂∂-=∂∂∂===∂===初值问题,的解是(,)cos sin sin k k k a k a k a u x t A t B t xl l l πππ⎛⎫=+ ⎪⎝⎭又可以写成(,)cos()sink k k k k u x t N t x lπωθ=+其中,cos sin K K k k K aN lπωθθ===K N 称为波的振幅,K ω称为圆频率,k θ称为波的初位相。
数学物理方程谷超豪版第二章课后答案.doc
第二章热传导方程§ 1热传导方程及其定解问题的提1. 一均匀细杆直径为 l ,假设它在同一截面上的温度是相同的,杆的表面和周围介质发生热交换,服从于规律dQ k 1(u u 1 )dsdt又假设杆的密度为,比热为 c ,热传导系数为 k ,试导出此时温度 u 满足的方程。
解:引坐标系:以杆的对称轴为x 轴,此时杆为温度u u( x,t) 。
记杆的截面面积 l 2为 S 。
t 到 tt 内流入截面坐标为 x 到 xx 一小段细杆的热量为 4由假设,在任意时刻dQu s t k u2u s x tkxs t k1x x x xx 2 xt 到 tt 在截面为杆表面和周围介质发生热交换,可看作一个“被动”的热源。
由假设,在时刻x 到 xx 一小段中产生的热量为4k 1dQ2k 1 u u l x tu u s x t1l1又在时刻 t 到 tt 在截面为 x 到 xx 这一小段内由于温度变化所需的热量为dQc u x,tt u x,t s x c u s x t由热量守恒原理得:3t tcu s x t k2us x t4k 1u u s x tt tx2 xl1消去 sx t ,再令x 0 , t 2 u 0 得精确的关系:cuk 4k 1 u ut x 2 l1u k 2u 4ka 22 u4k或t cx2c 1u u 1x2c 1u u 1ll其中a2kc2. 试直接推导扩散过程所满足的微分方程。
解:在扩散介质中任取一闭曲面s ,其包围的区域 为 ,则从时刻 t 1 到 t 2 流入此闭曲面的溶 质,由 dMDudsdt ,其中 D 为扩散系数,得nt 2D udsdtMt 1 snt 2t 2C udvdtM 1C u x, y, z, t 2 u x, y, z, t 1 dxdydzCudtdvt 1tt 1t两者应该相等,由奥、高公式得:t 2uuut 2C udvdtMD D D dvdt M 1t 1xx y y z zt 1t其中 C 叫做孔积系数 =孔隙体积。
数学物理方程第二版(谷超豪)答案
其中 h 为圆锥的高(如图 1) 证:如图,不妨设枢轴底面的半径为 1,则 x 点处截面的半径 l 为:
l 1 x h
x h
2
所以截面积 s( x) (1 ) 。利用第 1 题,得
( x) (1 ) 2
若 E ( x) E 为常量,则得
x h
2u x u [ E (1 ) 2 ] 2 x h x t
1 h x x 1 h d c 2 2a x 2
o
x
1 1 h d c Gx h x x 2 2a x 2
o
x
所以
u ( x, t )
1 [(h x at ) ( x at ) (h x at ) ( x at )] 2(h x)
( x)
3. 利用传播波法,求解波动方程的特征问题(又称古尔沙问题)
2 2u 2 u 2 a x 2 t u x at0 ( x) u ( x). x at0
(0) (0)
数学物理方程答案
解:u(x,t)=F(x-at)+G(x+at) 令 x-at=0 令 x+at=0 所以 得 ( x) =F(0)+G(2x) 得 ( x) =F(2x)+G(0) F(x)= ( ) -G(0). G(x)= ( ) -F(0). 且 所以 F(0)+G(0)= (0) (0). u(x,t)= (
2 5 2 2 2 x y t 2x 2 y 2 2
y
所以 即得所证。
2u x 2
2u y 2
t
数学物理方程谷超豪版第二章课后答案
第 二 章 热 传 导 方 程§1 热传导方程及其定解问题的提1. 一均匀细杆直径为l ,假设它在同一截面上的温度是相同的,杆的表面和周围介质发生热交换,服从于规律dsdt u u k dQ )(11-= 又假设杆的密度为ρ,比热为c ,热传导系数为k ,试导出此时温度u 满足的方程。
解:引坐标系:以杆的对称轴为x 轴,此时杆为温度),(t x u u =。
记杆的截面面积42l π为S 。
由假设,在任意时刻t 到t t ∆+内流入截面坐标为x 到x x ∆+一小段细杆的热量为t x s xu kt s xu kt s xukdQ xx x x ∆∆∂∂=∆∂∂-∆∂∂=∆+221 杆表面和周围介质发生热交换,可看作一个“被动”的热源。
由假设,在时刻t 到t t ∆+在截面为x 到x x ∆+一小段中产生的热量为()()t x s u u lk t x l u u k dQ ∆∆--=∆∆--=111124π 又在时刻t 到t t ∆+在截面为x 到x x ∆+这一小段内由于温度变化所需的热量为 ()()[]t x s tuc x s t x u t t x u c dQ t ∆∆∂∂=∆-∆+=ρρ,,3 由热量守恒原理得:()t x s u u lk t x s x ukt x s t u c x t ∆∆--∆∆∂∂=∆∆∂∂11224ρ 消去t x s ∆∆,再令0→∆x ,0→∆t 得精确的关系:()11224u u l kxu k t u c --∂∂=∂∂ρ或 ()()11222112244u u l c k xu a u u l c k x u c k t u --∂∂=--∂∂=∂∂ρρρ 其中 ρc k a =22. 试直接推导扩散过程所满足的微分方程。
解:在扩散介质中任取一闭曲面s ,其包围的区域 为Ω,则从时刻1t 到2t 流入此闭曲面的溶质,由dsdt nuDdM ∂∂-=,其中D 为扩散系数,得 ⎰⎰⎰∂∂=21t t sdsdt nuDM 浓度由u 变到2u 所需之溶质为()()[]⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ∂∂=∂∂=-=2121121,,,,,,t t tt dvdt t uC dtdv t u C dxdydz t z y x u t z y x u C M两者应该相等,由奥、高公式得:⎰⎰⎰⎰⎰⎰⎰⎰ΩΩ∂∂==⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎪⎭⎫ ⎝⎛∂∂∂∂+⎪⎭⎫ ⎝⎛∂∂∂∂=21211t t t t dvdt t uC M dvdt z uD z y u D y x u D x M 其中C 叫做孔积系数=孔隙体积。
数学物理方程(谷超豪)-第三、四章 课后习题答案
第三章调和方程§1建立方程定解条件1.设)(),,,(21r f x x x u n = )(221n x x r ++=是n 维调和函数(即满足方程022212=∂∂++∂∂nx ux u),试证明221)(-+=n rc c r f )2(≠n rInc c r f 1)(21+=)2(=n 其中21,c c 为常数。
证:)(r f u =,rx r f x rr f x u i i i ⋅=∂∂⋅=∂∂)()(''32''22"22)(1)()(r x r f r r f rx r f x ui i i ⋅-⋅+⋅=∂∂312''212"122)()()(rx r f r nr f rx r f x uni i ni i ni i∑∑∑===⋅-⋅+⋅=∂∂)(1)('"r f rn r f -+=即方程0=∆u 化为0)(1)('"=-+r f rn r f rn r f r f 1)()('"--=所以)1(1')(--=n r A r f 若2≠n ,积分得1212)(c r n A r f n ++-=+-即2≠n ,则221)(-+=n r c c r f 若2=n ,则rA r f 1')(=故Inr A c r f 11)(+=即2=n ,则rInc c r f 1)(21+=2.证明拉普拉斯算子在球面坐标),,(ϕθr 下,可以写成sin 1)(sin sin 1(12222222=∂∂⋅+∂∂∂∂⋅+∂∂∂∂⋅=∆ϕθθθθθur u r r u r r r u 证:球坐标),,(ϕθr 与直角坐标),,(z y x 的关系:ϕθcos sin r x =,ϕθsin sin r y =,θcos r z =(1)222222z u yu xu u ∂∂+∂∂+∂∂=∆为作变量的置换,首先令θρsin r =,则变换(1)可分作两步进行ϕρcos =x ,ϕρsin =y (2)θρsin r =,θcos r z =(3)由(2)⎪⎪⎭⎪⎪⎬⎫∂∂+-∂∂=∂∂∂∂+∂∂=∂∂)cos ()sin (sin cos ϕρϕρϕϕϕρy ux u u y u x u u 由此解出⎪⎭⎪⎪⎬⎫⋅∂∂+∂∂=∂∂⋅∂∂-∂∂=∂∂ρϕϕϕρρϕϕϕρcos sin sin cos u u y u u u x u (4)再微分一次,并利用以上关系,得)sin cos (22ρϕϕϕρ⋅∂∂-∂∂∂∂=∂∂u u x xu)sin cos (sin )sin cos (cos ρϕϕϕρϕρϕρϕϕϕρρϕ⋅∂∂-∂∂∂∂⋅-⋅∂∂-∂∂∂∂=u u u u +∂∂⋅+∂∂∂⋅-∂∂=22222222sin cos sin 2cos ϕρϕϕρρϕϕρϕuu u ρρϕϕρϕϕ∂∂⋅+∂∂⋅+u u 22sin cos sin 2cos sin (22ρϕϕϕρ⋅∂∂+∂∂∂∂=∂∂u u y yu)cos sin (cos )cos sin (sin ρϕϕϕρϕρϕρϕϕϕρρϕ⋅∂∂+∂∂∂∂++⋅∂∂+∂∂∂∂=u u u u ρρϕϕρϕϕϕρϕϕρρϕϕρ∂∂⋅+∂∂⋅--∂∂⋅+∂∂∂+∂∂=u u uu u2222222222cos cos sin 2cos cos sin 2sin 所以ρρϕρρ∂∂⋅+∂∂⋅+∂∂=∂∂+∂∂uu u yu xu 11222222222(5)ρρϕρρ∂∂⋅+∂∂⋅+∂∂+∂∂=∂∂+∂∂+∂∂uuz uu z u y u x u112222222222222再用(3)式,变换2222zu u ∂∂+∂∂ρ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学物理方程答案谷超豪【篇一:数学物理方程第二版答案(平时课后习题作业)】>第一章.波动方程1 方程的导出。
定解条件4. 绝对柔软逐条而均匀的弦线有一端固定,在它本身重力作用下,此线处于铅垂平衡位置,试导出此线的微小横振动方程。
解:如图2,设弦长为l,弦的线密度为?,则x点处的张力t(x)为t(x)??g(l?x)且t(x)的方向总是沿着弦在x点处的切线方向。
仍以u(x,t)表示弦上各点在时刻t沿垂直于x轴方向的位移,取弦段(x,x??x),则弦段两端张力在u轴方向的投影分别为?g(l?x)sin?(x);?g(l?(x??x))sin?(x??x)其中?(x)表示t(x)方向与x轴的夹角又sin??tg??于是得运动方程?u ?x.?u?2u?u??x2?[l?(x??x)]∣x??x?g?[l?x]∣?g?xx?x?t利用微分中值定理,消去?x,再令?x?0得?2u??u?g[(l?x)]。
?x?x?t25. 验证u(x,y,t)?1t2?x2?y2在锥t?x?y0中都满足波动方程222?2u?2u?2u1222证:函数在锥0内对变量t?x?y??u(x,y,t)?222222?t?x?y?x?yx,y,t有二阶连续偏导数。
且232?u??(t2?x2?y2)?t??t35??u(t2?x2?y2)2?3(t2?x2?y2)2?t22?t?(t2?x2?y2)?32?(2t2?x2?y2)?u?(t2?x2?y2)?x?32?x?2u?x2?t?x?22352?2222?22?y?3t?x?yx??????52??u同理 ??t2?x2?y2?2?t2?x2?2y2?2?y所以即得所证。
2 达朗贝尔公式、波的传抪3.利用传播波法,求解波动方程的特征问题(又称古尔沙问题) 2??2u2?u?2?a2t?x??ux?at?0??(x) ??(0)??(0)? ?u??(x).?x?at?0?5??t2?x2?y22t2?2x2?y2??2u?x2?2u?y2?t?x??225?y22??2t2?x?y22???t2.?2u解:u(x,t)=f(x-at)+g(x+at) 令 x-at=0 得 ?(x)=f(0)+g(2x)令x+at=0 得 ?(x)=f(2x)+g(0) 所以 f(x)=?()-g(0). g(x)=?()-f(0). 且 f(0)+g(0)=?(0)??(0). 所以 u(x,t)=?(x2x2x?atx?at)+?()-?(0). 22即为古尔沙问题的解。
8.求解波动方程的初值问题??2u?2u???t2??x2?tsinx??u?u?0,|t?0?sinxt?0??t?x?ttx?(t??)解:由非齐次方程初值问题解的公式得11sin?d???sin?d?d? u(x,t)????2x?t20x?(t??)11=?[cos(x?t)?cos(x?t)]???[cos(x?(t??))?cos(x?(t??))]d?220tt=sinxsint?sinx?sin(t??)d??=sinxsint?sinx[?cos(t??)?sin(t??)]t0 =tsinx 即 u(x,t)?tsinx 为所求的解。
3混合问题的分离变量法 1. 用分离变量法求下列问题的解: (1)2??2u2?u?2?a2?t?x?3?x?u?u?sin,?t?0l?t??u(0,t)?u(l,t)?0??t?o?x(1?x)(0?x?l)解:边界条件齐次的且是第一类的,令u(x,t)?x(x)t(t)得固有函数xn(x)?sinn?x,且 lan?an?tn(t)?ancost?bnsint,(n?1,2?)ll于是 u(x,t)??(ancosn?1?an?an?n?t?bnsint)sinx lll今由始值确定常数an及bn,由始值得3?x?n?sin??ansinxlln?1x(l?x)??an?n?bnsinx lln?1?所以 a3?1,an?0,当n?32n?bn?x(l?x)sinxdx ?an?0l2?an???ln?l2n??xcosx?sin?l??lln2?2??n???l2n?x??xcosx ??l??n?l2l2xn?2l3n??22sinx?33cosxlln?n?因此所求解为??l4l3?44(1?(?1)n) an?3a?3?4l3u(x,t)?cotsix?lla?42??2u2?u?0?2?a2?t?x??(2) ?u(0,t)?0??u(x,0)?hx,?l?1?(?1)nan?n?sitsix ?4llnn?1??u(l,t)?0 ?t?u(x,0)?0?t解:边界条件齐次的,令 u(x,t)?x(x)t(t)得:??x????x?0(1)x?(l)?0?x(0)?0,2及t???a?x?0(2)。
求问题(1)的非平凡解,分以下三种情形讨论。
1? ??0时,方程的通解为x(x)?c1e??x?c2e???x由x(0)?0得c1?c2?0 由x?(l)?0得c1??e ??l?c2??e???l?0解以上方程组,得c1?0,c2?0,故??0时得不到非零解。
2? ??0时,方程的通解为x(x)?c1?c2x由边值x(0)?0得c1?0,再由x?(l)?0得c2?0,仍得不到非零解。
3???0时,方程的通解为x(x)?c1cosx?c2sinx由x(0)?0得c1?0,再由x?(l)?0得c2?cos?l?0 l?0,于是2为了使c2?0,必须 cos?2n?1????n???? (n?0,1,2?)?2l?且相应地得到xn(x)?sin2n?1?x (n?0,1,2?) 2l2n?12n?1a?t?bnsina?t(n?0,1,2?) 2l2l将?代入方程(2),解得tn(t)?ancos?于是 u(x,t)?再由始值得n?0?(ancos2n?12n?12n?1a?t?bnsina?t)sin?x 2l2l2l?2n?1?hx?asin?x?n??l2ln?0??2n?12n?1?0??a?bnsin?x?2l2ln?0?容易验证?sinl??2n?1??x?(n?0,1,2?)构成区间[0,l]上的正交函数系: 2l??2m?12n?1?0当m?nsin?xsin?xdx??l?当m?n2l2l?0?2【篇二:数学物理方程第一章部分答案】>1 方程的导出。
定解条件1.细杆(或弹簧)受某种外界原因而产生纵向振动,以u(x,t)表示静止时在x点处的点在时刻t离开原来位置的偏移,假设振动过程发生的张力服从虎克定律,试证明u(x,t)满足方程???u????u????x????e? ?t??t??x??x?其中?为杆的密度,e为杨氏模量。
证:在杆上任取一段,其中两端于静止时的坐标分别为 x与x??x。
现在计算这段杆在时刻t的相对伸长。
在时刻t这段杆两端的坐标分别为:x?u(x,t);x??x?u(x??x,t)其相对伸长等于令[x??x?u(x??x,t)]?[x?u(x,t)]??x?ux(x???x,t)?x?x?0,取极限得在点x的相对伸长为ux(x,t)。
由虎克定律,张力t(x,t)等于t(x,t)?e(x)ux(x,t)其中e(x)是在点x的杨氏模量。
设杆的横截面面积为s(x),则作用在杆段(x,x??x)两端的力分别为e(x)s(x)ux(x,t);e(x??x)s(x??x)ux(x??x,t).于是得运动方程?(x)s(x)??x?utt(x,t)?esux(x??x)|x??x?esux(x)|x?(esux) ?x利用微分中值定理,消去?x,再令?x?0得?(x)s(x)utt?若s(x)?常量,则得?u?2u??(x)2=(e(x))?x?x?t即得所证。
2.在杆纵向振动时,假设(1)端点固定,(2)端点自由,(3)端点固定在弹性支承上,试分别导出这三种情况下所对应的边界条件。
解:(1)杆的两端被固定在x?0,x?l两点则相应的边界条件为u(0,t)?0,u(l,t)?0.(2)若x?l为自由端,则杆在x?l的张力t(l,t)?e(x)的边界条件为?u|x?l等于零,因此相应?x?u|=0 ?xx?l同理,若x?0为自由端,则相应的边界条件为?u∣?0 ?xx?0(3)若x?l端固定在弹性支承上,而弹性支承固定于某点,且该点离开原来位置的偏移由函数v(t)给出,则在x?l端支承的伸长为u(l,t)?v(t)。
由虎克定律有e?u∣??k[u(l,t)?v(t)] ?xx?lk?u??u)∣x?l?f(t) 其中??e?x其中k为支承的刚度系数。
由此得边界条件(特别地,若支承固定于一定点上,则v(t)?0,得边界条件(?u??u)∣x?l?0。
?x同理,若x?0端固定在弹性支承上,则得边界条件?u∣?k[u(0,t)?v(t)] ?xx?0?u??u)∣x?0?f(t). 即 (?xe?x2?ux2?2u[(1?)]??(1?)3. 试证:圆锥形枢轴的纵振动方程为 e 2?xh?xh?t其中h为圆锥的高(如图1)证:如图,不妨设枢轴底面的半径为1,则x 点处截面的半径l为: l?1?所以截面积s(x)??(1?x hx2)。
利用第1题,得 hx2?2u?x2?u?(x)?(1?)?[e?(1?)]h?t2?xh?x若e(x)?e为常量,则得?x2?ux2?2ue[(1?)]??(1?) ?xh?xh?t24. 绝对柔软逐条而均匀的弦线有一端固定,在它本身重力作用下,此线处于铅垂平衡位置,试导出此线的微小横振动方程。
解:如图2,设弦长为l,弦的线密度为?,则x点处的张力t(x)为 t(x)??g(l?x)且t(x)的方向总是沿着弦在x点处的切线方向。
仍以u(x,t)表示弦上各点在时刻t沿垂直于x轴方向的位移,取弦段(x,x??x),则弦段两端张力在u轴方向的投影分别为?g(l?x)sin?(x);?g(l?(x??x))sin?(x??x)其中?(x)表示t(x)方向与x轴的夹角又sin??tg??于是得运动方程?u ?x.?u?2u?u??x2?[l?(x??x)]∣x??x?g?[l?x]∣?g?xx?x?t利用微分中值定理,消去?x,再令?x?0得?2u??u?g[(l?x)]。
2?x?x?t7. 验证u(x,y,t)?1t2?x2?y2在锥t?x?y0中都满足波动方程222?2u?2u?2u ???t2?x2?y2证:函数u(x,y,t)?1t2?x2?y2在锥t?x?y0内对变量x,y,t有3222??u2222??(t?x?y)?t 二阶连续偏导数。
且?t ?2u?t235???(t2?x2?y2)2?3(t2?x2?y2)2?t2 ?32?(t2?x2?y2)??(2t2?x2?y2)?u?(t2?x2?y2)?x?32?x35???u?t2?x2?y22?3t2?x2?y22x2 22 ?x???????5??2u同理 ??t2?x2?y2?2?t2?x2?2y2? 2?y所以即得所证。