2008离散数学A2试卷+答案

合集下载

08年试题及解答

08年试题及解答

考试时间:2008年6月12日北京化工大学2007——2008学年第二学期《离散数学(I)》期末考试试卷班级:姓名:学号:分数:一、填空题(共20分,每小题2分)1.已知命题公式A(P,Q,R)的主析取范式为m1∨m2∨m5∨m6,它的主合取范式为M0∧M3∧M4∧M7。

2.任意两个不同极小项的合取为永假式。

3.命题公式P∨(Q∧~R)的真值为真的解释为100,101,110,111,010 。

4.设个体域D={1,2},命题∀x∃y(x+y=3)的真值为 1 。

5.设I为整数集合,A={x| x2<30,x∈I },B={x| x是素数,x<20},C={1,3,5}则(C-A)∩(B-A)= Φ。

6.设{0,1}上的关系R={<0,0>,<0,1>},则R的自反闭包r(R)= R∪{<1,1>} 。

7.设R是集合{1,2,…,10}上的模7等价关系,则[2]R= {2,9} 。

8.设A={a,b,c,d,e,f,g},A上的一个划分π={{a,b},{c,d,e},{f,g}},则π所诱导的等价关系R应有17 个元素(序偶)。

9.设个体域D={0,1},消去公式∀x P(x)∧∃y Q(y)中的量词,可得P(0)∧P(1)∧(Q(0)∨Q(1)) 。

10.谓词公式∃x∀yP(x,y)的否定式为∀x∃y~P(x,y) 。

二、判断题(共20分,每小题2分,正确的在题号前打√,错误的在题号前打×)1.对于任意集合S,都有{S}⊆P(S)。

(Y)2.若R是集合X上的等价关系,则商集X/R是X的一个划分。

(Y)3.若P∪Q=Q,P∩Q=Φ,则P=Φ (Y)4.给定命题公式A,B,C,若A⇒B,B⇒C,则A⇒C。

(Y)5.设A,B是集合,则A⊆B和A∈B可能同时成立。

(Y)6.一个不是自反的二元关系一定是反自反的。

(N)7.集合{1,2,3}上的一个关系R={<1,2>,<1,3>},R显然不是传递关系。

离散数学期末试卷及部分答案 (2)

离散数学期末试卷及部分答案 (2)

离散数学试题(A 卷及答案)一、证明题(10分)1)(⌝P ∧(⌝Q ∧R))∨(Q ∧R)∨(P ∧R)⇔R证明: 左端⇔(⌝P ∧⌝Q ∧R)∨((Q ∨P)∧R)⇔((⌝P ∧⌝Q)∧R))∨((Q ∨P)∧R)⇔(⌝(P ∨Q)∧R)∨((Q ∨P)∧R)⇔(⌝(P ∨Q)∨(Q ∨P))∧R ⇔(⌝(P ∨Q)∨(P ∨Q))∧R ⇔T ∧R(置换)⇔R2)∃x(A(x)→B(x))⇔ ∀xA(x)→∃xB(x)证明 :∃x(A(x)→B(x))⇔∃x(⌝A(x)∨B(x))⇔∃x ⌝A(x)∨∃xB(x)⇔⌝∀xA(x)∨∃xB(x)⇔∀xA(x)→∃xB(x) 二、求命题公式(P ∨(Q ∧R))→(P ∧Q ∧R)的主析取范式和主合取范式(10分)证明:(P ∨(Q ∧R))→(P ∧Q ∧R)⇔⌝(P ∨(Q ∧R))∨(P ∧Q ∧R))⇔(⌝P ∧(⌝Q ∨⌝R))∨(P ∧Q ∧R) ⇔(⌝P ∧⌝Q)∨(⌝P ∧⌝R))∨(P ∧Q ∧R)⇔(⌝P ∧⌝Q ∧R)∨(⌝P ∧⌝Q ∧⌝R)∨(⌝P ∧Q ∧⌝R))∨(⌝P ∧⌝Q ∧⌝R))∨(P ∧Q ∧R) ⇔m0∨m1∨m2∨m7 ⇔M3∨M4∨M5∨M6三、推理证明题(10分)1) C ∨D, (C ∨D)→ ⌝E, ⌝E →(A ∧⌝B), (A ∧⌝B)→(R ∨S)⇒R ∨S证明:(1) (C ∨D)→⌝E(2) ⌝E →(A ∧⌝B)(3) (C ∨D)→(A ∧⌝B) (4) (A ∧⌝B)→(R ∨S) (5) (C ∨D)→(R ∨S)(6) C ∨D(7) R ∨S2) ∀x(P(x)→Q(y)∧R(x)),∃xP(x)⇒Q(y)∧∃x(P(x)∧R(x))证明(1)∃xP(x) (2)P(a)(3)∀x(P(x)→Q(y)∧R(x)) (4)P(a)→Q(y)∧R(a) (5)Q(y)∧R(a) (6)Q(y) (7)R(a) (8)P(a) (9)P(a)∧R(a) (10)∃x(P(x)∧R(x)) (11)Q(y)∧∃x(P(x)∧R(x))四、设m 是一个取定的正整数,证明:在任取m +1个整数中,至少有两个整数,它们的差是m 的整数倍证明 设1a ,2a ,…,1+m a 为任取的m +1个整数,用m 去除它们所得余数只能是0,1,…,m -1,由抽屉原理可知,1a ,2a ,…,1+m a 这m +1个整数中至少存在两个数s a 和t a ,它们被m 除所得余数相同,因此s a 和t a 的差是m 的整数倍。

离散数学试题(A卷答案)

离散数学试题(A卷答案)

离散数学试题(A 卷答案)一、(10分)求(P ↓Q )→(P ∧⌝(Q ∨⌝R ))的主析取范式 解:(P ↓Q )→(P ∧⌝(Q ∨⌝R ))⇔⌝(⌝( P ∨Q ))∨(P ∧⌝Q ∧R ))⇔(P ∨Q )∨(P ∧⌝Q ∧R ))⇔(P ∨Q ∨P )∧(P ∨Q ∨⌝Q )∧(P ∨Q ∨R ) ⇔(P ∨Q )∧(P ∨Q ∨R )⇔(P ∨Q ∨(R ∧⌝R ))∧(P ∨Q ∨R ) ⇔(P ∨Q ∨R )∧(P ∨Q ∨⌝R )∧(P ∨Q ∨R ) ⇔0M ∧1M⇔2m ∨3m ∨4m ∨5m ∨6m ∨7m二、(10分)在某次研讨会的休息时间,3名与会者根据王教授的口音分别作出下述判断: 甲说:王教授不是苏州人,是上海人。

乙说:王教授不是上海人,是苏州人。

丙说:王教授既不是上海人,也不是杭州人。

王教授听后说:你们3人中有一个全说对了,有一人全说错了,还有一个人对错各一半。

试判断王教授是哪里人?解 设设P :王教授是苏州人;Q :王教授是上海人;R :王教授是杭州人。

则根据题意应有: 甲:⌝P ∧Q 乙:⌝Q ∧P 丙:⌝Q ∧⌝R王教授只可能是其中一个城市的人或者3个城市都不是。

所以,丙至少说对了一半。

因此,可得甲或乙必有一人全错了。

又因为,若甲全错了,则有⌝Q ∧P ,因此,乙全对。

同理,乙全错则甲全对。

所以丙必是一对一错。

故王教授的话符号化为:((⌝P ∧Q )∧((Q ∧⌝R )∨(⌝Q ∧R )))∨((⌝Q ∧P )∧(⌝Q ∧R ))⇔(⌝P ∧Q ∧Q ∧⌝R )∨(⌝P ∧Q ∧⌝Q ∧R )∨(⌝Q ∧P ∧⌝Q ∧R ) ⇔(⌝P ∧Q ∧⌝R )∨(P ∧⌝Q ∧R ) ⇔⌝P ∧Q ∧⌝R ⇔T因此,王教授是上海人。

三、(10分)证明tsr (R )是包含R 的且具有自反性、对称性和传递性的最小关系。

证明 设R 是非空集合A 上的二元关系,则由定理4.19知,tsr (R )是包含R 的且具有自反性、对称性和传递性的关系。

08计算机《离散数学》期末试卷A答案

08计算机《离散数学》期末试卷A答案

08计算机《离散数学》期末试卷A答案泉州师院2009-2010学年度第一学期2008级计算机《离散数学》期末试卷A答案一、单项选择题:(20%,每空2分)1.设A={1,2,3,4,5},下面( C )集合等于A 。

A、{1,2,3,4,5,6}B、{x | x是整数且x2≤25}C、{x | x是正整数且x2≤25}D、{x | x是有理数且x2≤25}2、下列各命题中,真值为假的是( A )。

A、除非2<1,才有3≥2B、2<1仅当3<2C、只要2<1,就有3<2D、如果2<1,则3≥23、对公式(?x)(?y)(P(x,y)∧Q(y,z)) ∧(?x)P(x,y)的说法正确的是(D)。

A、x是约束出现,y是约束出现,z是自由出现B、x是约束出现,y是约束出现,z是约束出现C、x是约束出现,y既是约束出现又是自由出现,z是约束出现D、x是约束出现,y既是约束出现又是自由出现,z是自由出现4.设,p:你已满16周岁。

q:你身高不足4英尺。

r:你能乘公园滑行铁道。

现有命题“除非你已满16周岁,否则只要你身高不足4英尺就不能乘公园滑行铁道。

”,下列( B )命题公式是错误的。

A.?(q→?r)→p B.?p∧?q→?rC.?p∧q→?r D.r→p∧?q5.下列含有命题p,q,r的公式中,是标准析取范式的是(D)。

6、下列推理步骤错在( B )。

⑤xGFx⑤④②cGcF⑤③cG④xxG ③①c②xxF①规则:,规则:规则:规则规则:规则EG )) () ( (T) () (ES) (P) (ES)(FP) (∧A、②B、④C、⑤D、⑥7、若s={1,2,3,4},S上关系R的关系图为:则R具有( A )性质。

A、自反性、对称性、传递性B、反自反性、反对称性C、反自反性、反对称性、传递性D、自反性8.设X={a,b,c,d},Y={1,2,3},f={,,,}则f是( C )。

离散数学考试题及详细参考答案

离散数学考试题及详细参考答案

离散数学考试题(后附详细答案)一、命题符号化(共6小题,每小题3分,共计18分)1.用命题逻辑把下列命题符号化a)假如上午不下雨,我去看电影,否则就在家里读书或看报。

b)我今天进城,除非下雨。

c)仅当你走,我将留下。

2.用谓词逻辑把下列命题符号化a)有些实数不是有理数b)对于所有非零实数x,总存在y使得xy=1。

c) f 是从A到B的函数当且仅当对于每个a∈A存在唯一的b∈B,使得f(a)=b.二、简答题(共6道题,共32分)1.求命题公式(P→(Q→R)) (R→(Q→P))的主析取范式、主合取范式,并写出所有成真赋值。

(5分)2.设个体域为{1,2,3},求下列命题的真值(4分)a)x y(x+y=4)b)y x (x+y=4)3.求x(F(x)→G(x))→(xF(x)→xG(x))的前束范式。

(4分)4.判断下面命题的真假,并说明原因。

(每小题2分,共4分)a)(A B)-C=(A-B) (A-C)b)若f是从集合A到集合B的入射函数,则|A|≤|B|5.设A是有穷集,|A|=5,问(每小题2分,共4分)a)A上有多少种不同的等价关系?b)从A到A的不同双射函数有多少个?6.设有偏序集<A,≤>,其哈斯图如图1,求子集B={b,d,e}的最小元,最大元、极大元、极小元、上界集合、下界集合、上确界、下确界,(5分)f g图17.已知有限集S={a1,a2,…,a n},N为自然数集合,R为实数集合,求下列集合的基数S;P(S);N,N n;P(N);R,R×R,{o,1}N(写出即可)(6分)三、证明题(共3小题,共计40分)1.使用构造性证明,证明下面推理的有效性。

(每小题5分,共10分)a)A→(B∧C),(E→ F)→ C, B→(A∧ S) B→Eb)x(P(x)→ Q(x)), x(Q(x)∨R(x)),x R(x) x P(x)2.设R1是A上的等价关系,R2是B上的等价关系,A≠ 且B≠ ,关系R满足:<<x1,y1>,<x2,y2>>∈R,当且仅当< x1, x2>∈R1且<y1,y2>∈R2。

《离散数学》题库及答案

《离散数学》题库及答案

《失散数学》题库与答案一、选择或填空(数理逻辑部分)1、以下哪些公式为永真包括式?( A )(1) Q=>Q→P (2) Q=>P→Q (3)P=>P→Q (4) P (P Q)=>P答:在第三章里面有公式(1)是附加律,( 4)能够由第二章的包括等值式求出(注意与吸取律差异)2、以下公式中哪些是永真式?()(1)( ┐P Q)→(Q→R) (2)P →(Q→Q) (3)(P Q)→P (4)P→(P Q)答:( 2),(3),(4)可用包括等值式证明3、设有以下公式,请问哪几个是永真蕴涵式?()(1)P=>P Q (2) P Q=>P (3) P Q=>P Q(4)P (P →Q)=>Q (5)(P→Q)=>P (6)P (P Q)=>P答:(2)是第三章的化简律,(3)近似附加律,(4)是假言推理,( 3),(5),(6)都可以用包括等值式来证明出是永真包括式4、公式x((A(x)B(y,x))z C(y ,z)) D(x) 中,自由变元是 ( ),拘束变元是 ( )。

答: x,y, x,z(察看定义在公式x A 和 x A 中,称x为指导变元,A为量词的辖域。

在x A 和 x A 的辖域中, x 的所有出现都称为拘束出现,即称x 为拘束变元, A 中不是拘束出现的其他变项则称为自由变元。

于是A(x)、B(y,x)和 z C(y ,z) 中 y 为自由变元, x 和 z 为拘束变元,在 D(x) 中 x 为自由变元)5、判断以下语句可否是命题。

若是,给出命题的真值。

()(1)北京是中华人民共和国的国都。

(2)陕西师大是一座工厂。

(3)你喜欢唱歌吗?(4)若 7+8>18,则三角形有 4 条边。

(5)前进!(6)给我一杯水吧!答:(1)是,T(2)是,F(3)不是(4)是,T(5)不是(6)不是(命题必定满足是陈述句,不能够是疑问句也许祈使句。

20082离散数学试卷A答案(1)

20082离散数学试卷A答案(1)

o
a b c
a ① a ③
c ② c ④
21. 推理题(写出详细推理过程) 航海家都教育自己的孩子成为航海家,有一个人教育他的孩子去做飞行员,证明推理:这个人一定不是 航海家。 证明: 设个体域为人的集合。谓词 s(x) 是航海家;E(x) 教育他的孩子成为航海家。 :x :x 前提: ∀x ( s ( x ) → E ( x )), ∃x(¬E(x)) 结论: ∃x (¬E ( x ) ∧ ¬S ( x )) 推理过程为: (1) ∃x (¬E ( x )) (2) ¬E (c ) 条件引入 存在规定 ES
(2) < p, q >∈ R × R , f (< x, y >) =< p, q > , ∀ 由 通过计算可得 的原像存在, f 是满射。 20.在运算表 1 中空白处填入适当符号,使 ({a, b, c},o) 成为群。 (写出推理过程和依据) 答案 c b b a 表1 b a b c
x = ( p + q) / 2 , 从而 < p, q > y = ( p − q) / 2
n
得分
评阅人
二、填空题: (共 10 题,每小题 2 分,共 20 分)
9. 设 A = {a, b, c} ,则集合 S1 = {{a, b}, {b, c}} , S 2 = {{a}, {a, b}, {a, c}} , S 3 = {{a}, {b, c}} ,
S 4 = {{a, b, c}} , S 5 = {{a}, {b}, {c}} 和 S 6 = {{a}, {a, c}} 中是 A 的覆盖的有
¬(( P → Q ) ∧ ( R → P )) ∨ ¬(( R → ¬Q ) → ¬P )

2008级离散数学试题答案

2008级离散数学试题答案

2008级离散数学A 卷试题参考答案一、填空题(每小题2分,共20分) 1.(p∧┐q)∨(┐p∧q) 2.┐∀x ∀y (F(x )∧G(y )→H(x ,y )) 3.(F(a, a )∨F(a, b))∧( F(b, a)∨F(b, a)) 4.245 5.e6.a, a 5, a 7, a 11 7.交换律、结合律和吸收律 8.19.r=s10.G 是连通图二、判断题(每小题2分,共20分,正确的划v ,错误的划×) 1.v 2.× 3.× 4.v 5.× 6.×7.v8.×9.v10.v三、计算题(每小题5分,共15分) 1.m1∨m3∨m5∨m72.令f : N×N→N,f (<x,y>) = x 3.6四、证明题(共45分)1.必要性:假设An B?∅,必有x 属于An B ,则x 属于A 同时属于B ,即x 属于A 但是x 不属于A B −,与A B A −=矛盾。

充分性:显然A B A −⊆,下面证明A A B ⊆−。

任取x ,有 x ∈A ⇒ x ∈An E ⇒ x ∈An(B ∪~B) ⇒ x ∈(An B)∪(An ~B) ⇒ x ∈An B ∨ x ∈An ~B ⇒ x ∈An B ∨ x ∈A-B⇒ x ∈A-B (因为An B=∅) 综上上述命题得证。

2.①()F a前提引入 ②(()())x F x G x ∀→ 前提引入 ③()()F a G a → ②UI ④()G a ①③假言推理 ⑤()H a前提引入 ⑥(()()())x G x H x I x ∀∧→ 前提引入 ⑦()()()G a H a I a ∧→⑥UI ⑧()()G a H a ∧ ④⑤合取 ⑨()I a⑦⑧假言推理 3. (1)因为p→p为永真式,所以 pRp,R满足自反性。

 (2)若pRq和qRp,则pRq∧qRp ⇔ (p→q)∧(q→p)⇔ p↔q,由于p→q和q→p为永真式,故p↔q为真,即 p与q等价,R满足反对称性。

云南大学软件学院2008《离散数学》期中试题答案

云南大学软件学院2008《离散数学》期中试题答案

云南大学2007至2008学年下学期软件学院2007级《离散数学》期中考试(闭卷)试卷A卷参考答案满分100分考试时间:120分钟任课教师:学院:专业: 学号:姓名:一、判断下列陈述的正确性,对的打√,错的打×(共10题,每题2分,共10分)1.一个命题总是具有两个值,这个值称为真值,真值只有真和假两种。

( ×)2.任意两个不同大项的析取为永真的。

( √ )3.(∀x)(F(x)∨G(x)) ⇔ (∀x)F(x)∨ (∀x)G(x)。

( × )4.设|A|=5,|B|=10表示集合中包含元素数目且|A∩B|=3,则|A∪B|=12。

( √ )5.设R1和R2是A上的任意关系,若R1和R2是传递的,则R1oR2也是传递的。

( × )二、填空题(共5空,每空2分,共10分)1.n个命题变元组成的命题公式共有 2n种不同真值指派情况。

2.设 S(x):x是大学生,M(x): x是大师,A(x,y): x钦佩y,则“所有的大学生都钦佩某些大师。

”可符号化为 (∀x)(S(x)→(∃y)(M(y)∧A(x,y))) 。

3.设论域D={a,b},其中:指定谓词P(a,a)=T,P(a,b)=T,P(b,a)=F,P(b,b)=F;则(∀x)(P(x,a)→(∃y)P(b,y))的真值为: F 。

4.A={2,5,8},B={1,2,8,9},C={1,5,6,8 },求C –(A⊕B) = {6,8} 。

5.设A={1,2,3},B={a,b},可以有 64或26种不同的从A到B的关系。

三、选择题(共5题,每题2分,共10分)1.下列语句中,下面哪一个选项是命题? ( D )(A) 计算机有空?(B) 请勿随地吐痰!(C) 我正在说谎。

(D) 不存在最大质数。

2.n个命题变元,可以组成多少个不等价的命题公式,下面哪一个选项正确?( D )(A) 2 (B) n (C) 2n (D) n223.下列联结词组中,下面哪一个选项是命题公式的最小联结词组? ( B )(A){⌝} (B){↑} (C){∧} (D){∨,∧}4.(∃x)P(x,y,z) 是几元谓词,下面哪一个选项正确? ( C )(A) 0 (B) 1 (C) 2 (D) 35.设集合A ={a,b}则,A上的R={<a,b>}不具有的性质是下面哪一个选项?( C )(A)反对称(B)反自反性(C)对称性(D)传递性四、翻译并检验下述论证的有效性(共2题,每题10分,共20分)1.设有下列情况,结论是否有效?(a) 或者是天晴,或者是下雨;(b) 如果是天晴,我去看电影;(c) 如果我去看电影,我就不看书;结论:如果我在看书则天在下雨。

离散数学试卷及答案

离散数学试卷及答案

离散数学试题与答案试卷一一、填空 20% (每小题2分)1.设 }7|{)},5()(|{<∈=<∈=+x E x x B x N x x A 且且(N :自然数集,E + 正偶数) 则 =⋃B A 。

2.A ,B ,C 表示三个集合,文图中阴影部分的集合表达式为 。

3.设P ,Q 的真值为0,R ,S 的真值为1,则)()))(((S R P R Q P ⌝∨→⌝∧→∨⌝的真值= 。

4.公式P R S R P ⌝∨∧∨∧)()(的主合取范式为 。

5.若解释I 的论域D 仅包含一个元素,则 )()(x xP x xP ∀→∃ 在I 下真值为 。

6.设A={1,2,3,4},A 上关系图为则 R 2 = 。

7.设A={a ,b ,c ,d},其上偏序关系R 的哈斯图为则 R= 。

8.图的补图为 。

9.设A={a ,b ,c ,d} ,A 上二元运算如下:A BC* a b c d a b c da b c d b c d a c d a b d a b c那么代数系统<A ,*>的幺元是 ,有逆元的元素为 ,它们的逆元分别为 。

10.下图所示的偏序集中,是格的为 。

二、选择 20% (每小题 2分)1、下列是真命题的有( ) A . }}{{}{a a ⊆;B .}}{,{}}{{ΦΦ∈Φ;C . }},{{ΦΦ∈Φ;D . }}{{}{Φ∈Φ。

2、下列集合中相等的有( )A .{4,3}Φ⋃;B .{Φ,3,4};C .{4,Φ,3,3};D . {3,4}。

3、设A={1,2,3},则A 上的二元关系有( )个。

A . 23 ; B . 32 ; C . 332⨯; D . 223⨯。

4、设R ,S 是集合A 上的关系,则下列说法正确的是( ) A .若R ,S 是自反的, 则S R 是自反的; B .若R ,S 是反自反的, 则S R 是反自反的; C .若R ,S 是对称的, 则S R 是对称的; D .若R ,S 是传递的, 则S R 是传递的。

离散数学期末考试题答案

离散数学期末考试题答案

北京交通大学2007-2008学年第二学期《离散数学基础(信科专业)》期末考试卷(A)学院:____________ _专业:___________________ 班级____________姓名:学号:□选修□必修一、填空题(共10分,每空1分)1.在推理理论中,推导过程中如果一个或多个公式重言蕴涵某个公式,则这个公式就可以引入推导过程中,这一推理规则叫做(T规则)。

2.设A={a,{b}},则A的幂集是P (A)= {Φ, a,{b}, {a,{b}};3.设R 是集合A上的二元关系,如果关系R同时具有自反性、反对称性和传递性,则称R是A上的一个偏序关系。

4.既是满射,又是单射的映射称为1-1映射(双射)。

5.设S为非空有限集,代数系统<P(S),∪>的单位元和零元分别为S和φ。

6.具有n个顶点的无向完全图共有n(n-1)/2条边。

7.简单图是指无环、无重边的图。

8.k-正则图是指所有顶点的度数均为k的的图。

9.Hamilton通路是指通过图中所有顶点一次且仅一次的通路。

10.设G=(E,V)是图,如果G是连通的,则P(G)= 1 。

11.命题公式(P→Q) ∧ (P→R)的主析取范式中包含极小项( A )A.P∧Q∧R;B.P∧Q∧⌝R;C .P ∧⌝Q ∧R ;D .P ∧⌝Q ∧⌝R12. 下列谓词公式中( A )不正确。

A .(∃x)(A(x) →B) ⇔ (∃x) A(x) →B ; B .(∃x)(B →A(x)) ⇔ B →(∃x) A(x);C .(∀x)(B →A(x)) ⇔ B →(∀x) A(x);D .(∀x)(A(x)∨B) ⇔(∀x)A(x)∨B ;13. 设S = {2,a ,{3},4},R ={{a},3,4,1},指出下面的写法中正确的是( D )(A )R=S ; (B ){a,3}⊆S ; (C ){a}⊆R ;(D )φ⊆R ;14. 下列命题公式不是重言式的是 C 。

离散数学复习资料试卷习题与答案

离散数学复习资料试卷习题与答案

离散数学总复习资料一、鸽笼原理与容斥原理1.求证边长为1的正方形中放9个点,由这些点构成的三角形中,必有一个三角形面积小于18。

证:把该正方形均分成四个相同的小正方形,则由鸽笼原理知,必有一个小正方形内存在三个点,且这三个点构成的三角形面积小于18。

# 2.对一列21n +个不同整数,任意排列,证明一定存在长为1n +的上升子序列或下降子序列。

证:设此序列为:2121,,,,,k n a a a a +,从k a 开始上升子序列最长的长度为k x ,下降子序列最长的长度为k y ,每一个k a 2(1,2,,1)k n =+都对应了(,)k k x y 。

若不存在长为1n +的上升子序列或下降子序列,那么,k k x n y n ≤≤,形如(,)k k x y 的不同点对至多有2n 个,而k a 有21n +个,则由鸽笼原理知,必有,i j a a 2(11)i j n ≤<≤+同时对应(,)i i x y =(,)j j x y ,由于i j a a ≠,若i j a a <,则i x 至少比j x 大1,若i j a a >,则i y 至少比j y 大1,这均与(,)i i x y =(,)j j x y 矛盾。

故原命题成立。

#3.求}100,,2,1{ 中不被3、4、5整除的个数。

解: 设A 表示}100,,2,1{ 中被3整除的数的集合,B 表示}100,,2,1{ 中被4整除的数的集合,C 表示}100,,2,1{ 中被5整除的数的集合,则20,25,33===C B A6,5,8=⋂=⋂=⋂A C C B B A , 1=⋂⋂C B A ,进而有C B A A C C B B A C B A C B A ⋂⋂+⋂-⋂-⋂-++=⋃⋃601658202533=+---++= 故有4060100=-=⋃⋃-=⋃⋃C B A U C B A即}100,,2,1{ 中不被3、4、5整除的个数为40。

离散数学试题及答案

离散数学试题及答案

离散数学考试试题(A卷及答案)一、(10分)某项工作需要派A、B、C和D 4个人中的2个人去完成,按下面3个条件,有几种派法?如何派?(1)若A去,则C和D中要去1个人;(2)B和C不能都去;(3)若C去,则D留下。

解设A:A去工作;B:B去工作;C:C去工作;D:D去工作。

则根据题意应有:A→C⊕D,⌝(B ∧C),C→⌝D必须同时成立。

因此(A→C⊕D)∧⌝(B∧C)∧(C→⌝D)⇔(⌝A∨(C∧⌝ D)∨(⌝C∧D))∧(⌝B∨⌝C)∧(⌝C∨⌝D)⇔(⌝A∨(C∧⌝ D)∨(⌝C∧D))∧((⌝B∧⌝C)∨(⌝B∧⌝D)∨⌝C∨(⌝C∧⌝D))⇔(⌝A∧⌝B∧⌝C)∨(⌝A∧⌝B∧⌝D)∨(⌝A∧⌝C)∨(⌝A∧⌝C∧⌝D)∨(C∧⌝ D∧⌝B∧⌝C)∨(C∧⌝ D∧⌝B∧⌝D)∨(C∧⌝ D∧⌝C)∨(C∧⌝ D∧⌝C∧⌝D)∨(⌝C∧D∧⌝B∧⌝C)∨(⌝C∧D∧⌝B∧⌝D)∨(⌝C∧D∧⌝C)∨(⌝C∧D∧⌝C∧⌝D)⇔F∨F∨(⌝A∧⌝C)∨F∨F∨(C∧⌝ D∧⌝B)∨F∨F∨(⌝C∧D∧⌝B)∨F∨(⌝C∧D)∨F⇔(⌝A∧⌝C)∨(⌝B∧C∧⌝ D)∨(⌝C∧D∧⌝B)∨(⌝C∧D)⇔(⌝A∧⌝C)∨(⌝B∧C∧⌝ D)∨(⌝C∧D)⇔T故有三种派法:B∧D,A∧C,A∧D。

二、(15分)在谓词逻辑中构造下面推理的证明:某学术会议的每个成员都是专家并且是工人,有些成员是青年人,所以,有些成员是青年专家。

解:论域:所有人的集合。

S(x):x是专家;W(x):x是工人;Y(x):x是青年人;则推理化形式为:∀x(S(x)∧W(x)),∃x Y(x)∃x(S(x)∧Y(x))下面给出证明:(1)∃x Y(x) P(2)Y(c) T(1),ES(3)∀x(S(x)∧W(x)) P(4)S( c)∧W( c) T(3),US(5)S( c) T(4),I(6)S( c)∧Y(c) T(2)(5),I(7)∃x S((x)∧Y(x)) T(6) ,EG三、(10分)设A、B和C是三个集合,则A⊂B⇒⌝(B⊂A)。

离散数学考试试题(A卷及答案)

离散数学考试试题(A卷及答案)

离散数学考试试题(A 卷及答案)一、 (10 分)判断下列公式的类型(永真式、永假式、可满足式)?1)((P Q)∧Q)一 ((Q∨R)∧Q) 2)((Q P)∨P)∧ (P∨R)3)((P∨Q)R)((P∧Q)∨R)解: 1)永真式; 2) 永假式; 3)可满足式。

二、 (8 分) 个体域为{1, 2},求x3y (x+y=4)的真值。

解:x3y (x+y=4) 一 x ((x+1=4)∨(x+2=4))一((1+1=4)∨(1+2=4))∧((2+1=4)∨(2+1=4))一(0∨0)∧(0∨1)一1∧1一0三、 (8 分) 已知集合 A 和 B 且|A|=n, |B|=m,求 A 到 B 的二元关系数是多少? A 到 B 的函数数是多少?解:因为|P(A×B) |=2|A×B|=2|A| |B|=2mn,所以 A 到 B 的二元关系有 2mn 个。

因为|BA|= |B| |A|=mn,所以 A 到 B 的函数 mn 个。

四、 (10 分) 已知 A={1,2,3,4,5}和 R={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>},求 r(R) 、s(R)和 t(R)。

解: r(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<1,1>,<2,2>,<3,3>,<4,4>,<5,5>} s(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<3,2>,<4,3>,<4,5>}t(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<1,1>,<1,3>,<2,2>,<2,4>,<1,4>}五、 (10 分) 75 个儿童到公园游乐场,他们在那里可以骑旋转木马,坐滑行铁道,乘宇宙飞船,已知其中20 人这三种东西都乘过,其中 55 人至少乘坐过其中的两种。

2008年4月到2013年7月自考离散数学试题附答案

2008年4月到2013年7月自考离散数学试题附答案

全国2008年4月自考离散数学试题课程代码:02324一、单项选择题(本大题共15小题,每小题1分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.设P:天下大雨,Q:他在室内运动,命题“除非天下大雨,否则他不.在室内运动”可符合化为()A.⎤P∧QB.⎤P→QC.⎤P→⎤QD.P→⎤Q2.下列命题联结词集合中,是最小联结词组的是()A.{⎤,}B.{⎤,∨,∧}C.{⎤,∧}D.{∧,→}3.下列命题为假.命题的是()A.如果2是偶数,那么一个公式的析取范式惟一B.如果2是偶数,那么一个公式的析取范式不惟一C.如果2是奇数,那么一个公式的析取范式惟一D.如果2是奇数,那么一个公式的析取范式不惟一4.谓词公式∀x(P(x)∨∃yR(y))→Q(x))中变元x是()A.自由变元B.约束变元C.既不是自由变元也不是约束变元D.既是自由变元也是约束变元5.若个体域为整数减,下列公式中值为真的是()A.∀x∃y(x+y=0)B.∃y∀x(x+y=0)C.∀x∀y(x+y=0)D.⎤∃x∃y(x+y=0)6.下列命题中不.正确的是()A.x∈{x}-{{x}}B.{x}⊆{x}-{{x}}C.A={x}∪x,则x∈A且x⊆AD.A-B=∅⇔A=B7.设P={x|(x+1)2≤4},Q={x|x2+16≥5x},则下列选项正确的是()A.P⊃QB.P⊇QC.Q⊃PD.Q=P8.下列表达式中不.成立的是()A.A∪(B⊕C)=(A∪B) ⊕ (A∪C)B.A∩(B⊕C)=(A∩B) ⊕ (A∩C)C.(A⊕B)×C=(A×C) ⊕ (B×C)D.(A-B) ×C=(A×C)-(B×C)9.半群、群及独异点的关系是()A.{群}⊂{独异点}⊂{半群}B.{独异点}⊂{半群}⊂{群}C.{独异点}⊂{群}⊂{半群}D.{半群}⊂{群}⊂{独异点}10.下列集合对所给的二元运算封闭的是()A.正整数集上的减法运算B.在正实数的集R+上规定*为a*b=ab-a-b ∀a,b∈R+C.正整数集Z+上的二元运算*为x*y=min(x,y) ∀x,y∈Z+D.全体n×n实可逆矩阵集合R n×n上的矩阵加法11.设集合A={1,2,3},下列关系R中不.是等价关系的是()A.R={<1,1>,<2,2>,<3,3>}B.R={<1,1>,<2,2>,<3,3>,<3,2>,<2,3>}C.R={<1,1>,<2,2>,<3,3>,<1,2>}D.R={<1,1>,<2,2>,<3,3>,<1,2>,<2,1>,<1,3>,<3,1>,<2,3>,<3,2>}12.下列函数中为双射的是( )A.f :Z →Z,f(j)=j(mod)B.f :N →N,f(j)=⎩⎨⎧是偶数是奇数j ,0j ,1 C.f :Z →N,f(j)=|2j|+1 D.f :R →R,f(r)=2r-1513.设集合A={a,b, c}上的关系如下,具有传递性的是( )A.R={<a,c>,<c,a>,<a,b>,<b,a>}B.R={<a,c>,<c,a>}C.R={<a,b>,<c,c>,<b,a>,<b,c>}D.R={<a,a>}14.含有5个结点,3条边的不.同构的简单图有( ) A.2个 B.3个C.4个D.5个15.设D 的结点数大于1,D=<V ,E>是强连通图,当且仅当( )A.D 中至少有一条通路B.D 中至少有一条回路C.D 中有通过每个结点至少一次的通路D.D 中有通过每个结点至少一次的回路二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

离散数学参考答案

离散数学参考答案

1.(单选题)A.明年“五一”是晴天。

B.这朵花多好看呀!。

C.这个男孩真勇敢啊! D.明天下午有会吗?答题: A. B. C. D. (已提交)参考答案:A问题解析:2.(单选题) 在上面句子中,是命题的是( )A.1+101=110 B.中国人民是伟大的。

C.这朵花多好看呀! D.计算机机房有空位吗?答题: A. B. C. D. (已提交)参考答案:B问题解析:3.(单选题) 在上面句子中,是命题的是( )A.如果天气好,那么我去散步。

B.天气多好呀!C.x=3。

D.明天下午有会吗?答题: A. B. C. D. (已提交)参考答案:A问题解析:4.(单选题) 在上面句子中( )是命题下面的命题不是简单命题的是( )A.3 是素数或4 是素数B.2018 年元旦下大雪C.刘宏与魏新是同学 D.圆的面积等于半径的平方与π之积答题: A. B. C. D. (已提交)参考答案:A问题解析:5.(单选题) 下面的表述与众不一致的一个是( )A.P :广州是一个大城市 B.ØP :广州是一个不大的城市C.ØP :广州是一个很不小的城市 D.ØP :广州不是一个大城市答题: A. B. C. D. (已提交)参考答案:C问题解析:6.(单选题) 设,P:他聪明;Q:他用功。

在命题逻辑中,命题:“他既聪明又用功。

”可符号化为:()A.PÙQ B.P®QC.PÚØQ D.PÙØQ答题: A. B. C. D. (已提交)参考答案:A问题解析:7.(单选题) 设:P :刘平聪明。

Q:刘平用功。

在命题逻辑中,命题:“刘平不但聪明,而且用功”可符号化为:()A.PÙQ B.ØPÚQC.PÚØQ D.PÙØQ答题: A. B. C. D. (已提交)参考答案:A问题解析:8.(单选题)设:P:他聪明;Q:他用功。

离散数学试题带答案(二)

离散数学试题带答案(二)

离散数学试题带答案一、选择题1、G 是一棵根树,则( )。

A 、G 一定是连通的B 、G 一定是强连通的C 、G 只有一个顶点的出度为0D 、G 只有一个顶点的入度为12、下面哪个语句不是命题( )。

A 、中国将成功举办2008年奥运会B 、一亿年前地球发生了大灾难C 、我说的不是真话D 、哈密顿图是连通的3、设R 是实数集合,在上定义二元运算*:a ,b ∈R ,a*b=a+b-ab ,则下面的论断中正确的是( )。

A 、0是*的零元B 、1是*的幺元C 、0是*的幺元D 、*没有等幂元4、下面说法中正确的是( )。

A 、所有可数集合都是等势的B 、任何集合都有与其等势的真子集C 、有些无限集合没有可数子集D 、有理数集合是不可数集合5、无向完全图K 3的不同构的生成子图有( )个。

A. 6B.5C. 4D. 36、下面哪一种图不一定是无向树?A 、无回路的连通图B 、有n 个顶点n-1条边的连通图C 、每对顶点间都有通路的图D 、连通但删去一条边则不连通的图7、设集合A ={{1,2,3},{4,5},{6,7,8}},则下列各式为真的是( )。

A.1∈AB.{{4,5}}⊂AC. {1,2,3}⊆AD.∅∈A8、在有界格中,若一个元素有补元,则补元( )。

A 、必惟一B 、不惟一C 、不一定惟一D 、可能惟一9、设集合A={1,2,3,…,10},下面定义的哪种运算关于集合A 是不封闭的?( )A 、 x*y=max{x,y}B 、 x*y=min{x,y}C 、 x*y=GCD(x,y),即x,y 的最大公约数D 、 x*y=LCM(x,y),即x,y 的最小公倍数10、集合X 中的关系R ,其矩阵是⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111011101M ,则关于R 的论述中正确的是( )。

A 、R 是对称的B 、R 是反对称的C 、R 是反自反的D 、R 中有7个元素11. 下列各组数中,哪个可以构成无向图的度数列( )。

离散数学试卷及参考答案A

离散数学试卷及参考答案A

考试时间:90分钟满分:100分一、选择题(每题3分,共30分)1. 下列关于集合的描述,正确的是()A. 集合是具有相同性质的一组对象的集合B. 集合是具有不同性质的一组对象的集合C. 集合是具有相同性质的一组数字的集合D. 集合是具有不同性质的一组数字的集合2. 下列关于关系的描述,正确的是()A. 关系是集合中元素之间的对应关系B. 关系是集合中元素之间的相等关系C. 关系是集合中元素之间的包含关系D. 关系是集合中元素之间的顺序关系3. 下列关于函数的描述,正确的是()A. 函数是集合中元素之间的对应关系B. 函数是集合中元素之间的相等关系C. 函数是集合中元素之间的包含关系D. 函数是集合中元素之间的顺序关系4. 下列关于图的描述,正确的是()A. 图是由顶点和边组成的数学结构B. 图是由顶点和边组成的几何结构C. 图是由顶点和边组成的物理结构D. 图是由顶点和边组成的化学结构5. 下列关于图的类型的描述,正确的是()A. 无向图是顶点之间没有方向的图B. 有向图是顶点之间有方向的图C. 无向图是顶点之间有方向的图D. 有向图是顶点之间没有方向的图6. 下列关于图的性质的描述,正确的是()A. 图的顶点数等于边的数量B. 图的边数等于顶点的数量C. 图的顶点数可能大于边的数量D. 图的边数可能大于顶点的数量7. 下列关于图的路径的描述,正确的是()A. 路径是图中顶点之间的连续序列B. 路径是图中边之间的连续序列C. 路径是图中顶点和边之间的连续序列D. 路径是图中顶点和边之间的任意序列8. 下列关于图的连通性的描述,正确的是()A. 图是连通的,当且仅当任意两个顶点之间都有路径B. 图是连通的,当且仅当任意两个顶点之间都没有路径C. 图是连通的,当且仅当任意两个顶点之间都有至少一条边D. 图是连通的,当且仅当任意两个顶点之间都没有至少一条边9. 下列关于图的树的描述,正确的是()A. 树是连通且无环的图B. 树是连通且有环的图C. 树是连通且可能有环的图D. 树是连通且可能有环的图10. 下列关于图的颜色的描述,正确的是()A. 图的颜色是顶点之间的颜色关系B. 图的颜色是边之间的颜色关系C. 图的颜色是顶点和边之间的颜色关系D. 图的颜色是顶点和边之间的任意颜色关系二、填空题(每题2分,共20分)11. 集合是______的一组对象的集合。

离散数学考试试题及答案

离散数学考试试题及答案

离散数学考试试题及答案离散数学是一门涉及离散结构和逻辑推理的数学学科。

它在计算机科学、信息技术和其他领域中具有重要的应用价值。

离散数学考试试题涵盖了离散数学的各个方面,包括集合论、图论、逻辑、代数结构等。

本文将为大家提供一些离散数学考试试题及答案,希望能帮助大家更好地理解和掌握这门学科。

一、集合论1. 设A={1,2,3,4,5},B={3,4,5,6,7},求A与B的交集、并集和差集。

答案:A与B的交集为{3,4,5},并集为{1,2,3,4,5,6,7},A与B的差集为{1,2}。

2. 设集合A={x|x是正整数,1≤x≤10},B={x|x是偶数,2≤x≤8},求A与B的笛卡尔积。

答案:A与B的笛卡尔积为{(1,2),(1,4),(1,6),(1,8),(2,2),(2,4),(2,6),(2,8),...,(10,2),(10,4),(10,6),(10,8)}。

二、图论1. 给定图G,其邻接矩阵如下:| 0 1 1 0 || 1 0 0 1 || 1 0 0 1 || 0 1 1 0 |判断图G是否是连通图,并给出其连通分量。

答案:图G是连通图,其连通分量为{1,2,3,4}。

2. 给定图G,其邻接表如下:| 1 | 2 || 3 | 2 4 || 4 | 3 |判断图G是否是树,并给出其生成树。

答案:图G是树,其生成树为{1-2, 2-3, 3-4}。

三、逻辑1. 判断命题逻辑公式((p∨q)→r)∧(¬p∨¬q)的真值。

答案:命题逻辑公式((p∨q)→r)∧(¬p∨¬q)的真值为真。

2. 判断命题逻辑公式∀x(P(x)∧Q(x))→(∀xP(x)∧∀xQ(x))的真值。

答案:命题逻辑公式∀x(P(x)∧Q(x))→(∀xP(x)∧∀xQ(x))的真值为假。

四、代数结构1. 设集合S={0,1,2,3,4},定义运算*如下:a*b = (a+b)%5其中%表示取余运算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广东工业大学试卷用纸,共 5 页,第 1 页
广东工业大学试卷用纸,共 5 页,第 2 页
6、下面等式中唯一的恒等式是 [ D ] A. (A ∪B ∪C)-(A ∪B)=C B. A ⊕A=A C. A-(B×C)=(A-B)×(A-C) D. A×(B-C)=(A×B)-(A×C)
7、设R 为实数集,定义* 运算如下:a*b=|a+b+ab|,则 * 运算满足 [ B ]
A. 结合律
B. 交换律
C. 有幺元
D. 幂等律 8、对于集合A ={0、1、2、3、4、5、6、7、8、9、10},不封闭的二元运算是[ B ] A x*y=max(x,y) B x*y=x -y
C x*y=(x+y)mod 9
D x*y=min(x,y)
二、填空题(本大题共10小题,每空3分,共24分)
9、含n 个命题变项的重言式的主合取范式为___________无_____________。

10、设个体域为整数集合Z ,命题Vx ヨy(x+y=3)的真值为____1_______。

11、以1,1,1,2,2,3为度数序列的非同构的无向树共有__2________棵。

12、已知n 阶无向简单图G 有m 条边,则G 的补图G 有__________条边。

13、设R={<{1}, 1>,<1, {1}>,<2, {3}>,<{3}, {2}>},则domR ⊕ranR=_____________________。

14. 设A={1, 2, 3, 4},则A 上有____4!_______个不同的双射函数。

15. 设σ=(1345)(2678)是8元置换,则σ-1=___________。

16、集合A ={1、2、3、4}上的恒等关系是_________________________。

三、 简答及证明(本大题共6小题,每小题10分,共60分)
17、(10分)设G 为n(n ≥3)阶无向简单图,证明G 或G 的补图必连通。

18、(10分)设A ,B ,C 为集合,证明:
A ∩(
B -C)=(A -C)∩(B -C)
19、(10分)右图是偏序图<X ,≤>的哈斯图
1)X 和≤的集合表达式
2)指出偏序集的极大元、极小元、最大元、最小元 20、(10分)设Z 为整数集,在Z 上定义二元运算*如下: ∀x ,y ∈Z ,x*y =x +y -2 请证明(Z ,*) 是群。

21、(10分)在命题逻辑中构造下面推理的证明。

前提:p →s ,q →r ,┐r ,p ∨q
结论:r
22、(10分) 用狄克斯特洛算法求下图中从a 到f 的最短
通路。

(写出求解过程)
第19题图 1
6
3
2
3
3 5
1
6
a
d
c
e
b
f
广东工业大学试卷用纸,共 5 页,第 3 页
0 课程名称:
离散数学A 卷标准答案
一、单项选择题(本大题共8小题,每小题2分,共16分)
二、填空题(本大题共8小题,每空3分,共24分)
1.无(或没有,或空)
2. 1(或T ,或真)
3. 2
4. [n(n-1)/2]-m
5. {2,{2}}
6. 4!(或24)
7. 24(或16) 8.{(1,1),(2,2),(3,3),(4,4)}
三、(10分)
证明:如果图G 是连通图,问题得证。

2分
如果G 不是连通图,不妨设图G 由K 个连通分支G 1,G 2,…,G k 构成。

现证G 的补图是连通图。

2分
在补图中任取两点u 和v ,由于补图和原图有相同的顶点,所以u 和v 也是图G 的点。

下面分两种情况讨论。

1. u 和v 分别是不同的连通分支G i 和G j 的点(见下图1)。

易知,连接u 和v 的边在补图中,即在补图中,u 和v 之间有通路相连。

3分
图1 图2 2. u 和v 是同一连通分支G i 中的点(见上图2)。

则可在另一连通分支G j 中任取一点x ,易见边ux 和边vx 是补图中的边,由此可知点u 和v 之间在补图中有通路uxv 相连。

3分
综上所述,补图是连通图。

证毕。

四、(10分)
证明:①¬s P 1分
②p →s P 1分 ③¬p T ①② 1分 ④p q P 1分 ⑤q T ③④ 1分 ⑥q →r P 1分 ⑦r T ⑤⑥ 1分
T 规则应用正确:2分; P 规则应用正确:1分; 五、(10分) 解:
1.X={a,b,c,d,e,f} 2分
≤={(a,b),(a,c),(a,d),(a,e),(a,f),(b,e),(c,e), (c,f),(d,f)}∪I
x 4分,其中错一个、多一个、漏一个元素均扣0.5分,直至4分扣完。

2.极大元e;1分
极小元a;1分
最大元不存在;1分
最小元a。

1分
六、(10分)
证明:
①由已知,运算显然封闭;2分
②对∀x,y,z∈Z有:
(x*y)*z=(x+y-2)*z=(x+y-2)+z-2=x+y+z-4 1分
x*(y*z)=x*(y+z-2)=x+(y+z-2)-2=x+y+z -4 1分
所以,*满足结合律;
③对∀x∈Z有:x*2=x+2-2=0,1分
且2*x=2+x-2=0 1分
所以,存在单位元:2
④对∀x∈Z有:x*(4-x)=x+4-x-2=2,1分
且(4-x)*x=4-x+x-2=2 1分
所以,对∀x∈Z有x的逆元是:4-x 1分
由①②③④可知,(Z,*)是群。

1分
七、(10分)
故a到f
其权为10 1分
八、(10分)
前提:∀x(F(x)→G(x)),∀x(G(x) ∧H(x)→I(x)),F(a),H(a) 2分
结论:I(a) 1分
证明:①∀x(F(x)→G(x)) P
②F(a)→G(a) US①
③F(a) P
④G(a) T②③
⑤H(a) P
⑥G(a)∧H(a) T④⑤
⑦∀x(G(x) ∧H(x)→I(x)) P
⑧G(a) ∧H(a)→I(a) US⑦
广东工业大学试卷用纸,共 5 页,第4 页
⑨I(a) T⑥⑧
上面的证明过程并不唯一。

在证明中,推理过程正确:4分;推理规则使用正确:3分。

广东工业大学试卷用纸,共 5 页,第5 页。

相关文档
最新文档