苯乙烯乳液聚合

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苯乙烯乳液聚合

一、实验目的

1. 通过实验对比不同量乳化剂对聚合反应速度和产物的相对分子质量的影响,从而了解乳液聚合的特点,了解乳液聚合中各组分的作用,尤其是乳化剂的作用。

2. 掌握制备聚苯乙烯胶乳的方法,以及用电解质凝聚胶乳和净化聚合物的方法。

二、实验原理

原理

乳液聚合技术的开发起始于本世纪早期,于20 年代末期就已有和目前生产配方类似的乳液聚合过程的专利出现。30 年代初,乳液聚合方法已见于工业生产。第二次世界大战期间,由于各参战国对合成橡胶需求量剧增,激发了人们对乳液聚合理论与技术的研究和开发,取得了较大进展。现在,乳液聚合过程对商品聚合物的生产具有越来越大的重要性,在许多聚合物如合成橡胶、合成树脂涂料、粘合剂、絮凝剂、抗冲击共聚物等的生产中,乳液聚合己成为主要的方法之一,每年世界上通过乳液聚合方法生产的聚合物数以千万吨计。生产聚合物的实施方法有四种,本体聚合、溶液聚合、悬浮聚合及乳液聚合。所谓本体聚合是单体本身或单体再加入少量引发剂(或催化科)的聚合;溶液聚合是在单体和引发剂溶于某种溶剂所构成的溶液中所进行的聚合,悬浮聚合是在悬浮于水中的单体珠滴中的聚合,体系主要由单体、水、溶于单体的引发剂及分散介质四种基本组分组成;乳液聚合则是由单体和水在乳化剂作用下配制成的乳状液中进行的聚合,体系主要由单体、水、乳化剂及溶于水的引发刑四种基本组分组成。

首先在乳液聚台体系中.乳化剂以四种形式存在:以单分子的形式存在于水中.形成真溶液;以胶束的形式存在于溶液中;被吸附在单体球滴表面上,使单体珠滴稳定地悬浮在介质中;吸附在乳胶粒表面上顺聚合物乳液体系稳定。其次,乳胶粒主要是由胶束形成的,叫作乳胶粒形成的胶束机理。乳液聚合的聚合反应实际上发生在乳胶粒中。因为在乳胶粒表面上吸附了一层乳化剂分子,使其表面带上某种电荷,静电斥力使乳胶粒不能发生相互碰撞而聚并到一起.这样就形成了一个稳定的体系。无数个彼此孤立的乳胶粒稳定地分散在介质中,在每个乳胶粒中都进行着聚合反应,都相当于一个进行间断引发本体聚合的小反应器。而单体珠滴仅仅作为贮存单体的仓库,单体源源不断地由单体珠滴通过水相扩散到乳胶粒中,以补充聚合反应对单体的消耗。根据这一机理故又有人提出:乳液聚合是指在水乳液中按照胶柬机理形成彼此孤立的乳胶粒中,进行烯类单体自由基加成聚合来生产高聚物的一种技术而言。

乳液聚合的特点

在自由基聚合反应的四种实施方法中,乳液聚合和本体聚合、溶液聚合及悬浮聚合相比有其可贵的、独特的优点。烯类单体聚合反应放热量很大,其聚合热约为60 一100KJ/mol。在聚合物生产过程中,反应热的排除是一个关键性的问题。它不仅关系到操作控制的稳定性和能否安全生产,而且严重地影响着产品的质量。对本体聚合和溶液聚合来说,反应后期粘度急剧增大,可达几十甚至几百Pa·s。这样一来,散热问题就成了难以克服的困难,即使采用高效的换热装置及高效搅拌器,也很难将所产生的反应热及时排除。散热不良必然会造成局部过热、使分子量分布变宽,还会引起支化和交联,使产品质量变坏,严重时会引起暴

聚、使产品报废,甚至发生事故。

但是利乳液聚合过程来说,聚合反应发生在分散水相内的乳胶粒中,尽管在乳胶粒内部粘度很高,但由于连续相是水,使得整个体系粘度并不高,并且在反应过程中体系的粘度变化也不大。在这样的体系中,由内向外传热就很容易,不会出现局部过热,更不会暴聚。同时,象这样的低粘度体系容易搅拌,便于管道输送,容易实现连续化操作。另外、乳液聚合和悬浮聚合散热情况类似,但也有区别。对悬浮聚合来说,聚合反应发生在水相中的单体珠中,单体珠滴的直径约在50 一2000um 范围之内,而在乳液聚合体系中,乳胶粒直径一般在0.05—1um 之间。若把悬浮聚合中的一个单体珠滴比作一个10m 直径的大球,那么乳胶粒仅象一个绿豆粒那么大。所以从乳胶粒内部内外传热比从悬浮聚合的珠滴内部向外传热要容易得多。故在乳液聚合体系的乳胶粒中的温度分布要比在悬浮聚合体系的珠滴中的温度分布均匀很多。

在烯类单体的自由基本体、溶液及悬浮聚合中,当引发剂浓度一定时,要想提高反应速率,就得提高反应温度。而反应温度的提高,又加速引发剂的分解,使自由基总浓度增大。因为链终止速率与自由基浓度平方成正比,故自由基总浓度增大链终止速率显著增大,这样就会引起聚合物平均分子量减小;反过来,要想提高聚合物平均分子量,就必须降低反应温度,这又会造成反应速率降低。就是说,要想提高分子量,必须降低反应速率;而要想提高反应速率,就必须牺牲分子量的提高,故二者是矛盾的。但是乳液聚合可以将二者统一起来,即既有高的反应速率,又可得到高分子量的聚合物。这是因为乳液聚合是按照和其他聚合方法不同的机理进行的。在乳液聚合体系中,引发剂溶于水相,且在水相中分解成自由基。自由基由水相扩散到胶束中或乳胶粒中,在其中引发聚合。聚合反应就发生在一个个被此孤立的乳胶粒中。假如由水相向某一乳胶粒中扩散进束一个自由基,那么就在这个乳胶检中进行链引发链增长,形成一个大分子链。当第二个自由基由水相扩散进入这个乳胶粒中以后,就和这个乳胶牧中原来的那个自由基链发生碰撞而终止。就是说,在第二个自由基扩散进来以前,在这个乳胶粒中链增长反应一直在进行。在本体聚合体系中,任意两个自由基都有相互碰撞而彼终止的可能性。而在乳液聚合体系中,一个个自由基链被封闭在彼此孤立的乳胶粒中,由于乳胶粒表面带电而产生乳胶粒间的静电斥力作用,使乳胶粒不能碰撞到一起面聚并,就是说,不同乳胶粒中的自由基链之间碰撞到一起而进行终止的几率等于零。也就是说,不同乳胶粒中的自由基链不能相互终止,只能和由水相扩散进来的韧始自由基发生链终止反应。故在乳液聚合中自由基链的平均寿命比用其他聚合方法时要长,自由基有充分的时间增长到很高的分子量。另外,在乳液聚合体系中有着巨大数量的乳胶粒,其中封闭着巨大数量的自由基进行链增长反应,自由基的总浓度比其他聚合过程要大。故乳液聚合反应比其他聚合过程的反应速率要高。聚合速率大.同时分子量高,这是乳液聚合的一个重要的特点。高的反应速率会使生产成本降低,而高的分子量则是生产高弹性的合成橡胶所必需的。

另外,大多数乳液聚合过程都以水作介质,避免了采用昂贵的溶剂以及回收溶剂的麻烦,同时减少了引起火灾和污染的可能性。再者,在某些可以直接利用合成乳液的情况下,如水乳浦、粘合剂、皮革、纸张、织物处理剂以及乳液泡沫橡胶等,采用乳液聚合法尤为必要。另一方面,乳液聚合也有其自身的缺点。例如在需要固体聚合物的情况下,需经凝聚、洗豫、脱水、干燥等一系列后处理工序,才能将聚合物从乳液中分离出来,这就增加了成本,再者,

相关文档
最新文档