计量经济学复习资料——概念和问答
计量经济学复习资料
计量经济学复习资料一、引言计量经济学是研究经济现象的数量关系和经济变量之间相互影响的学科。
它通过运用统计学和数学方法,以实证的方式分析经济模型和数据,以期为经济理论的验证和决策制定提供科学依据。
计量经济学作为经济学的重要分支,在经济学领域里起着举足轻重的作用。
本文将为大家提供一个关于计量经济学的复习资料,以便大家更好地复习和理解这门学科。
二、计量经济学基础1. 理论基础:回顾计量经济学的理论基础,包括经济学中的基本原理、假设和模型,以及计量经济学方法的发展演变过程。
2. 计量经济学的基本概念:介绍计量经济学中的一些基本概念,如变量、参数、模型、数据等,帮助读者建立对计量经济学基础概念的理解和认知。
三、计量经济模型1. 线性回归模型:介绍线性回归模型的基本原理和假设,包括最小二乘估计法、截距项、解释变量的选择和回归结果的解释等。
2. 多元线性回归模型:介绍多元线性回归模型的基本原理、假设和参数估计方法,包括多重共线性、异方差和自相关等问题的处理方法。
3. 非线性回归模型:介绍非线性回归模型,如对数线性模型、二项式模型和估计方法等。
4. 时间序列模型:介绍时间序列模型的基本原理、假设和参数估计方法,包括平稳性、季节性和趋势性等问题的处理方法。
四、计量经济学常用方法1. 模型诊断:介绍计量经济学中的模型诊断方法,包括残差分析、异方差检验和自相关检验等。
2. 假设检验:介绍计量经济学中的假设检验方法,包括参数显著性检验、模型拟合优度检验和模型比较等。
3. 预测方法:介绍计量经济学中的预测方法,包括时间序列分析、回归分析和面板数据分析等。
4. 因果推断:介绍计量经济学中的因果推断方法,包括工具变量法、自然实验和计量分析的注意事项等。
五、计量经济学在实际应用中的案例研究1. 劳动经济学:介绍计量经济学在劳动经济学领域的实际应用,包括劳动力市场分析、教育回报率和人力资本投资等。
2. 金融经济学:介绍计量经济学在金融经济学领域的实际应用,包括资本市场分析、投资组合选择和风险管理等。
计量经济学期末考试复习
计量经济学期末考试复习资料第一章绪论参考重点:计量经济学的一般建模过程第一章课后题1.4.61.什么是计量经济学计量经济学方法与一般经济数学方法有什么区别答:计量经济学是经济学的一个分支学科,是以揭示经济活动中客观存在的数量关系为内容的分支学科,是由经济学、统计学和数学三者结合而成的交叉学科;计量经济学方法揭示经济活动中各个因素之间的定量关系,用随机性的数学方程加以描述;一般经济数学方法揭示经济活动中各个因素之间的理论关系,用确定性的数学方程加以描述;4.建立与应用计量经济学模型的主要步骤有哪些答:建立与应用计量经济学模型的主要步骤如下:1设定理论模型,包括选择模型所包含的变量,确定变量之间的数学关系和拟定模型中待估参数的数值范围;2收集样本数据,要考虑样本数据的完整性、准确性、可比性和—致性;3估计模型参数;4检验模型,包括经济意义检验、统计检验、计量经济学检验和模型预测检验;6.模型的检验包括几个方面其具体含义是什么答:模型的检验主要包括:经济意义检验、统计检验、计量经济学检验、模型的预测检验;在经济意义检验中,需要检验模型是否符合经济意义,检验求得的参数估计值的符号与大小是否与根据人们的经验和经济理论所拟订的期望值相符合;在统计检验中,需要检验模型参数估计值的可靠性,即检验模型的统计学性质;在计量经济学检验中,需要检验模型的计量经济学性质,包括随机扰动项的序列相关检验、异方差性检验、解释变量的多重共线性检验等;模型的预测检验主要检验模型参数估计量的稳定性以及对样本容量变化时的灵敏度,以确定所建立的模型是否可以用于样本观测值以外的范围;第二章经典单方程计量经济学模型:一元线性回归模型参考重点:1.相关分析与回归分析的概念、联系以及区别2.总体随机项与样本随机项的区别与联系3.为什么需要进行拟合优度检验4.如何缩小置信区间P46由上式可以看出1.增大样本容量;样本容量变大,可使样本参数估计量的标准差减小;同时,在同样置信水平下,n越大,t分布表中的临界值越小;2提高模型的拟合优度;因为样本参数估计量的标准差和残差平方和呈正比,模型的拟合优度越高,残差平方和应越小;5.以一元线性回归为例,写出β的假设检验1.对总体参数提出假设H 0:=0, H1:2以原假设H0构造t统计量,3由样本计算其值4给定显着性水平,查t分布表得临界值t/2n-2 5比较,判断若 |t|> t /2n-2,则拒绝H0 ,接受H1;若 |t| t /2n-2,则拒绝H 1 ,接受H 0 ;上届重点:一元线性回归模型的基本假设、随机误差项产生的原因、最小二乘法、参数经济意义、决定系数、第二章PPT 里的表中国居民人均消费支出对人均GDP 的回归、t 检验△平方代表意义;△平方的认识、能够读懂Eviews 输出的估计结果第二章课后题1.3.9.101.为什么计量经济学模型的理论方程中必须包含随机干扰项经典模型中产生随机误差的原因答:计量经济学模型考察的是具有因果关系的随机变量间的具体联系方式;由于是随机变量,意味着影响被解释变量的因素是复杂的,除了解释变量的影响外,还有其他无法在模型中独立列出的各种因素的影响;这样,理论模型中就必须使用一个称为随机干扰项的变量宋代表所有这些无法在模型中独立表示出来的影响因素,以保证模型在理论上的科学性;3.一元线性回归模型的基本假设主要有哪些违背基本假设的模型是否不可以估计答:线性回归模型的基本假设有两大类:一类是关于随机干扰项的,包括零均值,同方差,不序列相关,满足正态分布等假设;另一类是关于解释变量的,主要有:解释变量是非随机的,若是随机变量,则与随机干扰项不相关;实际上,这些假设都是针对普通最小二乘法的;在违背这些基本假设的情况下,普通最小二乘估计量就不再是最佳线性无偏估计量,因此使用普通最小二乘法进行估计己无多大意义;但模型本身还是可以估计的,尤其是可以通过最大似然法等其他原理进行估计;假设1. 解释变量X 是确定性变量,不是随机变量;假设2. 随机误差项具有零均值、同方差和不序列相关性:E i =0 i=1,2, …,nVar i =2 i=1,2, …,nCov i, j =0 i≠j i,j= 1,2, …,n假设3. 随机误差项与解释变量X 之间不相关:CovX i , i =0 i=1,2, …,n假设4. 服从零均值、同方差、零协方差的正态分布i ~N0, 2 i=1,2, …,n假设5. 随着样本容量的无限增加,解释变量X 的样本方差趋于一有限常数;即假设6. 回归模型是正确设定的9、10题为计算题,见课本P52,答案见P17第三章 经典单方程计量经济学模型:多元线性回归模型上届重点:F 检验、t 检验 调整的样本决定系数、“多元”里为什么要对△平方系数进行调整第三章课后题1.2.7.1.多元线性回归模型的基本假设是什么在证明最小二乘估计量的无偏性和有效性的过程中,哪些基本假设起了作用答:多元线性回归模型的基本假定仍然是针对随机干扰项与针对解释变量两大类的假设;针对随机干扰项的假设有:零均值,同方差,无序列相关且服从正态分布;针对解释量的假设有;解释变量应具有非随机性,如果后随机的,则不能与随机干扰项相关;各解释变量之间不存在完全线性相关关系;在证明最小二乘估计量的无偏性中,利用了解释变量非随机或与随机干扰项不相关的假定;在有效性的证明中,利用了随机干扰项同方差且无序列相关的假定;2.在多元线性回归分析中,t检验和F检验有何不同在一元线性回归分析中二者是否有等价作用见课本P70答:在多元线性回归分析中,t检验常被用作检验回归方程中各个参数的显着性,而F检验则被用作检验整个回归关系的显着性;各解释变量联合起来对被解释变量有显着的线性关系,并不意味着每一个解释变量分别对被解释变量有显着的线性关系;在一元线性回归分析中,二者具有等价作用,因为二者都是对共同的假设——解释变量的参数等于零一一进行检验;7、9、10题为计算题,见课本P91,答案见P53第四章经典单方程计量经济学模型:放宽基本假定的模型重点掌握:参考重点:1.以多元线性回归为例说明异方差性会产生怎样的后果可能为论述题2.检验、修正异方差性的方法3.以多元线性回归为例说明序列相关会产生怎样的后果预测,矩阵表达式推到4.检验、修正序列相关的方法5.什么是DW检验法前提条件6.以多元线性回归为例说明多重共线性会产生怎样的后果7.检验、修正多重共线性的方法8.随机解释变量问题的三种分类分别造成的后果是什么9.工具变量法的前提假设1与所替代的随机解释变量高度相关2与随机干扰项不相关3与模型中其他解释变量不相关,以避免出现多重共线性上届重点:异方差、序列相关、多重共线性等违背基本假设的情况产生原因、后果、识别方式方法、、广义差分法第四章课后题1、2题为计算题,见课本P134,答案见P84第五章经典单方程计量经济学模型:专门问题上届重点:虚拟变量的含义与设定、滞后变量的含义、为何加入滞后和虚拟变量第五章课后题1.3.4.101.回归模型中引入虚拟变量的作用是什么有哪几种基本的引入方式它们各适合用于什么情况答:在模型中引入虚拟变量,主要是为了寻找某些定性因素对解释变量的影响;加法方式与乘法方式是最主要的引入方式;前者主要适用于定性因素对截距项产生影响的情况,后者主要适用于定性因素对斜率项产生影响的情况;除此外,还可以加法与乘法组合的方式引入虚拟变量,这时可测度定性因素对截距项与斜率项同时产生影响的情况;3.滞后变量模型有哪几种类型分布滞后模型使用OLS方法存在哪些问题答:滞后变量模型有分布滞后模型和自回归模型两大类,前者只有解释变量及其滞后变量作为模型的解释变量,不包含被解释变量的滞后变量作为模型的解释变量;而后者则以当期解释变量与被解释变量的若干期滞后变量作为模型的解释变量;分布滞后模型有无限期的分布滞后模型和有限期的分布滞后模型;自回归模型又以Coyck模型、自适应预期模型和局部调整模型最为多见;分布滞后模型使用OLS法存在以下问题:1对于无限期的分布滞后模型,由于样本观测值的有限性,使得无法直接对其进行估计;2对于有限期的分布滞后模型,使用OLS方法会遇到:没有先验准则确定滞后期长度,对最大滞后期的确定往往带有主观随意性;如果滞后期较长,由于样本容量有限,当滞后变量数目增加时,必然使得自由度减少,将缺乏足够的自由度进行估计和检验;同名变量滞后值之间可能存在高度线性相关,即模型可能存在高度的多重共线性;4.产生模型设定偏误的主要原因是什么模型设定偏误的后果以及检验方法有哪些答:产生模型设定偏误的原因主要有:模型制定者不熟悉相应的理论知识;对经济问题本身认识不够或不熟悉前人的相关工作:模型制定者手头没有相关变量的数据;解释变量无法测量或数据本身存在测量误差;模型设定偏误的后果有:1如果遗漏了重要的解释变量,会造成OLS估计量在小样本下有偏,在大样本下非一致;对随机干扰项的方差估计也是有偏的;2如果包含了无关的解释变量,尽管OLS估计量具有无偏性与一致性,但不具有最小方差性;3如果选择了错误的函数形式,则后果是全方位的,不但会造成估计的参数具有完全不同的经济意义,而且估计结果也不同;对模型设定偏误的检验方法有:检验是否含有无关变量,可以使用t检验与F 检验完成:检验是否有相关变量的遗漏或函数形式设定偏误,可以使用残差图示法,Ramsey提出的RESET检验来完成;10.简述约化建模理论与传统理论的异同点答:Hendry的约化建模理论的核心是“从一般到简单”的建模思想,即首先提出一个包括各种因素在内的“一般”模型,然后再通过观测数据,利用各种检验对模型进行检验并化简,最后得到一个相对简单的模型;传统建模理论的主导思想是“从简单到复杂”的建模思想,它首先提出一个简单的模型,然后从各种可能的备选变量中选择适当的变量进入模型,最后得到一个与数据拟合较好的较为复杂的模型;从二者的主要联系上看,它们都以对经济现象的解释为目标,以已有的经济理论为建模依据,以对数据的拟合程度作为模型优劣的重要的判定标准之一,也都有若干检验标推;从二者的主要区别上看,传统的建模理论往往更依赖于某种单一的经济理论,旧“从一般到简单”的建模理论则更注重将各种不同经济理论纳入到最初的“一般”模型中,甚至更多地是从直觉和经验来建立“一般”的模型;尽管两者都有若干种检验标准,但约化建模理论从实践上有更大量的诊断性检验来看每一步建模的可行性,或寻找改善模型的路径:与传统建模实践中存在的过渡“数据开采”问题相比,由于约化建模理论的初估模型是一个包括所有可能变量的“一般”模型,因此也就避免了过度的“数据开采”问题;另外,由于初始模型的“一般”性,所有研究者在建模的初期往往有着相同的“起点”,因此,在相同的约化程序下,最后得到的最终模型也应该是相同的;而传统建模实践中对同一经济问题往往有各种不同经济理论来解释,如果不同的研究者采用不同的经济理论建模,得到的最终模型也会不同;当然,由于约化建模理论有更多的检验,使得建模过程更复杂,相比之下,传统建模方法则更加“灵活”;第六章联立方程计量经济学模型理论与方法上届重点:内生变量、外生变量、先定变量、结构式模型、简化式模型、参数关系体系、模型识别第六章课后题1.2.3.1.为什么要建立联立方程计量经济学模型联立方程计量经济学模型适用于什么样的经济现象答:经济现象是极为复杂的,其中诸因素之间的关系,在很多情况下,不是单一方程所能描述的那种简单的单向因果关系,而是相互依存,互为因果的,这时,就必须用联立的计量经济学方程才能描述清楚;所以与单方程适用于单一经济现象的研究相比,联立方程计量经济学模型适用于描述复杂的经济现象,即经济系统;2.联立方程计量经济学模型的识别状况可以分为几类其含义各是什么答:联立方程计量经济学模型的识别状况可以分为可识别和不可识别,可识别又分为恰好识别和过度识别;如果联立方程计量经济学模型中某个结构方程不具有确定的统计形式,则称该方程为不可识别,或者根据参数关系体系,在已知简化式参数估计值时,如果不能得到联立方程计量经济学模型中某个结构方程的确定的结构参数估计值,称该方程为不可识别;如果一个模型中的所有随机方程都是可以识别的,则认为该联立方程计量经济学模型系统是可以识别的;反过来,如果一个模型系统中存在一个不可识别的随机方程,则认为该联立方程汁量经济学模型系统是不可以识别的;如果某一个随机方程具有唯一一组参数估计量,称其为恰好识别;如果某一个随机方程具有多组参数估计量,称其为过度识别;3.联立方程计量经济学模型的单方程估计有哪些主要方法其适用条件和统计性质各是什么答:单方程估计的主要方法有:狭义的工具变量法IV,间接最小二乘法ILS,两阶段最小二乘法2SLS;狭义的工具变量法IV和间接最小二乘法ILS只适用于恰好识别的结构方程的估计;两阶段最小二乘法2SLs既适用于恰好识别的结构方程,又适用于过度识别的结构方程;用工具变量法估计的参数,一般情况下,在小样本下是有偏的,但在大样本下是渐近无偏的;如果选取的工具变量与方程随机干扰项完全不相关,那么其参数估计量是无偏估计量;对于间接最小二乘法,对简化式模型应用普通最小二乘法得到的参数估计量具有线性性、无偏性、有效性;通过多数关系体系计算得到结构方程的结构参数估计量在小样本下是有偏的,在大样本下是渐近无偏的;采用二阶段最小二乘法得到结构方程的结构参数估计量在小样本下是有偏的,在大样本下是渐近无偏的;补充资料计算题一给出多元线性回归的结果1.判断模型估计的结果如何,拟合效果如何2.说明每一个参数所代表的经济意义3.判断有没有违背四个基本假设计算题二给出数值,计算:1.t检验,F检验的自由度2.在给定显着性水平下参数是否显着3.估计值是有偏、无偏、有效计算题三加入虚拟变量D1,D2,D3问:虚拟变量的经济含义。
计量经济学简答题
计量经济学简答题第一章绪论(一)基本知识类题型1-1.什么是计量经济学?1-2.简述当代计量经济学发展的动向。
1-3.计量经济学方法与一般经济数学方法有什么区别?1-4.为什么说计量经济学是经济理论、数学和经济统计学的结合?试述三者之关系。
1-5.为什么说计量经济学是一门经济学科?它在经济学科体系中的作用和地位是什么?1-6.计量经济学的研究的对象和内容是什么?计量经济学模型研究的经济关系有哪两个基本特征?1-7.试结合一个具体经济问题说明建立与应用计量经济学模型的主要步骤。
1-8.建立计量经济学模型的基本思想是什么?1-9.计量经济学模型主要有哪些应用领域?各自的原理是什么?1-10.试分别举出五个时间序列数据和横截面数据,并说明时间序列数据和横截面数据有和异同?1-11.试解释单方程模型和联立方程模型的概念,并举例说明两者之间的联系与区别。
1-12.模型的检验包括几个方面?其具体含义是什么?1-13.常用的样本数据有哪些?1-14.计量经济模型中为何要包括随机误差项?简述随机误差项形成的原因。
1-15.估计量和估计值有何区别?哪些类型的关系式不存在估计问题?1-16.经济数据在计量经济分析中的作用是什么?1-20.模型参数对模型有什么意义?习题参考答案第一章绪论1-1.答:计量经济学是经济学的一个分支学科,是以揭示经济活动中客观存在的数量关系为内容的分支学科,是由经济学、统计学和数学三者结合而成的交叉学科。
1-2.答:计量经济学自20年代末、30年代初形成以来,无论在技术方法还是在应用方面发展都十分迅速,尤其是经过50年代的发展阶段和60年代的扩张阶段,使其在经济学科占据重要的地位,主要表现在:①在西方大多数大学和学院中,计量经济学的讲授已成为经济学课程表中有权威的一部分;②从1969~2003年诺贝尔经济学奖的XX位获奖者中有XX位是与研究和应用计量经济学有关;著名经济学家、诺贝尔经济学奖获得者萨缪尔森甚至说:“第二次世界大战后的经济学是计量经济学的时代”。
计量经济学考试重点整理
计量经济学考试重点整理第一章:P1:什么是计量经济学?由哪三组组成?定义:“用数学方法探讨经济学可以从好几个方面着手,但任何一个方面都不能和计量经济学混为一谈。
计量经济学与经济统计学绝非一码事;它也不同于我们所说的一般经济理论,尽管经济理论大部分具有一定的数量特征;计量经济学也不应视为数学应用于经济学的同义语。
经验表明,统计学、经济理论和数学这三者对于真正了解现代经济生活的数量关系来说,都是必要的,但本身并非是充分条件。
三者结合起来,就是力量,这种结合便构成了计量经济学。
”P9:理论模型的设计主要包含三部分工作,即选择变量,确定变量之间的数学关系,拟定模型中待估计参数的数值范围。
P12:常用的样本数据:时间序列,截面,虚变量数据P13:样本数据的质量(4点)完整性;准确性;可比性;一致性P15-16:模型的检验(4个检验)1、经济意义检验2、统计检验拟合优度检验总体显著性检验变量显著性检验3、计量经济学检验异方差性检验序列相关性检验共线性检验4、模型预测检验稳定性检验:扩大样本重新估计预测性能检验:对样本外一点进行实际预测P16计量经济学模型成功的三要素:理论、方法和数据。
P18-20:计量经济学模型的应用1、结构分析经济学中的结构分析是对经济现象中变量之间相互关系的研究。
结构分析所采用的主要方法是弹性分析、乘数分析与比较静力分析。
计量经济学模型的功能是揭示经济现象中变量之间的相互关系,即通过模型得到弹性、乘数等。
2、经济预测计量经济学模型作为一类经济数学模型,是从用于经济预测,特别是短期预测而发展起来的。
计量经济学模型是以模拟历史、从已经发生的经济活动中找出变化规律为主要技术手段。
对于非稳定发展的经济过程,对于缺乏规范行为理论的经济活动,计量经济学模型预测功能失效。
模型理论方法的发展以适应预测的需要。
3、政策评价政策评价是指从许多不同的政策中选择较好的政策予以实行,或者说不同的政策对经济目标所产生的影响的差异。
计量经济学重点(简答论述题)
计量经济学重点(简答论述题)计量经济学简答题重点一、计量经济学的定义及作用计量经济学,又称经济计量学,是基于经济理论和实际统计资料,利用数学、统计学和计算机技术建立模型,定量分析经济变量之间的随机因果关系的学科。
其作用在于提供科学的方法和工具,帮助经济学家和政策制定者更好地理解和预测经济现象,评估政策效果,推动经济理论的发展。
二、计量经济学研究步骤计量经济学研究步骤包括理论模型的设计、数据获取、模型参数估计、模型检验和模型应用。
其中,理论模型的设计需要明确理论或假说的陈述,建立数学模型和计量经济模型。
数据获取需要注意完整性、准确性、可比性和一致性。
模型参数估计采用普通最小二乘法。
模型检验包括经济学检验、统计学检验和计量经济学检验。
模型应用包括结构分析、经济预测、政策评价和经济理论的检验与发展。
三、统计数据的类别及注意事项统计数据的类别包括时间序列数据、截面数据、混合数据和虚变量数据。
时间序列数据是按时间先后排列收集的数据,需要注意样本区间的经济行为一致性、可比性和集中性以及随机误差项序列相关问题。
截面数据是一批发生在同一时间截面上的调查数据,需要注意样本与母体的一致性和随机误差项的异方差问题。
混合数据既有时间序列数据又有截面数据。
虚变量数据只能取和1两个值,表示某个对象的质量特征。
四、模型的检验内容及含义模型的检验包括经济学检验、统计学检验和计量经济学检验。
经济学检验主要检验参数的符合和大致取值。
统计学检验包括拟合优度检验、模型的显著性检验和参数的显著性检验。
计量经济学检验包括序列相关性、异方差检验和多重共线性检验。
模型的预测检验可通过扩大样本容量或变换样本重新估价模型,或利用模型对样本期以外的某一期进行预测。
五、回归分析和相关分析的联系与区别回归分析是一种数学方法,用于研究变量之间的依赖关系,以解释变量和解释变量为基础。
相关分析也是研究变量间关系的方法,但不考虑因果关系,只关注变量之间的相关程度。
计量经济学名词解释和简答题
计量经济学第一部分:名次解释第一章1、模型:对现实的描述和模拟。
2、广义计量经济学:利用经济理论、统计学和数学定量研究经济现象的经济计量方法的统称,包括回归分析方法、投入产出分析方法、时间序列分析方法等。
3、狭义计量经济学:以揭示经济现象中的因果关系为目的,在数学上主要应用回归分析方法。
第二章1、总体回归函数:指在给定Xi 下Y 分布的总体均值与Xi 所形成的函数关系(或者说总体被解释变量的条件期望表示为解释变量的某种函数)。
2、样本回归函数:指从总体中抽出的关于Y ,X 的若干组值形成的样本所建立的回归函数。
3、随机的总体回归函数:含有随机干扰项的总体回归函数(是相对于条件期望形式而言的)。
4、线性回归模型:既指对变量是线性的,也指对参数β为线性的,即解释变量与参数β只以他们的1次方出现。
5、随机干扰项:即随机误差项,是一个随机变量,是针对总体回归函数而言的。
6、残差项:是一随机变量,是针对样本回归函数而言的。
7、条件期望:即条件均值,指X 取特定值Xi 时Y 的期望值。
8、回归系数:回归模型中βo ,β1等未知但却是固定的参数。
9、回归系数的估计量:指用01,ββ等表示的用已知样本提供的信息所估计出来总体未知参数的结果。
10、最小二乘法:又称最小平方法,指根据使估计的剩余平方和最小的原则确定样本回归函数的方法。
11、最大似然法:又称最大或然法,指用生产该样本概率最大的原则去确定样本回归函数的方法。
12、估计量的标准差:度量一个变量变化大小的测量值。
13、总离差平方和:用TSS 表示,用以度量被解释变量的总变动。
14、回归平方和:用ESS 表示:度量由解释变量变化引起的被解释变量的变化部分。
15、残差平方和:用RSS 表示:度量实际值与拟合值之间的差异,是由除解释变量以外的其他因素引起的被解释变量变化的部分。
16、协方差:用Cov (X ,Y )表示,度量X,Y 两个变量关联程度的统计量。
17、拟合优度检验:检验模型对样本观测值的拟合程度,用2R 表示,该值越接近1,模型对样本观测值拟合得越好。
计量经济学重点(简答题)
计量经济学重点(简答题)计量经济学重点(简答题)一、什么就是计量经济学?计量经济学,又称经济计量学,它就是以一定得经济理论与实际统计资料为依据,运用数学、统计学与计算机技术,通过建立计量经济学模型,定量分析经济变量之间得随机因果关系、.二、计量经济学得研究得步骤就是什么?1)理论模型得设计A.理论或假说得陈述;B.理论得数学模型得设定;C.理论得计量经济模型得设定.i.把模型中不重要得变量放进随机误差项中;ii.拟定待估参数得理论期望值。
2)获取数据数据来源:网络、统计年鉴、报纸、杂志数据类别:时间序列数据、截面数据、混合数据、虚变量数据。
数据要求:完整性、准确性、可比性、一致性i.完整性:模型中包含得所有变量都必须得到相同容量得样本观察值。
ii.准确性:统计数据或调查数据本身就是准确得.iii.可比性:数据口径问题。
iv.一致性:指母体与样本得一致性。
3)模型得参数估计:普通最小二乘法。
4)模型得检验:经济学检验;统计学检验;计量经济学检验;模型得预测检验。
5)模型得应用:结构分析;经济预测;政策评价;经济理论得检验与发展。
三、简述统计数据得类别?时间序列数据、截面数据、混合数据、虚变量数据。
1)时间序列数据:按时间先后排列收集得数据.采纳时间序列数据得注意事项:A.所选择得样本区间得经济行为一致性问题。
B.样本数据在不同样本点之间得可比性问题。
C.样本数据过于集中得问题。
不能反映经济变量间得结构关系,应增大观察区间。
D.模型得随机误差项序列相关问题.2)截面数据:又称横向数据,就是一批发生在同一时间截面上得调查数据。
研究某时点上得变化情况。
采纳截面数据得注意事项:A.样本与母体得一致性问题。
B.随机误差项得异方差问题。
3)混合数据:也称面板数据,既有时间序列数据,又有截面数据.4)虚变量数据:又称二进制数据,只能取0与1两个值,表示得就是某个对象得质量特征.四、模型得检验包括哪几个方面?具体含义就是什么?1)经济学检验:参数得符合与大致取值。
计量经济学知识点总结+名词解释重点+简答题
计量经济学知识点总结什么是OLS估计?原理ols估计是指样本回归函数尽可能好的拟合这组织,即样本回归线上的点与真实观测点的总体误差尽可能小的估计方法。
一、什么是计量经济学?答:计量经济学以经济理论为指导,以事实为依据,以数学和统计学为方法,以电脑技术为工具,从事经济关系与及经济活动数量规律的研究,并以建立和应用随机性的经济计量模型为核心的一门经济学科。
计量经济学模型揭示经济活动中各种因素之间的定量关系,用随机性的数量方程加以描述。
二、建立计量经济学模型的步骤和要点1.理论模型的设计(确定模型所包含的变量,确定模型的数量形式,拟定理论模型中的待估参数的理论期望值)2.样本数据的收集(常用的样本数据:时间序列数据,截面数据,虚变量数据)3.模型参数的估计(选择模型参数估计方法,应用软件的使用)4.模型的检验模型的检验包括几个方面?其具体含义是什么?答:模型的检验主要包括:经济意义检验、统计检验、计量经济学检验、模型的预测检验。
经济意义检验——需要检验模型是否符合经济意义,检验求得的参数估计值的符号与大小是否与根据人们的经验和经济理论所拟订的期望值相符合;统计检验——需要检验模型参数估计值的可靠性,即检验模型的统计学性质;计量经济学检验——需要检验模型的计量经济学性质,包括随机扰动项的序列相关检验、异方差性检验、解释变量的多重共线性检验等;模型的预测检验——主要检验模型参数估计量的稳定性以及对样本容量变化时的灵敏度,以确定所建立的模型是否可以用于样本观测值以外的范围。
5.模型成功的三要素:理论、方法、数据三、计量经济学模型的应用方面(功能)答:结构分析,经济预测,政策评价,检验与发展经济理论四、引入随机干扰项的原因,内容?原因:1.代表未知的影响因素2.代表数据观测误差3.代表残缺数据4.代表模型设定误差5.代表众多细小影响因素6.变量的内在随机性内容:1.被遗漏的影响因素(由于研究者对客观经济现象了解不充分,或是由于经济理论上的不完善,以至于使研究者在建立模型时遗漏了一些对被解释变量有重要影响的变量);2.变量的测量误差(在观察和测量变量时,种种原因使观测值并不等于他的真实值而造成的误差);3.随机误差(在影响被解释变量的诸因素中,还有一些不能控制的因素);4.模型的设定误差(在建立模型时,由于把非线性关系线性化,或者略去模型)五、什么是随机误差项和残差,他们之间的区别是什么随机误差项u=Y-E(Y/X),而总体回归函数Y=Y^+e,其中e就是残差,利用Y^估计Y时带来的误差e=Y-Y^是对随机变量u的估计六、一元线性回归模型的基本假设主要有哪些?违背基本假设是否就不能进行估计1.回归模型是正确设定的;2.解释变量X是确定性变量不是随机变量;在重复抽样中取固定值。
计量经济学基本概念 -回复
计量经济学基本概念-回复什么是计量经济学?从宏观到微观,它是怎样研究经济现象的?本文将逐步回答这些问题。
首先,计量经济学是研究经济现象的一门学科,旨在通过使用统计方法和数学模型来理解经济学中的各种现象和问题。
与其他经济学分支不同,计量经济学主要关注于对经济现象进行定量分析和预测。
计量经济学的研究方法可以分为宏观和微观两个层面。
在宏观层面,计量经济学主要关注国家或地区的整体经济活动。
它使用宏观经济模型来研究宏观经济现象,如经济增长、通货膨胀、失业等。
这些模型通常基于宏观经济理论,如凯恩斯经济学或新古典经济学。
在微观层面,计量经济学研究个体经济单位(如家庭、企业或市场)的行为和决策。
它使用微观经济模型来分析个体决策的动机和结果,例如供求关系、市场均衡等。
这些模型通常基于微观经济理论,如消费理论、生产理论等。
计量经济学研究中使用了大量的统计方法和数学模型。
统计方法包括假设检验、回归分析、时间序列分析等。
这些方法可以帮助研究人员从经济数据中提取有关经济现象的信息,并进行定量分析。
数学模型则是一种形式化的理论表达方式,通过建立数学方程或模型来描述经济现象的关系,从而推理和预测经济行为。
计量经济学的研究主题非常广泛。
它涉及到经济增长、发展经济学、劳动经济学、金融经济学、国际经济学等方面的问题。
例如,在研究经济增长方面,计量经济学可以通过分析国家收入数据和其他影响因素,来研究经济增长的驱动力和影响因素。
在劳动经济学中,计量经济学可以用来研究工资决定因素、就业和失业率等问题。
为了有效进行计量经济学研究,研究人员需要收集和处理大量的经济数据。
这些数据可以是宏观经济数据(如国内生产总值、失业率等),也可以是微观经济数据(如家庭收入、企业销售额等)。
研究人员需要使用适当的统计方法和模型来分析这些数据,并得出有关经济现象的结论。
在计量经济学研究中,数据和模型的选择至关重要。
对于数据的选择,研究人员需要确保数据质量可靠,且能够反映研究问题的本质。
计量学复习资料(经济类)
《计量经济学》复习题(含答案)第一章绪论一、填空题:1.计量经济学是以揭示经济活动中客观存在的__________为内容的分支学科,挪威经济学家弗里希,将计量经济学定义为__________、__________、__________三者的结合。
2.数理经济模型揭示经济活动中各个因素之间的__________关系,用__________性的数学方程加以描述,计量经济模型揭示经济活动中各因素之间的_________关系,用__________性的数学方程加以描述。
3.经济数学模型是用__________描述经济活动。
4.计量经济学根据研究对象和内容侧重面不同,可以分为__________计量经济学和__________计量经济学。
5.计量经济学模型包括__________和__________两大类。
6.建模过程中理论模型的设计主要包括三部分工作,即选择变量、确定变量之间的数学关系、拟定模型中待估计参数的取值范围。
7.确定理论模型中所包含的变量,主要指确定__________。
8.可以作为解释变量的几类变量有_外生经济_变量、_外生条件_变量、_外生政策_变量和_滞后被解释_变量。
9.选择模型数学形式的主要依据是_经济行为理论_。
10.研究经济问题时,一般要处理三种类型的数据:_时间序列_数据、_截面_数据和_虚变量_数据。
11.样本数据的质量包括四个方面_完整性_、_可比性_、_准确性_、_一致性_。
12.模型参数的估计包括_对模型进行识别_、_估计方法的选择_和软件的应用等内容。
13.计量经济学模型用于预测前必须通过的检验分别是_经济意义_检验、_统计_检验、_计量经济学_检验和_预测_检验。
14.计量经济模型的计量经济检验通常包括随机误差项的_异方差_检验、_序列相关_检验、解释变量的_多重共线性_检验。
15.计量经济学模型的应用可以概括为四个方面,即_结构分析_、_经济预测_、_政策评价_、_检验和发展经济理论_。
计量经济学知识点(超全版)
1.经济变量:经济变量是用来描述经济因素数量水平的指标。
(3分)2.解释变量:是用来解释作为研究对象的变量(即因变量)为什么变动、如何变动的变量。
(2分)它对因变量的变动做出解释,表现为方程所描述的因果关系中的“因”。
(1分)3.被解释变量:是作为研究对象的变量。
(1分)它的变动是由解释变量做出解释的,表现为方程所描述的因果关系的果。
(2分)4.内生变量:是由模型系统内部因素所决定的变量,(2分)表现为具有一定概率分布的随机变量,是模型求解的结果。
(1分)5.外生变量:是由模型系统之外的因素决定的变量,表现为非随机变量。
(2分)它影响模型中的内生变量,其数值在模型求解之前就已经确定。
(1分)6.滞后变量:是滞后内生变量和滞后外生变量的合称,(1分)前期的内生变量称为滞后内生变量;(1分)前期的外生变量称为滞后外生变量。
(1分)7.前定变量:通常将外生变量和滞后变量合称为前定变量,(1分)即是在模型求解以前已经确定或需要确定的变量。
(2分)8.控制变量:在计量经济模型中人为设置的反映政策要求、决策者意愿、经济系统运行条件和状态等方面的变量,(2分)它一般属于外生变量。
(1分)9.计量经济模型:为了研究分析某个系统中经济变量之间的数量关系而采用的随机代数模型,(2分)是以数学形式对客观经济现象所作的描述和概括。
(1分)10.函数关系:如果一个变量y的取值可以通过另一个变量或另一组变量以某种形式惟一地、精确地确定,则y与这个变量或这组变量之间的关系就是函数关系。
(3分)11.相关关系:如果一个变量y的取值受另一个变量或另一组变量的影响,但并不由它们惟一确定,则y与这个变量或这组变量之间的关系就是相关关系。
(3分)12.最小二乘法:用使估计的剩余平方和最小的原则确定样本回归函数的方法,称为最小二乘法。
(3分)13.高斯-马尔可夫定理:在古典假定条件下,OLS估计量是模型参数的最佳线性无偏估计量,这一结论即是高斯-马尔可夫定理。
计量经济学题库(超完整版)及答案
计量经济学题库(超完整版)及答案四、简答题(每⼩题5分)1.简述计量经济学与经济学、统计学、数理统计学学科间的关系。
2.计量经济模型有哪些应⽤?3.简述建⽴与应⽤计量经济模型的主要步骤。
4.对计量经济模型的检验应从⼏个⽅⾯⼊⼿?5.计量经济学应⽤的数据是怎样进⾏分类的? 6.在计量经济模型中,为什么会存在随机误差项?7.古典线性回归模型的基本假定是什么? 8.总体回归模型与样本回归模型的区别与联系。
9.试述回归分析与相关分析的联系和区别。
10.在满⾜古典假定条件下,⼀元线性回归模型的普通最⼩⼆乘估计量有哪些统计性质? 11.简述BLUE 的含义。
12.对于多元线性回归模型,为什么在进⾏了总体显著性F 检验之后,还要对每个回归系数进⾏是否为0的t 检验?13.给定⼆元回归模型:01122t t t t y b b x b x u =+++,请叙述模型的古典假定。
14.在多元线性回归分析中,为什么⽤修正的决定系数衡量估计模型对样本观测值的拟合优度?15.修正的决定系数2R 及其作⽤。
16.常见的⾮线性回归模型有⼏种情况?17.观察下列⽅程并判断其变量是否呈线性,系数是否呈线性,或都是或都不是。
①t t t u x b b y ++=310 ②t t t u x b b y ++=log 10③ t t t u x b b y ++=log log 10 ④t t t u x b b y +=)/(1018. 观察下列⽅程并判断其变量是否呈线性,系数是否呈线性,或都是或都不是。
①t t t u x b b y ++=log 10 ②t t t u x b b b y ++=)(210③ t t t u x b b y +=)/(10 ④t b t t u x b y +-+=)1(11019.什么是异⽅差性?试举例说明经济现象中的异⽅差性。
20.产⽣异⽅差性的原因及异⽅差性对模型的OLS 估计有何影响。
(整理)计量经济学-参考答案
(整理)计量经济学-参考答案⼀、解释概念:1、多重共线性:是指在多元线性回归模型中,解释变量之间存在的线性关系。
2、SRF:就是样本回归函数。
即是将样本应变量的条件均值表⽰为解释变量的某种函数。
3、解释变量的边际贡献:在回归模型中新加⼊⼀个解释变量所引起的回归平⽅和或者拟合优度的增加值。
4、⼀阶偏相关系数:反映⼀个经济变量与某个经济变量的线性相关程度时,剔除另⼀个变量对它们的影响的真实相关程度的指标。
5、最⼩⽅差准则:在模型参数估计时,应当选择其抽样分布具有最⼩⽅差的估计式,该原则就是最佳性准则,或者称为最⼩⽅差准则。
6、OLS:普通最⼩⼆乘估计。
是利⽤残差平⽅和为最⼩来求解回归模型参数的参数估计⽅法。
7、偏相关系数:反映⼀个经济变量与某个经济变量的线性相关程度时,剔除其它变量(部分或者全部变量)对它们的影响的真实相关程度的指标。
8、WLS:加权最⼩⼆乘法。
是指估计回归⽅程参数时,按照残差平⽅加权求和最⼩的原则进⾏的估计⽅法。
9、U t⾃相关:即回归模型中随机误差项逐项值之间的相关。
即Cov(U t,U s)≠0 t ≠s。
10、⼆阶偏相关系数:反映⼀个经济变量与某个经济变量的线性相关程度时,剔除另两个变量对它们的影响的真实相关程度的指标。
11、技术⽅程式:根据⽣产技术关系建⽴的计量经济模型。
13、零阶偏相关系数:反映⼀个经济变量与某个经济变量的线性相关程度时,不剔除任何变量对它们的影响的相关程度的指标。
也就是简单相关系数。
14、经验加权法:是根据实际经济问题的特点及经验判断,对滞后经济变量赋予⼀定的权数,利⽤这些权数构成各滞后变量的线性组合,以形成新的变量,再⽤最⼩⼆乘法进⾏参数估计的有限分布滞后模型的修正估计⽅法。
15、虚拟变量:在计量经济学中,我们把取值为0和1 的⼈⼯变量称为虚拟变量,⽤字母D表⽰。
(或称为属性变量、双值变量、类型变量、定性变量、⼆元型变量)16、不完全多重共线性:是指在多元线性回归模型中,解释变量之间存在的近似的线性关系。
计量经济学复习资料——概念和问答
计量经济学复习资料——概念和问答计量经济学复习资料⼀、基本概念1、计量经济学以经济理论为指导,以事实为依据,以数学和统计推断为⽅法,以电脑技术为⼯具,以建⽴经济计量模型为⼿段,定量分析研究具有随机性特征的经济变量关系的经济学科。
2、相关关系当⼀个或⼏个相互联系的变量取⼀定的数值时,与之相对应的另⼀变量的值虽然不确定,但它仍按某种规律在⼀定的范围内变化。
3、因果关系⼀个变量(y)的变化是另⼀个变量(x)的变化所引起的,这两个变量间的关系称为因果关系4、解释变量影响研究对象的变量,它解释了研究对象的变动。
5、被解释变量是作为研究对象的变量,⼜称因变量。
它的变动是由解释变量做出的解释。
6、总体回归线在给定解释变量Xi 条件下因变量Yi 的条件均值或期望的轨迹。
7、总体回归函数:总体回归线所对应的函数E(Y/X i )=f(X i )称为总体回归函数。
总体回归函数(PRF )说明被解释变量Y 的平均状态(总体条件期望)随解释变量X 变化的规律。
8、拟合优度检验:就是检验模型对样本观测值的拟合程度。
(拟合优度检验的⽅法:通过构造⼀个可以表征拟合程度的统计量来实现。
)9、判定系数2r :是告诉⼈们样本回归函数对数据拟合效果的⼀个总度量。
2r 表⽰在Y 的总变异中由回归模型解释的那个部分所占的⽐例或百分⽐。
10、调整后的判定系数:由于增加解释变量个数引起的R 2的增⼤与拟合好坏⽆关,从⽽对2R 所进⾏的调整。
调整的思路是:将残差平⽅和与总离差平⽅和分别除以各⾃的⾃由度,以剔除变量个数对拟合优度的影响:22222211)1(1)1/()/(1Y i i Se k n n R n y k n uR ΛΛΛ--=----=---=∑∑δ 11、置信区间:求两个正数δ和)1,0(,∈αα,使得随机区间),(22δβδβ+-ΛΛ包含真实2β的概率为α-1,如果这样的区间存在,就被称为置信区间。
12、偏回归系数:在多元回归i i i i u X X Y+++=33221βββ中,2β、3β称为偏回归系数。
计量经济学必备知识点总结
计量经济学必备知识点总结一、基本概念1. 变量与参数:在计量经济学中,经济模型通常会涉及到各种变量和参数,其中变量是指可以随着时间或其他因素而变化的量,而参数是指在模型中不变的常量。
2. 线性关系与非线性关系:线性关系是指两个变量之间的关系可以用一条直线来表示,而非线性关系则不符合这一特点。
3. 动态关系与静态关系:动态关系是指变量之间的关系随着时间的推移而变化,而静态关系则在一个时间点上成立。
二、假设检验1. 假设检验的基本逻辑:假设检验是计量经济学中最基本的一种统计推断方法,其基本逻辑是通过对样本数据进行分析,判断某一经济理论假设的合理性。
2. 一类和二类错误:在假设检验中,如果我们拒绝了一个实际上是真实的假设,就犯了一类错误;而如果我们接受了一个实际上是错误的假设,就犯了二类错误。
三、最小二乘法1. 最小二乘估计的基本原理:最小二乘法是一种常用的参数估计方法,其基本原理是选择使得残差平方和最小的参数值作为估计值。
2. 普通最小二乘法和加权最小二乘法:普通最小二乘法是指在残差的平方和最小化的情况下对参数进行估计,而加权最小二乘法则是在普通最小二乘法的基础上引入了加权因素。
3. 最小二乘估计的性质:最小二乘估计具有无偏性、有效性和一致性等重要性质。
四、多元回归分析1. 多元回归模型的建立:在多元回归分析中,我们通常会建立包括多个自变量和一个因变量的回归模型,用来描述自变量对因变量的影响。
2. 多元回归模型的识别:在多元回归分析中,识别问题是指通过样本数据估计出的回归系数能否代表总体数据中的真实关系。
五、时间序列分析1. 时间序列数据的特点:时间序列数据是指在一段时间内观察到的一系列数据,其特点包括趋势、季节性和周期性等。
2. 平稳性的检验:在时间序列分析中,平稳性是一个重要的假设,其检验包括单位根检验和差分平稳性检验等方法。
3. ARMA模型和ARCH模型:ARMA模型是时间序列数据的经典模型,用来描述时间序列数据的自回归和移动平均关系;而ARCH模型则是用来描述时间序列数据的异方差性。
计量经济学复习题(含答案)
• (4)在同一个图中,做出SRF和PRF。
• (5) SRF和PRF相同吗?为什么? • 两者非常接近,但很明显两者并不相同。
第二部分 简单线性回归模型:假 设检验
• 2.1 解释概念 • (1)最小二乘法;(2)OLS估计量;(3)估计量的方 差;(4)估计量的标准误;(5)同方差性;(6)异方 差性;(7)自相关;(8)总平方和(SST);(9)解释平 方和(SSE);(10)残差平方和(SSR);(11)判定系数 ;(12)估计值的标准误;(13)BLUE; • (14)显著性检验;(15)t检验;(16)F检验;(17)单 边检验;(15)双边检验;(19)统计显著。
• (12)t检验:
• 基于t分布的条件假设检验过程。
• (13)单边检验: • 当对立假设是单边假设时,称该检验为单 边检验。例如:虚拟假设为
H 0 : j 0, 那么单边对立假设为H1: j 0或 j 0
• (14)双边检验:当对立假设是双边假设时, 称该检验为双边检验。例如:虚拟假设为
• 1.6 下表列出了若干对自变量与因变量。对 每一对变量,它们之间的关系如何?是正 的?负的?还是无法确定?也就是说,其 斜率是正还是负,或都不是?说明理由。
序号 1
因变量 GDP
自变量 利率
序号 5
因变量 总统声誉
自变量 任职时间
2
个人储蓄
利率
6
学生第一 年GPA分 数 学生经济 计量学成 绩
• 答:就像经济理论中的完全竞争模型一样 ,总体回归函数也是一个理论化的、理想 化的模型,在现实中很难得到。但是这样 一个理想化的模型有助于我们把握所研究 问题的本质。
1.4判断正误并说明理由。
计量经济学名词解释与问答题
一:名词解释第二章:(1)总体回归函数(2)样本回归函数(3)拟合优度检验(4)线性回归模型(5)残差平方和(6)回归平方和第三章:(7)多元线性回归模型(8)受约束回归(9)无约束回归(10)调整的多元可决系数2R 第四章:(11)异方差性(12)多重共线性(13)序列相关性(14)随机解释变量问题(15)D.W.检验(16)广义最小二乘法第五章:(17)虚拟变量(18)滞后变量(19)自回归模型(20)分布滞后模型问答题:第一章:绪论1、什么是计量经济学?2、计量经济学方法与一般经济数学方法有什么区别?3、模型的检验包括哪些方面?4、计量经济模型分析经济问题的基本步骤。
第二章:一元线性回归模型5、线性回归模型,1,2,,i i i Y X i n αβμ=++= 的零均值假设是否可以表示为110n i i n μ==∑?为什么? 6、为什么计量经济学模型的理论方程中必须包含随机干扰项?7、简述相关分析和回归分析的联系与区别。
8、以一元线性回归为例叙述普通最小二乘回归的基本原理。
9、一元线性回归模型的基本假设主要有哪些?违背基本假设的计量经济学模型是否就不可以估计?第三章 多元线性回归模型10、在多元线性回归分析中,t 检验与F 检验有何不同?在一元线性回归分析中两者是否有等价的作用?11、为什么说对模型参数施加约束条件后,其回归的残差平方和一定不比未施加约束的残差平方和小?在什么条件下,受约束回归与无约束回归的结果相同?12、多元线性回归模型和一元线性回归模型有哪些区别?13、在多元线性回归模型中,为什么说最小二乘估计量是最优的线性无偏估计量?对于多元线性回归最小二乘估计的正规方程组,能解出惟一的参数估计的条件是什么?第四章:放宽基本假定的模型14、使用加权最小二乘法必须先进行异方差性检验吗?15、简述D.W.检验的步骤。
16、什么是多重共线性,检验多重共线性的的方法思路是什么?有哪些克服方法?17、试比较说明模型存在异方差时,OLS与加权最小二乘法的区别与联系。
计量经济学问答
1.什么是计量经济学?计量经济学的特点是什么?计量经济学是以经济理论为指导,经济事实为依据,运用数理统计方法,通过建立经济计量模型,来研究具有随机特性的经济关系和经济规律的经济学分支学科特点:①计量性:以客观数据为基础、定量分析经济现象,用数学关系式表达经济规律②模型化:建立与运用经济模型是本学科的核心③随机性:注重经济变量之间的随机性特征,是本学科的显著特点。
④实证性:不是从概念出发,而是从先验的理论或经验出发,建立数学模型,并估计检验、修正,从而检验经济理论古典经济学家注重的是经济要素之间的实质性的关系,而计量经济学则主要注重经济要素之间量的变化关系。
计量经济学引入了自然科学的分析方法:用实际数据来论证其理论的正确性,使经济学的分析更加量化,科学化。
2.计量经济学与其他相关学科的关系1.与经济理论之间的关系-计量经济学以经济理论和经济规律为依据;-计量经济分析的结果:对经济理论加以验证、充实、完善。
区别:-经济理论一般不提供经济关系数量上的度量;-计量经济学研究经济现象和经济关系的数量规律2.数理经济学与计量经济学的关系数理经济学把经济关系用数学方程式来表达。
计量经济学根据实际的统计数据估计方程式中参数的具体数值,说明所研究的经济关系的数量特征;-数理经济学引入的变量不一定能度量。
计量经济学中的变量都是可直接观测的;-数理经济学把经济变量间的关系视为精确的函数关系。
计量经济学把误差作为随机变量引入模型。
3.计量经济学与经济统计学的关系联系:-经济统计也是对经济现象的一种计量,侧重于对社会经济现象的描述-提供的数据是计量经济学据以估计参数、验证经济理论的基本依据-经济现象不能作实验,只能被动地观测客观经济现象变动的既成事实,只能依赖于经济统计数据区别:-经济统计学主要用统计指标和统计分析方法对经济现象进行计量-计量经济学主要利用数理统计方法对经济变量间的关系进行计量4.计量经济学与数理统计学的关系数理统计学是研究随机变量统计规律性的学科联系:数理统计学是计量经济学的方法论基础;区别:数理统计学在标准假定下抽象地研究一般的随机变量的统计规律性,计量经济学是从经济模型出发,研究模型参数的估计和推断,参数有特定的经济意义,标准假定经常不能满足,需要建立专门的经济计量方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计量经济学复习资料——概念和问答计量经济学复习资料一、基本概念1、计量经济学以经济理论为指导,以事实为依据,以数学和统计推断为方法,以电脑技术为工具,以建立经济计量模型为手段,定量分析研究具有随机性特征的经济变量关系的经济学科。
2、相关关系当一个或几个相互联系的变量取一定的数值时,与之相对应的另一变量的值虽然不确定,但它仍按某种规律在一定的范围内变化。
3、因果关系一个变量(y)的变化是另一个变量(x)的变化所引起的,这两个变量间的关系称为因果关系4、解释变量影响研究对象的变量,它解释了研究对象的变动。
5、被解释变量是作为研究对象的变量,又称因变量。
它的变动是由解释变量做出的解释。
6、总体回归线在给定解释变量Xi条件下因变量Yi的条件均值或期望的轨迹。
7、总体回归函数:总体回归线所对应的函数E(Y/X i)=f(X i)称为总体回归函数。
总体回归函数(PRF)说明被解释变量Y的平均状态(总体条件期望)随解释变量X变化的规律。
8、拟合优度检验:就是检验模型对样本观测值的拟合程度。
(拟合优度检验的方法:通过构造一个可以表征拟合程度的统计量来实现。
)9、判定系数2r:是告诉人们样本回归函数对数据拟合效果的一个总度量。
2r表示在Y的总变异中由回归模型解释的那个部分所占的比例或百分比。
10、调整后的判定系数:由于增加解释变量个数引起的R2的增大与拟合好坏无关,从而对2R所进行的调整。
调整的思路是:将残差平方和与总离差平方和分别除以各自的自由度,以剔除变量个数对拟合优度的影响:22222211)1(1)1/()/(1YiiSeknnRnyknuRΛΛΛ--=----=---=∑∑δ11、置信区间:求两个正数δ和)1,0(,∈αα,使得随机区间),(22δβδβ+-ΛΛ包含真实2β的概率为α-1,如果这样的区间存在,就被称为置信区间。
12、偏回归系数:在多元回归iiiiuXXY+++=33221βββ中,2β、3β称为偏回归系数。
如2β度量着保持X3不变的情况下,X2每变化1单位时,Y的均值E(Y| X2, X3)的变化。
13、偏相关系数:简单相关系数是指双变量回归模型中因变量与自变量的线性相关程度的度量;偏相关系数是其它变量保持不变,两个变量之间的相关程度的度量。
14、方差分析:TSS=ESS+RSS。
对TSS的这些构成部分的研究从回归的观点叫做方差分析(ANOVA)。
【ANOVA表P】一个回归模型所包含的回归元都127是虚拟变量或定型变量,这种模型被称为方差分析(ANOVA)模型。
15、协方差分析:若回归方程同时含有定性和定量的变量称为协方差分析。
16、虚假序列相关:由于随机项的序列相关往往是在模型设定中遗漏了重要的解释变量或对模型的函数形式设定有误,这种情形可称为虚假序列相关,应在模型设定中排除。
避免产生虚假序列相关性的措施是在开始时建立一个一般的模型,然后逐渐剔除确实不显著的变量。
二、基本思想一、数理经济模型和计量经济模型的区别数理经济学是用数学形式来表达经济理论中的确定性关系,而不管理论是否可以量化或是能够得到实证支持。
计量经济学利用数学方程表达经济变量间的非确定性关系,并用实际数据验证经济理论。
二、时间序列数据和横截面数据有何不同?时间序列数据是对一个变量在不同时间取值的一组观测结果。
(往往不能满足回归分析的基本假定:平稳性,均值和方差不随时间而系统地变化)横截面数据是指对一个或多个变量在同一时间点上收集的数据。
(可以近似假定,是从总体中通过随机抽样获得)三、回归分析与相关分析的区别与联系联系:回归分析和相关分析都是研究变量间关系的统计学课题。
区别:1)回归分析中需要区别自变量和因变量;相关分析中不需要区分 2)相关分析中所涉及的变量y与x全是随机变量。
而回归分析中,因变量y是随机变量,自变量x可以是随机变量,也可以是非随机的确定变量。
3)相关分析的研究主要是为刻画两类变量间线性关系的密切程度。
而回归分析不仅可以揭示变量x对变量y的影响大小,还可以由回归方程进行预测和控制。
四、随机误差项包含哪些因素影响。
随机误差项是模型遗漏的而又一起影响着Y的全部变量的替代物。
1.理论的含糊性。
有些影响Y的变量我们不是一无所知就是不太确定,因此用模型所排除或忽略的全部变量的替代变量。
2.数据的欠缺。
有些变量的信息很难得到。
3.核心与周边变量。
一些变量的影响很小,充其量是一种非系统或随机的影响,将其映入模型划不来,故把它们的共同影响当作一个随机变量来看待。
4.人类行为的内在随机性。
即使我们成功地把所有有关的变量都引进到模型中来,在个别Y中仍不免有一些解释不了的“内在” 随机性,干扰项可以很好地反映这种随机性。
5.糟糕的替代变量。
一些变量的实际数据会受到测量误差的干扰,甚至有些不可直接观测,只能利用替代变量。
这时干扰项可用来代表测量误差。
6.节省原则。
我们想保持一个尽可能简单的回归模型,若我们能用两三个变量“基本上”解释Y的行为,且我们的理论还未完善到足以提出可以包含进来的其他变量,就让代表其他变量。
7.错误的函数形式。
人们可能不确定回归元和回归子之间应该采用哪种函数形式。
五、最小二乘法和最大似然法的基本原理。
1.最小二乘法:用使估计的剩余平方和最小的原则确定样本回归函数,称为最小二乘准则。
2.最大似然法:用产生该样本概率最大的原则去确定样本回归函数,称为最大或然法。
六、为什么要计算调整后的可决系数?是模型中解释变量或回归元个数的非减函数,即随着回归元个数增加,必然增加或永不减少。
调整的对中平方和所涉及到的自由度进行调整,随着X变量个数的增加,调整的比未调整的增加的慢些。
将残差平方和与总离差平方和分别除以各自的自由度,以剔除变量个数对拟合优度的影响。
七、拟合优度检验(P3章)与方程显著性检验(P8章)的区别与联系。
区别:拟合优度检验就是检验模型对样本观测值的拟合程度,用判定系数来度量。
方程显著性检验旨在对模型中被解释变量与解释变量之间的线性关系在总体上是否显著成立做出推断,用F检验来判断显著性水平。
联系:F与R2同向变化:R2越大,F值也越大。
当R2=0时,F=0;当R2=1时,F为无穷大;因此F检验是回归方程总的显著性的一个度量,也是R2的一个显著性度量。
八、正态性检验的方法(P132)1.残差直方图。
2.正态概率图3.统计量(安德森-达林正态性检验)4.正态性的雅克-贝拉检验(JB检验)九、什么是虚拟变量?它在模型中有什么作用?(书上定义)虚拟变量是一种基于性质或属性(性别、婚姻状况、种族和宗教信仰等)而将一个样本分为不同子群的数据分类方法。
并暗含地容许对每个子群分别进行回归。
(PPT上定义)虚拟变量,是一种离散结构的量,用来描述所研究变量的发展或变异而建立的一类特殊变量,常用来表示职业、性别、季节、灾害、经济结构变化、受教育程度等的影响。
也称为指标变量、二值变量、范畴变量、定性变量和二分变量。
虚拟变量的量化方法通常是赋值“1”和“0”。
使用虚拟变量可以使得我们在模型中引入定性回归元,使得模型更精确。
10、引入虚拟解释变量的两种基本方式是什么?它们各适用于什么情况?(1)以相加的形式引入虚拟变量来区分两个时期的截距,引入的虚拟变量的参数被称为级差截距系数;(2)以相乘的形式引入虚拟变量来区分两个时期的斜率系数,引入的虚拟变量的参数被称为级差斜率系数。
11、简述多重共线性的含义。
如果某两个或多个解释变量之间出现了相关性,则称为多重共线性。
大致的说,多重共线性指的是X变量之间有准确的或近似准确的线性关系。
12、简述多重共线性的后果。
书上:如果X之间有完全多重共线性,则它们的回归系数是不确定的,并且它们的标准误没有定义。
然而,这些系数的线性组合是可以估计的。
如果共线性是高度的而不是完全的,则回归系数的估计是可能的,但趋向于有很大的标准误。
PPT上:参数估计值的方差与标准差变大;容易使通过样本计算的t值小于临界值,误导作出参数为0的推断;虽然t统计量不显著,但其拟合优度高;OLS估计量及标准误差对数据的敏感性大;预测值的置信区间较大,预测精确度较差。
13、列举多重共线性的检验方法简单相关系数法;综合统计检验法;判定系数检验法;本征值与病态指数;容许度与方差膨胀因子;14、列举多重共线性的解决办法第一类方法:排除引起共线性的变量:逐步回归法(逐步回归的基本思想是有进有出。
具体做法是以Y为被解释变量,逐个引入解释变量,构成回归模型,进行模型估计。
然后,根据拟合优度的变化决定新引入的变量是否独立。
如果拟合优度变化显著,则说明新引入的变量是一个独立解释变量;如果拟合优度变化很不显著,则说明新引入的变量与其它变量之间存在共线性关系。
每一步都要进行F检验,以确保每次引入新的变量之前回归方程中只包含显著的变量。
)第二类方法:差分法(对于以时间序列数据为样本、以直接线性关系为模型关系形式的计量经济学模型,将原模型变换为差分模型,可以有效地消除存在于原模型中的多重共线性。
一般讲,增量之间的线性关系远比总量之间的线性关系弱得多。
)第三类方法:减少参数估计量的方差、岭回归方法(太复杂应该不用掌握)(多重共线性的主要后果是参数估计量具有较大的方差,所以采取适当方法减小参数估计量的方差,虽然没有消除模型中的多重共线性,但确能消除多重共线性造成的后果。
)15、简述异方差性的含义对于不同的样本点i,随机误差项的方差不再是常数,则认为出现了异方差μ都是随机变量,服从均值为0的正态分性。
对于每一个样本点i,随机误差项i布;所谓异方差性,是指这些随机变量服从不同方差的正态分布。
16、简述异方差性的后果<1>考虑异方差的OLS估计:能使估计量标准差减少,预测区间变窄<2>忽视异方差性的OLS估计:a.普通最小二乘法参数估计量仍然具有无偏性,但不具有效性。
而且,在大样本情况下,参数估计量仍然不具有渐近有效性,这就是说参数估计量不具有一致性。
b.变量的显著性检验失去意义c.模型的预测失效(一方面,由于上述后果,使得模型不具有良好的统计性σ。
所质;另一方面,在预测值的置信区间中也包含有随机误差项共同的方差2以,当模型出现异方差性时,参数OLS估计值的变异程度增大,从而造成对Y 的预测误差变大,降低预测精度,预测功能失效。
)17、简述异方差性检验方法的共同思路由于异方差性就是相对于不同的解释变量观测值,随机误差项具有不同的方差。
那么,检验异方差性,也就是检验随机误差项的方差与解释变量观测值之间的相关性及其相关的“形式”。
18、列举异方差性的检验方法<1>图示检验法Y-X图X-残差图Y-残差图<2>样本排序比较法斯皮尔曼的等级相关检验哥德菲尔德-匡特检验<3>残差回归检验法帕克检验格莱泽检验怀特检验(或者,图示法,帕克检验,格莱泽检验,斯皮尔曼等级相关法,戈德菲尔德—匡特检验,布劳殊—培干—戈弗雷检验和怀特检验)19、列举异方差性的解决方法当方差2i为已知时采用加权最小二乘法;未知时采用稳健性标准误差方法20、简述序列相关性的含义如果一个模型不满足OLS要求计量模型的随机误差项相互独立或不相关的假设,则我们称随机误差项之间存在自相关。