大学物理机械振动简谐运动能量

合集下载

大学物理——第4章-振动和波

大学物理——第4章-振动和波
A sin1 + A sin2 2 tan = 1 A cos1 + A cos2 1 2
合成初相 与计时起始时刻有关.
v A 2
ω
v A
2
O
x2
1
v A 1
x1
xx
分振动初相差2 1与计时起始时刻无关,但它对合成振幅 是相长还是相消合成起决定作用.
20
讨 论
2 A = A2 + A2 + 2A A2 cos(2 1) 1 1
F = kx
3
l0
k
m
A
F = kx = ma
k 令ω = m
2
A x = Acos(ωt +)
o
x
积分常数,根据初始条件确定
a = ω2 x
dx = ω2 x dt 2
2
dx υ = = Aω sin( ωt +) dt
dx 2 a = 2 = Aω cos(ωt +) dt
4
2
x = Acos(ωt +)
15
π
例 4-3 有两个完全相同的弹簧振子 A 和 B,并排的放在光滑 的水平面上,测得它们的周期都是 2s ,现将两个物体从平衡 位置向右拉开 5cm,然后先释放 A 振子,经过 0.5s 后,再释 放 B 振子,如图所示,如以 B 释放的瞬时作为时间的起点, (1)分别写出两个物体的振动方程; (2)它们的相位差是多少?分别画出它们的 x—t 图.
5cm
O
x
16
解: (1)振动方程←初始条件
x0 = 0.05m, υ0 = 0 , T = 2s
2π ω= = π rad/s T
2 υ0 2 A = x0 + 2 = 0.05m ω υ0 对B振子: tan B = = 0 B = 0 x0ω

大学物理3.4 平面简谐波 波的能量和强度

大学物理3.4 平面简谐波 波的能量和强度
结论:波速由弹性媒质性质决定,频率(或周期) 则由波源的振动特性决定。
第8章 机械振动
3.4 平面简谐波
波的能量和强度
二 平面简谐波的波动式
问题: yo=y(0, t) & u 给定, 求 y=y(x, t)
(假设:媒质无吸收,所有质元振幅均为A) O点的振动方程:
y
yo A cost +
(3) 表达式还反映了波的时间、空间双重周期性
T 时间周期性
空间周期性
位相差:
t t 同一质元在先后时刻的位相差: 2 T x k x 不同质元在同一时刻的位相差: 2
第8章 机械振动
3.4 平面简谐波
波的能量和强度
沿x轴负向传播的平面简谐波的波动式:
x y ( x, t1 ) A cos[ (t1 ) + ] f ( x ) u
y
u
t2 t1 + t
ut x
t1
结论: t1 时刻,x 处质点的振动状态经t 时间传到了 x + ut 处, 表达式反映了波是振动状态的传播.
第8章 机械振动
3.4 平面简谐波
波的能量和强度
体 变 V
p
第8章 机械振动
V p K V
3.4 平面简谐波
波的能量和强度
可以证明声波在空气中的速度
u
证:
p
RT
= Cp/Cv , 摩尔质量
由于声振动的频率较高(20~20000Hz),可 以将空气的疏密过程看成绝热过程,把空气当 作理想气体。
pV = C
第8章 机械振动
3.4 平面简谐波
波的能量和强度

简谐运动能量

简谐运动能量

§14—5简谐运动的能量引言:作简谐运动的系统,因物体有速度而具有动能,因弹黄发生形变而具有势能,动能和势能之和就是其能長。

一、筒谐运动的能星1.能長表达式(1)推导以弹性振子为例。

假设在/时刻质点的位移为X,速度为V,则x = Acos(cot +(p)系统势能为:肘尹=尹“伽+切因此系统的总能量为考虑到co2=—,则沪尹屆2=尹2弹簧振子作简谐运动的能量与振幅的平方成正比。

(3)解释由于系统不受外力作用,而且内力为保守力,故在简谐运动的进程中,动能与势能彼此转化,总能量维持不变。

(4)说明1)£^A2,对任何简谐运动皆成立;2)动能与势能都随时间作周期性转变,而总能量维持不变:且总能量与位移无关。

动能E"Ep2 •能量曲线注意理解能量守恒和动能、势能彼此转化进程。

二、能量平均值概念:一个随时间转变的物理在时间T内的平均值概念为_ 1 T10因此弹簧振子在一个周期内的平均动能为E k =丄]*—sinj血+ 0片/=丄〃川"=—kA1 T o 2 4 4因此弹簧振子在一个周期内的平均势能为£"=丄[―M2cos1(cot +(p)dt = -kA1 = —"T\1'"44结论:简谐运动的动能与势能在一个周期内的平均值相等,它们都等于总能量的一半。

三、应用1.应用1一一记忆振幅公式由能量守恒关系可得:kA2/2= mvo2/2+ kxo2/2 解之即得:A=r+w2.应用2——推导简谐运动相关方程在忽略阻力的条件下,作简谐运动的系统只有动能和势能(弹性势能和重力势能),且二者之和维持不变,因此有暫低+E」=0将具体问题中的动能与势能表达式代入上式,通过简化后,即可取得简谐运动的微分方程及振动周期和频率。

这种方式在工程实际中有着普遍的应用。

此方式对于研究非机械振动超级方便°例1•用机械能守恒泄律求弹簧振子的运动方程。

简谐振动的能量变化

简谐振动的能量变化

简谐振动的能量变化简谐振动是物理学中一个重要的概念,几乎存在于各个领域的物理现象中。

它描述了一个物体在一个恒定的振幅范围内进行周期性的振动运动。

在简谐振动中,物体的能量会不断变化。

本文将探讨简谐振动的能量变化规律及其背后的原理。

一、简谐振动的特点简谐振动的特点是具有周期性和恒定振幅。

在一个周期内,物体会从原点出发,向正方向振动到最大偏离量,然后返回原点,并向负方向振动到最大偏离量,最后再次返回原点。

这个周期性的运动形式被称为正弦曲线。

二、简谐振动的能量转换简谐振动的能量转换是一个循环过程,由动能和势能交替转化。

当物体偏离平衡位置时,存在势能。

随着物体向最大偏离量移动,势能达到最大值。

当物体通过平衡位置时,速度最大,动能也最大。

当物体移动回原点时,势能再次为零,并在反向运动时达到最大值,动能减小为零。

因此,简谐振动的能量变化由势能和动能的周期性转换组成。

三、简谐振动的能量守恒在简谐振动中,动能和势能的和始终保持不变。

即使在振动过程中,能量的总和也保持不变。

这是因为质点在简谐振动的过程中没有受到摩擦或其他能量损耗的作用。

四、简谐振动的公式推导我们可以通过公式推导简谐振动的能量变化规律。

假设简谐振动的位置函数为x(t),其中t表示时间。

那么动能可表示为:K = 0.5 * m * v^2 = 0.5 * m * (dx/dt)^2,其中m为质量,v为速度,x为位移。

而势能可表示为:U = 0.5 * k * x^2,其中k为劲度系数。

根据能量守恒定律,总能量E为常数,即K + U = E。

将上述动能和势能的表达式代入,得到:0.5 * m * (dx/dt)^2 + 0.5 * k * x^2 = E。

这是简谐振动的能量守恒方程,描述了简谐振动过程中能量的变化规律。

五、简谐振动的应用简谐振动广泛应用于各个领域。

在物理学中,它被用于描述原子和分子的振动,以及声波和光波的传播。

在工程学中,它被用于设计和优化机械结构的振动模式。

1、简谐振动的特征、能量

1、简谐振动的特征、能量

4
2
4
T
t
1 2 2 2 Ek m A sin t 2
1 2 E kA 2
简谐运动能量守恒,振幅不变 简谐运动势能曲线
Ep
C
E
A
O
B
Ek
Ep
x
A
x
能量守恒
推导
1 2 1 2 E mv kx 2 2
d 1 1 2 2 ( mv kx ) 0 dt 2 2 dv dx mv kx 0 dt dt
2
其解为∶
x A cos( t )
──谐振动的运动学方程 (简称振动方程)
x A cos( t )
运动学方程
描述作谐振动物体位置随时间变化的关系
dx v A sin(t ) dt
描述作谐振动物体振动速度随时间变化的关系
dv 2 a A cos(t ) dt
相位差只能在同频率的振动间比较 当 2n
当 ( 2n 1 ) 若 0
n 0, 1, 2
n 0, 1, 2

两振动步调相同,称同相

两振动步调相反,称反相
2 超前于 1 或 1滞后于 2
相位差反映了两个振动不同程度的参差错落
四、振幅和初相确定
波动篇
内容: 机械振动 机械波
波动光学


人们习惯于按照物质的运动形态,把经典物理学 分成力(包括声)、热、电、光等子学科。然而,某 些形式的运动是横跨所有这些学科的,其中最典型的 要算振动和波了。在力学中有机械振动和机械波,在 电学中有电磁振荡和电磁波,声是一种机械波,光则 是一种电磁波。在近代物理中更是处处离不开振动和 波,仅从微观理论的基石——量子力学又称波动力学 这一点就可看出,振动和波的概念在近代物理中的重 要性了。

简谐振动的能量

简谐振动的能量
与(3)相同,只是质点的轨迹 沿逆时针旋转。 ~ 左旋椭圆运动
对应不同相位差的合运动轨迹
ϕ2 −ϕ1 = 0
π
4
Байду номын сангаас
π
2

4
ϕ2 −ϕ1 = π

4

2

4
五、两个相互垂直的不同频宰的简谐运动的合成
讨论:相互垂 直、频率成简 单整数比 合运动具有稳 定封闭的轨迹 李萨如图形
作业:习题 P39 14-22 14-27
∠OPQ = N∆ϕ
在三角形 OPQ 中,OQ 的长度就是和振动位移矢量的 位移,角度 ∠QOX 就是和振动的初相,得:
N∆ϕ A = 2Rsin( ) 2
∆ϕ A0 = 2Rsin( ) 2
N∆ϕ ∆ϕ A = A0 sin( ) sin( ) 2 2
ϕ = ∠QOB = ∠POB −∠POQ
当 ∆ϕ = 0 时(同相合成),有
ω2 +ω1
2
t)
ν2 −ν1 ν2 +ν1 x = 2A cos2π t ⋅ cos2π t 1 2 2
因ω1
~ ω2 , ω2 − ω1 << ω1 或 ω2 , 有
ω2 + ω1
≈ ω1 ≈ ω2
2 在两个简谐振动的位移合成表达式中,第一项随时 间作缓慢变化, 第二项是角频率近于 ω1或ω2 的简谐 函数。合振动可视为是角频率为 (ω1 + ω2 ) 2、振幅为 2Acos (ω2 − ω1)t 2的简谐振动。
§14-3 简谐振动的能量
以水平弹簧振子为例讨论简谐振动系统的能量。 动能
势能
系统总的机械能:

16 简谐振动能量 振动合成

16 简谐振动能量 振动合成

x x1 x2 A cos( t )
由几何关系得:
x1 A1 cos( t 1 ) x2 A2 cos( t 2 ) A A1 A2
合振动的初相: A sin 1 A2 sin 2 arctan 1 A1 cos1 A2 cos2 用旋转矢量法推导: A2
x A1 cos( t 1 ) y A2 cos( t 2 )
x
讨论: 1) 2 1 kπ 时
x 2 y 2 2 xy 2 0 2 A1 A2 A1 A2
2) 2 1
x y 0 A A 2 1
2
y
A2 x, A1
1
1.相位差 2 1 2k
k=0, ±1, ±2, ±3, ……
x 合振幅加强: A A1 A2
x2
x A A1 A2 x x1 x2 A cos( t )
A A A 2A1A2 cos(1 2 )
2 1 2 2
第5章 机械振动
§5.4 简谐运动的能量 系统势能:
Ep 1 2 1 2 kx kA cos 2 ( t ) 2 2
1 2 kA sin 2 (t ) 2 m 2 k
谐振动系统的机械能:
1 1 2 2 2 E Ek Ep m A kA 2 2
5.5.3 相互垂直的简谐运动的合成 1. 相互垂直同频率简谐运动的合成
质点运动轨迹为直线
A2 ; A1 A 2 1 π,斜率 2 A1 y
2 1 0,斜率
x cos t cos 1 sin t sin 1 A1 y cos t cos 2 sin t sin 2 A2 x 2 y 2 2 xy 2 cos( 2 1 ) sin 2 ( 2 1 ) A12 A2 A1 A2

简谐振动的回复力和能量

简谐振动的回复力和能量

练习1:做简谐运动的物体,当位移为负
值时,以下说法正确的是 ( B )
A.速度一定为正值,加速度一定为正值 B.速度不一定为正值,但加速度一定为正值 C.速度一定为负值,加速度一定为正值 D.速度不一定为负值,加速度一定为负值
2、在简谐运动中,振子每次经过同一位置时, 下列各组中描述振动的物理量总是相同的是
A.t=0时,质点的位移、速度均为零 B.t=1s时,质点的位移为正向最大,速度为零,加速度为负向最
大 C.t=2s时,质点的位移为零,速度为负向最大值,加速度为零 D.质点的振幅为5cm,周期为2s
( BCD )
A.速度、加速度、动能
B.加速度、回复力和位移
C.加速度、动能和位移
D.位移、动能、回复力
3、当一弹簧振子在竖直方向上做简谐运动时,下列
说法正确的( CD )
A.振子在振动过程中,速度相同时,弹簧的长度 一定相等
B.振子从最低点向平衡位置运动过程中,弹簧弹 力始终做负功
C.振子在振动过程中的回复力由弹簧的弹力和振 子的重力的合力提供
(2)根据回复力的规律F=-kx去判断证明:ຫໍສະໝຸດ 竖直悬挂的弹簧振子做简谐运动
证明步骤: 1、找平衡位置 2、找回复力 3、找F=kx 4、找方向关系
证明:平衡状态时有:
mg=kx0 当再向下拉动x长度时弹簧振子所受的
合外力为
F=-k(x+x0)+mg =-kx-kx0+mg =-kx
(符合简谐运动的公式)
O
O-B
B
0
向右增大 向右最大
向右最大 向右减小
0
向右最大 向右减小
0
向左增大 向左最大
动能为0 动能增大 动能最大 势能最大 势能减小 势能为0

第11章 机械振动 第3讲 简谐运动的回复力和能量

第11章 机械振动 第3讲 简谐运动的回复力和能量

第3讲简谐运动的回复力和能量[目标定位] 1.知道回复力的概念,了解它的来源.2.理解从力的角度来定义的简谐运动.3.理解简谐运动中位移、回复力、加速度、速度、能量等各物理量的变化规律.4.知道简谐运动中机械能守恒,能量大小与振幅有关.会用能量守恒的观点分析水平弹簧振子中动能、势能、总能量的变化规律.一、简谐运动的回复力1.简谐运动的动力学定义:如果质点所受的力与它偏离平衡位置位移的大小成正比,并且总是指向平衡位置,质点的运动就是简谐运动.2.回复力:由于力的方向总是指向平衡位置,它的作用总是要把物体拉回到平衡位置,所以通常把这个力称为回复力.3.简谐运动的回复力与位移的关系:F=-kx,式中k是比例系数.想一想回复力是不是除重力、弹力、摩擦力等之外的一种新型的力?它有什么特点?答案不是.回复力是指将振动的物体拉回到平衡位置的力,是按照力的作用效果来命名的,不是一种新型的力,所以分析物体的受力时,不分析回复力.回复力可以由某一个力提供(如弹力),也可能是几个力的合力,还可能是某一个力的分力,归纳起来,回复力一定等于物体沿振动方向所受的合力.二、简谐运动的能量1.如果摩擦力等阻力造成的损耗可以忽略,在弹簧振子运动的任意位置,系统的动能与势能之和都是一定的.2.简谐运动是一种理想化的模型.想一想弹簧振子在振动过程中动能与势能相互转化,振子的位移x、回复力F、加速度a、速度v四个物理量中有哪几个与动能的变化步调一致?答案只有速度v.一、简谐运动的回复力1.对回复力的理解(1)回复力是指将振动物体拉回到平衡位置的力,它可以是物体所受的合外力,也可以是一个力或某一个力的分力,而不是一种新的性质力.(2)简谐运动的回复力:F=-kx.①k是比例系数,并非弹簧的劲度系数(水平弹簧振子中k为弹簧的劲度系数),其值由振动系统决定,与振幅无关.②“-”号表示回复力的方向与偏离平衡位置的位移的方向相反.③x是指物体对平衡位置的位移,不一定是弹簧的伸长量或压缩量.④回复力的作用总是把物体拉向平衡位置.2.简谐运动的加速度据牛顿第二定律,a=Fm=-km x,表明简谐运动的加速度大小也与位移大小成正比,加速度方向与位移方向相反.说明:k是比例系数,不能与弹簧的劲度系数相混淆.3.判断振动为简谐运动的方法(1)运动学方法:找出物体的位移与时间的关系,若遵从正弦函数的规律,即它的振动图象(xt 图象)是一条正弦曲线,就可判定此振动为简谐运动.(2)动力学方法:若回复力F与位移x间的关系满足F=-kx,则物体做简谐运动,否则就不是简谐运动.例1如图1所示,弹簧振子在光滑水平杆上的A、B之间做往复运动,下列说法正确的是()图1A.弹簧振子运动过程中受重力、支持力和弹簧弹力的作用B.弹簧振子运动过程中受重力、支持力、弹簧弹力和回复的力作用C.振子由A向O运动过程中,回复力逐渐增大D.振子由O向B运动过程中,回复力的方向指向平衡位置解析回复力是根据效果命名的力,不是做简谐运动的物体受到的具体的力,它是由物体受到的具体的力所提供的,在此情景中弹簧的弹力充当回复力,故A正确,B错误;回复力与位移的大小成正比,由A向O运动过程中位移的大小在减小,故此过程回复力逐渐减小,C错误;回复力总是指向平衡位置,故D正确.答案AD例2如图2所示,将一劲度系数为k,原长为L0的轻弹簧的一端固定在倾角为θ的光滑斜面的顶端,另一端连接一质量为m的小球.将小球沿斜面拉下一段距离后松手.证明:小球的运动是简谐运动.图2证明设小球在弹簧长度为L1时在平衡位置O,弹簧原长为L0,选沿斜面向上为正方向,则由平衡条件得k(L1-L0)-mg sin θ=0.当小球振动经过O点以上距O点为x处时,受力为F合=k(L1-L0-x)-mg sin θ,整理得F合=-kx,当小球振动经过O点以下位置时,同理可证,因此小球的运动是简谐运动.二、简谐运动的能量1.不考虑阻力,弹簧振子振动过程中只有弹力做功,在任意时刻的动能与势能之和不变,即机械能守恒.2.简谐运动的机械能由振幅决定对同一振动系统来说,振幅越大,振动的能量越大.如果没有能量损耗,振幅保持不变,它将永不停息地振动下去,因此简谐运动又称等幅振动.例3如图3所示,一弹簧振子在A、B间做简谐运动,平衡位置为O,已知振子的质量为M.图3(1)简谐运动的能量取决于________,物体振动时动能和________能相互转化,总机械能________.(2)振子在振动过程中,下列说法中正确的是()A.振子在平衡位置,动能最大,势能最小B.振子在最大位移处,势能最大,动能最小C.振子在向平衡位置运动时,由于振子振幅减小,故总机械能减小D.在任意时刻,动能与势能之和保持不变(3)若振子运动到B处时将一质量为m的物体放到M的上面,且m和M无相对滑动而一起运动,下列说法正确的是()A.振幅不变B.振幅减小C.最大动能不变D.最大动能减小解析(1)简谐运动的能量取决于振幅,物体振动时动能和弹性势能相互转化,总机械能守恒.(2)振子在平衡位置两侧往复运动,在最大位移处速度为零,动能为零,此时弹簧的形变最大,势能最大,所以B正确;在任意时刻只有弹簧的弹力做功,所以机械能守恒,D正确;到平衡位置处速度达到最大,动能最大,势能最小,所以A正确;振幅的大小与振子的位置无关,所以C错误.(3)振子运动到B点时速度恰为零,此时放上m,系统的总能量即为此时弹簧储存的弹性势能,由于简谐运动中机械能守恒,所以振幅保持不变,因此选项A正确,B错误;由于机械能守恒,最大动能不变,所以选项C正确,D错误.答案(1)振幅弹性势守恒(2)ABD(3)AC三、简谐运动中各物理量的变化情况如图4所示的弹簧振子图4例4如图5图5A.在第1 s内,质点速度逐渐增大B.在第1 s内,质点加速度逐渐增大C.在第1 s内,质点的回复力逐渐增大D.在第4 s内质点的动能逐渐增大E.在第4 s内质点的势能逐渐增大F.在第4 s内质点的机械能逐渐增大解析在第1 s内,质点由平衡位置向正向最大位移处运动,速度减小,位移增大,回复力和加速度都增大;在第4 s内,质点由负向最大位移处向平衡位置运动,速度增大,位移减小,动能增大,势能减小,但机械能守恒.答案BCD简谐运动的回复力1.如图6所示,弹簧振子B上放一个物块A,在A与B一起做简谐运动的过程中,下列关于A受力的说法中正确的是()图6A.物块A受重力、支持力及弹簧对它的恒定的弹力B.物块A受重力、支持力及弹簧对它的大小和方向都随时间变化的弹力C.物块A受重力、支持力及B对它的恒定的摩擦力D.物块A受重力、支持力及B对它的大小和方向都随时间变化的摩擦力解析物块A受到重力、支持力和摩擦力的作用.摩擦力提供A做简谐运动所需的回复力,其大小和方向都随时间变化,D选项正确.答案 D简谐运动的能量2.沿水平方向振动的弹簧振子在做简谐运动的过程中,下列说法正确的是()A.在平衡位置,它的机械能最大B.在最大位移处,它的弹性势能最大C.从平衡位置向最大位移处运动过程中,它的弹性势能减小D.从最大位移处向平衡位置运动的过程中,它的机械能减小解析弹簧振子在振动过程中机械能守恒,故A、D错误;位移越大,弹簧的形变量越大,弹性势能越大,故B正确,C错误.答案 B3.如图7所示,一轻弹簧一端固定,另一端连接一物块构成弹簧振子,该物块是由a、b 两个小物块粘在一起组成的.物块在光滑水平桌面上左右振动.振幅为A0,周期为T0.当物块向右通过平衡位置时,a、b之间的粘胶脱开;以后小物块a振动的振幅和周期分别为A 和T,则:A______A0(填“>”、“<”或“=”),T______T0(填“>”、“<”或“=”).图7解析物块通过平衡位置时弹性势能为零,动能最大.向右通过平衡位置,a由于受到弹簧弹力做减速运动,b做匀速运动.小物块a与弹簧组成的系统机械能小于原来系统的机械能,所以小物块a的振幅减小,A<A0,由于振子质量减小可知加速度增大,周期减小,T<T0. 答案<<简谐运动中各量的变化情况4.弹簧振子在光滑的水平面上做简谐运动,在振子向着平衡位置运动的过程中() A.振子所受的回复力逐渐增大B.振子离开平衡位置的位移逐渐增大C.振子的速度逐渐增大D.振子的加速度逐渐增大解析在振子向着平衡位置运动的过程中,振子所受的回复力逐渐减小,振子离开平衡位置的位移逐渐减小,振子的速度逐渐增大,振子的加速度逐渐减小,选项C正确.答案 C(时间:60分钟)题组一简谐运动的回复力1.对简谐运动的回复力公式F=-kx的理解,正确的是()A.k只表示弹簧的劲度系数B.式中的负号表示回复力总是负值C.位移x是相对平衡位置的位移D.回复力只随位移变化,不随时间变化解析位移x是相对平衡位置的位移;F=-kx中的负号表示回复力总是与振动物体的位移方向相反.答案 C2.物体做简谐运动时,下列叙述正确的是( ) A .平衡位置就是回复力为零的位置 B .处于平衡位置的物体,一定处于平衡状态 C .物体到达平衡位置,合力一定为零 D .物体到达平衡位置,回复力一定为零解析 平衡位置是回复力等于零的位置,但物体所受合力不一定为零,A 、D 对. 答案 AD3.对于弹簧振子的回复力和位移的关系,下列图中正确的是( )解析 由简谐运动的回复力公式F =-kx 可知,C 正确. 答案 C4.弹簧振子的质量是2 kg ,当它运动到平衡位置左侧2 cm 处时,受到的回复力是4 N ,当它运动到平衡位置右侧4 cm 处时,它的加速度是( ) A .2 m /s 2,向右 B .2 m/s 2,向左 C .4 m /s 2,向右D .4 m/s 2,向左解析 由振动的对称性知右侧4 cm 处回复力为8 N ,由a =-kx m =-Fm 知a =4 m/s 2,方向向左. 答案 D5.如图1所示,质量为m 的物体A 放置在质量为M 的物体B 上,B 与弹簧相连,它们一起在光滑水平面上做简谐运动,振动过程中A 、B 之间无相对运动,设弹簧的劲度系数为k ,当物体离开平衡位置的位移为x 时,A 、B 间摩擦力的大小等于( )图1A .0B .kx C.m M kx D.mM +mkx解析 当物体离开平衡位置的位移为x 时,弹簧弹力的大小为kx ,以整体为研究对象,此时A 与B 具有相同的加速度,根据牛顿第二定律得kx =(m +M )a ,故a =kxM +m.以A 为研究对象,使A 产生加速度的力即为B 对A 的静摩擦力F ,由牛顿第二定律可得F =ma =mM +m kx .故正确答案为D. 答案 D题组二 简谐运动的能量6.关于振幅,以下说法中正确的是( ) A .物体振动的振幅越大,振动越强烈B .一个确定的振动系统,振幅越大,振动系统的能量越大C .振幅越大,物体振动的位移越大D .振幅越大,物体振动的加速度越大解析 振动物体的振动剧烈程度表现为振幅的大小,对一个确定的振动系统,振幅越大,振动越剧烈,振动能量也就越大,A 、B 项正确.在物体振动过程中振幅是最大位移的大小,而偏离平衡位置的位移是不断变化的,因此C 项错.物体振动的加速度是不断变化的,故D 项错. 答案 AB7.振动的物体都具有周期性,若简谐运动的弹簧振子的周期为T ,那么它的动能、势能变化的周期为( )A .2TB .T C.T 2 D.T 4解析 振动中动能、势能相互转化,总机械能不变,动能和势能为标量,没有方向.C 正确. 答案 C8.如图2为一水平弹簧振子的振动图象,由图可知( )图2A .在t 1时刻,振子的动能最大,所受的弹力最大B .在t 2时刻,振子的动能最大,所受的弹力最小C .在t 3时刻,振子的动能最大,所受的弹力最小D .在t 4时刻,振子的动能最大,所受的弹力最大解析 t 2和t 4是在平衡位置处,t 1和t 3是在最大位移处,根据弹簧振子振动的特征,弹簧振子在平衡位置时的速度最大,加速度为零,即弹力为零;在最大位移处,速度为零,加速度最大,即弹力为最大,所以B项正确.答案 B9.如图3所示为某个弹簧振子做简谐运动的振动图象,由图象可知()图3A.在0.1 s时,由于位移为零,所以振动能量为零B.在0.2 s时,振子具有最大势能C.在0.35 s时,振子具有的能量尚未达到最大值D.在0.4 s时,振子的动能最大解析弹簧振子做简谐运动,振动能量不变,选项A错;在0.2 's时位移最大,振子具有最大势能,选项B对;弹簧振子的振动能量不变,在0.35 s时振子具有的能量与其他时刻相同,选项C错;在0.4 s时振子的位移最大,动能为零,选项D错.答案 B题组三简谐运动的综合应用10.一弹簧振子振动过程中的某段时间内其加速度数值越来越大,则在这段时间内() A.振子的速度逐渐增大B.振子的位移逐渐增大C.振子正在向平衡位置运动D.振子的速度方向与加速度方向一致解析振子由平衡位置向最大位移处运动过程中,振子的位移越来越大,加速度逐渐增大,速度方向与加速度方向相反,振子做减速运动,速度越来越小,故A、D错误,B正确;振子向平衡位置运动的过程中,位移减小,回复力变小,加速度变小,故C错误.答案 B11.甲、乙两弹簧振子,振动图象如图4所示,则可知()图4A .两弹簧振子完全相同B .两弹簧振子所受回复力最大值之比F 甲∶F 乙=2∶1C .振子甲速度为零时,振子乙速度最大D .两弹簧振子的振动频率之比f 甲∶f 乙=2∶1解析 由题图可知f 甲∶f 乙=1∶2,因此两振子不相同,A 、D 错误;由题图可知C 正确;因F 甲=k 甲A 甲,F 乙=k 乙A 乙,由于k 甲和k 乙关系未知,因此无法判断F 甲与F 乙的比值,所以B 错误. 答案 C12.一质点做简谐运动,其位移和时间关系如图5所示.图5(1)求t =0.25×10-2 s 时的位移;(2)在t =1.5×10-2 s 到2×10-2 s 的振动过程中,质点的位移、回复力、速度、动能、势能如何变化?(3)在t =0到8.5×10-2 s 时间内,质点的路程、位移各多大?解析 (1)由题图可知A =2 cm ,T =2×10-2 s ,振动方程为x =A sin ⎝⎛⎭⎫ωt -π2=-A cos ωt =-2cos2π2×10-2t cm =-2cos 100πt cm当t =0.25×10-2 s 时,x =-2cos π4 cm =- 2 cm.(2)由题图可知在1.5×10-2~2×10-2 s 内,质点的位 移变大,回复力变大,速度变小,动能变小,势能变大.(3)从t =0至8.5×10-2 s 时间内为174个周期,质点的路程为s =17A =34 cm ,质点0时刻在负的最大位移处,8.5×10-2 s 时刻质点在平衡位置,故位移为2 cm. 答案 (1)- 2 cm (2)变大 变大 变小 变小 变大 (3)34 cm 2 cm。

简谐运动能量

简谐运动能量
大学物理
§9-4 简谐运动的能量
§9-4 简谐运动的能量
能量是伴随运动而存在的, 能量是伴随运动而存在的 , 简谐运动同样具有动 能和势能。 能和势能。
以水平弹簧振子为例) 一、简谐振动的能量(以水平弹簧振子为例 简谐振动的能量 以水平弹簧振子为例
x = A cos( ω t + ϕ )
v = −ωA sin( ω t + ϕ )
3、 机械能 、
情况同动能。 情况同动能。
1 2 1 2 2 E = Ek + E p = kA = mω A 2 2
理学院 物理系
E不随时间变化,简谐振动系统机械能守恒。 不随时间变化,简谐振动系统机械能守恒。 不随时间变化
大学物理
§9-4 简谐运动的能量
二、简谐振动系统的能量特点
x, v
o
能量 动画) 简 谐 运 动 能 量 图(动画 动画
Ek max
1 2 = kA , Ek min = 0 2
t +T
1 Ek = T
1 2 ∫ Ek dt = 4 kA t
2、 势能 、
x = A cos( ω t + ϕ )
1 2 1 2 = kA cos 2 (ω t + ϕ ) E p = kx 2 2
E p max , E p min , E p
简谐运动能量守 恒,振幅不变
Ep
C
1 E = kA 2
2
简谐运动势能曲线
E
Ek
Ep
−A
O
B
xபைடு நூலகம்
+A
x
理学院 物理系
大学物理
§9-4 简谐运动的能量
能量守恒 简谐运动方程 1 2 1 2 E = mv + kx = 常量 2 2 d 1 2 1 2 ( mv + kx ) = 0 dt 2 2 dv dx mv + kx =0 dt dt d2x k + x = 0 2 dt m

机械振动——简谐运动的基本概念2

机械振动——简谐运动的基本概念2
4.振动的合成(第 6 节内容) 例:一个质点沿 x 轴作简谐运动,振幅 A=0.06m,周期 T=2s,初始时刻质点位 于 x0=0.03m 处且向 x 轴正方向运动。求: (1)初相位; (2)在 x=-0.03m 处且 向向 x 轴负方向运动时物体的速度和加速度以及质点从这一位置回到平衡位置 所需要的最短时间。 解: (1)取平衡位置为坐标原点,质点的运动方程可写为
两边对时间求导,得
1 dv 1 dx m ⋅ 2v + k ⋅ 2 x =0 2 dt 2 dt

m⋅v
d 2x + k ⋅ xv = 0 dt 2 d 2x k + x=0 dt 2 m
令ω =
2
k ,则 m d 2x +ω2x = 0 2 dt
其解为
x = A′ cos(ωt + ϕ )
代入守恒方程可得 A=A’ 例 2.劲度系数为 k、原长为 l、质量为 m 的匀质弹簧,一端固定,另一端系一 质量为 M 的物体,在光滑的水平面上作直线运动,求其运动方程。
v A= x + 0 ω
2 0
2
二、能量平均值 定义:一个随时间变化的物理量 f(t),在时间 T 内的平均值定义为
114
机械振动——简谐振动的基本概念
f =
1 f (t )dt T∫ 0 1 1 1 1 2 2 2 2 2 2 ∫ 2 mA ω sin (ωt + ϕ )dt = 4 mA ω = 4 kA T 0 1 1 2 1 2 1 2 2 2 ∫ 2 kA cos (ωt + ϕ )dt = 4 kA = 4 mA ω T 0
113
机械振动——简谐振动的基本概念
简谐运动的能量

简谐运动的总能量公式

简谐运动的总能量公式

简谐运动的总能量四川宣汉第二中学金菊英(636150)一.总能量公式:221KA E =简谐运动是一种理想化的振动.对简谐运动来说,一旦供给振动系统以一定的能量,使它开始振动。

在振动过程中动能和势能不断地发生相互转换。

但动能和势能总和不变,即机械能守恒,也即是总能量不变。

在不同的简谐运动中这个总能量写出的具体形式可能不一样,比如单摆往往会写成初始的势能形式。

但它们可以统一于一个公式之中:221KA E =。

其中,E 是总能量,K 是KX F -=中的比例系数,A 为简谐运动的振幅,正因为总能量不变,所以A 也是一个不变量。

弹簧振子和单摆是两种典型的简谐运动,下面我们分别对其加以证明。

二.论证弹簧振子符合此公式:用外力把弹簧振子从平衡位置移到振幅处。

弹力的大小随形变而发生变化(L K F ∆=弹F ,其中L ∆表示形变量),但它呈一种线性变化,所以可以求出这个过程中外力的平均值:20KA F +=。

再根据变力做功的公式就可以求出外力所做的功:22120KA A KAFA W =+==。

通过外力做功使弹簧振子在振幅处具有221KA 的机械能,(振幅处表现为势能)。

在弹簧振子运动过程中动能和势能不断转换,但总能量始终是221KA E =。

三.论证单摆符合此公式情景:如图一,一个摆长为l ,质量为m 的单摆在A ,B 之间做简谐运动。

其最大摆角为α。

1. 单摆的K 。

单摆是用重力的一个分力充当回复力的,其回复力大小可以写为θsin mg F =,(θ为摆球的瞬时摆角)θ<α,由于θ很小, sin θ=l x ||,(x 为离开平衡位置O 的位移,) 加上符号,x l mgl xmg F -=-=,所以对单摆来说K=l mg2. 单摆的能量单摆在整个简谐运动过程中的总能量等于在振幅处的重利势能。

图一 B 点:E=E P =)cos 1(α-mgl ①利用数学知识,在三角形COB 中:αcos 2222COCB CB CO OB -+=,其中OB 为振幅,CO ,BO 均为摆长,于是可得αcos 22222l l l A -+=)c o s 1(222α-=l A 222c o s l A=-α ②由①②可得:E=222l Amgl =221A lmg 3. 由1已经知道对单摆来说K=l mg,综合1、2,可得: E=221A l mg=221KA 对于221KA E =还可以用高等数学的方式给予证明,不管是什么形式的简谐运动,其总能量都可以写为221KA E =四.常见例题关于简谐运动能量的题都不难,大多以选择题出现。

大学物理-简谐振动讲义

大学物理-简谐振动讲义
x(t) Acos(t )
t
A
a v

t=0
x· x
v Asin(t )
Acos( t )
2
Av cos( t v )
a 2 Acos( t ) Aa cos( t a )
简谐振动旋转矢量表示法的应用
应用: 可以方便地确定初相位φ和相位
x0 0 x0 0 v0 0 v0 0
b a
a4 b3
F
(dF dr
) r r0
x
a4 b3
x
kx
其中
k
a4 b3
,为等效劲度系数.
➢ 结论: 原子在平衡位置附近的微振动是谐振动.
周期为:
T 2
m 2π k
b3 a4
m
角频率为:
a4 b3m
例题 质量为 m 的比重计,放在密度为 的液体中。
已知比重计圆管的直径为 d 。试证明在竖直方向的 振动为简谐振动,并计算周期。
x
A
= 2
O
t
-A
❖ 相位差
x1 A1 cos(1t 1) x2 A2 cos(2t 2 )
(2t 2 ) (1t 1) 2 1 (当2 1时)
k1
m1
k2 m2
x1
O
x2
若 2 1 2kπ
若 2 1 (2k 1)π
A1 x
x1
A2
o
x2
T
A1 x
A2
x1
x0 0 x0 0
x
v0 0 v0 0
M1 φ1
P φ2
M
2
[例1] 已知某质点作简谐运动, 振动曲线如图. 试根据图中数据
写出振动表达式.

大学物理第五章机械振动

大学物理第五章机械振动

A0 B C
提交
例题2. 弹簧振子放在光滑的水平面上,已知k=1.60N/m,m=0.4kg.
试就下列两种情形分别求运动方程. (1)将物体从平衡位置向右移到
x=0.10m处后释放; (2)将物体从平衡位置向右移到x=0.10m处后并给
物体以向左的速度0.20m/s.
解: k m 1.6 0.4 2rad s1
k
m
(1) t 0, x0 0.10m, v0 0
o
x
A
x02
v02
2
x0 0.10m
cos x0 1
A
0
x 0.1cos2t (m)
(2)
t
0,
x0
0.10m,
v0
0.20m/s
cos
x0
1
A
x02
v02
2
0.1
2m
A2
sin v0 0
A
x 0.1 2 cos(2t ) (m)
设弹簧振子在任一时刻 t 的位移为x,速度为v,则
振动系统所具有的弹性势能Ep和动能Ek分别为:
Ep
1 kx2 2
x Acos( t )
Ep
1 2
kA2
cos2 (
t
)
Ek
1 2
mv2
v A sin( t )
Ek
1 2
m 2 A2
sin2 (
t
)
2 k /m
1 kA2 sin2 ( t )
大加速度为 4.0 ms-2. 求:(1) 振动的周期;(2) 通过平衡位置的动
能;(3) 总能量;(4) 物体在何处其动能和势能相等?
解: (1) amax A 2

大学物理4-1 简谐振动的动力学特征

大学物理4-1 简谐振动的动力学特征
第4章 机械振动
a x
积分常数,根据初始条件确定
x A cos(t )
T 2π
A A
x
x t 图
T

取 0
o
t
t
v A sin(t )
A
v
v t 图
T
π A cos( t ) 2
a A 2 cos(t )
0
an
π t 0 2
A
vm A
v a

an A
2
x
x A cos(t 0 )
π v A cos( t 0 ) 2
a A cos(t 0 )
2
第4章 机械振动
第4章 机械振动
用旋转矢量图画简谐运动的

x
A
0
P
2
三 简谐振动的旋转矢量表示法
2π T


t t+ 0时 0
0
A
t=t
A
x0
以 o为 原点旋转矢
量 A的端点

o
x
x 轴上的
投影点的运 动为简谐运 动.
x0 A cos 0
第4章 机械振动
x A cos( t t t

2
① ② ③ ④ ⑤ J d x (m 2 ) 2 kx 0 R dt
2
d x k x0 2 2 dt m I / R
所以,此振动系统的运动是谐振动.
第4章 机械振动
(2) 振动系统的圆频率
k m J / R2
T 2 2 m J / R2 k

大学物理系列之简谐振动PPT课件

大学物理系列之简谐振动PPT课件

同号时为加速 异号时为减速
O
X
A
A
第33页/共66页
振动质点位移、速度与特征点 (t=0时对应的φ)
v
xv x
x0>0时Φ在1,4象限 v0>0时Φ在3,4象限
x
v
x
第34页/共66页
x
x
xv x
例1. 一物体沿 x 轴作简谐振动,A= 12cm, T = 2s
x 当t = 0时, 0= 6cm, 且向x正方向运动。
t 时刻与x轴的夹角
( t﹢ )
相位
A
A
第32页/共66页
11
旋转矢量端续点 上M 作匀速圆周运动
其 速率
A
振子的运动速度(与 X 轴同向为正)
A
t
旋转矢量端点 M 的加速度为
法向加速度,其大小为
A

t
A
X O
振子的运动加速度(与 X 轴同向为正)
A
t
任一时刻的 和 值,
其正负号仅表示方向。
• 任意位置
Fmsgin
悬线的张力和重力的合力沿悬线的垂直方向指向平衡位置。
第16页/共66页
Fmsgin
当θ很小时 sinθ ≈ θ ( θ < 5 °)
恢复力 Fmg
符合简谐振动的动力学定义
由牛顿第二定律
mat mg
d2
ml
mg
dt2
令 2 g l
d2 2 0
dt2
T 2 2
l g
单摆运动学方程: mcots()
弹簧振子 t= 0 时
m = 5×10 -3 kg
例三 k = 2×10 -4 N·m -1

大学物理(工科) 4—1 简谐运动、旋转矢量简谐运动的合成

大学物理(工科) 4—1 简谐运动、旋转矢量简谐运动的合成

2
tan1( v0 ) 注意: 确定 的象限 x0
二、简谐运动的描述
x Acos(t )
1.解析法(由振动表达式)
A, T, , x, v, a
2.曲线法(由振动曲线)
x
x Acos(t )
A
►确定振幅A;
o
►确定周期T,ω;
►确定φ
-A
T
t
•根据图像判断速度的正负用斜率 •利用初始条件确定几个φ,再利用速度正负判断保留φ
3、掌握描述简谐波的各物理量及各量间的关系;
4、理解机械波产生的条件. 掌握由已知质点的简谐 运动方程得出平面简谐波的波函数的方法. 理解波函 数的物理意义. 了解波的能量传播特征及能流、能流密 度概念.
匀速直线运动
直线运动
匀变速直线运动

变速直线运动
过 的
变加速直线运动

动 形
平抛运动

抛体运动
例4.2: 已知一简谐振动的曲线如图所示,写出振动方程。
x (cm)5
6
2
3
p
O 1
t(s)
解: 已知振动方程表达式为:x Acos(t ),v Asin(t )
► 定振幅: A=0.06m
►定初相
x0 0.06cos 0.03
cos 0.5
利用斜率判断0时刻速度方向 0 0
晶格点阵
§4—1 简谐运动、旋转矢量、简谐运动的能量
一、简谐运动动力学 1.模型
2.定义 ►受力:F=-kx
►动力学微分方程:
d2 dt
x
2
2
x
0
令 2 k
m
►运动方程: x(t)=Acos( t + )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16.1.5 简谐振动的能量
第16章 机械振动
16.1.5 简谐振动的能量
1
16.1.5 简谐振动的能量
第16章 机械振动
以弹簧振子为例
振子质量m,弹性系数k,振动角频率 k/m
Fkx xAcos(t) vAsin(t)
E k1 2m v21 2m 2A 2si2( n t )
E p1 2k2x1 2k2 A co 2( st)
E p=T 1T 01 2k A 2c o s2td t1 4k A 21 4m A 2 2
结论:简谐运动的动能与势能在一个周期内的 平均值相等,它们都等于总能量的一半。
6
16.1.5 简谐振动的能量
第16章 机械振动
应用:
忽略阻力,作 简谐运动的系统只 有动能和势能,且 机械能守恒,有
d
8
16.1.5 简谐振动的能量
第16章 机械振动
例:质量为 0.10kg 的物体,以振幅1.0102m
作简谐运动,其最大加速度为 4.0ms2,求:
(1)振动的周期; (2)通过平衡位置的动能; (3)总能量; (4)物体在何处其动能和势能相等?
解:(1) amaxA2
T 2π 0.314s
a max A
2
k m
EEkEp1 2kA 2A2(振幅的动力学意义)
线性回复力是保守力,作简谐运动的系统机械能守恒。
2
16.1.5 简谐振动的能量
第16章 机械振动
x,v
简谐运动能量图
ห้องสมุดไป่ตู้
xt 0
o
t xA co ts
T vt v A si n t
能量
o T T 3T T 42 4
E 1 kA2 2
Ep
1kA2c 2
第16章 机械振动
能量平均值
定义:一个随时间变化的物理量 f (t ), f 1 T f t dt
在时间T内的平均值定义为:
T0
弹簧振子在一个周期内的平均动能为 :
E k T 1T 01 2 m A 22sin 2td t 1 4 m A 22 1 4 k A 2
弹簧振子在一个周期内的平均势能为:
dt Ek Ep 0
将具体问题中的动能与势能表达式代入上式, 可得到简谐运动的微分方程及振动周期和频率。
7
16.1.5 简谐振动的能量
第16章 机械振动
推导
例: 能量守恒
简谐运动方程
E1mv21kx2常量 22
d(1mv21kx2)0 dt 2 2
mvdvkxdx0 dt dt
d2x k x 0 dt2 m
o2st
t Ek
1m2A2sin2t
2
3
16.1.5 简谐振动的能量
第16章 机械振动
简谐运动能量守恒,振幅不变。
简谐运动势能曲线 E 1 kA2
Ep
2
CE
B
Ek
Ep
A O x A x
一般情况,振动势能是指与振动系统所受
合外力相应的势能。
4
16.1.5 简谐振动的能量
第16章 机械振动
说明:
1)E∝A2,对任何简谐运动皆成立;
20s1
9
16.1.5 简谐振动的能量
第16章 机械振动
(2) Ek,max1 2m vm 2 ax1 2m 2A22.0103J
(3) E Ek,max2.0103J
(4) Ek Ep 时, Ep 1.0103J

Ep
1kx21m2x2
22
x2
2Ep
m 2
0.51 04m2
x0.70c7m 10
2)动能与势能都随时间作周期性变化,变化 频率是位移与速度变化频率的两倍,而总能 量保持不变;且总能量与位移无关。
动能 Ek= E - Ep
3)由势能曲线注意理解能量守恒和动能、势能
相互转化过程。由能量守恒关系:
k A2/2= mv02/2+ kx02/2,可得:A=
x02
v0
2
5
16.1.5 简谐振动的能量
相关文档
最新文档