克里格空间插值法共61页

合集下载

克里金插值-Kriging插值-空间统计-空间分析

克里金插值-Kriging插值-空间统计-空间分析

克里金插值方法-Kriging 插值-空间统计-空间分析1.1 Kriging 插值克里金插值(Kriging 插值)又称为地统计学,是以空间自相关为前提,以区域化变量理论为基础,以变异函数为主要工具的一种空间插值方法。

克里金插值的实质是利用区域化变量的原始数据和变异函数的结构特点,对未采样点的区域化变量的取值进行线性无偏、最优估计。

克里金插值包括普通克里金插值、泛克里金插值、指示克里金插值、简单克里金插值、协同克里金插值等,其中普通克里金插值是最为常用的克里金插值方法。

以下介绍普通克里金插值的原理。

包括普通克里金方法在内的各种克里金插值方法的使用前提是空间数据存在着显著的空间相关性。

判断数据空间相关性是否显著的工具是半变异函数(semi-variogram ),该函数以任意两个样本点之间的距离h 为自变量,在h 给定的条件下,其函数值估计方法如下:2||||1()[()()]2()i j i j s s h h z s z s N h γ-==-∑其中()N h 是距离为h 的样本点对的个数。

()h γ最大值与最小值的差m a x m i n γγ-可以度量空间相关性的强度。

max min γγ-越大,空间相关性越强。

如果()h γ是常数,即max min 0γγ-=,则说明无论样本点之间的距离是多少,样本点之间的差异不变,也就是说样本点上的值与其周围样本点的值无关。

在实际操作中,会取一些离散的h 值,当||s s ||i j -接近某个h 时,即视为||||i j s s h -=。

然后会通过这些离散点拟合成连续的半变异函数。

拟合函数的形式有球状、指数、高斯等。

在数据存在显著的空间相关性的前提下,可以采用普通克里金方法估计未知点上的值。

普通克里金方法的基本公式如下:01ˆ()()()n i ii Z s w s Z s ==∑普通克里金方法的基本思想是:通过调整i s 的权重()i w s ,使未知点的估计值0ˆ()Z s 满足两个要求:1.0ˆ()Z s 是无偏估计,即估计误差的期望值为0,2.估计误差的方差达到最小。

克立格插值_2

克立格插值_2
1 l a l
n
l 0,1,k
泛克立格估值的最优条件
E[ Z
2 E n * UK
Z ( x)] E[ Z ( x ) Z ( x)]2
2
n
1
E{[ Z ( x )] 2 Z ( x )Z ( x) [ Z ( x)]2 }
1 1 1
{E[ Z ( x )]} 2 E[ Z ( x)]{ E[ Z ( x )]} {E[ Z ( x)]}2
2
n
n
1
1
* * {E[ ZUK ( x)]}2 2 E[ Z ( x)]E[ ZUK ( x)] {E[ Z ( x)]}2
2 k l 0
k
(2)求x处的Z(x)值
Z UK ( x) Z ( x )
*
n
1
(2)求x处的Z(x)值
无偏条件
* E[ Z UK ( x 1 1
n
n
m( x ) al f l ( xa )

k0 1
k0
] mk0 k
k k0
nk
k 1
nk0 k0 1 k0 1 无偏条件 nk k 0 k 1,2....K , k k0 k 1
协同克立格方程组的条件
估计方差
2 * E E[ ZV ZV ]2
1 1 1
n
{C ( x, x) E 2 [ Z ( x)]} C ( x , x ) 2 C ( x , x ) C ( x, x)
1 1
n n n n
1

克里格空间插值法

克里格空间插值法
1 最近邻点法:泰森多边形方法移动 2 平均插值方法:距离倒数插值 3 克里格插值:克里格插值是空间自协 方差最佳插值方法
1.4邻域函数的统计函数及其意义



众数(majority):邻域中出现频率最高的数值 最大值(max):邻域中最大的数值 最小值(min):邻域中最小的数值 中位数(median):邻域中数值从小到大排列后位于中间的 数 平均值(mean):邻域中数值的算术平均 频率最小数(minority):邻域中出现频率最小的数值 范围(range):邻域中数值的范围,最大值与最小值之差 标准差(std):邻域中数值的标准差 和(sum):邻域中数值的和 变异度(varity):邻域中不同数值的个数
1.8 方差变异函数

3)理论方差函数曲线不穿过原点,而是存在一个最小的方差值。理论上讲,当间隔 h=0时,估值的方差应该为0,因为任何一点与自身之差的值为0。h趋近于0时,r(h) 轴上的正截距是残差的一个估计,该值称为块金(或基底,nugget)。在理论函数模型 中,用C0表示。 块金是在间隔距离小于采样间距时的测量误差或空间变异,或者是二者的和。测 量误差是由仪器的内在误差引起的,空间变异是自然现象在一定空间范围内的变化。 小于采样间距的微观尺度上空间变异是块金的一部分。 当r(h)值在所有的h值上都等于基台值时,实验半方差函数就表现为纯块金效应, 这通常由于短间距内点与点的变异很大而引起,表明所使用的采样间隔内完全没有空 间相关性,此时,可以认为各个样点是随机的,区域平均值就是各点的最佳估计值。 此时,只有增大采样间隔才能揭示出空间相关性。 块金与基台的比值(C0/(C+C0),基底效应)可以用来说明空间的变异特征,该值 越大,说明空间变异更多的是随机成分引起的,否则,则是由特定的地理过程或多个 过程综合引起的。 空间相关性的强弱,可用C/(C+C0)表示,该值越高,表明空间相关性越强。 在实际的模型计算中,块金与基台两个参数是可以调整的,其取值取决于整体的 拟合效果。

克里格插值

克里格插值

克里格插值什么是克里格插值?距离权重倒数插值和样条法插值被归类为确定性的插值方法,因为它们是直接基于周围已知点的值进行计算或是用指定的数学公式来决定输出表面的平滑度的插值方法。

而第二个插值方法家族包括的是一些地统计学的插值方法(如克里格插值),这些方法基于一定的包括诸如自相关(已知点间的统计关系)之类的统计模型。

因此,这些方法不仅有能力生成一个预测表面,而且还可以给出预测结果的精度或确定性的度量。

克里格插值与距离权重倒数插值相似之处在于给已知的样本点赋权重来派生出未知点的预测值。

这两种内插方法的通用公式如下,表达为数据的权重总和。

其中, Z(Si)是已测得的第i个位置的值;λi是在第i个位置上测得值的未知的权重;S0是预测的位置;N 是已知点(已测得值的点)的数目。

在距离权重倒数插值中,权重λi仅取决于距预测位置的距离。

然而,在克里格插值中,权重不仅建立在已知点和预测点位置间的距离的基础上,而且还要依据已知点的位置和已知点的值的整体的空间分布和排列。

应用权重的空间排列,空间自相关必须量化。

因此,运用普通克里格插值(Ordinary Kriging),权重λi取决于已知点的拟合模型、距预测位置的距离和预测点周围的已知点间的空间关系。

利用克里格方法进行预测,必须完成以下两个任务:(1)揭示相关性规则。

(2)进行预测。

要完成这两项任务,克里格插值方法通过以下两个步骤完成:(1)生成变异函数和协方差函数,用于估算单元值间的统计相关(也叫空间自相关),而变异函数和协方差函数也取决于自相关模型(拟合模型)。

(2)预测未知点的值。

因为前面已经说过的两个明确的任务,因此要用克里格方法对数据进行两次运算:第一次是估算这些数据的空间自相关而第二次是做出预测。

变异估计(Variography)变异估计就是拟合一个数学模型或空间模型,象已知的结构分析。

在已测点结构的空间建模中,首先得出经验半变异函数的曲线图,计算如下:半变异函数(距离h)= 0.5*均值[ (在i 位置的值-在j 位置的值)2 ]用于计算被距离h分隔的每一点对相对应的位置。

克里金插值(kriging)

克里金插值(kriging)
其简算公式为 Cov(ξ,η) = E (ξη)-E(ξ) ·E(η)
2021/6/16
12
二、统计推断与平稳要求
•任何统计推断(cdf,数学期望等)均要求重复取样。 •但在储层预测中,一个位置只能有一个样品。 •同一位置重复取样,得到cdf,不现实
P
2021/6/16
13
考虑邻近点,推断待估点
区域化变量: 能用其空间分布来表征一个自然现象的变量。
(将空间位置作为随机函数的自变量)
•空间一点处的观测值可解释为一个随机变量在该点
处的一个随机实现。
• 空间各点处随机变量的集合构成一个随机函数。
(可以应用随机函数理论解决插值和模拟问题)
2021/6/16
14
考虑邻近点,推断待估点 ----空间统计推断要求平稳假设
方差的平方根为标准差,记为σξ
σξ=
D ()E [-E ()]2 E (2 )-[E ()]2
•从矩的角度说,方差是ξ的二阶中心矩。
2021/6/16
10
2. 随机函数
研究范围内的一组随机变量。
{Z(u),u研究范}围 简记为 Z (u )
条件累积分布函数(ccdf)
F ( u 1 , , u K ; z 1 , , z K |( n ) P ) o { Z ( u r 1 ) b z 1 , , Z ( u K ) z K |( n )}
2021/6/16
2
H. S. Sichel (1947) D.G. Krige (1951)
应用统计学方法研究金矿品位
Kriging法(克里金法,克立格 法):“根据样品空间位置不同、样 品间相关程度的不同,对每个样品 品位赋予不同的权,进行滑动加权 平均,以估计中心块段平均品位”

克里金插值法.pptx

克里金插值法.pptx
其中 Z(xi)之间存在一定的相关关系,这种相关性除与距离有关外,还与其相对方向变 化有关,克里金插值方法将研究的对象称“区域化变量”
针对克里金方法无偏、最小方差条件可得到无偏条件可得待定权系数i (i=1,2,……,
n)满足关系式:
n
i 1
i 1
以无偏为前提,kriging 方差为最小可得到求解待定权系数i 的方程组:
(5)根据求出的权重值,代入公式(1),即可求得评估领域内 n 个采样值的线性组合[2]。
克里金插值法的方法路线图如下:
3
导入数据
数据分析
是否服从 正态分布

是否存在 趋势

否 数据变换
是 泛克里金方法
根据数据选择 合适的方法
进行预测
计算克里金系数
拟合理论半 变异函数图
绘制经验半 变异函数图
绘制方差 变异云图
c 1
i
ni
dw 1
i1 c d w
(2)根据搜索策略选择合适的参估点,如图 2:
(4)
2
图 2 参估点图示
(3)根据已经求出的变异函数以及采样点数量,三个采样点列出三个等式,求出方程 组的系数,公式为:
C(1,1) C(2,1)
C(3,1)
C(1,2) C(2,2) C(3,2)
C(1,3)1 C(0,1) C(2,3)2 C(0,2)
不取决于 s 点的位置,而取决于位移量 h。为了确保自相关方程有解,必须允许某两点间自 相关可以相等。
然后,可以对方程式左边 Z(s) 进行变换。例如,可以将其转换成指示变量,即如果Z(s)
低于一定的阈值,则将其值转换为 0,将高于阈值的部分转换为 1,然后对高于阈值部分作 出预测,基于此模型作出预测便形成了指示克里金模型。如果将指示值转变成含有变量的

克里格插值

克里格插值

0x 克里格(Kringing )插值法是建立在统计学理论基础上,实际上是利用区域化变量的原始数据和半方差数据的结构特征,对位采样点的区域化变量的取值进行线性最优无偏估计的一种方法,也就是根据待估样点有限领域内若干已经择定的测定的样点数据,在认真考虑了阳电的形状、大小和相互空间位置之间的关系,以及他们与待估样点见相互位置关系和编译函数提供的结构信息之后,对待估样点间相互位置关系的编译函数提供的结构信息之后,对待估样点值进行的一种线性最优无偏估计。

下图为运用克里格法计算未知点的值的一般步骤:其插值原理如下:设在某一研究内未知点0x 的属性为)(0x Z ,其周围相关范围内有n 个已知已测点),,2,1(n i x i ⋯=。

通过n 个测定值的线性组合求其估计值)(0x Z :)()(10i n i i x Z x Z ∑==λ式中i λ为)(i x Z 位置有关的加权系数,并且∑==ni i 11λ克里格插值法是根据无偏估计和方差最小的要求来确定上式中的系数i λ。

1.构造半变异系数:设j x 和i x 的距离问为h 。

设n 个样点中mh 对样点的距离为h ,以他们的含量差)(-)(i j x Z x Z 构造的半变异函数为:2))()((21)(∑=--=h x x i j i j x Z x Z m h a 2.拟合得出变异系数:将n 个样点的含量带入公式,使用直线函数进行拟合3.构造矩阵和向量:求出任意两个已知点的半变异函数值,构造矩阵A:⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⋯⋯⋯⋯⋯⋯⋯⋯⋯=011110101021221112n n n n a a a a a a A 取任意一个已知点i x ,求出与未知点0x 的距离并代入求出该点与未知点0x 的半变异函数值0i a ,得到向量B:)1,,,,(02010n a a a B ⋯=方程AX=B 的姐的前n 个分量即为公式()的权重系数i λ。

空间插值PPT课件

空间插值PPT课件
1
第1页/共45页
空间插值
空间插值是用已知点的数值来估算其他点的数值的过程。 在GIS应用中,空间插值主要用于估算出栅格中每个像元的 值。因此,空间插值是将点数据转换成面数据的一种方法。
2
第2页/共45页
控制点
控制点是已知数值的点,它提供了为空间插值建立插值方 法(例如数学方程)的必要数据。
34
第34页/共45页
图15.19 块金、变程、总基台值和基台值。
35
第35页/共45页
普通克里金法(Ordinary Kriging)
假设不存在漂移,普通克里金法重点考虑空间相关的因 素,并用拟合的半变异直接进行插值。
36
第36页/共45页
图15.20 基于指数模型的普通克里 金插值法生成的等雨量线图。
40
第4降水量曲面的标准差 分布图。
41
第41页/共45页
其它克里金法
除了普通克里金和泛克里金外,其它克里金法包括指示性 克里金法、离析克里金法和块克里金法
42
第42页/共45页
空间插值方法的比较
基于相同数据,不同的插值方法将生成不同的插值结果。 同样,用 相同的方法,不同的参数值,将得出不同的预测值。
27
第27页/共45页
区间分组(binning)
半变异云图包含所有的控制点对,使之操作和使用不方便。区 间分组(binning)的过程,是以距离和方向来平均半变异数据。
28
第28页/共45页
图15.15 对图(a)中的1和2 样本按方向进行区间归类的常用方法是径 向扇区(b)。ArcGIS 中的Geostatistical Analyst 则使用如图(c)的格 网像元。
11
第11页/共45页

空间插值分析课件ppt

空间插值分析课件ppt
24
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
3.距离反比法
W = 2, R = 150
W = 2, R = 230
W = 2, R = 600
W = 4, R = 600
不同权重系数(W)和搜索半径(R)的影响
12
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
2.最近邻法
最近邻法的适用性
分布均匀时效果好
分布差异性多大时不适用于最近邻插值?
用于只有少数缺失值时,对缺失值进行填补
数据缺失到什么程度,不能 采用最近邻插值方法?
18
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
3.距离反比法
基本原理
距离反比插值方法最早由 Shepard 提出的,并逐步得到发 展和推广应用。
每个采样对插值结果的影响随距离增加而减弱,因此距离 目标点较近的样点赋予的权重较大。
整个区域的数据都会影响单个插值点,单个数据点变量值 的增加、减少或者删除,都对整个区域有影响。
典型例子:全局趋势面分析
ARCGIS 全局趋势面分析
6
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
1.概述
整体插值和局部插值
8
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统

克里金(克里格)(Corigine)算法

克里金(克里格)(Corigine)算法

克里格,或者说克里金插值Kriging。

法国krige名字来的。

特点是线性,无偏,方差小,适用于空间分析。

所以很适合地质学、气象学、地理学、制图学等。

相对于其他插值方法。

主要缺点:由于他要依次考虑(这也是克里格插值的一般顺序)计算影响范围,考虑各向异性否,选择变异函数模型,计算变异函数值,求解权重系数矩阵,拟合待估计点值,所以反映速度很慢。

(当然也看你算法设计和电脑反应速度了呵呵)。

而那些趋势面法,样条函数法等。

虽然较快,但是毕竟程度和适合用范围都大受限制。

具体对比如下:方法外推能力逼近程度运算能力适用范围距离反比加权法分布均匀时好差快分布均匀最近邻点插值法不高强很快分布均匀三角网线性插值高差慢分布均匀样条函数高强快分布密集时候克里金插值高强慢均可克里格插值又分为:简单,普通,块,对数,指示性,泛,离析克里金插值等。

克里金插值的变异函数球形模型,指数模型,高斯模型,纯块金模型,幂函数模型,迪维生模型等。

以下结合我的绘制等值线(等高线)的程序和高斯迭代解矩阵方程方法以及多元线性回归方法(此两方法实现另补充)说明克里格方法的实现:注:选择变异函数模型为球形模型,选择插值方法为普通克里金,我为了简化问题,考虑为各向同性,变差距离为固定。

int i,j,i0,i1,j0,j1,k,l,m,n,p,h;//循环变量double *r1Matrix;//系数矩阵double *r0Matrix;//已知向量double *langtaMatrix;//待求解向量double *x0;//已知点横坐标double *y0;//已知点纵坐标double * densgridz;//存储每次小方格内的已知值。

double densgridz0;//待求值int N1=0;//统计有多少个已知值double r[71],r0[71];int N[70];for(i=0;i<100;i++){for(j=0;j<100;j++){if(bdataprotected[i*100+j]) continue;//原值点不需要插值//1.遍历所有非保护网格。

克里格插值法

克里格插值法

克里格法(Kriging)——有公式版二、克里格法(Kriging)克里格法(Kriging)是地统计学的主要内容之一,从统计意义上说,是从变量相关性和变异性出发,在有限区域内对区域化变量的取值进行无偏、最优估计的一种方法;从插值角度讲是对空间分布的数据求线性最优、无偏内插估计一种方法。

克里格法的适用条件是区域化变量存在空间相关性。

克里格法,基本包括普通克里格方法(对点估计的点克里格法和对块估计的块段克里格法)、泛克里格法、协同克里格法、对数正态克里格法、指示克里格法、折取克里格法等等。

随着克里格法与其它学科的渗透,形成了一些边缘学科,发展了一些新的克里金方法。

如与分形的结合,发展了分形克里金法;与三角函数的结合,发展了三角克里金法;与模糊理论的结合,发展了模糊克里金法等等。

应用克里格法首先要明确三个重要的概念。

一是区域化变量;二是协方差函数,三是变异函数一、区域化变量当一个变量呈空间分布时,就称之为区域化变量。

这种变量反映了空间某种属性的分布特征。

矿产、地质、海洋、土壤、气象、水文、生态、温度、浓度等领域都具有某种空间属性。

区域化变量具有双重性,在观测前区域化变量Z(X)是一个随机场,观测后是一个确定的空间点函数值。

区域化变量具有两个重要的特征。

一是区域化变量Z(X)是一个随机函数,它具有局部的、随机的、异常的特征;其次是区域化变量具有一般的或平均的结构性质,即变量在点X 与偏离空间距离为h的点X+h处的随机量Z(X)与Z(X+h)具有某种程度的自相关,而且这种自相关性依赖于两点间的距离h与变量特征。

在某种意义上说这就是区域化变量的结构性特征。

二、协方差函数协方差又称半方差,是用来描述区域化随机变量之间的差异的参数。

在概率理论中,随机向量X与Y的协方差被定义为:区域化变量在空间点x 和x+h处的两个随机变量Z(x) 和Z(x+h) 的二阶混合中心矩定义为Z(x) 的自协方差函数,即区域化变量Z(x) 的自协方差函数也简称为协方差函数。

克里金插值法

克里金插值法

克里金插值法克里金插值法又称空间局部插值法,是以变异函数理论和结构分析为基础,在有限区域内对区域化变量进行无偏最优估计的一种方法,是地统计学的主要内容之一,由南非矿产工程师D. Matheron 于1951年在寻找金矿时首次提出,法国著名统计学家G. Matheron 随后将该方法理论化、系统化,并命名为Kriging ,即克里金插值法。

1 克里金插值法原理克里金插值法的适用范围为区域化变量存在空间相关性,即如果变异函数和结构分析的结果表明区域化变量存在空间相关性,则可以利用克里金插值法进行内插或外推。

其实质是利用区域化变量的原始数据和变异函数的结构特点,对未知样点进行线性无偏、最优估计,无偏是指偏差的数学期望为0,最优是指估计值与实际值之差的平方和最小[1]。

因此,克里金插值法是根据未知样点有限领域内的若干已知样本点数据,在考虑了样本点的形状、大小和空间方位,与未知样点的相互空间关系,以及变异函数提供的结构信息之后,对未知样点进行的一种线性无偏最优估计。

假设研究区域a 上研究变量Z (x ),在点x i ∈A (i=1,2,……,n )处属性值为Z (x i ),则待插点x 0∈A 处的属性值Z (x 0)的克里金插值结果Z*(x 0)是已知采样点属性值Z (x i )(i=1,2,……,n )的加权和,即:)()(10*i ni i x Z x Z ∑==λ (1) 式中i λ是待定权重系数。

其中Z(x i )之间存在一定的相关关系,这种相关性除与距离有关外,还与其相对方向变化有关,克里金插值方法将研究的对象称“区域化变量”针对克里金方法无偏、最小方差条件可得到无偏条件可得待定权系数i λ (i=1,2,……,n)满足关系式:11=∑=n i i λ(2)以无偏为前提,kriging 方差为最小可得到求解待定权系数i λ的方程组:⎪⎪⎩⎪⎪⎨⎧=⋯⋯==+∑∑==1)n ,2,1)(,(),(101n i i j j i n i i j x x C x x C λμλ, (3) 式中,C (x i ,x j )是Z(x i )和Z(x j )的协方差函数。

第5章克里格法PPT课件

第5章克里格法PPT课件
2、指示克里金法
实际研究中常常会需要获取研究区内研究对象大于某一给定阈值的概率分布,即要获知研究区内任一点x处随机变量Z(x)的概率分布。 还会碰到采样数据中存在特异值的问题。(特异值是指那些比全部数值的均值或中位数高的多的数值,其既非分析误差所致,也非采样方法等人为误差引起,而是实际存在于所研究的总体之中)。 指示克立格法就是为解决上述问题而发展起来的一种非参数地统计学方法。 指示克立格法不必去掉重要而实际存在的高值数据的条件下处理各种不同现象,并能够给出某点x处随机变量Z(x)的概率分布。
二、线性克里金法
1、简单克里金法
设区域化变量Z(x)满足二阶平稳假设,其数学期望为常数m,协方差函数C(h)和变异函数γ (h)存在且平稳。 现要估计中心点在x0 的待估块段V 的均值Z(x), Z(x)表达式为 由于 E[Z(x)]=m已知 令 Y(x)=Z(x)-m 则 E[Y(x)]=E[Z(x)-m]= E[Z(x)]-m=0 待估块段新待估值
(3)Z(x)的泛克里金法估计
求出函数F对n个权系数λi的偏导数,并令其为0,和无偏性条件联立建立如下方程组。 整理得估计Z (x)的泛克里金方程组:
泛克里金方程组可用矩阵表示为: 其中
(3)Z(x)的泛克里金法估计
从泛克里金方程组可得以下两等式: 将等式带入估计方差公式可得泛克里金方差,记为: 用变异函数γ(h)表示如下:
或 普通克里金方程组用矩阵形式表达为: 或 权重系数 或 普通克里金估计方差用矩阵表达为: 或
2、普通克里金法
普通克里金计算示例: 设某一区域气温数据满足二阶平稳假设,协方差函数和变异函数存在,拟合的变异函数模型为球状模型,如下所示。 数据如下,点的空间分布如图所示。现用普通克里金方法根据已知五个点的气温数据估算0点处的气温值。

kriging(克里金方法,克里金插值)

kriging(克里金方法,克里金插值)

ቤተ መጻሕፍቲ ባይዱ
E(ξ) = xp(x)dx
•数学期望是随机变量的最基本的数字特征,
相当于随机变量以其取值概率为权的加权平均数。
•从矩的角度说,数学期望是ξ的一阶原点矩。
对于一组样本:
N
( zi )
m i1 N
(2)方差 为随机变量ξ的离散性特征数。若数学期望
E[ξ-E(ξ)]2存在,则称它为ξ的方差,记为D(ξ), 或Var(ξ),或σξ2。
(2)
2. 变差函数的理论模型
设Z(x)为满足本征假设的区域化变量,则常 见的理论变差函数有以下几类:
球状模型 指数模型 高斯模型 幂函数模型 空洞效应模型
① 在整个研究区内有Z(u)的数学期望存在, 且等于常数,即: E[Z(u)] = E[Z(u+h)] = m(常数) x h
随机函数在空间上的变化没有明显趋势, 围绕m值上下波动。
② 在整个研究区内,Z(u)的协方差函数存在且平稳 (即只依赖于滞后h,而与u无关), 即
Cov{Z(u),Z(u+h)} = E[Z(u)Z(u+h)]-E[Z(u)]E[Z(u+h)] = E[Z(u)Z(u+h)]-㎡ = C(h)
P
条件累积分布函数(ccdf)后验 conditional cumulative distribution function
F(u; z | (n)) Pr ob{Z(u) z | (n)}
离散变量(类型变量):
P
F(u;k | (n)) Prob{Z(u) k | (n)}
不同的取值方式:估计(estimation)
条件累积分布函数(ccdf)
F(u1,,uK ; z1,, zK | (n)) Prob{Z(u1) z1,, Z(uK ) zK | (n)}

克里格插值法

克里格插值法
工程数学
工程数学
提出了如下的平稳假设及内蕴假设: 提出了如下的平稳假设及内蕴假设:
{ 随机函数: 随机函数:Z (u ), u ∈ 研究范围} ,其空间分布律不因平移 而改变,即若对任一向量h, 而改变,即若对任一向量 ,关系式
F ( z1 , z2 , ⋅⋅⋅; x1 , ⋅⋅⋅) = F ( z1 , z2 , ⋅⋅⋅; x1 + h, x2 + h, ⋅⋅⋅)
D(ξ ) = Var (ξ ) = E[ξ − E (ξ )] = E (ξ ) − E (ξ )2 22来自工程数学工程数学
(3)协方差 ) 协方差是用来刻画随机变量之间协同变化程度的指标, 协方差是用来刻画随机变量之间协同变化程度的指标,其 大小反映了随机变量之间的协同变化的密切程度。 大小反映了随机变量之间的协同变化的密切程度。
σ ij = Cov(ξ1 , ξ 2 ) = E[(ξ1 − E (ξ1 ) (ξ 2 − E (ξ 2 ) ] ) )
= E (ξ1ξ 2 ) − E (ξ1 ) E (ξ 2 )
(4)相关系数 ) 协方差是有量纲的量,与随机变量分布的分散程度有关, 协方差是有量纲的量,与随机变量分布的分散程度有关,为 消除分散程度的影响,提出了相关系数这个指标。 消除分散程度的影响,提出了相关系数这个指标。
成立时,则该随机函数 成立时,则该随机函数Z(x)为平稳性随机函数。 为平稳性随机函数。 这实际上就是指,无论位移h多大,两个 维向量的随机变量 多大, 这实际上就是指,无论位移 多大 两个k维向量的随机变量
{ Z ( x1 ), Z ( x2 ),L , Z ( xk )} 和 { Z ( x1 + h), Z ( x2 + h),L , Z ( xk + h)}
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档