2020年高三数学第一轮复习教案-解析几何-第八节 圆锥曲线的综合问题
2020届高三数学文科一轮复习_第九章 解析几何课时作业9-8-1
题组一 常识题 1.(教材改编) 过原点的直线 l 被抛物线 x2=4y 截得的线段 长为 4 2,则直线 l 的斜率为____________. 【解析】 设直线 l 的方程为 y=kx,将其代入抛物线方程, 得 x2-4kx=0,所以被截得的线段两端点的坐标分别为(0,0), (4k,4k2),所以 (4k)2+(4k2)2=4 2,解得 k=±1.
π
π
所以∠SOT 最大值为 3 .综上所述:∠SOT 的最大值为 3 ,
ቤተ መጻሕፍቲ ባይዱ
取得最大值时直线
l
的斜率为
k1=±
2 2.
【反思归纳】
跟踪训练 1 已知椭圆 E 的中心在原点,焦点 F1,F2 在 y 轴 上,离心率等于23 2,P 是椭圆 E 上的点.以线段 PF1 为直径的 圆经过 F2,且 9P→F1·P→F2=1.
y=4k21x,
x2=1+8k421k12,y2=1+14k21,
因此|OC|= x2+y2=
11+ +84kk2121.
由题意可知 sin 12∠SOT=r+r|OC|=1+1|OrC|,
而|OrC|=2 3 2·
1+8k21 1+1+k214k211+8k12=34 2·
2k21+1
1+14+k212k121 +k21,
记直线BT的斜率为k1,且k1>0,k1≠k.
则|BT|=1+8|k41|k21 1+k12, 故1+8|k41|k21 1+k21=1+8|k4|k2 1+k2, 所以 1k+12+4kk2141- 1+k2+4kk24=0. 即(1+4k2) k21+k41=(1+4k21) k2+k4, 所以(k2-k21)(1+k2+k21-8k2k21)=0.
最新整理高三数学20 高考数学第一轮圆锥曲线基础知识点复习教案.docx
最新整理高三数学20 高考数学第一轮圆锥曲线基础知识点复习教案§8.4 圆锥曲线班级姓名学号例1:设点A(2,2),F(4,0),点M在椭圆上运动。
(1)求|MA|+|MF|的最小值。
(2)求|MA|+ |MF|的最小值。
例2:已知AB是抛物线y2=2Px的任意一条焦点弦,且A(x¬1, y1),B(x¬2, y2),(1)求证y1y2=-p2, x1x2=(2)若弦AB被焦点分成长为m, n的两部分,求证:例3:设A(x1, y1)是椭圆x2+2y2=2上一点,过点A作一条斜率为的直线L,d为原点到L的距离,r1, r2分别为点A到两焦点的距离,求证:是定值。
例4:设椭圆C与双曲线D有共同的焦点F1(-4,0),F2(4,0),并且椭圆的长轴长是双曲线实轴的长的2倍,试求椭圆C与双曲线D交点的轨迹方程。
基础训练1、已知两定点F1(-5,0), F2(5,0),动点P满足|PF1|-|PF2|=2a,当a=3和5时,P点的轨迹为:A、双曲线和一条直线B、双曲线和一条射线()C、双曲线一支和一条射线D、双曲线一支和一条直线2、若抛物线y2=2px上三点的纵坐标的平方成等差数列,则这三点对应的焦点半径的关系是A、等比数列B、等差数列C、常数列D、以上均不对()3、已知两圆C1:(x+4)2+y2=2, C2: (x-4)2+y2=2,动圆M与两圆C1,C2都相切,则动圆圆心M的轨迹方程是:()A、x=0B、C、D、4、已知两点M(1,),N(),给出下列曲线方程:①4x+2y-1=0, ②x2+y2=3③④,在曲线上存在点P满足|MP|=|NP|的所有曲线方程是:A、①③B、②④C、①②③D、②③④5、已知F1、F2是椭圆的两个焦点,AB是过焦点F1的弦,若|AB|=8,则|F2A|+|F2B|的值是。
6、双曲线上一点P到左焦点的距离是14,则P点到右准线的距离为。
高考数学总复习(一轮)(人教A)教学课件第八章 平面解析几何第8节 直线与圆锥曲线的位置关系
P1F1P2F2的面积.
(2)解:由已知得
- = ,
2
2
解得 a =2,b =1,
+ = ,
2
所以双曲线方程为 -y =1.
根据(1)的结论直线 P1P2 的斜率为 ÷=,
所以直线 P1P2 的方程为 y-1=(x-2),即 x=3y-1,
判断直线与圆锥曲线的位置关系的方法
(1)代数法:直线与圆锥曲线方程联立,利用判别式求解;
(2)几何法:直线过定点时,若定点在圆锥曲线内部,则直线一定与
圆锥曲线相交;
若定点在圆锥曲线上,则直线与圆锥曲线相交或相切;
若定点在圆锥曲线外部,则直线与圆锥曲线相交、相切或相离.
[针对训练] 直线y=kx(k>0)与双曲线
+
等式两边同除以(x1+x2)(x1-x2),得
+
·
-
-
· =0,即 k1k2= .
(2)若双曲线的焦点分别为 F1(- ,0),F2( ,0) ,点P1 的坐标为
(2,1), 直 线 OM 的 斜 率 为 , 求 由 四 点 P1,F1,P2,F2 所 围 成 四 边 形
代入双曲线方程可解得 P2(- ,-),注意到 P1,P2 在直线 F1F2 的两侧,
所以四边形 P1F1P2F2 的面积为 |F1F2|·|y1-y2|= × =
.
解决圆锥曲线“中点弦”问题的思路
(1)根与系数的关系法:联立直线和圆锥曲线的方程得到方程组,消元
高中数学第一轮总复习 第八章 8.7 圆锥曲线的综合问题教案 新人教A版
8.7 圆锥曲线的综合问题巩固·夯实基础一、自主梳理解析几何考查的重点是圆锥曲线,在历年的高考中,占解析几何总分值的四分之三以上.解析几何的综合问题也主要以圆锥曲线为载体,通常从以下几个方面进行考查:1.位置问题,直线与圆锥曲线的位置关系问题,是研究解析几何的重点内容,常涉及直线与曲线交点的判断、弦长、面积、对称、共线等问题.其解法是充分利用方程思想以及韦达定理.2.最值问题,最值问题是从动态角度去研究解析几何中的数学问题的主要内容.其解法是设变量、建立目标函数、转化为求函数的最值.3.范围问题,范围问题主要是根据条件,建立含有参变量的函数关系式或不等式,然后确定参数的取值范围,其解法主要有运用圆锥曲线上点的坐标的取值范围,运用求函数的值域、最值以及二次方程实根的分布等知识.以上这些问题由于综合性较强,所以备受命题者的青睐.常用来综合考查学生在数形结合、等价转化、分类转化、逻辑推理等多方面的能力.二、点击双基1.方程22)2()2(-++y x =|x-y+3|表示的曲线是( )A.直线B.双曲线C.椭圆D.抛物线解析:原方程变形为2|3|)2()2(22+--++y x y x =2.它表示点(x,y)到点(-2,2)与定直线x-y+3=0的距离比是2.故选B.答案:B2.若点(x,y )在椭圆4x 2+y 2=4上,则2-x y 的最小值为( ) A.1 B.-1 C.-323 D.以上都不对 解析:2-x y 的几何意义是椭圆上的点与定点(2,0)连线的斜率.显然直线与椭圆相切时取得最值,设直线y=k(x-2),代入椭圆方程消去y 得(4+k 2)x 2-4k 2x+4k 2-4=0.令Δ=0,k=±323. ∴k min =-323.答案:C 3.双曲线22a x -22b y =1的离心率为e 1,双曲线22b y -22ax =1的离心率为e 2,则e 1+e 2的最小值为( ) A.42 B.2 C.22 D.4解析:(e 1+e 2)2=e 12+e 22+2e 1e 2 =222a b a ++222b a b ++2·a b a 22+·ba b 22+ =2+22a b +22ba +2(ab +b a ) ≥2+2+2×2=8.当且仅当a=b 时取等号.故选C.答案:C4.若椭圆x 2+a 2y 2=a 2的长轴长是短轴长的2倍,则a=___________________. 解析:方程化为22ax +y 2=1, 若a 2>1,∴2|a|=2×2,a=±2.当0<a 2<1,∴2=4|a|.∴a=±21. 答案:±2,±21 5.P 是双曲线32x -y 2=1的右支上一动点,F 是双曲线的右焦点,已知A(3,1),则|PA|+|PF|的最小值为____________________________.解析:设F ′为双曲线的左焦点,∴|PF ′|-|PF|=23.∴|PA|+|PF|=|PA|+|PF ′|-23≥|AF ′|-23=26-23. 答案:26-23诱思·实例点拨【例1】如图,O 为坐标原点,直线l 在x 轴和y 轴上的截距分别是a 和b(a>0,b ≠0),且交抛物线y 2=2px(p>0)于M(x 1,y 1),N(x 2,y 2)两点.(1)写出直线l 的截距式方程;(2)证明11y +21y =b1;(3)当a=2p 时,求∠MON 的大小.剖析:易知直线l 的方程为a x +b y =1,欲证11y +21y =b1,即求2121y y y y +的值,为此只需求直线l 与抛物线y 2=2px 交点的纵坐标.由根与系数的关系易得y 1+y 2、y 1y 2的值,进而证得11y +21y =b 1.由·=0易得∠MON=90°.亦可由k OM ·k ON =-1求得∠MON=90°.(1)解:直线l 的截距式方程为a x +b y =1. ① (2)证明:由①及y 2=2px 消去x 可得by 2+2pay-2pab=0. ②点M 、N 的纵坐标y 1、y 2为②的两个根,故y 1+y 2=bpa 2-,y 1y 2=-2pa. 所以11y +21y =2121y y y y +=pa b pa22--=b 1. (3)解:设直线OM 、ON 的斜率分别为k 1、k 2,则k 1=11x y ,k 2=22x y . 当a=2p 时,由(2)知,y 1y 2=-2pa=-4p 2,由y 12=2px 1,y 22=2px 2,相乘得(y 1y 2)2=4p 2x 1x 2,x 1x 2=22214)(p y y =2224)4(p p -=4p 2,因此k 1k 2=2121x x y y =2244p p -=-1. 所以OM ⊥ON,即∠MON=90°.讲评:本题主要考查直线、抛物线等基本知识,考查运用解析几何的方法分析问题和解决问题的能力.【例2】已知椭圆C 的方程为22a x +22b y =1(a>b>0),双曲线22a x -22by =1的两条渐近线为l 1、l 2,过椭圆C 的右焦点F 作直线l,使l ⊥l 1,又l 与l 2交于P 点,设l 与椭圆C 的两个交点由上至下依次为A 、B.(如图)(1)当l 1与l 2夹角为60°,双曲线的焦距为4时,求椭圆C 的方程;(2)当=λ时,求λ的最大值.剖析:(1)求椭圆方程即求a 、b 的值,由l 1与l 2的夹角为60°易得a b =33,由双曲线的距离为4易得a 2+b 2=4,进而可求得a 、b. (2)由=λ,欲求λ的最大值,需求A 、P 的坐标,而P 是l 与l 1的交点,故需求l 的方程.将l 与l 2的方程联立可求得P 的坐标,进而可求得点A 的坐标.将A 的坐标代入椭圆方程可求得λ的最大值.解:(1)∵双曲线的渐近线为y=±a b x,两渐近线夹角为60°, 又ab <1, ∴∠POx=30°,即a b =tan30°=33. ∴a=3b.又a 2+b 2=4,∴a 2=3,b 2=1. 故椭圆C 的方程为32x +y 2=1. (2)由已知l:y=b a (x-c),与y=a b x 解得P(ca 2,c ab ), 由=λ得A(λλ+∙+12c a c ,λλ+∙1c ab ). 将A 点坐标代入椭圆方程得(c 2+λa 2)2+λ2a 4=(1+λ)2a 2c 2.∴(e 2+λ)2+λ2=e 2(1+λ)2.∴λ2=2224--e e e =-[(2-e 2)+222e -]+3≤3-22. ∴λ的最大值为2-1.讲评:本题考查了椭圆、双曲线的基础知识,及向量、定比分点公式、重要不等式的应用.解决本题的难点是通过恒等变形,利用重要不等式解决问题的思想.本题是培养学生分析问题和解决问题能力的一道好题.【例3】 已知直线y=-2上有一个动点Q ,过Q 作直线l 垂直于x 轴,动点P 在直线l 上,且⊥,记点P 的轨迹为C 1.(1)求曲线C 1的方程.(2)设直线l 与x 轴交于点A ,且=(≠0).试判断直线PB 与曲线C 1的位置关系,并证明你的结论.(3)已知圆C 2:x 2+(y-a)2=2,若C 1、C 2在交点处的切线互相垂直,求a 的值.解:(1)设P 的坐标为(x,y),则点Q 的坐标为(x,-2).∵⊥,∴·=0.∴x 2-2y=0.∴点P 的轨迹方程为x 2=2y(x ≠0).(2)直线PB 与曲线C 1相切,设点P 的坐标为(x 0,y 0),点A 的坐标为(x 0,0). ∵=,∴=(0,-y 0).∴点B 的坐标为(0,-y 0).∵≠0,∴直线PB 的斜率为k=002x y . ∵x 02=2y 0,∴k=x 0.∴直线PB 的方程为y=x 0x-y 0.代入x 2=2y,得x 2-2x 0x+2y 0=0.∵Δ=4x 02-8y 0=0,∴直线PB 与曲线C 1相切.(3)不妨设C 1、C 2的一个交点为N(x 1,y 1),C 1的解析式即为y=21x 2,则在C 1上N 处切线的斜率为k ′=x 1,圆C 2过N 点的半径的斜率为k=11x a y . ① 又∵点N(x 1,y 1)在C 1上,所以y 1=21x 12. ② 由①②得y 1=-a,x 12=-2a,∵N(x 1,y 1)在圆C 2上,∴-2a+4a 2=2.∴a=-21或a=1. ∵y 1>0,∴a<0. ∴a=-21.。
高三数学高考一轮复习系列教案第八章 圆锥曲线 大纲版
第八章圆锥曲线知识结构高考能力要求1.掌握椭圆的定义、标准方程、简单的几何性质、了解椭圆的参数方程.2.掌握双曲线的定义、标准方程、简单的几何性质.3.掌握抛物线的定义、标准方程、简单的几何性质.4.了解圆锥曲线的初步应用.高考热点分析圆锥曲线是高中数学的一个重要内容,它的基本特点是数形兼备,兼容并包,可与代数、三角、几何知识相沟通,历来是高考的重点内容。
纵观近几年高考试题中对圆锥曲线的考查,基本上是两个客观题,一个主观题,分值21分~24分,占15%左右,并且主要体现出以下几个特点:1.圆锥曲线的基本问题,主要考查以下内容:①圆锥曲线的两种定义、标准方程及a、b、c、e、p 五个参数的求解.②圆锥曲线的几何性质的应用.2、求动点轨迹方程或轨迹图形在高考中出现的频率较高,此类问题的解决需掌握四种基本方法:直译法、定义法、相关点法、参数法.3.有关直线与圆锥曲线位置关系问题,是高考的重热点问题,这类问题常涉及圆锥曲线的性质和直线的基本知识以及线段中点、弦长等,分析这类问题时,往往要利用数形结合思想和“设而不求”的方法、对称的方法及韦达定理,多以解答题的形式出现.4.求与圆锥曲线有关的参数或参数范围问题,是高考命题的一大热点,这类问题综合性较大,运算技巧要求较高;尤其是与平面向量、平面几何、函数、不等式的综合,特别近年出现的解析几何与平面向量结合的问题,是常考常新的试题,将是今后高考命题的一个趋势.高考复习建议1.圆锥曲线的定义、标准方程及几何性质是本章的基本内容.复习中对基本概念的理解要深,对公式的掌握要活,充分重视定义在解题中的地位和作用,重视知识间的内在联系.椭圆、双曲线、抛物线它们都可以看成是平面截圆锥所得的截线,其本质是统一的.因此这三种曲线可统一为“一个动点P到定点F和定直线l的距离之比是一个常数e的轨迹”,当0<e<1、e=1、e>1时,分别表示椭圆、抛物线和双曲线.复习中有必要将椭圆、抛物线和双曲线的定义,标准方程及几何性质进行归类、比较,把握它们之间的本质联系,要学会在知识网络交汇处思考问题、解决问题.2.计算能力的考查已引起高考命题者的重视,这一章的复习要注意突破“运算关”,要寻求合理有效的解题途径与方法.3.加强直线与圆锥曲线的位置关系问题的复习,注重数形结合思想和设而不求法与弦长公式及韦达定理的运用.4.重视圆锥曲线与平面向量、函数、方程、不等式、三角、平面几何的联系,重视数学思想方法的训练,达到优化解题思维、简化解题过程的目的.8.1 椭圆知识要点1.椭圆的两种定义(1) 平面内与两定点F1,F2的距离的和等于常数(大于21F F )的点的轨迹叫椭圆,这两个定点叫做椭圆的 , 之间的距离叫做焦距.注:①当2a =|F 1F 2|时,P 点的轨迹是 .②当2a <|F 1F 2|时,P 点的轨迹不存在.(2) 椭圆的第二定义:到 的距离与到 的距离之比是常数e ,且∈e 的点的轨迹叫椭圆.定点F 是椭圆的 ,定直线l 是 ,常数e 是 .2.椭圆的标准方程(1) 焦点在x 轴上,中心在原点的椭圆标准方程是:12222=+b y a x ,其中( > >0,且=2a ) (2) 焦点在y 轴上,中心在原点的椭圆标准方程是12222=+bx ay ,其中a ,b 满足: .3.椭圆的几何性质(对12222=+by a x ,a > b >0进行讨论)(1) 范围: ≤ x ≤ , ≤ y ≤ (2) 对称性:对称轴方程为 ;对称中心为 .(3) 顶点坐标: ,焦点坐标: ,长半轴长: ,短半轴长: ;准线方程: .(4) 离心率:=e ( 与 的比),∈e ,e 越接近1,椭圆越 ;e 越接近0,椭圆越接近于 .(5) 焦半径公式:设21,F F 分别为椭圆的左、右焦点,),(00y x P 是椭圆上一点,则=1PF ,122PF a PF -== .(6) 椭圆的参数方程为 . 4.焦点三角形应注意以下关系: (1) 定义:r 1+r 2=2a(2) 余弦定理:21r +22r -2r 1r 2cos θ=(2c )2(3) 面积:21F PF S ∆=21r 1r 2 sin θ=21·2c | y 0 |(其中P(00,y x )为椭圆上一点,|PF 1|=r 1,|PF 2|=r 2,∠F 1PF 2=θ)例题讲练【例1】 中心在原点,一个焦点为F 1(0,52)的椭圆被直线y =3x -2截得的弦的中点的横坐标为21,求此椭圆的方程.【例2】 已知点P(3, 4)是椭圆2222b y a x +=1 (a >b >0) 上的一点,F 1、F 2是它的两焦点,若PF 1⊥PF 2,求:(1) 椭圆的方程; (2) △PF 1F 2的面积.【例3】如图,射线OA 、OB 分别与x 轴、 y 轴所成的角均为︒30;已知线段PQ 的长度为2,并且保持线段的端点),(11y x P 在射线OA 上运动,点),(22y x Q 在射线OB 上运动(1) 试求动点),(21x x M 的轨迹C 的方程(2) 求轨迹C 上的动点N 到直线03=--y x 的距离的最大值和最小值.【例4】 (2005年全国卷I )已知椭圆的中心在原点,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,+与=(3, -1)共线.(1) 求椭圆的离心率;(2) 设M 是椭圆上任意一点,且=μλ+(λ、μ∈R),证明22μλ+为定值.小结归纳 1.在解题中要充分利用椭圆的两种定义,灵活处理焦半径,熟悉和掌握a 、b 、c 、e 关系及几何意义,能够减少运算量,提高解题速度,达到事半功倍之效.2.由给定条件求椭圆方程,常用待定系数法.步骤是:定型——确定曲线形状;定位——确定焦点位置;定量——由条件求a 、b 、c ,当焦点位置不明确时,方程可能有两种形式,要防止遗漏.3.解与椭圆的焦半径、焦点弦有关的问题时,一般要从椭圆的定义入手考虑;椭圆的焦半径的取值范围是],[c a c a +-.4.“设而不求”,“点差法”等方法,是简化解题过程的常用技巧,要认真领会.5.解析几何与代数向量的结合,是近年来高考的热点,在2005年的考题中足以说明了这一点,应引起重视.基础训练题 一、选择题1. 动点M 到定点)0,4(1-F 和)0,4(2F 的距离的和为8,则动点M 的轨迹为 ( ) A .椭圆 B .线段 C .无图形 D .两条射线2. (2005年全国高考试题III) 设椭圆的两个焦点分别为F 1、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是 ( )A .22 B .212- C .2-2D .2-13. (2004年高考湖南卷)F 1、F 2是椭圆C :14822=+y x 的焦点,在C 上满足PF 1⊥PF 2的点P 的个数为( ) A .2个 B .4个 C .无数个 D .不确定4. 椭圆171622=+y x 的左、右焦点为F 1、F 2,一直线过F 1交椭圆于A 、B 两点,则△ABF 2的周长为 ( ) A .32 B .16 C .8 D .45. 已知点P 在椭圆(x -2)2+2y 2=1上,则xy的最小值为( )A .36-B .26-C .6-D .66-6. 我们把离心率等于黄金比215-的椭圆称为“优美椭圆”,设)0(12222>>=+b a by a x 是优美椭圆,F 、A 分别是它的左焦点和右顶点,B 是它的短轴的一个端点,则ABF ∠等于 ( ) A .︒60 B .︒75 C .︒90 D .︒120二、填空题 7. 椭圆400162522=+y x 的顶点坐标为 和 ,焦点坐标为 ,焦距为 ,长轴长为 ,短轴长为 ,离心率为 ,准线方程为 .8. 设F 是椭圆16722=+y x 的右焦点,且椭圆上至少有21个不同的点P i (i =1,2, ),使得|FP 1|、|FP 2|、|FP 3|…组成公差为d 的等差数列,则d 的取值范围是 . 9. 设1F ,2F 是椭圆14322=+y x 的两个焦点,P 是椭圆上一点,且121=-PF PF ,则得=∠21PF F . 10.若椭圆2222)1(-+m y m x =1的准线平行于x 轴则m 的取值范围是 .三、解答题11.根据下列条件求椭圆的标准方程(1) 和椭圆1202422=+y x 共准线,且离心率为21.(2) 已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为534和532,过P 作长轴的垂线恰好过椭圆的一个焦点.12.椭圆14922=+y x 的焦点为21,F F ,点P 为其上的动点,当∠21PF F 为钝角时,求点P 横坐标的取值范围.13.(2005年高考湖南卷)已知椭圆C :12222=+by a x (a >0,b >0)的左、右焦点分别是F 1、F 2,离心率为e .直线l :y =ex +a 与x 轴,y 轴分别交于点A 、B 、M 是直线l 与椭圆C 的一个公共点,P 是点F 1关于直线l 的对称点,设=λ. (Ⅰ)证明:λ=1-e 2;(Ⅱ)若λ=43,△MF 1F 2的周长为6,写出椭圆C 的方程;(Ⅲ)确定λ的值,使得△PF 1F 2是等腰三角形.提高训练题14.(2006年高考湖南卷)已知C 1:13422=+y x ,抛物线C 2:(y -m )2=2px (p >0),且C 1、C 2的公共弦AB 过椭圆C 1的右焦点.(Ⅰ)当AB ⊥x 轴时,求p 、m 的值,并判断抛物线C 2的焦点是否在直线AB 上;(Ⅱ)若p =34,且抛物线C 2的焦点在直线AB 上,求m 的值及直线AB 的方程.15.(成都市2006届毕业班摸底测试)设向量i =(1, 0),j =(0, 1),=(x +m )i +y j ,=(x -m )i +y j ,且||+||=6,0< m < 3,x >0,y ∈R . ( I )求动点P(x ,y )的轨迹方程;( II ) 已知点A(-1, 0),设直线y =31(x -2)与点P 的轨迹交于B 、C 两点,问是否存在实数m ,使得AC AB ⋅=31?若存在,求出m 的值;若不存在,请说明理由.8.2 双 曲 线知识要点 1.双曲线的两种定义(1) 平面内与两定点F 1,F 2的 常数(小于 )的点的轨迹叫做双曲线.注:①当2a =|F 1F 2|时,p 点的轨迹是 .②2a >|F 1F 2|时,p 点轨迹不存在.(2) 平面内动点P 到一个定点F 和一条定直线l (F 不在 上)的距离的比是常数e ,当∈e 时动点P 的轨迹是双曲线.设P 到1F 的对应准线的距离为d ,到2F 对应的准线的距离为2d ,则e d PF d PF ==22112.双曲线的标准方程 (1) 标准方程:12222=-b y a x ,焦点在 轴上;12222=-bx ay ,焦点在 轴上.其中:a 0,b 0,=2a .(2) 双曲线的标准方程的统一形式:)0(122<=+nm ny mx3.双曲线的几何性质(对0,0,122>>=-b a b y a x 进行讨论)(1) 范围:∈x ,∈y .(2) 对称性:对称轴方程为 ;对称中心为 .(3) 顶点坐标为 ,焦点坐标为 ,实轴长为 ,虚轴长为 ,准线方程为 ,渐近线方程为 .(4) 离心率e = ,且∈e ,e 越大,双曲线开口越 ,e 越小,双曲线开口越 ,焦准距P = .(5) 焦半径公式,设F 1,F 2分别是双曲线的左、右焦点,若),(00y x P 是双曲线右支上任意一点,=1PF ,=2PF ,若),(00y x P 是双曲线左支上任意一点,=1PF ,=2PF . (6) 具有相同渐近线x aby ±=的双曲线系方程为 (7) 的双曲线叫等轴双曲线,等轴双曲线的渐近线为 ,离心率为 .(8) 12222=-b y a x 的共轭双曲线方程为 .例题讲练【例1】 根据下列条件,写出双曲线的标准方程 (1) 中心在原点,一个顶点是(0,6),且离心率是1.5.(2) 与双曲线x 2-2y 2=2有公共渐近线,且过点M(2,-2).【例2】 (04年高考湖北卷)直线l :y =kx +1与双曲线C :2x 2-y 2=1的右支交于不同的两点A 、B .(1)求实数k 的取值范围;(2)是否存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F ?若存在,求出k 的值;若不存在,说明理由.【例3】 在双曲线1121322-=-y x 的一支上有不同的三点A(x 1,y 1),B(x 2,6),C(x 3,y 3)与焦点F(0,5)的距离成等差数列.(1)求y 1+y 3;(2)求证:线段AC 的垂直平分线经过某一定点,并求出这个定点的坐标.【例4】 (2004年高考全国卷II )设双曲线C :)0(1222>=-a y a x 与直线l :x +y =1相交于两个不同的点.(1) 求双曲线C 的离心率e 的取值范围;(2) 设直线l 与y 的交点为P ,且=125,求a的值.小结归纳1.复习双曲线要与椭圆进行类比,尤其要注意它们之间的区别,如a 、b 、c 、e 的关系.2.双曲线的渐近线的探求是一个热点.①已知双曲线方程求渐近线方程;②求已知渐近线方程的双曲线方程.3.求双曲线的方程,经常要列方程组,因此,方程思想贯穿解析几何的始终,要注意定型(确定曲线形状)、定位(曲线的位置)、定量(曲条件求参数).4.求双曲线的方程的常用方法: (1) 定义法.(2) 待定系数法.涉及到直线与圆锥曲线的交点问题,经常是“设而不求”.5.例2的第(1)问是数材P 132第13题的引申,因此高考第一轮复习要紧扣教材.6.对于直线与双曲线的位置关系,要注意“数形转化”“数形结合”,既可以转化为方程组的解的个数来确定,又可以把直线与双曲线的渐近线进行比较,从“形”的角度来判断.基础训练题 一、选择题1. A 、B 是平面内两定点,动点P 到A 、B 两点的距离的差是常数,则P 的轨迹是 ( ) A .双曲线 B .椭圆 C .双曲线的一支 D .不能确定2. (04年高考湖南卷)如果双曲线1121322=-y x 上一点p 到右焦点的距离等于13,那么点p 到右焦线的距离是 ( )A .513 B .13 C .5D .1353. 已知双曲线的渐近线方程是2xy ±=,焦点在坐标轴上且焦距是10,则此双曲线的方程为 ( )A .152022=-y x B .152022±=-y x C .120522=-y xD .120522±=-y x4. (2005年高考湖南卷)已知双曲线12222=-by a x (a >0,b >0)的右焦点为F ,右焦线与一条渐近线交于点A ,△OAF 的面积为22a ,(0为原点)则两条渐近线的夹角为( ) A .30° B .45° C .60°D .90°5. 已知双曲线14922=-y x ,则过点A(3,1)且与双曲线仅有唯一的公共点的直线有 ( ) A .1条 B .2条 C .3条 D .4条6. (2005年江苏高考最后冲刺题) 设双曲线16x 2-9y 2=144的右焦点为F 2,M 是双曲线上任意一点,点A 的坐标为(9,2),则|MA|+53|MF 2|的最小值为( )A .9B .536C .542D .554二、填空题7. 中心在原点,坐标轴为对称轴,实轴与虚轴长之差为2,离心率为45的双曲线方程为 .8. (2004年高考·吉林、四川)设中心在原点,坐标轴为对称轴的椭圆与双曲线12222=-y x 有公共焦点,且它们的离心率互为倒数,则椭圆方程为 .9. (2006年高考湖南卷)过双曲线M :1222=-b y x 的左顶点A 作斜率为1的直线l ,若l 与双曲线M 的两条渐近线分别相交于点B 、C ,且|AB|=|BC|,则双曲线M 的离心率是 .10.可以证明函数x bax y +=(b ≠0)的图象是双曲线,试问双曲线C :xx y 33+=的离心率e 等于 .三、解答题11.(1) 已知双曲线的渐近线方程为032=±yx ,且过点(2,-6),求双曲线的方程;(2) 已知双曲线的右准线为x =4,右焦点为F(10,0),离心率为e =2,求双曲线的方程. 12.ABC ∆中,固定底边BC ,让顶点A 移动,已知4=BC ,且A B C sin 21sin sin =-,求顶点A 的轨迹方程.13.双曲线12222=-by a x )0,0(>>b a 的右支上存在与右焦点和左准线等距离的点,求离心率e 的取值范围.提高训练题 14.已知动点p 与双曲线13222=-y x 的两个焦点F 1、F 2的距离之和为定值,且cos ∠F 1PF 2的最小值为-91.(1) 求动点p 的轨迹方程;(2) 若已知点D(0,3),点M 、N 在动点p 的轨迹上且λ=,求实数λ的取值范围.15.(2005年武汉市高三调考)已知等轴双曲线C :)0(222>=-a a y x 上一定点P(00,y x )及曲线C 点上两个动点A 、B ,满足0=⋅PB PA(1) M 、N 分别为PA 、PB 中点,求证:0=⋅ON OM (O 为坐标原点);(2) 求|AB|的最小值及此时A 点坐标.抛 物 线 1.抛物线定义:离 的点的轨迹叫抛物线,焦点, 叫做抛物线的准线2.抛物线的标准方程和焦点坐标及准线方程① px y 22=,焦点为 ,准线为 . ② px y 22-=,焦点为 ,准线为 . ③ py x 22=,焦点为 ,准线为 . ④ py x 22-=,焦点为 ,准线为 . 3.抛物线的几何性质:对)0(22>=p px y 进行讨论. ① 点的范围: 、 . ② 对称性:抛物线关于 轴对称. ③ 离心率=e .④ 焦半径公式:设F 是抛物线的焦点,),(o o y x P 是抛物线上一点,则=PF .⑤ 焦点弦长公式:设AB 是过抛物线焦点的一条弦(焦点弦)i) 若),(11y x A ,),(22y x B ,则AB = ,21y y .ii) 若AB 所在直线的倾斜角为θ()0≠θ则AB = .特别地,当θ2π=时,AB 为抛物线的通径,且AB = .iii) S △AOB = (表示成P 与θ的关系式).iv) ||1||1BF AF +为定值,且等于 . 例题讲练【例1】 已知抛物线顶点在原点,对称轴是x 轴,抛物线上的点),3(n A -到焦点的距离为5,求抛物线的方程和n 的值.【例2】 已知抛物线C :x y 42=的焦点为F ,过点F 的直线l 与C 相交于A 、B .(1) 若316=AB ,求直线l 的方程.(2) 求AB 的最小值.【例3】 若A(3,2),F 为抛物线x y 22=的焦点,P 为抛物线上任意一点,求PA PF +的最小值及取得最小值时的P 的坐标.【例4】 (05全国卷(Ⅲ))设A(x 1,y 1),B(x 2,y 2),两点在抛物线y =2x 2上,l 是AB 的垂直平分线.(1)当且仅当x 1+x 2取何值时,直线l 经过抛物线的焦点F ?证明你的结论?(2)当直线l 的斜率为2时,求在y 轴上的截距的取值范围.小结归纳 1.求抛物线方程要注意顶点位置和开口方向,以便准确设出方程,然后用待定系数法.2.利用好抛物线定义,进行求线段和的最小值问题的转化.3.涉及抛物线的弦的中点和弦长等问题要注意利用韦达定理,能避免求交点坐标的复杂运算.4、解决焦点弦问题时,抛物线的定义有广泛的应用,应注意焦点弦的几何性质.基础训练题 一、选择题1. 过抛物线)0(22>=P px y 的焦点作直线交抛物线于),(11y x A ,),(22y x B 两点,若P x x 321=+,则AB等于( )A .2PB .4PC .6PD .8P2. 已知动点),(y x P 满足22)2()1(5-+-y x =|1243|++y x ,则P 点的轨迹是 ( )A .两条相交直线B .抛物线C .双曲线D .椭圆3. 已知抛物线212:x y C =与抛物线2C 关于直线x y -=对称,则2C 的准线方程是( )A .81-=x B .21=xC .81=x D .21-=x4. (2005年高考上海卷)过抛物线y 2=4x 的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线 ( ) A .有且仅有一条 B .有且仅有两条 C .有无数条 D .不存在5. (2003年新课程卷)抛物线2ax y =的准线方程是2=y ,则a 的值为 ( )A .81B .81-C .8D .8-6. (04年高考湖北卷)与直线2x -y +4=0平行的抛物线y =x 2的切线方程是 ( ) A .2x -y +3=0 B .2x -y -3=0 C .2x -y +1=0 D .2x -y -1=0二、填空题7. 点M 与点F(4,0)的距离比它到连线l :x +5=0的距了小1,则点M 的轨迹方程为 . 8. 某桥的桥洞是抛物线,桥下水面宽16米,当水面上涨2米后达警戒水位,水面宽变为12米,此时桥洞顶部距水面高度为 米(精确到0.1米). 9. 过点(3,3)的直线与抛物线y 2=3x 只有一个公共点,则这样的直线的条数为 .10.一个酒杯的轴截面是抛物线的一部分,它的方程是x 2)200(2≤≤=y y ,在杯内放入一个玻璃球,要使球触及酒杯底部,则玻璃球的半径r 的取值范围是三、解答题11.求顶点在原点,对称轴是x 轴,并且顶点与焦点的距离等于6的抛物线方程.12.正方形ABCD 中,一条边AB 在直线y =x +4上,另外两顶点C 、D 在抛物线y 2=x 上,求正方形的面积.13.设A 和B 为抛物线y 2=4px (p >0)上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线?提高训练题 14.过抛物线y 2=2px (p >0)的焦点F 作直线交抛物线于A 、B 两点,试问:以AB 为直径的圆与抛物线的准线是相交、相切还是相离?若把抛物线改为椭圆12222=+b y a x 或双曲线12222=-b y a x ,结果又如何呢?15.(2004年高考上海卷)如图,直线x y 21=与抛物线4812-=x y 交于A 、B 两点,线段AB 的垂直平分线与直线5-=y 交于Q 点. (1) 求点Q 的坐标;(2) 当P 为抛物线上位于线段AB(含点A 、B)下方的动点时,求OPQ ∆面积的最大值.8.4 直线与圆锥曲线的位置关系知识要点 1.直线与圆锥曲线的位置关系,常用研究方法是将曲线方程与直线方程联立,由所得方程组的解的个数来决定,一般地,消元后所得一元二次方程的判别式记为△,△>0时,有两个公共点,△=0时,有一个公共点,△<0时,没有公共点.但当直线方程与曲线方程联立的方程组只有一组解(即直线与曲线只有一个交点)时,直线与曲线未必相切,在判定此类情形时,应注意数形结合.(对于双曲线,重点注意与渐近线平行的直线,对于抛物线,重点注意与对称轴平行的直线)2.直线与圆锥曲线的交点间的线段叫做圆锥曲线的弦.设弦AB 端点的坐标为A(x 1,y 1),B(x 2,y 2),直线AB 的斜率为k ,则:|AB |=————————或:—————————.利用这个公式求弦长时,要注意结合韦达定理. 当弦过圆锥曲线的焦点时,可用焦半径进行运算. 3.中点弦问题:设A(x 1,y 1),B(x 2,y 2)是椭圆12222=+b y a x 上不同的两点,且x 1≠x 2,x 1+x 2≠0,M(x 0,y 0)为AB 的中点,则 ⎪⎪⎩⎪⎪⎨⎧=+=+11222222221221b y ax b y a x 两式相减可得2221212121ab x x y y x x y y -=++⋅--即 .对于双曲线、抛物线,可得类似的结论.例题讲练 【例1】 直线y =ax +1与双曲线3x 2-y 2=1相交于A 、B 两点.(1) 当a 为何值时,A 、B 两点在双曲线的同一支上?当a 为何值时,A 、B 两点分别在双曲线的两支上?(2) 当a 为何值时,以AB 为直径的圆过原点?x【例2】 已知双曲线方程2x 2-y 2=2.(1) 求以A(2,1)为中点的双曲线的弦所在直线方程; (2) 过点B(1,1)能否作直线l ,使l 与所给双曲线交于Q 1、Q 2两点,且点B 是弦Q 1Q 2的中点?这样的直线l 如果存在,求出它的方程;如果不存在,说明理由.【例3】 在抛物线y 2=4x 上恒有两点关于直线y =kx +3对称,求k 的取值范围.【例4】 (2006届苏州市高三调研测试)已知椭圆222y ax +=1(a 为常数,且a >1),向量m =(1, t ) (t >0),过点A(-a , 0)且以为方向向量的直线与椭圆交于点B ,直线BO 交椭圆于点C (O 为坐标原点).(1) 求t 表示△ABC 的面积S( t );(2) 若a =2,t ∈[21, 1],求S( t )的最大值.小结归纳1.判断直线与圆锥曲线的位置关系时,注意数形结合;用判别式的方法时,若所得方程二次项的系数有参数,则需考虑二次项系数为零的情况.2.涉及中点弦的问题有两种常用方法:一是“设而不求”的方法,利用端点在曲线上,坐标满足方程,作差构造出中点坐标和斜率的关系,它能简化计算;二是利用韦达定理及中点坐标公式.对于存在性问题,还需用判别式进一步检验.3.对称问题,要注意两点:垂直和中点.基础训练题 一、选择题1. 曲线x 2+4y 2+D x +2E y +F =0与x 轴有两个交点,且这两个交点在原点的两侧的充要条件是 ( ) A .D ≠0,E =0,F >0 B .E =0,F <0 C .D 2-F >0 D .F <0 2. 若椭圆193622=+y x 的弦被点(4,2)平分,则此弦所在直线的斜率为 ( ) A .2 B .-2C .31D .-213. 经过抛物线)0(22>=p px y 的所有焦点弦中,弦长的最小值为 ( ) A .p B .2p C .4p D .不确定4. 过双曲线1222=-y x 的右焦点作直线l ,交双曲线于A 、B 两点,若∣AB ∣=4,则这样的直线l 有( ) A .1条 B .2条 C .3条 D .4条5. (华师大二附中2005年模拟试卷2) 直线l :y =kx +1(k ≠0)椭圆E :1422=+y m x ,若直线l 被椭圆E 所截弦长为d ,则下列直线中被椭圆E 截得的弦长不是d 的是 ( ) A .kx +y +1=0 B .kx -y -1=0 C .kx +y -1=0 D .kx +y =06. 椭圆mx 2+ny 2=1与直线y =1-x 交于M 、N 两点,过两点O 与线段MN 之中点的直线的斜率为22,则xnm的值是 ( )A .22B .332 C .229D .2732二、填空题7. 已知直线x -y =2与抛物线y 2-4x 交于A 、B 两点,那么线段AB 的中点坐标是 .8. 对任意实数k ,直线y =kx +b 与椭圆⎩⎨⎧==θθs i n 4c o s 2y x (0≤θ<2π)恒有公共点,则b 的取值范围是 .9. 已知抛物线y 2=4x 的一条弦AB ,A(x 1,y 1),B(x 2,y 2),AB 所在直线与y 轴交点坐标为(0,2),则2111y y += .10.若直线mx +ny -3=0与圆x 2+y 2=3没有公共点,则m 、n 的关系式为___________;以(m ,n )为点P 的坐标,过点P 的一条直线与椭圆13722=+y x 的公共点有____个.三、解答题 11.已知直线l 交椭圆162022y x +=1于M 、N 两点,B(0,4)是椭圆的一个顶点,若△BMN 的重心恰是椭圆的右焦点,求直线l 的方程.12.已知直线y =(a +1)x -1与曲线y 2=ax 恰有一个公共点,求实数a 的值.13.(05重庆)已知椭圆C 1的方程为1422=+y x ,双曲线C 2的左、右焦点分别为C 1的左、右顶点,而C 2的左、右顶点分别是C 1的左、右焦点. (1)求双曲线C 2的方程;(2)若直线l :y =kx +2与椭圆C 1及双曲线C 2恒有两个不同的交点,且l 与C 2的两个交点A 和B 的满足6<⋅(其中O 为原点),求k 的取值范围. 提高训练题14.已知椭圆的一个顶点为A(0,-1),焦点在x 轴上,若右焦点到直线022=+-y x 的距离为3. ⑴ 求椭圆的方程;⑵ 设椭圆与直线y =kx +m (k ≠0)相交于不同的两点M 、N ,当AN AM =时,求m 的取值范围.15.(04湖南)过抛物线x 2=4y 的对称轴上任一点P(0,m )(m >0),作直线与抛物线交于A 、B 两点,点Q 是点P 关于原点的对称点. (Ⅰ)设点P 分有向线段所成的比为λ,证明:)(λ-⊥;(Ⅱ)设直线AB 的方程是x -2y +12=0,过A 、B 两点的圆C与抛物线在点A处有共同的切线,求圆C的方程.8.5 轨迹方程知识要点1.直接法求轨迹的一般步骤:建系设标,列式表标,化简作答(除杂).2.求曲线轨迹方程,常用的方法有:直接法、定义法、代入法(相关点法、转移法)、参数法、交轨法等.例题讲练【例1】一动圆与圆x2+y2+6x+5=0外切,同时与圆x2+y2-6x-91=0内切,求动圆圆心的轨迹方程,并说明它是什么样的曲线.【例2】已知抛物线过点N(1,-1),且准线为l:x =-3,求抛物线顶点M的轨迹.【例3】已知直线l与椭圆12223=+byax(a>b>0)有且仅有一个交点Q,且与x轴、y轴交于R、S,求以线段SR 为对角线的矩形ORPS的顶点P的轨迹方程.【例4】已知点H(0,-3),点P在x轴上,点Q 在y轴正半轴上,点M在直线PQ上,且满足PMHP⋅=0,MQPM23-=.(1) 当点P在x轴上移动时,求动点M的轨迹曲线C 的方程;(2) 过定点A(a,b)的直线与曲线C相交于两点S、R,求证:抛物线S、R两点处的切线的交点B恒在一条直线上.小结归纳1.直接法求轨迹方程关键在于利用已知条件,找出动点满足的等量关系,这个等量关系有的可直接利用已知条件,有的需要转化后才能用.2.回归定义是解决圆锥曲线轨迹问题的有效途径.3.所求动点依赖于已知曲线上的动点的运动而运动,常用代入法求轨迹.4.参数法求轨迹关键在于如何选择好参数,建立起x ,y 的参数方程,以便消参,选择n 个参数,要建立n +1个方程,消参时,要注意等价性.5.求轨迹比求轨迹方程多一个步骤,求轨迹最后须说明轨迹的形状、大小、位置、方向.基础训练题 一、选择题1. 已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得| PQ |=| PF 2 |,那么动点Q 的轨迹是 ( ) A .圆 B .椭圆 C .双曲线的一支 D .抛物线2. 动点P 与定点)0,1(,)0,1(B A -的连结的斜率之积为1-,则P 点的轨迹方程是( ) A .x 2+y 2=1 B .x 2+y 2=1)1(±≠x C .x 2+y 2=1)0(≠x D .21x y -=3. 已知动点P(x 、y )满足1022)2()1(-+-y x =|3x +4y+2|,则动点P 的轨迹是( )A .椭圆B .双曲线C .抛物线D .无法确定4. 设P 为椭圆12222=+by a x 上一点,过右焦点F 2作∠F 1PF 2的外角平分线的垂线,垂足为Q ,则点Q 的轨迹是( ) A .直线 B .抛物线 C .圆 D .双曲线 5. 设P 为双曲线12222=-b y a x 上一点, 过右焦点F 2作∠F 1PF 2的内角平分线的垂线,垂足为Q ,则点Q 的轨迹是 ( ) A .圆 B .抛物线 C .直线 D .椭圆 6. 已知点P(x ,y )在以原点为圆心,半径为1的圆上运动,则点(x +y ,xy )的轨迹是 ( ) A .半圆 B .抛物线的一部分 C .椭圆 D .双曲线的一支二、填空题7. 长为2a 的线段AB 的两个端点分别在x 轴、y 轴上滑动,则AB 中点的轨迹方程为 .8. 经过定点M(1,2),以y 轴为准线,离心率为21的椭圆左顶点的轨迹方程 . 9. 已知抛物线)(12R m mx x y ∈-+-=,当m 变化时抛物线焦点的轨迹方程为 . 10.(04北京)在正方体ABCD —A 1B 1C 1D 1中,P 是侧面BB 1C 1C 内一动点,若P 到直线BC 与到直线C 1D 1的距离相等,则动点P 的轨迹是 .三、解答题 11.以动点P 为圆心的圆与圆A :(x +5)2+y 2=49及圆B :(x -5)2+y 2=1都外切,求动点P 的轨迹.12.已知双曲线2222ny m x -=1(m >0,n >0)的顶点为A 1、A 2,与y 轴平行的直线l 交双曲线于点P 、Q. (1) 求直线A 1P 与A 2Q 交点M 的轨迹方程; (2) 当m ≠n 时,求所得圆锥曲线的焦点坐标、准线方程和离心率.13.设直线l :y =kx +1与椭圆C :ax 2+y 2=2(a >1)交于A 、B 两点,以OA 、OB 为邻边作平行四边形OAPB (O 为坐标原点).(1)若k =1,且四边形OAPB 为矩形,求a 的值; (2)若a =2,当k 变化时,(k ∈R),求点P 的轨迹方程.提高训练题14.设椭圆方程为1422=+y x ,过点M(0,1)的直线l 交椭圆于点A 、B ,O 是坐标原点,点P 满足)(21OB OA OP +=,点N 的坐标为)21,21(,当l 绕点M 旋转时,求:(1) 动点P 的轨迹方程; (2) ||NP 的最小值与最大值.A1。
高考数学一轮复习 第8章 平面解析几何 解答题专项突破(五)圆锥曲线的综合问题创新教学案(含解析)新
解答题专项突破(五) 圆锥曲线的综合问题圆锥曲线是平面解析几何的核心内容,每年高考必有一道解答题,常以求圆锥曲线的标准方程、研究直线与圆锥曲线的位置关系为主,涉及题型有定点、定值、最值、X 围、探索性问题等,此类命题起点较低,但在第(2)问中一般都有较为复杂的运算,对考生解决问题的能力要求较高,通常以压轴题的形式呈现.热点题型1 圆锥曲线中的定点问题典例1(2019·高考)抛物线C :x 2=-2py 经过点(2,-1). (1)求抛物线C 的方程及其准线方程.(2)设O 为原点,过抛物线C 的焦点作斜率不为0的直线l 交抛物线C 于两点M ,N ,直线y =-1分别交直线OM ,ON 于点A 和点B .求证:以AB 为直径的圆经过y 轴上的两个定点.解题思路 (1)根据抛物线C 过点(2,-1),列方程求p ,得抛物线C 的方程,进而得出其准线方程.(2)设直线l 的方程,与抛物线C 的方程联立,用根与系数的关系推出关于M ,N 两点坐标的等量关系,设所求定点坐标为(0,n ),利用DA →·DB →=0列方程式求n的值.规X 解答 (1)由抛物线C :x 2=-2py 经过点(2,-1),得22=-2p (-1),解得p =2.所以抛物线C 的方程为x 2=-4y ,其准线方程为y =1. (2)证明:抛物线C 的焦点为F (0,-1). 设直线l 的方程为y =kx -1(k ≠0).由⎩⎪⎨⎪⎧y =kx -1,x 2=-4y ,得x 2+4kx -4=0.设M (x 1,y 1),N (x 2,y 2),那么x 1x 2=-4. 直线OM 的方程为y =y 1x 1x .令y =-1,得点A 的横坐标x A =-x 1y 1.同理得点B 的横坐标x B =-x 2y 2.设点D (0,n ),那么DA→=⎝ ⎛⎭⎪⎫-x 1y 1,-1-n , DB→=⎝ ⎛⎭⎪⎫-x 2y 2,-1-n , DA →·DB→=x 1x 2y 1y2+(n +1)2 =x 1x 2⎝ ⎛⎭⎪⎫-x 214⎝ ⎛⎭⎪⎫-x 224+(n +1)2 =16x 1x 2+(n +1)2 =-4+(n +1)2.令DA →·DB →=0,即-4+(n +1)2=0,得n =1或n =-3. 综上,以AB 为直径的圆经过y 轴上的定点(0,1)和(0,-3).典例2(2019·某某模拟)Q 为圆x 2+y 2=1上一动点,Q 在x 轴,y 轴上的射影分别为点A ,B ,动点P 满足BA→=AP →,记动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)过点⎝ ⎛⎭⎪⎫0,-35的直线与曲线C 交于M ,N 两点,判断以MN 为直径的圆是否过定点?假设是,求出定点的坐标;假设不是,请说明理由.解题思路 (1)设Q (x 0,y 0),P (x ,y ),利用所给条件建立两点坐标之间的关系,利用Q 在圆上可得x ,y 的方程,即为所求.(2)设定点为H ,及直线l 的方程,与椭圆方程联立,利用根与系数的关系,及HM →·HN→=0,得出恒等式,求得定点的坐标. 规X 解答 (1)设Q (x 0,y 0),P (x ,y ),那么x 20+y 20=1,由BA →=AP →,得⎩⎨⎧x 0=x2,y 0=-y ,代入x 20+y 20=1,得x 24+y 2=1,故曲线C 的方程为x 24+y 2=1.(2)假设存在满足条件的定点,由对称性可知,该定点在y 轴上,设定点为H (0,m ),当直线l 的斜率存在时,设直线l 的方程为y =kx -35, 由⎩⎪⎨⎪⎧y =kx -35,x 24+y 2=1,得(1+4k 2)x 2-245kx -6425=0,设M (x 1,y 1),N (x 2,y 2), 那么x 1+x 2=24k 51+4k 2,x 1x 2=-64251+4k 2,∴y 1+y 2=k (x 1+x 2)-65=-651+4k2,y 1y 2=⎝ ⎛⎭⎪⎫kx 1-35⎝ ⎛⎭⎪⎫kx 2-35=k 2x 1x 2-35k (x 1+x 2)+925=9-100k 2251+4k 2, ∵HM →=(x 1,y 1-m ),HN →=(x 2,y 2-m ), ∴HM →·HN →=x 1x 2+y 1y 2-m (y 1+y 2)+m 2=100m 2-1k 2+25m 2+30m -55251+4k2=0,∵对任意的k 恒成立,∴⎩⎪⎨⎪⎧100m 2-1=0,25m 2+30m -55=0,解得m =1,即定点为H (0,1),当直线l 的斜率不存在时,以MN 为直径的圆也过定点(0,1). 综上,以MN 为直径的圆过定点(0,1). 热点题型2 圆锥曲线中的定值问题典例1 如图,在平面直角坐标系xOy 中,点F ⎝ ⎛⎭⎪⎫12,0,直线l :x =-12,点P 在直线l 上移动,R 是线段FP 与y 轴的交点,RQ ⊥FP ,PQ ⊥l .(1)求动点Q 的轨迹C 的方程;(2)设圆M 过A (1,0),且圆心M 在曲线C 上,TS 是圆M 在y 轴上截得的弦,当M 运动时,弦长|TS |是否为定值?请说明理由.解题思路 (1)R 是线段FP 的中点,且RQ ⊥FP →RQ 是线段PF 的垂直平分线→|PQ |=|QF |→点Q 的轨迹是以F 为焦点,l 为准线的抛物线→确定焦准距,根据抛物线的焦点坐标,求出抛物线的方程.(2)①求|TS |的依据:a =2r 2-d 2,其中a 为弦长,r 为圆的半径,d 为圆心到弦所在直线的距离.②策略:设曲线C 上点M (x 0,y 0),用相关公式求r ,d ;用x 0,y 0满足的等量关系消元.规X 解答 (1)依题意知,点R 是线段FP 的中点, 且RQ ⊥FP ,∴RQ 是线段FP 的垂直平分线. ∵点Q 在线段FP 的垂直平分线上, ∴|PQ |=|QF |,又|PQ |是点Q 到直线l 的距离,故动点Q 的轨迹是以F 为焦点,l 为准线的抛物线,其方程为y 2=2x (x >0). (2)弦长|TS |为定值.理由如下:取曲线C 上点M (x 0,y 0),M 到y 轴的距离为d =|x 0|=x 0,圆的半径r =|MA |=x 0-12+y 20, 那么|TS |=2r 2-d 2=2y 20-2x 0+1,∵点M 在曲线C 上, ∴x 0=y 202,∴|TS |=2y 20-y 20+1=2,是定值.典例2(2019·某某三模)给定椭圆C :x 2a 2+y 2b 2=1(a >b >0),称圆心在原点O ,半径为a2+b2的圆为椭圆C的“准圆〞.假设椭圆C的一个焦点为F(2,0),其短轴上的一个端点到F的距离为 3.(1)求椭圆C的方程和其“准圆〞方程;(2)假设点P是椭圆C的“准圆〞上的动点,过点P作椭圆的切线l1,l2交“准圆〞于点M,N.证明:l1⊥l2,且线段MN的长为定值.解题思路(1)根据椭圆的几何性质求a,c,再用b2=a2-c2求b,可得椭圆C 的方程,进而可依据定义写出其“准圆〞方程.(2)分以下两种情况讨论:①l1,l2中有一条斜率不存在;②l1,l2斜率存在.对于①,易知切点为椭圆的顶点;对于②,可设出过P与椭圆相切的直线,并与椭圆方程联立后消元,由Δ=0推出关于椭圆切线斜率的方程,利用根与系数的关系进行证明.规X解答(1)∵椭圆C的一个焦点为F(2,0),其短轴上的一个端点到F的距离为 3.∴c=2,a=3,∴b=a2-c2=1,∴椭圆方程为x23+y2=1,∴“准圆〞方程为x2+y2=4.(2)证明:①当直线l1,l2中有一条斜率不存在时,不妨设直线l1斜率不存在,那么l1:x=±3,当l1:x=3时,l1与“准圆〞交于点(3,1),(3,-1),此时l2为y=1(或y=-1),显然直线l1,l2垂直;同理可证当l 1:x =-3时,直线l 1,l 2垂直. ②当l 1,l 2斜率存在时,设点P (x 0,y 0),其中x 20+y 20=4.设经过点P (x 0,y 0)与椭圆相切的直线为 y =t (x -x 0)+y 0,∴由⎩⎨⎧y =t x -x 0+y 0,x 23+y 2=1,得(1+3t 2)x 2+6t (y 0-tx 0)x +3(y 0-tx 0)2-3=0.由Δ=0化简整理,得(3-x 20)t 2+2x 0y 0t +1-y 20=0,∵x 20+y 20=4,∴有(3-x 20)t 2+2x 0y 0t +(x 20-3)=0.设l 1,l 2的斜率分别为t 1,t 2,∵l 1,l 2与椭圆相切,∴t 1,t 2满足上述方程(3-x 20)t 2+2x 0y 0t +(x 20-3)=0,∴t 1·t 2=-1,即l 1,l 2垂直. 综合①②知,l 1⊥l 2.∵l 1,l 2经过点P (x 0,y 0),又分别交其“准圆〞于点M ,N ,且l 1,l 2垂直. ∴线段MN 为“准圆〞x 2+y 2=4的直径,|MN |=4, ∴线段MN 的长为定值.热点题型3 圆锥曲线中的证明问题典例1抛物线C :x 2=2py (p >0),过焦点F 的直线交C 于A ,B 两点,D 是抛物线的准线l 与y 轴的交点.(1)假设AB ∥l ,且△ABD 的面积为1,求抛物线的方程;(2)设M 为AB 的中点,过M 作l 的垂线,垂足为N .证明:直线AN 与抛物线相切.解题思路 (1)判断△ABD 的形状,求|FD |,|AB |.由△ABD 的面积为1,列方程求p ,得抛物线的方程.(2)将直线AB 的方程与抛物线C 的方程联立,消去y 并整理,结合根与系数的关系用k ,p 表示M ,N 的坐标.求k AN :①斜率公式,②导数的几何意义,两个角度求斜率相等,证明相切.规X 解答 (1)∵AB ∥l ,∴△ABD 为等腰三角形,且FD ⊥AB ,又|FD |=p ,|AB |=2p .∴S △ABD =p 2=1.∴p =1,故抛物线C 的方程为x 2=2y .(2)证明:显然直线AB 的斜率存在,设其方程为y =kx +p 2,A ⎝ ⎛⎭⎪⎫x 1,x 212p ,B ⎝ ⎛⎭⎪⎫x 2,x 222p .由⎩⎨⎧y =kx +p 2,x 2=2py消去y 整理得,x 2-2kpx -p 2=0.∴x 1+x 2=2kp ,x 1x 2=-p 2. ∴M ⎝ ⎛⎭⎪⎫kp ,k 2p +p 2,N ⎝ ⎛⎭⎪⎫kp ,-p 2.∴k AN =x 212p +p 2x 1-kp=x 212p +p 2x 1-x 1+x 22=x 21+p 22px 1-x 22=x 21-x 1x 22p x 1-x 22=x 1p .又x 2=2py ,∴y ′=xp .∴抛物线x 2=2py 在点A 处的切线的斜率k ′=x 1p . ∴直线AN 与抛物线相切.典例2(2019·某某二模)设O 为坐标原点,动点M 在椭圆C :x 2a 2+y 2=1(1<a <5)上,该椭圆的左顶点A 到直线x -y +5=0的距离为322.(1)求椭圆C 的标准方程;(2)假设线段MN 平行于y 轴,满足(ON →-2OM →)·MN →=0,动点P 在直线x =23上,满足ON →·NP→=2.证明:过点N 且垂直于OP 的直线过椭圆C 的右焦点F . 解题思路 (1)根据椭圆的左顶点A 到直线x -y +5=0的距离为322,列关于a 的等量关系求解,得椭圆C 的方程.(2)设出M ,N ,P 的坐标(注意M 与N 的横坐标相同,P 的横坐标).先用(ON →-2OM →)·MN →=0和ON →·NP →=2推出坐标之间的关系,再利用这些等量关系证明NF →·OP→=0. 规X 解答 (1)设左顶点A 的坐标为(-a,0), ∵|-a +5|2=322,∴|a -5|=3,解得a =2或a =8(舍去), ∴椭圆C 的标准方程为x 24+y 2=1.(2)证明:由题意,设M (x 0,y 0),N (x 0,y 1),P (23,t ),且y 1≠y 0,由(ON →-2OM →)·MN →=0,可得(x 0-2x 0,y 1-2y 0)·(0,y 1-y 0)=0,整理可得y 1=2y 0,由ON →·NP →=2,可得(x 0,2y 0)·(23-x 0,t -2y 0)=2,整理,得23x 0+2y 0t =x 20+4y 20+2=6,由(1)可得F (3,0), ∴NF →=(3-x 0,-2y 0), ∴NF →·OP →=(3-x 0,-2y 0)·(23,t )=6-23x 0-2y 0t =0, ∴NF ⊥OP ,故过点N 且垂直于OP 的直线过椭圆C 的右焦点F . 热点题型4 圆锥曲线中的最值与X 围问题典例1(2019·某某二模)设F 为抛物线C :y 2=2px 的焦点,A 是C 上一点,F A 的延长线交y 轴于点B ,A 为FB 的中点,且|FB |=3.(1)求抛物线C 的方程;(2)过F 作两条互相垂直的直线l 1,l 2,直线l 1与C 交于M ,N 两点,直线l 2与C 交于D ,E 两点,求四边形MDNE 面积的最小值.解题思路(1)由题意画出图形,结合条件列式求得p ,那么抛物线C 的方程可求.(2)由直线l 1的斜率存在且不为0,设其方程为y =k (x -1),与抛物线方程联立,求出|MN |,同理可求|DE |⎝ ⎛⎭⎪⎫实际上,在|MN |的表达式中用-1k 代替k 即可,可得四边形MDNE 的面积表达式,再利用基本不等式求最值.规X 解答 (1)如图,∵A 为FB 的中点,∴A 到y 轴的距离为p4, ∴|AF |=p 4+p 2=3p 4=|FB |2=32,解得p =2. ∴抛物线C 的方程为y 2=4x . (2)由直线l 1的斜率存在且不为0, 设其方程为y =k (x -1). 由⎩⎪⎨⎪⎧y =k x -1,y 2=4x ,得k 2x 2-(2k 2+4)x +k 2=0.∵Δ>0,设M (x 1,y 1),N (x 2,y 2),∴x 1+x 2=2+4k 2,那么|MN |=x 1+x 2+2=4⎝ ⎛⎭⎪⎫1+1k 2; 同理设D (x 3,y 3),E (x 4,y 4),∴x 3+x 4=2+4k 2, 那么|DE |=x 3+x 4+2=4(1+k 2).∴四边形MDNE 的面积S =12|MN |·|DE |=8⎝ ⎛⎭⎪⎫2+k 2+1k 2≥32.当且仅当k =±1时,四边形MDNE 的面积取得最小值32.典例2 如图,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的右顶点为A (2,0),左、右焦点分别为F 1,F 2,过点A 且斜率为12的直线与y 轴交于点P ,与椭圆交于另一个点B ,且点B 在x 轴上的射影恰好为点F 1.(1)求椭圆C 的标准方程;(2)过点P 且斜率大于12的直线与椭圆交于M ,N 两点(|PM |>|PN |),假设S △P AM ∶S △PBN =λ,某某数λ的取值X 围.解题思路 (1)求点B 的坐标→根据k AB =12列方程→由题意得a =2,a 2=b 2+c 2,解方程组求a ,b ,c ,写出椭圆C 的标准方程.(2)S △P AM ∶S △PBN =λ――→面积公式PM →与PN →的关系→点M ,N 坐标之间的关系→直线MN 的方程与椭圆C 的方程联立,消去y 整理→用根与系数的关系得出点M ,N 的坐标之间的关系式→推出λ与k 的关系,并根据k >12求X 围,找到λ所满足的不等式,求出λ的取值X 围.规X 解答 (1)因为BF 1⊥x 轴,所以点B ⎝ ⎛⎭⎪⎫-c ,-b 2a ,所以⎩⎪⎨⎪⎧ a =2,b 2a a +c=12,a 2=b 2+c2⇒⎩⎪⎨⎪⎧a =2,b =3,c =1,所以椭圆C 的标准方程是x 24+y 23=1. (2)因为S △P AM S △PBN=12|P A |·|PM |·sin ∠APM12|PB |·|PN |·sin ∠BPN=2·|PM |1·|PN |=λ⇒|PM ||PN |=λ2(λ>2), 所以PM→=-λ2PN →. 由(1)可知P (0,-1),设直线MN :y =kx -1⎝ ⎛⎭⎪⎫k >12,M (x 1,y 1),N (x 2,y 2),联立方程,得⎩⎨⎧y =kx -1,x 24+y 23=1,化简得,(4k 2+3)x 2-8kx -8=0.得⎩⎪⎨⎪⎧x 1+x 2=8k 4k 2+3,x 1x 2=-84k 2+3.(*)又PM →=(x 1,y 1+1),PN →=(x 2,y 2+1), 有x 1=-λ2x 2,将x 1=-λ2x 2代入(*)可得,2-λ2λ=16k 24k 2+3.因为k >12,所以16k 24k 2+3=163k 2+4∈(1,4),那么1<2-λ2λ<4且λ>2⇒4<λ<4+2 3.综上所述,实数λ的取值X 围为(4,4+23). 热点题型5 圆锥曲线中的探索性问题典例1(2019·某某一模)抛物线E :y 2=4x ,圆C :(x -3)2+y 2=1.(1)假设过抛物线E的焦点F的直线l与圆C相切,求直线l的方程;(2)在(1)的条件下,假设直线l交抛物线E于A,B两点,x轴上是否存在点M(t,0)使∠AMO=∠BMO(O为坐标原点)?假设存在,求出点M的坐标;假设不存在,请说明理由.解题思路(1)求得抛物线的焦点,设出直线l的方程,运用直线l和圆C相切的条件:d=r,解方程可得所求直线方程.(2)设出A,B的坐标,联立直线l的方程和抛物线E的方程,运用根与系数的关系和直线的斜率公式,依据∠AMO=∠BMO,即k AM+k BM=0列方程化简整理,解方程可得t,即得点M的坐标,从而得到结论.规X解答(1)由题意,得抛物线的焦点F(1,0),当直线l的斜率不存在时,过F的直线不可能与圆C相切,所以直线l的斜率存在.设直线l的斜率为k,方程为y=k(x-1),即kx-y-k=0,由圆心(3,0)到直线l的距离为d=|3k-k|1+k2=2|k|1+k2,当直线l与圆C相切时,d=r=1,解得k=±3 3,即直线l的方程为y=±33(x-1).(2)由(1),当直线l的方程为y=33(x-1)时,设A(x1,y1),B(x2,y2),联立抛物线E的方程可得x2-14x+1=0,那么x 1+x 2=14,x 1x 2=1,x 轴上假设存在点M (t,0)使∠AMO =∠BMO , 即有k AM +k BM =0, 得y 1x 1-t+y 2x 2-t =0, 即y 1(x 2-t )+y 2(x 1-t )=0, 由y 1=33(x 1-1),y 2=33(x 2-1), 可得2x 1x 2-(x 1+x 2)-(x 1+x 2-2)t =0,即2-14-12t =0,即t =-1,M (-1,0)符合题意;当直线l 的方程为y =-33(x -1)时,由对称性可得M (-1,0)也符合条件. 所以存在定点M (-1,0)使∠AMO =∠BMO .典例2(2019·某某模拟)点A (0,-1),B (0,1),P 为椭圆C :x 22+y 2=1上异于点A ,B 的任意一点.(1)求证:直线P A ,PB 的斜率之积为-12;(2)是否存在过点Q (-2,0)的直线l 与椭圆C 交于不同的两点M ,N ,使得|BM |=|BN |?假设存在,求出直线l 的方程;假设不存在,请说明理由.解题思路(1)设点P (x ,y )(x ≠0),代入椭圆方程,由直线的斜率公式,即可得证. (2)假设存在直线l 满足题意.显然当直线斜率不存在时,直线与椭圆C 不相交,讨论直线的斜率是否为0,联立直线方程和椭圆方程,运用根与系数的关系和两直线垂直的条件:由|BM |=|BN |想到在△BMN 中,边MN 所在直线的斜率与MN边上的中线所在直线的斜率之积为-1,可得所求直线方程.规X 解答 (1)证明:设点P (x ,y )(x ≠0), 那么x 22+y 2=1,即y 2=1-x 22, ∴k P A ·k PB =y +1x ·y -1x =y 2-1x 2 =⎝ ⎛⎭⎪⎫1-x 22-1x 2=-12,故得证.(2)假设存在直线l 满足题意.显然当直线斜率不存在时,直线与椭圆C 不相交.①当直线l 的斜率k ≠0时,设直线l 为y =k (x +2),联立椭圆方程x 2+2y 2=2,化简得(1+2k 2)x 2+8k 2x +8k 2-2=0, 由Δ=64k 4-4(1+2k 2)(8k 2-2)>0, 解得-22<k <22(k ≠0), 设点M (x 1,y 1),N (x 2,y 2),那么⎩⎪⎨⎪⎧x 1+x 2=-8k 21+2k 2,x 1x 2=8k 2-21+2k2,∴y 1+y 2=k (x 1+x 2)+4k =k ·-8k 21+2k 2+4k =4k 1+2k 2, 取MN 的中点H ,即H ⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22,那么y1+y22-1x1+x22·k=-1,即2k1+2k2-1-4k21+2k2·k=-1,化简得2k2+2k+1=0,无实数解,故舍去.②当k=0时,M,N为椭圆C的左、右顶点,显然满足|BM|=|BN|,此时直线l的方程为y=0.综上可知,存在直线l满足题意,此时直线l的方程为y=0.。
2020版高考数学一轮复习第8章平面解析几何第8节圆锥曲线的综合问题第1课时直线与圆锥曲线教学案含解析理
第八节 圆锥曲线的综合问题[考纲传真] 1.掌握解决直线与椭圆、抛物线的位置关系的思想方法;2.了解圆锥曲线的简单应用;3.理解数形结合的思想.1.直线与圆锥曲线的位置关系设直线l :Ax +By +C =0,圆锥曲线C :F (x ,y )=0, 由⎩⎪⎨⎪⎧Ax +By +C =0,Fx ,y =0消去y 得到关于x 的方程ax 2+bx +c =0.(1)当a ≠0时,设一元二次方程ax 2+bx +c =0的判别式为Δ,则Δ>0⇔直线l 与圆锥曲线C 有两个公共点;Δ=0⇔直线l 与圆锥曲线C 有一个公共点; Δ<0⇔直线l 与圆锥曲线C 有零个公共点.(2)当a =0,b ≠0时,圆锥曲线C 为抛物线或双曲线.当C 为双曲线时,l 与双曲线的渐近线平行或重合,它们的公共点有1个或0个. 当C 为抛物线时,l 与抛物线的对称轴平行或重合,它们的公共点有1个. 2.圆锥曲线的弦长公式设斜率为k 的直线l 与圆锥曲线C 相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),则|AB |=1+k 2|x 1-x 2|=1+k 2·x 1+x 22-4x 1x 2=1+1k2|y 1-y 2|=1+1k2·y 1+y 22-4y 1y 2.[常用结论]过一点的直线与圆锥曲线的位置关系 (1)过椭圆外一点总有两条直线与椭圆相切; 过椭圆上一点有且只有一条直线与椭圆相切; 过椭圆内一点的直线与椭圆相交.(2)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条与对称轴平行或重合的直线;过抛物线上一点总有两条直线与抛物线有且只有一个公共点:一条切线和一条与对称轴平行或重合的直线;过抛物线内一点只有一条直线与抛物线有且只有一个公共点:一条与对称轴平行或重合的直线.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”) (1)直线l 与椭圆C 相切的充要条件是直线l 与椭圆C 只有一个公共点.( )(2)直线l 与双曲线C 相切的充要条件是直线l 与双曲线C 只有一个公共点.( ) (3)过抛物线y 2=2px (p >0)焦点的弦中最短弦的弦长是2p .( )(4)若抛物线上存在关于直线l 对称的两点,则l 与抛物线有两个交点.( ) [答案] (1)√ (2)× (3)√ (4)×2.(教材改编)直线y =k (x -1)+1与椭圆x 29+y 24=1的位置关系是( )A .相交B .相切C .相离D .不确定A [直线y =k (x -1)+1恒过定点(1,1),又点(1,1)在椭圆内部,故直线与椭圆相交.] 3.“直线与双曲线相切”是“直线与双曲线只有一个公共点”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件A [直线与双曲线相切时,只有一个公共点,但直线与双曲线相交时,也可能有一个公共点,例如:与双曲线的渐近线平行的直线与双曲线只有一个交点.故选A.]4.过点(0,1)作直线,使它与抛物线y 2=4x 仅有一个公共点,这样的直线有________条. 3 [结合图形分析可知,满足题意的直线共有3条:直线x =0,过点(0,1)且平行于x 轴的直线以及过点(0,1)且与抛物线相切的直线(非直线x =0). ]5.(教材改编)已知与向量v =(1,0)平行的直线l 与双曲线x 24-y 2=1相交于A ,B 两点,则|AB |的最小值为________.4 [由题意可设直线l 的方程为y =m ,代入x 24-y 2=1得x 2=4(1+m 2),所以x 1=+m2=21+m 2,x 2=-21+m 2,所以|AB |=|x 1-x 2|=41+m 2≥4,即当m =0时,|AB |有最小值4.]第1课时 直线与圆锥曲线12,则这样的直线( )A .有且只有一条B .有且只有两条C .有且只有三条D .有且只有四条B [设该抛物线焦点为F ,A (x A ,y A ),B (x B ,y B ),则|AB |=|AF |+|FB |=x A +p 2+x B +p2=x A +x B +1=3>2p =2.所以符合条件的直线有且只有两条.]2.若直线y =kx +1与椭圆x 25+y 2m=1总有公共点,则m 的取值范围是( )A .m >1B .m >0C .0<m <5且m ≠1D .m ≥1且m ≠5D [由于直线y =kx +1恒过点(0,1),所以点(0,1)必在椭圆内或椭圆上,则0<1m≤1且m ≠5,故m ≥1且m ≠5.]3.若直线y =kx +2与双曲线x 2-y 2=6的右支交于不同的两点,则k 的取值范围是( ) A.⎝ ⎛⎭⎪⎫-153,153 B.⎝ ⎛⎭⎪⎫0,153 C.⎝⎛⎭⎪⎫-153,0 D.⎝⎛⎭⎪⎫-153,-1 D [由⎩⎪⎨⎪⎧y =kx +2,x 2-y 2=6得(1-k 2)x 2-4kx -10=0.设直线与双曲线右支交于不同的两点A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧1-k 2≠0,Δ=16k 2--k 2->0,x 1+x 2=4k 1-k 2>0,x 1x 2=-101-k 2>0,解得-153<k <-1, 即k 的取值范围是⎝ ⎛⎭⎪⎫-153,-1.] [规律方法] 直线与圆锥曲线位置关系的判定方法►考法1 【例1】 斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则|AB |的最大值为( )A .2 B.455C.4105D.8105C [设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),直线l 的方程为y =x +t ,由⎩⎪⎨⎪⎧x 2+4y 2=4,y =x +t ,消去y ,得5x 2+8tx +4(t 2-1)=0,则x 1+x 2=-85t ,x 1x 2=t 2-5.∴|AB |=1+k 2|x 1-x 2|=1+k 2·x 1+x 22-4x 1x 2=2·⎝ ⎛⎭⎪⎫-85t 2-4×t 2-5=425·5-t 2, 当t =0时,|AB |m ax =4105.]►考法2 中点弦问题【例2】 已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交椭圆E 于A ,B 两点.若AB 的中点坐标为(1,-1),则E 的方程为( )A.x 245+y 236=1B.x 236+y 227=1 C.x 227+y 218=1 D.x 218+y 29=1 D [设A (x 1,y 1),B (x 2,y 2),所以⎩⎪⎨⎪⎧x 21a 2+y 21b2=1,x 22a 2+y22b 2=1,运用点差法,所以直线AB 的斜率为k =b 2a 2,设直线方程为y =b 2a2(x -3),联立直线与椭圆的方程得(a 2+b 2)x 2-6b 2x +9b 2-a 4=0,所以x 1+x 2=6b 2a 2+b 2=2,又因为a 2-b 2=9,解得b 2=9,a 2=18,方程为x 218+y 29=1.] ►考法3 与弦长有关的综合问题【例3】 如图,在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为12,过椭圆右焦点F 作两条互相垂直的弦AB 与CD .当直线AB 斜率为0时,AB =4.(1)求椭圆的方程;(2)若|AB |+|CD |=487,求直线AB 的方程.[解] (1)由题意知e =c a =12,2a =4.又a 2=b 2+c 2,解得a =2,b =3,所以椭圆方程为x 24+y 23=1. (2)①当两条弦中一条弦所在直线的斜率为0时,另一条弦所在直线的斜率不存在,由题意知|AB |+|CD |=7,不满足条件.②当两弦所在直线的斜率均存在且不为0时,设直线AB 的方程为y =k (x -1),A (x 1,y 1),B (x 2,y 2),则直线CD 的方程为y =-1k(x -1).将直线AB 方程代入椭圆方程中并整理得(3+4k 2)x 2-8k 2x +4k 2-12=0,则x 1+x 2=8k 23+4k 2,x 1·x 2=4k 2-123+4k2, 所以|AB |=k 2+1|x 1-x 2|=k 2+1·x 1+x 22-4x 1x 2=k 2+3+4k2.同理,|CD |=12⎝ ⎛⎭⎪⎫1k 2+13+4k2=k 2+3k 2+4.所以|AB |+|CD |=k 2+3+4k2+k 2+3k 2+4=k 2+2+4k2k 2+=487, 解得k =±1,所以直线AB 的方程为x -y -1=0或x +y -1=0. 当弦的两端点坐标易求时,可直接利用两点间的距离公式求解联立直线与圆锥曲线方程,联立直线与圆锥曲线方程,消元得到关于或的一元二次方程,利用根与系数的关系得到x 1-22,y 1-22,代入两点间的距离公式.当弦过焦点时,可结合焦半径公式求解弦长设椭圆M :a 2+b2=1(a >b >0)的离心率与双曲线x 2-y 2=1的离心率互为倒数,且椭圆的长轴长为4.(1)求椭圆M 的方程;(2)若直线y =2x +1交椭圆M 于A ,B 两点,P (1,2)为椭圆M 上一点,求△PAB 的面积.[解] (1)由题可知,双曲线的离心率为2,则椭圆的离心率e =c a =22, 由2a =4,c a =22,b 2=a 2-c 2,得a =2,c =2,b =2, 故椭圆M 的方程为y 24+x 22=1.(2)联立方程⎩⎪⎨⎪⎧y =2x +1,x 22+y 24=1,得4x 2+22x -3=0,且⎩⎪⎨⎪⎧x 1+x 2=-22,x 1x 2=-34,所以|AB |=1+2|x 1-x 2|=3·x 1+x 22-4x 1x 2=3·12+3=422. 又P 到直线AB 的距离为d =13,所以S △PAB =12|AB |·d =12·422·13=144.。
高三数学第一轮复习 圆锥曲线(小结)教案
高三数学第一轮复习圆锥曲线(小结)教案高三数学第一轮复习圆锥曲线(小结)教案圆锥曲线一.课前预习:1.设抛物线y2x,线段AB的两个端点在抛物线上,且|AB|3,那么线段AB的中点M到y轴的最短距离是(B)231(B)1(C)(D)222x2y22.椭圆221(ab0)与x轴正半轴、y轴正半轴分别交于A,B两点,在劣弧abAB上取一点C,则四边形OACB的最大面积为(B(A))(A)1ab2(B)2ab2(C)3ab2(D)ab111,0),C(,0),且满足sinCsinBsinA,则动点A222的轨迹方程是(D)1616(A)16x2y21(y0)(B)16y2x21(x0)33161161(C)16x2y21(x)(D)16x2y21(x)3434224.已知直线yx1与椭圆mxny1(mn0)相交于A,B两点,若弦AB 中点的横3.ABC中,A为动点,B(x2y214坐标为,则双曲线221的两条渐近线夹角的正切值是.mn335.已知A,B,C为抛物线yx1上三点,且A(1,0),ABBC,当B点在抛物线上移动时,点C的横坐标的取值范围是(,3][1,).二.例题分析:2x2y2例1.已知双曲线C:221(a0,b0),B是右顶点,F是右焦点,点A在x轴正ab半轴上,且满足|OA|,|OB|,|OF|成等比数列,过点F作双曲线在第一、三象限内的渐近线的垂线l,垂足为P,(1)求证:PAOPPAFB;(2)若l与双曲线C的左、右两支分别交于点D,E,求双曲线C的离心率e的取值范围.a(1)证明:设l:y(xc),bay(xc)a2abb由方程组得P(,),ccybxaa2∵|OA|,|OB|,|OF|成等比数列,∴A(,0),ca2abb2abab∴PA(0,),OP(,),FP(,),ccccca2b2a2b2∴PAOP2,PAFP2,∴PAOPPAFB.cc用心爱心专心(2)设D(x1,y1),E(x2,y2),ay(xc)a422a4ca4c2b222由2得(b2)x2x(2ab)0,2bbbxy1a2b2a4b2(2a2b2)c0,∴b2a2,即c22a2,∴e2.∵x1x20,∴4ab22b所以,离心率的取值范围为(2,).2例2.如图,过抛物线x4y的对称轴上任一点P(0,m)(m0)作直线与抛物线交于A,B两点,点Q是点P关于原点的对称点,(1)设点P分有向线段AB所成的比为,证明:QP(QAQB);(2)设直线AB的方程是x2y120,过A,B两点的圆C与抛物线在点A处有共同的切线,求圆C的方程.2解:(1)设直线AB的方程为ykxm,代入抛物线方程x4y得x24kx4m0设A(x1,y1),B(x2,y2),则x1x24m,xx2x∵点P分有向线段AB所成的比为,得10,∴1,1x2又∵点Q是点P关于原点的对称点,∴Q(0,m),∴QP(0,2m),y∴QAQB(x1x2,y1y2(1)m)A∴QP(QAQB)2m[y1y2(1)m]Px12x1x22x1B2m[(1)m]4x24x2xOx1x24m4m4m2m(x1x2)2m(x1x2)04x24x2Q∴QP(QAQB).(2)由2x2y120x4y2得点A(6,9),B(4,4),121x,∴yx,∴抛物线在点A处切线的斜率为y|x63,42222设圆C的方程是(xa)(yb)r,1b9则a6,3(a6)2(b9)2(a4)2(b4)23232125解得a,b,,r22232312522∴圆C的方程是(x)2(y)2,即xy3x23y720.222由x4y得y三.课后作业:班级学号姓名用心爱心专心x2y2xy1.直线1与抛物线1相交于A,B两点,该椭圆上的点P使ABP 的面16943积等于6,这样的点P共有()(A)1个(B)2个(C)3个(D)4个2.设动点P在直线x1上,O为坐标原点,以OP为直角边,点O为直角顶点作等腰RtOPQ,则动点Q的轨迹是()(A)圆(B)两条平行线(C)抛物线(D)双曲线3.设P是直线yx4上一点,过点P的椭圆的焦点为F1(2,0),F2(2,0),则当椭圆长轴最短时,椭圆的方程为.x2y24.椭圆1的焦点为F1,F2,点P在椭圆上,如果线段PF1的中点在y轴上,那么123|PF1|是|PF2|的倍.x2y25.已知双曲线221(a0,b0)的左、右焦点分别为F1,F2,点P在双曲线的右支上,ab且|PF1|4|PF2|,则此双曲线的离心率e的最大值为.6.直线l:ykx1与双曲线C:2xy1的右支交于不同的两点A,B,(1)求实数k的取值范围;(2)是否存在实数k,使得线段AB为直径的圆经过双曲线C的右焦点F?若存在,求出k的值;若不存在,说明理由.7.22用心爱心专心8.如图,P是抛物线C:y12x上一点,直线l过点P并与抛物线C在点P的切线垂直,2l与抛物线C相交于另一点Q,(1)当点P的横坐标为2时,求直线l的方程;(2)当点P在抛物线C上移动时,求线段PQ中点M的轨迹方程,并求点M到x轴的最短用心爱心专心yQMPlOx-4-距离.扩展阅读:高三数学一轮复习精析教案15《圆锥曲线方程及性质》第33讲圆锥曲线方程及性质一.【课标要求】1.了解圆锥曲线的实际背景,感受圆锥曲线在刻画现实世界和解决实际问题中的作用;2.经历从具体情境中抽象出椭圆、抛物线模型的过程,掌握它们的定义、标准方程、几何图形及简单性质;3.了解双曲线的定义、几何图形和标准方程,知道双曲线的有关性质二.【命题走向】本讲内容是圆锥曲线的基础内容,也是高考重点考查的内容,在每年的高考试卷中一般有2~3道客观题,难度上易、中、难三档题都有,主要考查的内容是圆锥曲线的概念和性质,从近十年高考试题看主要考察圆锥曲线的概念和性质。
高考数学一轮复习 8.10 圆锥曲线的综合问题精品教学案(教师版) 新人教版
【考纲解读】1.了解圆锥曲线的简单应用,理解数形结合的思想. 2.领会转化的数学思想,提高综合解题能力.【考点预测】高考对此部分内容考查的热点与命题趋势为:1.平面解析几何是历年来高考重点内容之一,经常与逻辑、不等式、三角函数等知识结合起来考查,在选择题、填空题与解答题中均有可能出现,在解答题中考查,一般难度较大,与其他知识结合起来考查,在考查平面解析几何基础知识的同时,又考查数形结合思想、转化思想和分类讨论等思想,以及分析问题、解决问题的能力.2.2013年的高考将会继续保持稳定,坚持考查解析几何与其他知识的结合,在选择题、填空题中继续搞创新,命题形式会更加灵活. 【要点梳理】1.圆锥曲线中的最值问题2.圆锥曲线中的面积问题3.圆锥曲线中的定点或定值问题 【例题精析】考点一 圆锥曲线中的最值与面积问题 例1. (2012年高考重庆卷文科21)(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分) 已知椭圆的中心为原点O ,长轴在x 轴上,上顶点为A ,左、右焦点分别为12,F F ,线段12,OF OF 的中点分别为12,B B ,且△12AB B 是面积为4的直角三角形。
(Ⅰ)求该椭圆的离心率和标准方程;(Ⅱ)过1B 作直线交椭圆于,P Q ,22PB QB ,求△2PB Q 的面积【答案】(Ⅰ)220x +24y =116102PB Q 的面积121211610||||29S B B y y =-= 当2m =- 时,同理可得(或由对称性可得)2PB Q 的面积16109S =综上所述,2PB Q 的面积为16109. 【名师点睛】本小题主要考查直线与椭圆,考查了圆锥曲线中的面积问题,熟练基本知识是解决本类问题的关键. 【变式训练】1.(2012年高考安徽卷文科20)(本小题满分13分)如图,21F F 分别是椭圆C :22a x +22by =1(0>>b a )的左、右焦点,A 是椭圆C 的顶点,B 是直线2AF 与椭圆C 的另一个交点,1F ∠A 2F =60°.(Ⅰ)求椭圆C 的离心率;(Ⅱ)已知△A B F 1的面积为403,求,a b 的值.法二:设2BF m =;则12BF a m =-,则在12BFF ∆中,由余弦定理可得考点二定点(定值)问题例2.(2012年高考福建卷文科21)(本小题满分12分)如图,等边三角形OAB的边长为83,且其三个顶点均在抛物线E:x2=2py(p>0)上。
高三数学一轮复习圆锥曲线综合问题
直线与圆锥曲线的位置关系 [典题导入]
(2014· 长春三校调研)在直角坐标系 xOy 中, 点
1 M2,-2 ,
点 F 为抛物线 C:y=mx2(m>0)的焦点,线段 MF 恰被抛物线 C 平分. (1)求 m 的值; (2)过点 M 作直线 l 交抛物线 C 于 A、B 两点,设直线 FA、FM、 FB 的斜率分别为 k1、k2、k3,问 k1、k2、k3 能否成公差不为零的 等差数列?若能,求直线 l 的方程;若不能,请说明理由.
解析
(1)设 A(x1,y1),B(x2,y2),P(x0,y0),
[跟踪训练] 2. (2013· 新课标全国卷Ⅱ高考)平面直角坐标系 xOy 中, 过椭圆 M: x2 y2 + =1(a>b>0)右焦点的直线 x+y- 3=0 交 M 于 A,B a2 b2 1 两点,P 为 AB 的中点,且 OP 的斜率为 . 2 (1)求 M 的方程; (2)C,D 为 M 上两点,若四边形 ACBD 的对角线 CD⊥AB,求 四边形 ACBD 面积的最大值.
2 .在利用代数法解决最值与范围问题时常从 以下五个方面考虑: (1) 利用判别式来构造不等关系,从而确定参 数的取值范围; (2) 利用已知参数的范围,求新参数的范围, 解这类问题的核心是在两个参数之间建立等量 关系; (3) 利用隐含或已知的不等关系建立不等式, 从而求出参数的取值范围; (4)利用基本不等式求出参数的取值范围; (5) 利用函数的值域的求法,确定参数的取值 范围.
所以当且仅当 m=1- 7时,u(m)取到最大值. 故当且仅当 m=1- 7时,S 取到最大值. 综上,所求直线 l 的方程为 3x+2y+2 7-2=0.
高三数学一轮复习圆锥曲线的综合问题
备考例题 3
已知
F1,F2
为椭圆x2+y2=1(a>b>0)的左、右焦点,A a2 b2
是椭圆上位于第一象限内的一点,点
B
也在椭圆上,且满足O→A+O→B=
0(O 为坐标原点),且A→F2·F→1F2=0,若椭圆的离心率等于 2. 2
(1)求直线 AB 的方程;
(2)若△ABF2 的面积为 4 2,求椭圆的方程;
则 P 到直线 y= 2x 的距离为 2
|2
2cosθ-2 6
2sinθ|=4 3
6|cos(θ+π)|≤4 43
6<4,故椭圆上不存在点 M 使△MAB 面积为 8
3.
2
题型四
圆锥曲线与其他知识交汇的问 题
1-ky0-1+ky0
∴kEF=yxEE- -yxFF=(1-kky
-k 0)2-(1+ky
0)2
k2
k2
2
= k =- 1 (定值), -4ky0 2y0
k2 所以直线 EF 的斜率为定值.
题型二 最值与范围问题
①正确理解圆锥曲线的定义、标 思维提 准方程;
示 ②联立方程组,对有关参数进行 讨论.
[解] (1)∵F0(c,0),F1(0, b2-c2),F2(0,- b2-c2),
∴|F0F1|= (b2-c2)+c2=b=1,
|F1F2|=2 b2-c2=1⇒c2=3, 4
于是 a=1 (x≥0) 7
所求“果圆”的方程为 y2+4x2=1 (x≤0)
.
m2 m2-1
(2)设 Q(x1,y1), ∵P(m,y0),P→F=λF→Q,
2
1-m=λ(x1-1)
∴2
,
-y0=λy1
2020年高考数学一轮教案:第八章 第8节 第1课时
第8节圆锥曲线的综合问题考试要求 1.掌握解决直线与椭圆、抛物线的综合问题的思想方法;2.了解圆锥曲线的简单应用;3.理解数形结合的思想.知识梳理1.求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关.(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.2.定点的探索与证明问题(1)探索直线过定点时,可设出直线方程为y=kx+b,然后利用条件建立b,k等量关系进行消元,借助于直线系的思想找出定点.(2)从特殊情况入手,先探求定点,再证明与变量无关.3.求解范围问题的方法求范围问题的关键是建立求解关于某个变量的目标函数,通过求这个函数的值域确定目标的范围,要特别注意变量的取值范围.4.圆锥曲线中常见最值的解题方法(1)几何法,若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决;(2)代数法,若题目的条件和结论能体现一种明确的函数关系,则可先建立起目标函数,再求这个函数的最值,最值常用基本不等式法、配方法及导数法求解.5.圆锥曲线的弦长设斜率为k(k≠0)的直线l与圆锥曲线C相交于A,B两点,A(x1,y1),B(x2,y2),则|AB|=1+k2|x1-x2|=1+k2·(x1+x2)2-4x1x2=1+1k2·|y1-y2|=1+1k2·(y1+y2)2-4y1y2.[微点提醒]1.直线与椭圆位置关系的有关结论(供选用)(1)过椭圆外一点总有两条直线与椭圆相切;(2)过椭圆上一点有且仅有一条直线与椭圆相切;(3)过椭圆内一点的直线均与椭圆相交.2.直线与抛物线位置关系的有关结论(供选用)(1)过抛物线外一点总有三条直线和抛物线有且只有一个公共点,两条切线和一条与对称轴平行或重合的直线;(2)过抛物线上一点总有两条直线与抛物线有且只有一个公共点,一条切线和一条与对称轴平行或重合的直线;(3)过抛物线内一点只有一条直线与抛物线有且只有一个公共点,一条与对称轴平行或重合的直线.基础自测1.判断下列结论正误(在括号内打“√”或“×”)(1)直线l与椭圆C相切的充要条件是:直线l与椭圆C只有一个公共点.()(2)直线l与双曲线C相切的充要条件是:直线l与双曲线C只有一个公共点.()(3)直线l与抛物线C相切的充要条件是:直线l与抛物线C只有一个公共点.()(4)如果直线x=ty+a与圆锥曲线相交于A(x1,y1),B(x2,y2)两点,则弦长|AB|=1+t2|y1-y2|.()解析(2)因为直线l与双曲线C的渐近线平行时,也只有一个公共点,是相交,但并不相切.(3)因为直线l与抛物线C的对称轴平行或重合时,也只有一个公共点,是相交,但不相切.答案(1)√(2)×(3)×(4)√2.(选修2-1P71例6改编)过点(0,1)作直线,使它与抛物线y2=4x仅有一个公共点,这样的直线有()A.1条B.2条C.3条D.4条解析 结合图形分析可知,满足题意的直线共有3条;直线x =0,过点(0,1)且平行于x 轴的直线以及过点(0,1)且与抛物线相切的直线(非直线x =0). 答案 C3.(选修2-1P69例4改编)已知倾斜角为60°的直线l 通过抛物线x 2=4y 的焦点,且与抛物线相交于A ,B 两点,则弦|AB |=________. 解析 法一 直线l 的方程为y =3x +1, 由⎩⎨⎧y =3x +1,x 2=4y ,得y 2-14y +1=0. 设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=14, ∴|AB |=y 1+y 2+p =14+2=16.法二 如图所示,过F 作AD 的垂线,垂足为H ,则|AF |=|AD |=p +|AF |sin 60°,即|AF |=p 1-sin 60°=21-sin 60°.同理,|BF |=21+sin 60°,故|AB |=|AF |+|BF |=16.答案 164.(2019·浙江八校联考)抛物线y =ax 2与直线y =kx +b (k ≠0)交于A ,B 两点,且这两点的横坐标分别为x 1,x 2,直线与x 轴交点的横坐标是x 3,则( ) A.x 3=x 1+x 2B.x 1x 2=x 1x 3+x 2x 3C.x 1+x 2+x 3=0D.x 1x 2+x 2x 3+x 3x 1=0解析 由⎩⎨⎧y =ax 2,y =kx +b ,消去y 得ax 2-kx -b =0,可知x 1+x 2=k a ,x 1x 2=-b a ,令kx+b =0得x 3=-bk ,所以x 1x 2=x 1x 3+x 2x 3. 答案 B5.(2019·唐山市五校联考)直线l 与双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)交于A ,B 两点,M 是线段AB 的中点,若l 与OM (O 是原点)的斜率的乘积等于1,则此双曲线的离心率为( ) A.3B.2C. 3D. 2解析 设A (x 1,y 1),B (x 2,y 2),M (x 0,y 0),把A ,B 两点坐标分别代入双曲线的方程,得⎩⎪⎨⎪⎧x 21a 2-y 21b 2=1,x 22a 2-y 22b 2=1,两式相减得(x 1+x 2)(x 1-x 2)a 2-(y 1+y 2)(y 1-y 2)b 2=0,又⎩⎪⎨⎪⎧x 0=x 1+x 22,y 0=y 1+y 22,所以x 0a 2=y 0(y 1-y 2)b 2(x 1-x 2),所以b 2a 2=y 0(y 1-y 2)x 0(x 1-x 2)=k OM k l =1,所以e 2=1+b 2a 2=2,又e >1,所以e = 2. 答案 D6.(2019·潍坊二模)已知抛物线y =ax 2(a >0)的准线为l ,l 与双曲线x 24-y 2=1的两条渐近线分别交于A ,B 两点,若|AB |=4,则a =________.解析 抛物线y =ax 2(a >0)的准线l :y =-14a ,双曲线x 24-y 2=1的两条渐近线分别为y =12x ,y =-12x ,可得x A =-12a ,x B =12a ,可得|AB |=12a -⎝ ⎛⎭⎪⎫-12a =4,解得a=14.答案 14第1课时 最值、范围、证明问题考点一 最值问题多维探究角度1 利用几何性质求最值【例1-1】 设P 是椭圆x 225+y 29=1上一点,M ,N 分别是两圆:(x +4)2+y 2=1和(x -4)2+y 2=1上的点,则|PM |+|PN |的最小值、最大值分别为( ) A.9,12 B.8,11 C.8,12 D.10,12解析 如图,由椭圆及圆的方程可知两圆圆心分别为椭圆的两个焦点,由椭圆定义知|PA |+|PB |=2a =10,连接PA ,PB 分别与圆相交于两点,此时|PM |+|PN |最小,最小值为|PA |+|PB |-2R =8;连接PA ,PB 并延长,分别与圆相交于两点,此时|PM |+|PN |最大,最大值为|PA |+|PB |+2R =12,即最小值和最大值分别为8,12.答案 C角度2 利用基本不等式或二次函数求最值【例1-2】 (2019·郑州二模)已知动圆E 经过点F (1,0),且和直线l :x =-1相切.(1)求该动圆圆心E 的轨迹G 的方程;(2)已知点A (3,0),若斜率为1的直线l ′与线段OA 相交(不经过坐标原点O 和点A ),且与曲线G 交于B ,C 两点,求△ABC 面积的最大值.解 (1)由题意可知点E 到点F 的距离等于点E 到直线l 的距离,∴动点E 的轨迹是以F (1,0)为焦点,直线x =-1为准线的抛物线,故轨迹G 的方程是y 2=4x . (2)设直线l ′的方程为y =x +m ,其中-3<m <0,C (x 1,y 1),B (x 2,y 2), 联立得方程组⎩⎨⎧y =x +m ,y 2=4x消去y ,得x 2+(2m -4)x +m 2=0, Δ=(2m -4)2-4m 2=16(1-m )>0恒成立. 由根与系数的关系得x 1+x 2=4-2m ,x 1·x 2=m 2,∴|CB |=42(1-m ), 点A 到直线l ′的距离d =3+m2,∴S △ABC =12×42(1-m )×3+m 2=21-m ×(3+m ),令1-m =t ,t ∈(1,2),则m =1-t 2, ∴S △ABC =2t (4-t 2)=8t -2t 3, 令f (t )=8t -2t 3,∴f ′(t )=8-6t 2,令f ′(t )=0,得t =23(负值舍去).易知y =f (t )在⎝⎛⎭⎪⎫1,23上单调递增,在⎝ ⎛⎭⎪⎫23,2上单调递减. ∴y =f (t )在t =23,即m =-13时取得最大值为3239. ∴△ABC 面积的最大值为3239. 规律方法 圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是几何方法,即通过利用 圆锥曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是代数方法,即把要求最值的几何量或代数表达式表示为某个(些)变量的函数(解析式),然后利用函数方法、不等式方法等进行求解. 【训练1】 已知椭圆x 2a 2+y 2b 2=1(a >b >0),F 1,F 2为它的左、右焦点,P 为椭圆上一点,已知∠F 1PF 2=60°,S △F 1PF 2=3,且椭圆的离心率为12. (1)求椭圆方程;(2)已知T (-4,0),过T 的直线与椭圆交于M ,N 两点,求△MNF 1面积的最大值. 解 (1)由已知,得|PF 1|+|PF 2|=2a ,① |PF 1|2+|PF 2|2-2|PF 1||PF 2|cos 60°=4c 2, 即|PF 1|2+|PF 2|2-|PF 1||PF 2|=4c 2,②12|PF 1||PF 2|sin 60°=3,即|PF 1||PF 2|=4,③联立①②③解得a 2-c 2=3.又c a =12,∴c 2=1,a 2=4,b 2=a 2-c 2=3,椭圆方程为x 24+y 23=1.(2)根据题意可知直线MN 的斜率存在,且不为0. 设M (x 1,y 1),N (x 2,y 2),直线MN 的方程为x =my -4,代入椭圆方程,整理得(3m2+4)y2-24my+36=0,则Δ=(24m)2-4×36×(3m2+4)>0,所以m2>4.y1+y2=24m3m2+4,y1y2=363m2+4,则△MNF1的面积S△MNF1=|S△NTF1-S△MTF1|=12|TF1|·|y1-y2|=32(y1+y2)2-4y1y2=32⎝⎛⎭⎪⎫24m3m2+42-1443m2+4=18m2-44+3m2=6×1m2-4+163m2-4=6×1m2-4+163m2-4≤62163=334.当且仅当m2-4=163m2-4,即m2=283时(此时适合Δ>0的条件)取得等号.故△MNF1面积的最大值为334.考点二范围问题【例2】(2018·浙江卷)如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.(1)设AB中点为M,证明:PM垂直于y轴;(2)若P是半椭圆x2+y24=1(x<0)上的动点,求△PAB面积的取值范围.(1)证明设P(x0,y0),A⎝⎛⎭⎪⎫14y21,y1,B⎝⎛⎭⎪⎫14y22,y2.因为PA,PB的中点在抛物线上,所以y1,y2为方程⎝⎛⎭⎪⎫y+y022=4·14y2+x02,即y 2-2y 0y +8x 0-y 20=0的两个不同的实根. 所以y 1+y 2=2y 0,因此,PM 垂直于y 轴. (2)解 由(1)可知⎩⎨⎧y 1+y 2=2y 0,y 1y 2=8x 0-y 20,所以|PM |=18(y 21+y 22)-x 0=34y 20-3x 0, |y 1-y 2|=22(y 20-4x 0).因此,△PAB 的面积S △PAB =12|PM |·|y 1-y 2|=324(y 20-4x 0)32.因为x 20+y 204=1(x 0<0),所以y 20-4x 0=-4x 20-4x 0+4∈[4,5],因此,△PAB 面积的取值范围是⎣⎢⎡⎦⎥⎤62,15104. 规律方法 解决圆锥曲线中的取值范围问题应考虑的五个方面(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围; (2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系;(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围; (4)利用已知的不等关系构造不等式,从而求出参数的取值范围;(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.【训练2】 (2019·南昌调研)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,短轴长为2.(1)求椭圆C 的标准方程;(2)设直线l :y =kx +m 与椭圆C 交于M ,N 两点,O 为坐标原点,若k OM ·k ON =54,求原点O 到直线l 的距离的取值范围. 解 (1)由题知e =c a =32,2b =2, 又a 2=b 2+c 2,∴b =1,a =2,∴椭圆C 的标准方程为x 24+y 2=1.(2)设M (x 1,y 1),N (x 2,y 2),联立方程⎩⎪⎨⎪⎧y =kx +m ,x 24+y 2=1,得(4k 2+1)x 2+8kmx +4m 2-4=0,依题意,Δ=(8km )2-4(4k 2+1)(4m 2-4)>0, 化简得m 2<4k 2+1,①x 1+x 2=-8km4k 2+1,x 1x 2=4m 2-44k 2+1,y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2. 若k OM ·k ON =54,则y 1y 2x 1x 2=54,即4y 1y 2=5x 1x 2,∴(4k 2-5)x 1x 2+4km (x 1+x 2)+4m 2=0,∴(4k 2-5)·4(m 2-1)4k 2+1+4km ·⎝ ⎛⎭⎪⎫-8km 4k 2+1+4m 2=0, 即(4k 2-5)(m 2-1)-8k 2m 2+m 2(4k 2+1)=0, 化简得m 2+k 2=54,② 由①②得0≤m 2<65,120<k 2≤54. ∵原点O 到直线l 的距离d =|m |1+k2, ∴d 2=m 21+k 2=54-k 21+k 2=-1+94(1+k 2),又120<k 2≤54,∴0≤d 2<87,∴原点O 到直线l 的距离的取值范围是⎣⎢⎡⎭⎪⎫0,2147. 考点三 证明问题【例3】 (2018·全国Ⅲ卷)已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点,线段AB 的中点为M (1,m )(m >0). (1)证明:k <-12;(2)设F 为C 的右焦点,P 为C 上一点,且FP →+FA →+FB →=0.证明:|FA →|,|FP →|,|FB →|成等差数列,并求该数列的公差. (1)证明 设A (x 1,y 1),B (x 2,y 2),则x 214+y 213=1,x 224+y 223=1.两式相减,并由y 1-y 2x 1-x 2=k 得x 1+x 24+y 1+y 23·k =0.由题设知x 1+x 22=1,y 1+y 22=m ,于是k =-34m .① 由于点M (1,m )(m >0)在椭圆x 24+y 23=1内, ∴14+m 23<1,解得0<m <32,故k <-12. (2)解 由题意得F (1,0).设P (x 3,y 3),则(x 3-1,y 3)+(x 1-1,y 1)+(x 2-1,y 2)=(0,0). 由(1)及题设得x 3=3-(x 1+x 2)=1,y 3=-(y 1+y 2)=-2m <0. 又点P 在C 上,所以m =34, 从而P ⎝ ⎛⎭⎪⎫1,-32,|FP →|=32.于是|FA →|=(x 1-1)2+y 21=(x 1-1)2+3⎝ ⎛⎭⎪⎫1-x 214=2-x 12.同理|FB→|=2-x 22. 所以|FA→|+|FB →|=4-12(x 1+x 2)=3. 故2|FP→|=|FA →|+|FB →|, 即|FA →|,|FP →|,|FB →|成等差数列. 设该数列的公差为d ,则 2|d |=||FB→|-|FA →||=12|x 1-x 2| =12(x 1+x 2)2-4x 1x 2.② 将m =34代入①得k =-1.所以l 的方程为y =-x +74,代入C 的方程,并整理得7x 2-14x +14=0. 故x 1+x 2=2,x 1x 2=128,代入②解得|d |=32128. 所以该数列的公差为32128或-32128.规律方法 圆锥曲线中的证明问题常见的有:(1)位置关系方面的:如证明直线与曲线相切,直线间的平行、垂直,直线过定点等.(2)数量关系方面的:如存在定值、恒成立、相等等.在熟悉圆锥曲线的定义与性质的前提下,一般采用直接法,通过相关的代数运算证明,但有时也会用反证法证明.【训练3】 (2018·唐山模拟)如图,圆C 与x 轴相切于点T (2,0),与y 轴正半轴相交于两点M ,N (点M 在点N 的下方),且|MN |=3.(1)求圆C 的方程;(2)过点M 任作一条直线与椭圆x 28+y 24=1相交于两点A ,B ,连接AN ,BN ,求证:∠ANM =∠BNM .(1)解 设圆C 的半径为r (r >0),依题意,圆心C 的坐标为(2,r ). 因为|MN |=3,所以r 2=⎝ ⎛⎭⎪⎫322+22=254.所以r =52,圆C 的方程为(x -2)2+⎝ ⎛⎭⎪⎫y -522=254.(2)证明 把x =0代入方程(x -2)2+⎝ ⎛⎭⎪⎫y -522=254,解得y =1或y =4,即点M (0,1),N (0,4). ①当AB ⊥x 轴时,可知∠ANM =∠BNM =0.②当AB 与x 轴不垂直时,可设直线AB 的方程为y =kx +1.联立方程⎩⎪⎨⎪⎧y =kx +1,x 28+y 24=1消去y 得,(1+2k 2)x 2+4kx -6=0.设直线AB 交椭圆于A (x 1,y 1),B (x 2,y 2)两点,则x 1+x 2=-4k 1+2k 2,x 1x 2=-61+2k 2.所以k AN +k BN =y 1-4x 1+y 2-4x 2=kx 1-3x 1+kx 2-3x 2=2kx 1x 2-3(x 1+x 2)x 1x2=1x 1x 2⎝ ⎛⎭⎪⎫-12k 1+2k 2+12k 1+2k 2=0. 所以∠ANM =∠BNM . 综合①②知∠ANM =∠BNM .基础巩固题组 (建议用时:40分钟)一、选择题1.直线y =b a x +3与双曲线x 2a 2-y 2b 2=1(a >0,b >0)的交点个数是( ) A.1B.2C.1或2D.0解析 由直线y =b a x +3与双曲线x 2a 2-y 2b 2=1的渐近线y =ba x 平行,故直线与双曲线的交点个数是1. 答案 A2.已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0),斜率为1的直线与C 交于两点A ,B ,若线段AB 的中点为(4,1),则双曲线C 的渐近线方程是( ) A.2x ±y =0 B.x ±2y =0 C.2x ±y =0D.x ±2y =0解析 设A (x 1,y 1),B (x 2,y 2),则x 21a 2-y 21b 2=1①,x 22a 2-y 22b 2=1②,由①-②得(x 1-x 2)(x 1+x 2)a 2=(y 1-y 2)(y 1+y 2)b 2,结合题意化简得4b 2a 2=1,即b a =12,所以双曲线C 的渐近线方程为x ±2y =0. 答案 B3.抛物线y =x 2上的点到直线x -y -2=0的最短距离为( ) A. 2B.728C.2 2D.526解析 设抛物线上一点的坐标为(x ,y ), 则d =|x -y -2|2=|-x 2+x -2|2=⎪⎪⎪⎪⎪⎪-⎝ ⎛⎭⎪⎫x -122-742,∴x =12时, d min =728. 答案 B4.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为( ) A.2B.3C.6D.8解析 由题意得F (-1,0),设点P (x 0,y 0),则y 20=3⎝ ⎛⎭⎪⎫1-x 204(-2≤x 0≤2).OP →·FP →=x 0(x 0+1)+y 20=x 20+x 0+y 20=x 20+x 0+3⎝ ⎛⎭⎪⎫1-x 204=14·(x 0+2)2+2.因为-2≤x 0≤2,所以当x 0=2时,OP →·FP →取得最大值,最大值为6.答案 C5.(2018·太原一模)已知抛物线y 2=4x 的焦点为F ,过焦点F 的直线交抛物线于A ,B 两点,O 为坐标原点,若△AOB 的面积为6,则|AB |=( ) A.6B.8C.12D.16解析 由题意知抛物线y 2=4x 的焦点F 的坐标为(1,0),易知当直线AB 垂直于x 轴时,△AOB 的面积为2,不满足题意,所以可设直线AB 的方程为y =k (x -1)(k ≠0),与y 2=4x 联立,消去x 得ky 2-4y -4k =0,设A (x 1,y 1),B (x 2,y 2),所以y 1+y 2=4k ,y 1y 2=-4, 所以|y 1-y 2|=16k 2+16,所以△AOB 的面积为12×1×16k 2+16=6,解得k =±2, 所以|AB |=1+1k 2|y 1-y 2|=6.答案 A 二、填空题6.(2019·北京朝阳区一模)抛物线C :y 2=2px (p >0)的准线与x 轴的交点为M ,过点M 作C 的两条切线,切点分别为P ,Q ,则∠PMQ =________.解析 由题意得M ⎝ ⎛⎭⎪⎫-p 2,0,设过点M 的切线方程为x =my -p 2,代入y 2=2px 得y 2-2pmy +p 2=0,∴Δ=4p 2m 2-4p 2=0,∴m =±1,则切线斜率k =±1,∴MQ ⊥MP ,因此∠PMQ =π2. 答案 π27.过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右顶点且斜率为2的直线,与该双曲线的右支交于两点,则此双曲线离心率的取值范围为________.解析 由过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右顶点且斜率为2的直线,与该双曲线的右支交于两点,可得ba <2. ∴e =c a =a 2+b 2a 2<1+4=5,∵e >1,∴1<e <5,∴此双曲线离心率的取值范围为(1,5). 答案 (1,5)8.(2019·深圳二模)设过抛物线y 2=2px (p >0)上任意一点P (异于原点O )的直线与抛物线y 2=8px (p >0)交于A ,B 两点,直线OP 与抛物线y 2=8px (p >0)的另一个交点为Q ,则S △ABQS △ABO=________. 解析 设直线OP 的方程为y =kx (k ≠0), 联立得⎩⎨⎧y =kx ,y 2=2px ,解得P ⎝ ⎛⎭⎪⎫2p k 2,2p k ,联立得⎩⎨⎧y =kx ,y 2=8px ,解得Q ⎝ ⎛⎭⎪⎫8p k 2,8p k ,∴|OP |=4p 2k 4+4p 2k 2=2p 1+k 2k 2,|PQ |=36p 2k 4+36p 2k 2=6p 1+k 2k 2,∴S △ABQ S △ABO =|PQ ||OP |=3.答案 3 三、解答题9.设椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 1,F 2是椭圆的两个焦点,M 是椭圆上任意一点,且△MF 1F 2的周长是4+2 3. (1)求椭圆C 1的方程;(2)设椭圆C 1的左、右顶点分别为A ,B ,过椭圆C 1上的一点D 作x 轴的垂线交x 轴于点E ,若点C 满足AB →⊥BC →,AD →∥OC →,连接AC 交DE 于点P ,求证:|PD |=|PE |.(1)解 由e =32,知c a =32,所以c =32a , 因为△MF 1F 2的周长是4+23,所以2a +2c =4+23,所以a =2,c =3, 所以b 2=a 2-c 2=1,所以椭圆C 1的方程为:x 24+y 2=1. (2)证明 由(1)得A (-2,0),B (2,0), 设D (x 0,y 0),所以E (x 0,0), 因为AB →⊥BC →,所以可设C (2,y 1), 所以AD →=(x 0+2,y 0),OC →=(2,y 1),由AD →∥OC →可得:(x 0+2)y 1=2y 0,即y 1=2y 0x 0+2.所以直线AC 的方程为:y -02y 0x 0+2-0=x +22-(-2).整理得:y =y 02(x 0+2)(x +2).又点P 在DE 上,将x =x 0代入直线AC 的方程可得:y =y 02,即点P 的坐标为⎝ ⎛⎭⎪⎫x 0,y 02,所以P 为DE 的中点,|PD |=|PE |.10.如图,已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称.(1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点). 解 由题意知m ≠0,可设直线AB 的方程为 y =-1m x +b ,A (x 1,y 1),B (x 2,y 2),AB 中点为M , 由⎩⎪⎨⎪⎧x 22+y 2=1,y =-1m x +b消去y , 得⎝ ⎛⎭⎪⎫12+1m 2x 2-2b m x +b 2-1=0. 因为直线y =-1m x +b 与椭圆x 22+y 2=1有两个不同的交点,所以Δ=-2b 2+2+4m 2>0,①则x 1+x 2=4mb m 2+2,y 1+y 2=2m 2b m 2+2,(1)将AB 中点M ⎝ ⎛⎭⎪⎫2mbm 2+2,m 2b m 2+2代入直线方程y =mx +12解得b =-m 2+22m 2,②由①②得m <-63或m >63.故实数m 的取值范围为⎝ ⎛⎭⎪⎫-∞,-63∪⎝ ⎛⎭⎪⎫63,+∞.(2)令t =1m ∈⎝ ⎛⎭⎪⎫-62,0∪⎝ ⎛⎭⎪⎫0,62,则|AB |=t 2+1·-2t 4+2t 2+32t 2+12,且O 到直线AB 的距离为d =t 2+12t 2+1.设△AOB 的面积为S (t ), 所以S (t )=12|AB |·d =12-2⎝ ⎛⎭⎪⎫t 2-122+2≤22. 当且仅当t 2=12时,等号成立. 故△AOB 面积的最大值为22.能力提升题组 (建议用时:20分钟)11.(2019·烟台一模)已知抛物线M :y 2=4x ,过抛物线M 的焦点F 的直线l 交抛物线于A ,B 两点(点A 在第一象限),且交抛物线的准线于点E .若AE →=2BE →,则直线l 的斜率为( ) A.3B.2 2C. 3D.1解析 分别过A ,B 两点作AD ,BC 垂直于准线,垂足分别为D ,C , 由AE→=2BE →,得B 为AE 的中点,∴|AB |=|BE |, 则|AD |=2|BC |,由抛物线的定义可知|AF |=|AD |,|BF |=|BC |, ∴|AB |=3|BC |,∴|BE |=3|BC |,则|CE |=22|BC |, ∴tan ∠CBE =|CE ||CB |=22,∴直线l 的斜率k =tan ∠AFx =tan ∠CBE =2 2. 答案 B12.(2019·河北百校联考)已知抛物线y 2=4x ,过其焦点F 的直线l 与抛物线分别交于A ,B 两点(A 在第一象限内),AF →=3 FB →,过AB 的中点且垂直于l 的直线与x 轴交于点G ,则△ABG 的面积为( ) A.839B.1639C.3239D.6439解析 设A (x 1,y 1),B (x 2,y 2),因为AF →=3FB →,所以y 1=-3y 2,设直线l 的方程为x =my +1, 由⎩⎨⎧y 2=4x ,x =my +1消去x 得y 2-4my -4=0,∴y 1y 2=-4, ∴⎩⎨⎧y 1=23,y 2=-233,∴y 1+y 2=4m =433, ∴m =33,∴x 1+x 2=103,AB 的中点坐标为⎝ ⎛⎭⎪⎫53,233,过AB 中点且垂直于直线l 的直线方程为y -233=-33⎝ ⎛⎭⎪⎫x -53,令y =0,可得x =113,所以S △ABG =12×⎝ ⎛⎭⎪⎫113-1×⎝ ⎛⎭⎪⎫23+233=3239. 答案 C13.(一题多解)(2018·全国Ⅲ卷)已知点M (-1,1)和抛物线C :y 2=4x ,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若∠AMB =90°,则k =________. 解析 法一 由题意知抛物线的焦点为(1,0),则过C 的焦点且斜率为k 的直线方程为y =k (x -1)(k ≠0),由⎩⎨⎧y =k (x -1),y 2=4x ,消去y 得k 2(x -1)2=4x ,即k 2x 2-(2k 2+4)x +k 2=0,设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=2k 2+4k 2,x 1x 2=1.由⎩⎨⎧y =k (x -1),y 2=4x ,消去x 得y 2=4⎝ ⎛⎭⎪⎫1k y +1,即y 2-4k y -4=0,则y 1+y 2=4k ,y 1y 2=-4,则∠AMB =90°,得MA →·MB →=(x 1+1,y 1-1)·(x 2+1,y 2-1)=x 1x 2+x 1+x 2+1+y 1y 2-(y 1+y 2)+1=0,将x 1+x 2=2k 2+4k 2,x 1x 2=1与y 1+y 2=4k ,y 1y 2=-4代入,得k =2. 法二 设抛物线的焦点为F ,A (x 1,y 1),B (x 2,y 2),则⎩⎨⎧y 21=4x 1,y 22=4x 2,所以y 21-y 22=4(x 1-x 2),则k =y 1-y 2x 1-x 2=4y 1+y 2,取AB 的中点M ′(x 0,y 0),分别过点A ,B 作准线x =-1的垂线,垂足分别为A ′,B ′,又∠AMB =90°,点M 在准线x =-1上,所以|MM ′|=12|AB |=12(|AF |+|BF |)=12(|AA ′|+|BB ′|).又M ′为AB 的中点,所以MM ′平行于x 轴,且y 0=1,所以y 1+y 2=2,所以k =2. 答案 214.(2018·天津卷)设椭圆x 2a 2+y 2b 2=1(a >b >0)的右顶点为A ,上顶点为B .已知椭圆的离心率为53,|AB |=13. (1)求椭圆的方程;(2)设直线l :y =kx (k <0)与椭圆交于P ,Q 两点,l 与直线AB 交于点M ,且点P ,M 均在第四象限.若△BPM 的面积是△BPQ 面积的2倍,求k 的值. 解 (1)设椭圆的焦距为2c ,由已知有c 2a 2=59, 又由a 2=b 2+c 2,可得2a =3b .由|AB |=a 2+b 2=13,从而a =3,b =2. 所以,椭圆的方程为x 29+y 24=1.(2)设点P 的坐标为(x 1,y 1),点M 的坐标为(x 2,y 2), 由题意,x 2>x 1>0,点Q 的坐标为(-x 1,-y 1).由△BPM 的面积是△BPQ 面积的2倍,可得|PM |=2|PQ |, 从而x 2-x 1=2[x 1-(-x 1)],即x 2=5x 1. 易知直线AB 的方程为2x +3y =6,由方程组⎩⎨⎧2x +3y =6,y =kx ,消去y ,可得x 2=63k +2.由方程组⎩⎪⎨⎪⎧x 29+y 24=1,y =kx ,消去y ,可得x 1=69k 2+4. 由x 2=5x 1,可得9k 2+4=5(3k +2), 两边平方,整理得18k 2+25k +8=0,解得k =-89,或k =-12.当k =-89时,x 2=-9<0,不合题意,舍去; 当k =-12时,x 2=12,x 1=125,符合题意.所以,k 的值为-12.新高考创新预测15.(思维创新)已知抛物线y 2=4x ,焦点记为F ,过点F 作直线l 交抛物线于A ,B 两点,则|AF |-2|BF |的最小值为________.解析 当直线l 的斜率存在时,设直线l 的方程为y =k (x -1)(k ≠0),代入y 2=4x 可得k 2x 2-(2k 2+4)x +k 2=0,设A (x 1,y 1),B (x 2,y 2),则x 1·x 2=1.由抛物线的定义可得|AF |=x 1+1,|BF |=x 2+1,所以|AF |-2|BF |=x 1+1-2x 2+1=(x 1+1)(x 2+1)-2x 2+1=x 1+x 2x 2+1=1+x 22x 2+x 22=11+x 2-1x 22+1.令x 2-1=t (t ≥1),则x 2=t +1,所以|AF |-2|BF |=11+tt 2+2t +2=11+12+t +2t≥11+12+22=2(1+2)3+22=21+2=22-2(当且仅当t =2时等号成立);当直线l 的斜率不存在时,易得|AF |-2|BF |=1.综上,|AF |-2|BF |的最小值为22-2. 答案 22-2。
高考数学一轮总复习第8章平面解析几何第8节直线与圆锥曲线的位置关系第2课时范围最值问题教师用书
第2课时 范围、最值问题考点1 范围问题——综合性(2021·梅州二模)在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b2=1(a >b >0)的两焦点与短轴的一个端点的连线构成等边三角形,直线x +y +22-1=0与以椭圆C 的右焦点为圆心,椭圆C 的长半轴长为半径的圆相切.(1)求椭圆C 的方程;(2)△BMN 是椭圆C 的内接三角形,若坐标原点O 为△BMN 的重心,求点B 到直线MN 距离的取值范围.解:(1)设椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点F 2(c,0),则以椭圆C 的右焦点为圆心,椭圆C 的长半轴长为半径的圆:(x -c )2+y 2=a 2,所以圆心到直线x +y +22-1=0的距离d =|c +22-1|12+12=a . 又椭圆的两焦点与短轴的一个端点的连线构成等边三角形,所以a =2c ,b =3c , 解得a =2,b =3,c =1, 所以椭圆C 的标准方程为x 24+y 23=1.(2)设B (m ,n ),设M ,N 的中点为D ,直线OD 与椭圆交于A ,B 两点. 因为O 为△BMN 的重心,则BO =2OD =OA ,所以D ⎝ ⎛⎭⎪⎫-m 2,-n 2,即B 到直线MN 的距离是原点O 到直线MN 距离的3倍.当MN 的斜率不存在时,点D 在x 轴上,所以此时B 在长轴的端点处. 由|OB |=2,得|OD |=1,则O 到直线MN 的距离为1,B 到直线MN 的距离为3.当MN 的斜率存在时,设M (x 1,y 1),N (x 2,y 2),则有⎩⎪⎨⎪⎧x 214+y 213=1,x 224+y223=1,两式相减,得(x 1+x 2)(x 1-x 2)4+(y 1+y 2)(y 1-y 2)3=0.因为D 为M ,N 的中点,所以x 1+x 2=-m ,y 1+y 2=-n ,所以k =y 1-y 2x 1-x 2=-3m4n, 所以直线MN 的方程为y +n 2=-3m 4n ⎝ ⎛⎭⎪⎫x +m 2,即6mx +8ny +4n 2+3m 2=0,所以原点O 到直线MN 的距离d =4n 2+3m264n 2+36m2.因为m 24+n 23=1,所以3m 2=12-4n 2, 所以d =4n 2+3m264n 2+36m2=12144+16n2=39+n2.因为0<n 2≤3,所以3<9+n 2≤23, 所以123≤19+n 2<13,所以332≤3d <3. 综上所述,332≤3d ≤3,即点B 到直线MN 距离的取值范围为⎣⎢⎡⎦⎥⎤332,3.圆锥曲线中的取值范围问题的解题策略(1)利用圆锥曲线的几何性质或联立方程后的判别式构造不等关系,从而确定参数的取值范围.(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系.(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围. (4)利用已知的不等关系构造不等式,从而求出参数的取值范围.(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.已知椭圆x 2a 2+y 2b2=1(a >b >0)上的点到右焦点F (c,0)的最大距离是2+1,且1,2a,4c成等比数列.(1)求椭圆的方程;(2)过点F 且与x 轴不垂直的直线l 与椭圆交于A ,B 两点,线段AB 的垂直平分线交x 轴于点M (m,0),求实数m 的取值范围.解:(1)由已知可得⎩⎨⎧a +c =2+1,1×4c =2a 2,a 2=b 2+c 2,解得⎩⎨⎧a =2,b =1,c =1,所以椭圆的方程为x 22+y 2=1.(2)由题意得F (1,0),设直线AB 的方程为y =k (x -1).与椭圆方程联立得⎩⎪⎨⎪⎧x 2+2y 2-2=0,y =k (x -1),消去y 可得(1+2k 2)x 2-4k 2x +2k 2-2=0,Δ=(-4k 2)2-4(2k 2-2)(1+2k 2)=8k 2+8>0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4k21+2k2,y 1+y 2=k (x 1+x 2)-2k =-2k1+2k2. 可得线段AB 的中点为N ⎝ ⎛⎭⎪⎫2k 21+2k 2,-k 1+2k 2.当k =0时,直线MN 为x 轴,此时m =0;当k ≠0时,直线MN 的方程为y +k1+2k 2=-1k ⎝ ⎛⎭⎪⎫x -2k 21+2k 2, 化简得ky +x -k 21+2k2=0.令y =0,得x =k 21+2k2,所以m =k 21+2k 2=11k2+2∈⎝ ⎛⎭⎪⎫0,12. 综上所述,实数m 的取值范围为⎣⎢⎡⎭⎪⎫0,12.考点2 最值问题——应用性考向1 利用几何性质求最值在平面直角坐标系xOy 中,P 为双曲线x 2-y 2=1右支上的一个动点.若点P 到直线x -y +1=0的距离大于c 恒成立,则实数c 的最大值为___________.22解析:双曲线x 2-y 2=1的渐近线为x ±y =0,直线x -y +1=0与渐近线x -y =0平行,故两平行线间的距离d =|1-0|12+(-1)2=22,由点P 到直线x -y +1=0的距离大于c恒成立,得c ≤22,故c 的最大值为22. 考向2 利用函数、导数求最值(2022·江门市高三一模)如图,抛物线C :y 2=8x 与动圆M :(x -8)2+y 2=r 2(r >0)相交于A ,B ,C ,D 四个不同点.(1)求r 的取值范围;(2)求四边形ABCD 面积S 的最大值及相应r 的值.解:(1)联立抛物线与圆方程⎩⎪⎨⎪⎧y 2=8x ,(x -8)2+y 2=r 2,消去y ,得x 2-8x +64-r 2=0.若圆与抛物线有四个不同交点,则方程有两个不等正根.所以⎩⎪⎨⎪⎧64-r 2>0,64-4(64-r 2)>0,解得43<r <8,所以r 的取值范围为(43,8).(2)设A (x 1,22x 1),B (x 2,22x 2),其中x 2>x 1>0,则x 1+x 2=8,x 1x 2=64-r 2,S =12(42x 1+42x 2)(x 2-x 1)=(22x 1+22x 2)(x 2-x 1), S 2=8(x 1+x 2+2x 1x 2)[(x 2+x 1)2-4x 1x 2], S 2=64(4+64-r 2)[16-(64-r 2)].令x =64-r 2(0<x <4),令f (x )=(4+x )(16-x 2)(0<x <4),f ′(x )=16-8x -3x 2=(4-3x )(x +4).当0<x <43时,f ′(x )>0,f (x )单调递增;当43<x <4时,f ′(x )<0,f (x )单调递减. f (x )≤f ⎝ ⎛⎭⎪⎫43=2 04827,S =8f (x )≤25669.当x =43时,S 取得最大值,取64-r 2=43,r =4353.考向3 利用基本不等式求最值(2022·唐山三模)在直角坐标系xOy 中,A (-1,0),B (1,0),C 为动点,设△ABC的内切圆分别与边AC ,BC ,AB 相切于P ,Q ,R ,且|CP |=1,记点C 的轨迹为曲线E .(1)求曲线E 的方程;(2)不过原点O 的直线l 与曲线E 交于M ,N ,且直线y =-12x 经过MN 的中点T ,求△OMN的面积的最大值.解:(1)依题意可知,|CA |+|CB |=|CP |+|CQ |+|AP |+|BQ |=2|CP |+|AB |=4>|AB |, 所以曲线E 是以A ,B 为焦点,长轴长为4的椭圆(除去与x 轴的交点), 因此曲线E 的方程为x 24+y 23=1(y ≠0).(2)设M (x 1,y 1),N (x 2,y 2),直线l 的方程为y =kx +m (m ≠0),代入x 24+y 23=1整理,得(4k 2+3)x 2+8kmx +4m 2-12=0,(*)Δ=64k 2m 2-4(4k 2+3)(4m 2-12)>0.则x 1+x 2=-8km 4k 2+3,x 1x 2=4m 2-124k 2+3,所以y 1+y 2=k (x 1+x 2)+2m =6m4k 2+3,故MN 的中点T ⎝⎛⎭⎪⎫-4km 4k 2+3,3m 4k 2+3.而直线y =-12x 经过MN 的中点T ,得3m 4k 2+3=-12×-4km4k 2+3, 又m ≠0,所以直线l 的斜率k =32.故(*)式可化简为3x 2+3mx +m 2-3=0,故x 1+x 2=-m ,x 1x 2=m 2-33.由Δ=36-3m 2>0且m ≠0,得-23<m <23且m ≠0. 又|MN |=1+k 2|x 1-x 2|=132×36-3m 23=1323×12-m 2,而点O 到直线l 的距离d =2|m |13, 则△OMN 的面积为S =12×2|m |13×1323×12-m 2=123|m |×12-m 2≤123×m 2+12-m 22=3, 当且仅当m =±6时,等号成立,此时满足-23<m <23且m ≠0,所以△OMN 的面积的最大值为3.最值问题的2种基本解法几何法根据已知的几何量之间的相互关系,利用平面几何和解析几何知识加以解决(如抛物线上的点到某个定点和焦点的距离之和、光线反射问题等在选择题、填空题中经常考查)代数法建立求解目标关于某个(或两个)变量的函数,通过求解函数的最值解决(一般方法、基本不等式法、导数法等)已知抛物线C :x 2=2py (p >0),过点T (0,p )作两条互相垂直的直线l 1和l 2,l 1交抛物线C 于A ,B 两点,l 2交抛物线C 于E ,F 两点,当点A 的横坐标为1时,抛物线C 在点A 处的切线斜率为12.(1)求抛物线C 的标准方程;(2)已知O 为坐标原点,线段AB 的中点为M ,线段EF 的中点为N ,求△OMN 面积的最小值.解:(1)因为x 2=2py 可化为y =x 22p ,所以y ′=xp.因为当点A 的横坐标为1时,抛物线C 在点A 处的切线斜率为12,所以1p =12,所以p =2,所以,抛物线C 的标准方程为x 2=4y . (2)由(1)知点T 坐标为(0,2),由题意可知,直线l 1和l 2斜率都存在且均不为0. 设直线l 1方程为y =kx +2,由⎩⎪⎨⎪⎧y =kx +2,x 2=4y ,联立消去y 并整理,得x 2-4kx -8=0,Δ=(-4k )2+32=16k 2+32>0.设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=4k ,x 1·x 2=-8, 所以,y 1+y 2=k (x 1+x 2)+4=4k 2+4. 因为M 为AB 中点,所以M (2k,2k 2+2).因为l 1⊥l 2,N 为EF 中点,所以N ⎝ ⎛⎭⎪⎫-2k ,2k2+2,所以直线MN 的方程为y -(2k 2+2)=2k 2+2-⎝ ⎛⎭⎪⎫2k 2+22k +2k·(x -2k )=⎝ ⎛⎭⎪⎫k -1k ·(x -2k ), 整理得y =⎝⎛⎭⎪⎫k -1k x +4,所以,直线MN 恒过定点(0,4).所以△OMN 面积S =12×4×⎪⎪⎪⎪⎪⎪2k -⎝ ⎛⎭⎪⎫-2k =4⎪⎪⎪⎪⎪⎪k +1k =4⎝ ⎛⎭⎪⎫|k |+⎪⎪⎪⎪⎪⎪1k ≥4·2|k |·⎪⎪⎪⎪⎪⎪1k=8,当且仅当|k |=⎪⎪⎪⎪⎪⎪1k即k =±1时,△OMN 面积取得最小值为8.在平面直角坐标系xOy 中,已知圆O :x 2+y 2=4,椭圆C :x 24+y 2=1,A 为椭圆C 的右顶点,过原点且异于x 轴的直线与椭圆C 交于M ,N 两点,M 在x 轴的上方,直线AM 与圆O 的另一交点为P ,直线AN 与圆O 的另一交点为Q .(1)若AP →=3AM →,求直线AM 的斜率;(2)设△AMN 与△APQ 的面积分别为S 1,S 2,求S 1S 2的最大值.[四字程序]读想算思已知圆的方程和椭圆的方程,直线与圆、椭圆都相交 1.向量AP →=3AM →如何转化?2.如何表示三角形的面积把S 1S 2用直线AM 的斜率k 来表示 转化与化归求直线AM 的斜率,求△AMN 与△APQ 的面1.用A ,P ,M 的坐标表示.S 1S 2=|AM |·|AN ||AP |·|AQ |,进把面积之比的最大值转化为一个变量的不积之比2.利用公式S =12ab ·sin C 表示并转化而用基本不等式求其最大值等式思路参考:设直线AM 的方程为y =k (x -2),k <0,利用y P =3y M 求解.解:(1)设直线AM 的方程为y =k (x -2),k <0,将y =k (x -2)与椭圆方程x 24+y 2=1联立,(1+4k 2)x 2-16k 2x +16k 2-4=0,得x A +x M =16k21+4k2,求得点M 的横坐标为x M =8k 2-24k 2+1,纵坐标为y M =-4k4k 2+1.将y =k (x -2)与圆方程x 2+y 2=4联立,得(1+k 2)·x 2-4k 2x +4k 2-4=0,得x A +x P =4k21+k2, 求得点P 的横坐标为x P =2k 2-2k 2+1,纵坐标为y P =-4kk 2+1. 由AP →=3AM →得y P =3y M , 即-4k k 2+1=-12k4k 2+1. 又k <0,解得k =-2.(2)由M ,N 关于原点对称,得点N 的坐标为x N =-8k 2+24k 2+1,y N =4k4k 2+1,所以直线AN 的斜率为k AN =4k4k 2+1-8k 2+24k 2+1-2=-14k. 于是|AM ||AP |=y M y P =k 2+14k 2+1,同理|AN ||AQ |=⎝ ⎛⎭⎪⎫-14k 2+14⎝ ⎛⎭⎪⎫-14k 2+1=16k 2+116k 2+4.所以S 1S 2=|AM |·|AN ||AP |·|AQ |=k 2+14k 2+1·16k 2+116k 2+4=16k 4+17k 2+14(16k 4+8k 2+1) =14⎝ ⎛⎭⎪⎫1+9k 216k 4+8k 2+1=14⎝⎛⎭⎪⎪⎫1+916k 2+1k2+8 ≤14⎝⎛⎭⎪⎪⎫1+9216k 2·1k 2+8=2564, 当且仅当16k 2=1k 2,即k =-12时等号成立,所以S 1S 2的最大值为2564.思路参考:设直线AM 的方程为y =k (x -2),k <0,由AP →=3AM →转化为x P -x A =3(x M -x A )求解.解:(1)设直线AM 的方程为y =k (x -2),k <0,代入椭圆方程,整理得(4k 2+1)x 2-16k 2x +4(4k 2-1)=0.由根与系数的关系得x A x M =4(4k 2-1)4k 2+1,而x A =2,所以x M =2(4k 2-1)4k 2+1. 将y =k (x -2)代入圆的方程,整理得(k 2+1)x 2-4k 2x +4(k 2-1)=0.由根与系数的关系得x A x P =4(k 2-1)k 2+1,而x A =2,所以x P =2(k 2-1)k 2+1.由AP →=3AM →,得x P -x A =3(x M -x A ),即2(k 2-1)k 2+1-2=3⎣⎢⎡⎦⎥⎤2(4k 2-1)4k 2+1-2,解得k 2=2. 又k <0,所以k =-2.(2)因为MN 是椭圆的直径,直线AM ,AN 斜率均存在,所以k AM k AN =-14,即kk AN =-14,所以k AN =-14k.下同解法1(略).思路参考:设直线AM 的方程为x =my +2,利用y P =3y M 求解.解:(1)设直线AM 的方程为x =my +2(m ≠0),将其代入椭圆方程,整理得(m 2+4)y 2+4my =0,得点M 的纵坐标为y M =-4mm 2+4. 将x =my +2代入圆的方程,整理得(m 2+1)y 2+4my =0,得点P 的纵坐标为y P =-4mm 2+1. 由AP →=3AM →,得y P =3y M ,即m m 2+1=3m m 2+4.因为m ≠0,解得m 2=12,即m =±12.又直线AM 的斜率k =1m<0,所以k =-2.(2)因为MN 是椭圆的直径,直线AM ,AN 斜率均存在,又k AM k AN =-14,由(1)知k AM =1m ,所以有1m k AN =-14,则k AN =-m4.又y M =-4m m 2+4,y P =-4mm 2+1, 所以|AM ||AP |=y M y P =m 2+1m 2+4.同理|AN ||AQ |=⎝ ⎛⎭⎪⎫-m 42+14⎝ ⎛⎭⎪⎫-m 42+1=m 2+164(m 2+4).所以S 1S 2=|AM |·|AN ||AP |·|AQ |=m 2+1m 2+4·m 2+164(m 2+4).下同解法1(略).1.本题考查三角形面积之比的最大值,解法较为灵活,其基本策略是把面积的比值表示为斜率k 的函数,从而求其最大值.2.基于新课程标准,解答本题一般需要具备良好的数学阅读技能、运算求解能力.本题的解答体现了数学运算的核心素养.已知点A (0,-2),椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,F 是椭圆的右焦点,直线AF 的斜率为233,O 为坐标原点.(1)求椭圆E 的方程;(2)设过点A 的直线l 与E 相交于P ,Q 两点,当△OPQ 的面积最大时,求l 的方程.解:(1)设F (c,0),由题意知2c =233,解得c =3.因为e =ca =32, 所以a =2,b 2=a 2-c 2=1. 所以椭圆E 的方程为x 24+y 2=1.(2)(方法一)显然直线l 的斜率存在.设直线l :y =kx -2,P (x 1,y 1),Q (x 2,y 2),且P 在线段AQ 上.由⎩⎪⎨⎪⎧y =kx -2,x 2+4y 2-4=0得(4k 2+1)x 2-16kx +12=0,所以x 1+x 2=16k 4k 2+1,x 1x 2=124k 2+1.由Δ=(16k )2-48(4k 2+1)>0,得k 2>34.则S △OPQ =S △AOQ -S △AOP=12×2×|x 2-x 1|=(x 1+x 2)2-4x 1x 2=44k 2-34k 2+1. 令4k 2-3=t (t >0),则4k 2=t 2+3,于是S △OPQ =4t t 2+4=4t +4t≤1,当且仅当t =2,即k =±72时等号成立,所以l 的方程为y =72x -2或y =-72x -2. (方法二)依题意直线l 的斜率存在,设直线l 的方程为y =kx -2,P (x 1,y 1),Q (x 2,y 2).将直线l 的方程代入椭圆方程,整理得(4k 2+1)x 2-16kx +12=0,则Δ=(16k )2-48(4k 2+1)=16(4k 2-3)>0,即k 2>34.x 1+x 2=16k 4k 2+1,x 1x 2=124k 2+1.由弦长公式得|PQ |=1+k 2|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2=1+k 2·44k 2-34k 2+1.由点到直线的距离公式得点O 到直线l 的距离d =21+k2,所以S △OPQ =12|PQ |×d =121+k 2×44k 2-34k 2+1×21+k 2=44k 2-34k 2+1. 设4k 2-3=t (t >0),则4k 2=t 2+3,所以S △OPQ =4t t 2+4=4t +4t≤1,当且仅当t =2,即k =±72时等号成立.7 2x-2或y=-72x-2.故所求直线l的方程为y=。
高考数学一轮复习 8.6 圆锥曲线的应用教案
8.6 圆锥曲线的应用●知识梳理解析几何在日常生活中应用广泛,如何把实际问题转化为数学问题是解决应用题的关键,而建立数学模型是实现应用问题向数学问题转化的常用方法.本节主要通过圆锥曲线在实际问题中的应用,说明数学建模的方法,理解函数与方程、等价转化、分类讨论等数学思想.●点击双基1.一抛物线型拱桥,当水面离桥顶2 m 时,水面宽4 m ,若水面下降1 m 时,则水面宽为A.6mB.26mC.4.5 mD.9 m解析:建立适当的直角坐标系,设抛物线方程为x 2=-2Py (P >0),由题意知,抛物线过点(2,-2),∴4=2p ×2.∴p =1.∴x 2=-2y .当y 0=-3时,得x 02=6.∴水面宽为2|x 0|=26.答案:B2.某抛物线形拱桥的跨度是20 m ,拱高是4 m ,在建桥时每隔4 m 需用一柱支撑,其中最长的支柱是A.4 mB.3.84 mC.1.48 mD.2.92 m解析:建立适当坐标系,设抛物线方程为x 2=-2py (p >0),由题意知其过定点(10, -4),代入x 2=-2py ,得p =225. ∴x 2=-25y .当x 0=2时,y 0=254-,∴最长支柱长为4-|y 0|=4-254=3.84(m ). 答案:B3.天安门广场,旗杆比华表高,在地面上,观察它们顶端的仰角都相等的各点所在的曲线是A.椭圆B.圆C.双曲线的一支D.抛物线解析:设旗杆高为m ,华表高为n ,m >n .旗杆与华表的距离为2a ,以旗杆与地面的交点和华表与地面的交点的连线段所在直线为x 轴、垂直平分线为y 轴建立直角坐标系.设曲线上任一点M (x ,y ),由题意2222)()(y a x y a x +-++=nm ,即(m 2-n 2)x 2+(m 2-n 2)y 2-2a (m 2-n 2)x + (m 2-n 2)a 2=0.答案:B4.探照灯反射镜的纵断面是抛物线的一部分,光源在抛物线的焦点,已知灯口直径是 60 cm ,灯深40 cm ,则光源到反射镜顶点的距离是____________ cm.解析:设抛物线方程为y 2=2px (p >0),点(40,30)在抛物线y 2=2px 上,∴900=2p ×40.∴p =445.∴2p =845.因此,光源到反射镜顶点的距离为845cm. 答案:8455.在相距1400 m 的A 、B 两哨所,听到炮弹爆炸声音的时间相差3 s ,已知声速340 m/s.炮弹爆炸点所在曲线的方程为________________.解析:设M (x ,y )为曲线上任一点,则|MA |-|MB |=340×3=1020<1400.∴M 点轨迹为双曲线,且a =21020=510,c =21400=700. ∴b 2=c 2-a 2=(c +a )(c -a )=1210×190.∴M 点轨迹方程为22510x -19012102⨯y =1.答案:22510x -19012102⨯y =1 ●典例剖析【例1】 设有一颗彗星沿一椭圆轨道绕地球运行,地球恰好位于椭圆轨道的焦点处,当此彗星离地球相距m 万千米和34m 万千米时,经过地球和彗星的直线与椭圆的长轴夹角分别为2π和3π,求该彗星与地球的最近距离. 剖析:本题的实际意义是求椭圆上一点到焦点的距离,一般的思路:由直线与椭圆的关系,列方程组解之;或利用定义法抓住椭圆的第二定义求解.同时,还要注意结合椭圆的几何意义进行思考.仔细分析题意,由椭圆的几何意义可知:只有当该彗星运行到椭圆的较近顶点处时,彗星与地球的距离才达到最小值即为a -c ,这样把问题就转化为求a ,c 或a -c .解:建立如下图所示直角坐标系,设地球位于焦点F (-c ,0)处,椭圆的方程为22a x +22by =1,当过地球和彗星的直线与椭圆的长轴夹角为3π时,由椭圆的几何意义可知,彗星A 只能满足∠xFA =3π(或∠xFA ′=3π).作AB ⊥Ox 于B ,则|FB |=21|FA |=32m , 故由椭圆的第二定义可得m =a c (c a 2-c ), ① 34m =a c (ca 2-c +32m ).②两式相减得31m =a c ·32m ,∴a =2c .代入①,得m =21(4c -c )=23c , ∴c =32m .∴a -c =c =32m .答:彗星与地球的最近距离为32m 万千米.评述: (1)在天体运行中,彗星绕恒星运行的轨道一般都是椭圆,而恒星正是它的一个焦点,该椭圆的两个端点,一个是近地点,另一个则是远地点,这两点到恒星的距离一个是a -c ,另一个是a +c .(2)以上给出的解答是建立在椭圆的概念和几何意义之上的,以数学概念为根基充分体现了数形结合的思想.另外,数学应用问题的解决在数学化的过程中也要时刻不忘审题,善于挖掘隐含条件,有意识地训练数学思维的品质.思考讨论椭圆上任一点到焦点的距离的最大值和最小值是多少?怎样证明? 提示:利用焦半径易求得最大值为a +c ,最小值为a -c.【例2】 某工程要挖一个横断面为半圆的柱形的坑,挖出的土只能沿道路AP 、BP 运到P 处(如下图所示).已知PA =100 m ,PB =150 m ,∠APB =60°,试说明怎样运土最省工.剖析:首先抽象为数学问题,半圆中的点可分为三类:(1)沿AP 到P 较近;(2)沿BP 到P 较近;(3)沿AP 、BP 到P 同样远.显然,第三类点是第一、二类的分界点,设M 是分界线上的任意一点.则有|MA |+|PA |=|MB |+|PB |.于是|MA |-|MB |=|PB |-|PA |=150-100=50.从而发现第三类点M 满足性质:点M 到点A 与点B 的距离之差等于常数50,由双曲线定义知,点M 在以A 、B 为焦点的双曲线的右支上,故问题转化为求此双曲线的方程.解:以AB 所在直线为x 轴,线段AB 的中点为原点建立直角坐标系xOy ,设M (x ,y )是沿AP 、BP 运土同样远的点,则|MA |+|PA |=|MB |+|PB |,∴|MA |-|MB |=|PB |-|PA |=50. 在△PAB 中,由余弦定理得|AB |2=|PA |2+|PB |2-2|PA ||PB |cos60°=17500,且50<|AB |.由双曲线定义知M 点在以A 、B 为焦点的双曲线右支上,设此双曲线方程为22a x -22by =1(a >0,b>0).2a =50, 4c 2=17500,c 2=a 2+b 2,a 2=625, ∵ 解之得b 2=3750.∴M 点轨迹是6252x -37502y =1(x ≥25)在半圆内的一段双曲线弧.于是运土时将双曲线左侧的土沿AP 运到P 处,右侧的土沿BP 运到P 处最省工.评述:(1)本题是不等量与等量关系问题,涉及到分类思想,通过建立直角坐标系,利用点的集合性质,构造圆锥曲线模型(即分界线)从而确定出最优化区域.(2)应用分类思想解题的一般步骤:①确定分类的对象;②进行合理的分类;③逐类逐级讨论;④归纳各类结果.【例3】 根据我国汽车制造的现实情况,一般卡车高3 m ,宽1.6 m.现要设计横断面为抛物线型的双向二车道的公路隧道,为保障双向行驶安全,交通管理规定汽车进入隧道后必须保持距中线0.4 m 的距离行驶.已知拱口AB 宽恰好是拱高OC 的4倍,若拱宽为a m ,求能使卡车安全通过的a 的最小整数值.剖析:根据问题的实际意义,卡车通过隧道时应以卡车沿着距隧道中线0.4 m 到2 m 间的道路行驶为最佳路线,因此,卡车能否安全通过,取决于距隧道中线2 m (即在横断面上距拱口中点2 m )处隧道的高度是否够3 m ,据此可通过建立坐标系,确定出抛物线的方程后求得.解:如下图,以拱口AB 所在直线为x 轴,以拱高OC 所在直线为y 轴建立直角坐标系,由题意可得抛物线的方程为x 2=-2p (y -4a ),∵点A (-2a ,0)在抛物线上,∴(-2a )2=-2p (0-4a ),得p =2a . ∴抛物线方程为x 2=-a (y -4a ).取x =1.6+0.4=2,代入抛物线方程,得22=-a (y -4a ),y =aa 4162-.由题意,令y >3,得aa 4162->3,∵a >0,∴a 2-12a -16>0.∴a >6+213.又∵a ∈Z ,∴a 应取14,15,16,….答:满足本题条件使卡车安全通过的a 的最小正整数为14 m.评述: 本题的解题过程可归纳为两步:一是根据实际问题的意义,确定解题途径,得到距拱口中点2 m 处y 的值;二是由y >3通过解不等式,结合问题的实际意义和要求得到a 的值,值得注意的是这种思路在与最佳方案有关的应用题中是常用的.●闯关训练 夯实基础1.1998年12月19日,太原卫星发射中心为摩托罗拉公司(美国)发射了两颗“铱星”系统通信卫星.卫星运行的轨道是以地球中心为一个焦点的椭圆,近地点为m km ,远地点为 n km ,地球的半径为R km ,则通信卫星运行轨道的短轴长等于A.2))((R n R m ++B. ))((R n R m ++C.2mnD.mn22Rn m ++-c =m +R , ① 22Rn m +++c =n +R ,②∴c =2mn -, 2b =222)2()22(m n R n m --++=2))((R n R m ++. 答案:A2.如下图,花坛水池中央有一喷泉,水管OP =1 m ,水从喷头P 喷出后呈抛物线状先向上至最高点后落下,若最高点距水面2 m ,P 距抛物线对称轴1 m ,则在水池直径的下列可选值中,最合算的是A.2.5 mB.4 mC.5 mD.6 m解析:以O 为原点,OP 所在直线为y 轴建立直角坐标系(如下图),则抛物线方程可设为y =a (x -1)2+2,P 点坐标为(0,1),∴1=a +2.∴a =-1.∴y =-(x -1)2+2.令y =0,得(x -1)2=2,∴x =1±2.∴水池半径OM =2+1≈2.414(m ).因此水池直径约为2×|OM |=4.828(m ).答案:C3.一个酒杯的轴截面是抛物线的一部分,它的方程是x 2=2y (0≤y ≤20).在杯内放入一个玻璃球,要使球触及酒杯底部,则玻璃球的半径r 的范围为____________.解析:由题意解析:玻璃球的轴截面的方程为x 2+(y -r )2=r 2,由 x 2=2y ,x 2+(y -r )2=r 2, 答案:0<r ≤14.河上有一抛物线型拱桥,当水面距拱顶5 m 时,水面宽为8 m ,一小船宽4 m ,高2 m ,载货后船露出水面上的部分高43m ,问水面上涨到与抛物线拱顶相距____________m 时,小船不能通航.解析:建立直角坐标系,设抛物线方程为x 2=-2py (p >0).将点(4,-5)代入求得p =58.∴x 2=-516y . 将点(2,y 1)代入方程求得y 1=-45.∴43+|y 1|=43+45=2(m ).答案:25.下图是一种加热水和食物的太阳灶,上面装有可旋转的抛物面形的反光镜,镜的轴截面是抛物线的一部分,盛水和食物的容器放在抛物线的焦点处,容器由若干根等长的铁筋焊接在一起的架子支撑.已知镜口圆的直径为12 m ,镜深2 m ,(1)建立适当的坐标系,求抛物线的方程和焦点的位置;(2)若把盛水和食物的容器近似地看作点,试求每根铁筋的长度. 解:(1)如下图,在反光镜的轴截面内建立直角坐标系,使反光镜的顶点(即抛物线的顶点)与原点重合,x 轴垂直于镜口直径.由已知,得A 点坐标是(2,6),设抛物线方程为y 2=2px (p >0), 则36=2p ×2,p =9.所以所求抛物线的标准方程是y 2=18x ,焦点坐标是F (29,0). (2)∵盛水的容器在焦点处,∴A 、F 两点间的距离即为每根铁筋长. |AF |=226)292(+-=213(或|AF |=29+2=213). 故每根铁筋的长度是6.5 m.6.有一种电影放映机的放映灯泡的玻璃上镀铝,只留有一个透明窗用作通光孔,它的反射面是一种曲线旋转而成的曲面的一部分,灯丝定在某个地方发出光线反射到卡门上,并且得y 2+2(1-r )y =0,由Δ=4(1-r )2=0,得r =1.这两物体间距离为4.5 cm ,灯丝距顶面距离为2.8 cm ,为使卡门处获得最强烈的光线,在加工这种灯泡时,应使用何种曲线可使效果最佳?试求这个曲线方程.分析:由于光线从灯丝发出,反射到卡门上光线应交于一点,这就是光线聚焦,只要把灯丝、卡门安在椭圆的2个焦点上,反射面采用旋转椭球面就可以使光线经反射后聚焦于卡门处,因而可获得强光.解:采用椭圆旋转而成的曲面,如下图建立直角坐标系,中心截口BAC 是椭圆的一部分,设其方程为22a x +22by =1,灯丝距顶面距离为p ,由于△BF 1F 2为直角三角形,因而,|F 2B |2=|F 1B |2+|F 1F 2|2=p 2+4c 2,由椭圆性质有|F 1B |+|F 2B |=2a ,所以a =21(p +224c p +),a = 21(2.8+225.48.2+)≈4.05 cm ,b =22c a -≈3.37 m.∴所求方程为2205.4x +2237.3y =1.培养能力7.某大桥在涨水时有最大跨度的中央桥孔如图所示,已知上部呈抛物线形,跨度为20 m ,拱顶距水面6 m ,桥墩高出水面4 m ,现有一货船欲过此孔,该货船水下宽度不超过18 m ,目前吃水线上部分中央船体高5 m ,宽16 m ,且该货船在现在状况下还可多装1000 t 货物,但每多装150 t 货物,船体吃水线就要上升0.04 m ,若不考虑水下深度,该货船在现在状况下能否直接或设法通过该桥孔?为什么?解:如下图,建立直角坐标系,设抛物线方程为y =ax 2,则A (10,-2)在抛物线上,∴-2=ax 2,a =-501,方程即为y =-501x 2让货船沿正中央航行. ∵船宽16 m ,而当x =8时,y =-501·82=1.28 m ,∴船体在x =±8之间通过.由B (8,-1.28), ∴B 点离水面高度为6+(-1.28)=4.72(m ),而船体水面高度为5 m ,∴无法直接通过.又5-4.72=0.28(m ),0.28÷0.04=7,而150×7=1050(t ), ∴要用多装货物的方法也无法通过,只好等待水位下降. 8.(文)(2004年春季北京,文18)2003年10月15日9时,“神舟”五号载人飞船发射升空,于9时9分50秒准确进入预定轨道,开始巡天飞行.该轨道是以地球的中心F 2为一个焦点的椭圆.选取坐标系如图所示,椭圆中心在原点.近地点A 距地面200 km ,远地点B 距地面350 km.已知地球半径R =6371 km.(如下图)(1)求飞船飞行的椭圆轨道的方程;(2)飞船绕地球飞行了十四圈后,于16日5时59分返回舱与推进舱分离,结束巡天飞行,飞船共巡天飞行了约6×105km ,问飞船巡天飞行的平均速度是多少?(结果精确到1 km/s )(注:km/s 即千米/秒)解:(1)设椭圆的方程为22a x +22by =1.由题设条件得a -c =|OA |-|OF 2|=|F 2A |=6371+200=6571,a +c =|OB |+|OF 2|=|F 2B |=6371+350=6721.解得a =6646,c =75,所以a 2=44169316, b 2=a 2-c 2=(a +c )(a -c )=6721×6571=44163691.∴所求椭圆的方程为441693162x +441636912y =1.(注:由44163691≈6645.5768得椭圆的方程为226646x +226.6645y =1,也是正确的)(2)从15日9时到16日6时共21个小时,即21×3600 s. 减去开始的9分50 s ,即9×60+50=590(s ),再减去最后多计的1分钟,共减去590+60= 650(s ),得飞船巡天飞行的时间是21×3600-650=74950(s ),平均速度是74950600000≈8(km/s ).所以飞船巡天飞行的平均速度是8 km/s. (理)(2003年上海)如下图,某隧道设计为双向四车道,车道总宽22 m ,要求通行车辆限高4.5 m ,隧道全长2.5 km ,隧道的拱线近似地看成半个椭圆形状.(1)若最大拱高h 为6 m ,则隧道设计的拱宽l 是多少?(2)若最大拱高h 不小于6 m ,则应如何设计拱高h 和拱宽l ,才能使半个椭圆形隧道的土方工程量最小?(半个椭圆的面积公式为S =4πlh ,柱体体积为底面积乘以高.本题结果均精确到0.1 m ) (1)解:如下图建立直角坐标系,则点P (11,4.5),椭圆方程为22a x +22by =1.将b =h =6与点P 坐标代入椭圆方程,得a =7744,此时l =2a =7788≈33.3.因此隧道的拱宽约为33.3 m.(2)解法一:由椭圆方程22a x +22b y =1,得2211a +225.4b=1.因为2211a +225.4b ≥ab 5.4112⨯⨯,即ab ≥99,且l =2a ,h =b ,所以S =4πlh =2πab ≥2π99.当S 取最小值时,有2211a =225.4b=21,得a =112,b =229.此时l =2a =222≈31.1,h =b ≈6.4.故当拱高约为6.4 m 、拱宽约为31.1 m 时,土方工程量最小.解法二:由椭圆方程22a x +22b y =1,得2211a +225.4b =1.于是b 2=481·12122-a a .a 2b 2=481(a 2-121+12112122-a +242)≥481(22121+242)=81×121,即ab ≥99,当S 取最小值时,有a 2-121=12112122-a .得a =112,b =229,以下同解法一. 探究创新9.中国跳水运动员进行10 m 跳台跳水训练时,身体(看成一点)在空中的运动路线为如下图所示坐标系下经过原点O 的一条抛物线(图中标出的数据为已知条件).在跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面1032m ,入水处距池边的距离为4 m ,同时,运动员在距水面高度为5 m 或5 m 以上时,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误.(1)求这条抛物线的解析式.(2)在某次试跳中,测得运动员在空中的运动路线是(1)中的抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为353m ,问此次跳水会不会失误?并通过计算说明理由.(3)要使此次跳水不至于失误,该运动员按(1)中抛物线运行,且运动员在空中调整好入水姿势时,距池边的水平距离至多应为多少?解:(1)在给定的直角坐标系下,设最高点为A ,入水点为B ,抛物线的解析式为 y =ax 2+bx +c .由题意知,O 、B 两点的坐标依次为(0,0)、(2,-10),且顶点A 的纵坐标为32, c =0,ab ac 442 =32,4a +2b +c =-10.a =-625,b =310,c =0 a =-23,b =-2,c =0.∵抛物线对称轴在y 轴右侧,∴-ab2>0. 又∵抛物线开口向下,∴a <0.∴b >0,后一组解舍去.∴a =-625,b =310,c =0. ∴抛物线的解析式为y =-625x 2+310x .(2)当运动员在空中距池边的水平距离为353m 时,即x =353-2=58时,y =(-625)×(58)2+310×58=-316,∴此时运动员距水面的高为10-316=314<5.因此,此次跳水会出现失误.(3)当运动员在x 轴上方,即y >0的区域内完成动作并做好入水姿势时,当然不会失误,但很难做到.所以有 解之得 或∴当y <0时,要使跳水不出现失误,则应有|y |≤10-5,即-y ≤5. ∴有625x 2-310x ≤5, 解得2-34≤x ≤2+34.∴运动员此时距池边的距离至多为2+2+34=4+34m.●思悟小结解决圆锥曲线应用问题时,要善于抓住问题的实质,通过建立数学模型,实现应用性问题向数学问题的顺利转化;要注意认真分析数量间的关系,紧扣圆锥曲线概念,充分利用曲线的几何性质,确定正确的问题解决途径,灵活运用解析几何的常用数学方法,求得最终完整的解答.●教师下载中心教学点睛解应用题时涉及到两个基本步骤,即将实际问题抽象成数学问题和解决这个数学问题,为此要注意以下三点:1.阅读理解.数学应用题给出的方式是材料的陈述,而不是客体的展示.也就是说,所考的应用题通常已进行过初步加工,并通过语言文字、符号或图形展现在考生面前,要求考生读懂题意,理解实际背景,领悟其数学实质.2.数学建模,即将应用题的材料陈述转化成数学问题.这就要抽象、归纳其中的数量关系,并把这种关系用数学式子表示出来.3.数学求解.根据所建立数学关系的知识系统,解出结果,从而得到实际问题的解答. 本节就是通过圆锥曲线在现实生活中的应用,培养学生解决应用问题的能力.拓展题例【例1】 一摩托车手欲飞跃黄河,设计摩托车沿跑道飞出时前进方向与水平方向的仰角是12°,飞跃的水平距离是35 m ,为了安全,摩托车在最高点与落地点的垂直落差约10 m ,那么,骑手沿跑道飞出时的速度应为多少?(单位是 km/h ,精确到个位)(参考数据:sin12°=0.2079,cos12°=0.9781,t an12°=0.2125)分析:本题的背景是物理中的运动学规律,摩托车离开跑道后的运动轨迹为抛物线,它是由水平方向的匀速直线运动与竖直方向上的上抛运动合成的,它们运行的位移都是时间t 的函数,故应引入时间t ,通过速度v 的矢量分解来寻找解决问题的途径.解: 摩托车飞离跑道后,不考虑空气阻力,其运动轨迹是抛物线,轨迹方程是 x =vt cos12°,y =vt sin12°-21×9.8t 2. 其中v 是摩托车飞离跑道时的速度,t 是飞行时间,x 是水平飞行距离,y 是相对于起始点的垂直高度,将轨迹方程改写为y =-212)12(cos 1v ⋅︒×9.8x 2+t an12°·x ,即y =-5.121922vx +0.2125x . 当x ≈0.0207v 2时,取得y max ≈0.0022v 2.当x =35时,y 落=-6274.327521v +7.4375.∵y max -y 落=10,0.0022v 2+6274.327521v-17.4375=0,解得v ≈19.44 m/s 或v ≈86.88 m/s. 若v ≈86.88 m/s ,则x =156.246 m ,与题目不符,而v ≈19.44 m/s ,符合题意,为所求解.故v ≈19.44 m/s=69.984 km/h ≈70 km/h.答:骑手沿跑道飞出时的速度应为70 km/h.评述:本题直接构造y 是x 的函数解析式很困难,应引入适当的参数(时间t )作媒介,再研究x 与y 是怎样随参数变化而变化的,问题往往就容易解决了.这种辅助变量的引入要具体问题具体分析,以解题的简捷为原则.【例2】 A 、B 、C 是我方三个炮兵阵地,A 在B 正东6 km ,C 在B 正北偏西30°,相距4 km ,P 为敌炮阵地,某时刻A 处发现敌炮阵地的某种信号,由于B 、C 两地比A 距P 地远,因此4 s 后,B 、C 才同时发现这一信号,此信号的传播速度为1 km/s ,A 若炮击P 地,求炮击的方位角.解:如下图,以直线BA 为x 轴,线段BA 的中垂线为y 轴建立坐标系,则B (-3,0)、A (3,0)、C (-5,23).因为|PB |=|PC |,所以点P 在线段BC 的垂直平分线上.因为k BC =-3,BC 中点D (-4,3),所以直线PD 的方程为y -3=31(x +4). ①又|PB |-|PA |=4,故P 在以A 、B 为焦点的双曲线右支上.设P (x ,y ),则双曲线方程为42x -52y =1(x ≥0). ②联立①②,得x =8,y =53, 所以P (8,53).因此k PA =3835 =3. 故炮击的方位角为北偏东30°.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【典型例题】
【典型例题题演练】
【作 业】
完成课时作业(四十九)
再见
第九章 解析几何
第八节 圆锥曲线的综合问题
【知识必备】
知识点一 直线与圆锥曲线的位置关系 1.直线与圆锥曲线的位置关系
判断直线 l 与圆锥曲线 C 的位置关系时,通常将直线 l 的方程 Ax +By+C=0(A,B 不同时为 0)代入圆锥曲线 C 的方程 F(x,y)=0,消 去 y(也可以消去 x)得到一个关于变量 x(或变量 y)的一元方程.
【知识必备】
知识点一 直线与圆锥曲线的位置关系 1.直线与圆锥曲线的位置关系
(2)当a=0,b≠0时,即得到一个一元一次方程,则直线l与圆锥曲线C相交, 且只有一个交点,此时,
若C为双曲线,则直线l与双曲线的渐近线的位置关系是平行; 若C为抛物线,则直线l与抛物线的对称轴的位置关系是平行或重合.
【知识必备】
即AFxx+,Byy+=C0,=0, 消去 y,得 ax2+bx+c=0.
【知识必备】
知识点一 直线与圆锥曲线的位置关系 1.直线与圆锥曲线的位置关系
(1)当a≠0时,设一元二次方程ax2+bx+c=0的判别式为Δ, 则Δ>0⇔直线与圆锥曲线C相交;
Δ=0⇔直线与圆锥曲线C相切; Δ<0⇔直线与圆锥曲线C相离.
知识点一 直线与圆锥曲线的位置关系 2.圆锥曲线的弦长
设斜率为 k(k≠0)的直线 l 与圆锥曲线 C 相交于 A,B 两点, A(x1,y1),B(x2,y2),则
|AB|= 1+k2|x1-x2| = 1+k2· x1+x22-4x1x2
= 1+k12·|y1-y2| = 1+k12· y1+y22-4y1y2.