范德蒙德行列式的研究与应用
范德蒙行列式的相关应用讲解
范德蒙行列式的相关应用(一)范德蒙行列式在行列式计算中的应用 范德蒙行列式的标准规范形式是:1222212111112111()n n n i j n i j n n n nx x x D x x x x x x x x ≥>≥---==-∏根据范德蒙行列式的特点,将所给行列式包括一些非范德蒙行列式利用各种方法将其化为范德蒙行列式,然后利用范德蒙行列式的结果,把它计算出来。
常见的化法有以下几种:1.所给行列式各列(或各行)都是某元素的不同次幂,但其幂次数排列与范德蒙行列式不完全相同,需利用行列式的性质(如提取公因式,调换各行(或各列)的次序,拆项等)将行列式化为范德蒙行列式。
例1 计算222111222333nn n nD n n n =解 n D 中各行元素都分别是一个数自左至右按递升顺序排列,但不是从0变到n r -。
而是由1递升至n 。
如提取各行的公因数,则方幂次数便从0变到1n -.[]21212111111222!!(21)(31)(1)(32)(2)(1)13331n n n n D n n n n n n nn n ---==-------!(1)!(2)!2!1!n nn =--例2 计算1111(1)()(1)()1111n n n n n n a a a n a a a n D a a a n ---+----=--解 本项中行列式的排列规律与范德蒙行列式的排列规律正好相反,为使1n D +中各列元素的方幂次数自上而下递升排列,将第1n +列依次与上行交换直至第1行,第n 行依次与上行交换直至第2行第2行依次与上行交换直至第n 行,于是共经过(1)(1)(2)212n n n n n ++-+-+++=次行的交换得到1n +阶范德蒙行列式:[][](1)21111(1)211111(1)(1)()(1)()(1)(1)(2)()2(1)((1))!n n n n n n n nn n nk aa a n D a a a n a a a n a a a a a n a a a a n a n k ++---+=--=-----=--------------=∏ 若n D 的第i 行(列)由两个分行(列)所组成,其中任意相邻两行(列)均含相同分行(列);且n D 中含有由n 个分行(列)组成的范德蒙行列式,那么将n D 的第i 行(列)乘以-1加到第1i +行(列),消除一些分行(列)即可化成范德蒙行列式: 例3 计算1234222211223344232323231122334411111sin 1sin 1sin 1sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin D +Φ+Φ+Φ+Φ=Φ+ΦΦ+ΦΦ+ΦΦ+ΦΦ+ΦΦ+ΦΦ+ΦΦ+Φ解 将D 的第一行乘以-1加到第二行得:123422221122334423232323112233441111sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin ΦΦΦΦΦ+ΦΦ+ΦΦ+ΦΦ+ΦΦ+ΦΦ+ΦΦ+ΦΦ+Φ再将上述行列式的第2行乘以-1加到第3行,再在新行列式中的第3行乘以-1加到第4行得:12342222141234333412341111sin sin sin sin (sin sin )sin sin sin sin sin sin sin sin i j j i D ≤<≤ΦΦΦΦ==Φ-ΦΦΦΦΦΦΦΦΦ∏例4 计算211122222111111111nnnn nnx x x x x x D x x x ++++++=+++ (1)解 先加边,那么22111111222222222210001111111111111111111n n nn n n n nnnnnx x x x x x D x x x x x x x x x x x x ---+++=+++=+++ 再把第1行拆成两项之和,2211111122111120001111nnn n nnnnnnx x x x x x D x x x x x x =-11111112()(1)()()[2(1)]nnk j i k j j k ni j k nnnk j i i j k ni i x xx x x x x x x x x ≤<≤=≤<≤≤<≤===----=---∏∏∏∏∏∏2.加行加列法各行(或列)元素均为某一元素的不同方幂,但都缺少同一方幂的行列式,可用此方法: 例5 计算2221233312121113n n nnn nx x x D x x x x x x =解 作1n +阶行列式:122222121333312121111n nn nnnn n nz x x x z x x x D z x x x z x x x +==1()()ni j k i l k j nx z x x =≤<≤--∏∏由所作行列式可知z 的系数为D -,而由上式可知z 的系数为:211211(1)()()nn n j k i n j k li x x x x x x -=≥>≥--∑∏通过比较系数得:1211()()nn j k i n j k li D x x x x x x =≥>≥=-∑∏ 3.拉普拉斯展开法运用公式D =1122n n M A M A M A ++来计算行列式的值:例6 计算111111122122111000010010000100100001n n n n n n n n nnx x y y x x D y y x x y y ------=解 取第1,3,21n -行,第1,3,21n -列展开得: 11111111222211111111n n n n n n nn nnx x y y x x y y D x x y y ------==()()j i j i n j i lx x y y ≥>≥--∏4.乘积变换法 例7 设121(0,1,22)nk k k k k ni i s x xx x k n ==+++==-∑,计算行列式1112122n n n nn s s s s s s D s s s ---=解11121111222111nnn iii i nnn n iiii i i nnnn n n ii i i i nxxxxxD xxx -=====--====∑∑∑∑∑∑∑∑211111221222222122111122111111()n n n nn n n n nnnnj i l i j nx x x x x x x x x x x x x xxx x x x x -----≤<≤==-∏例8 计算行列式000101011101()()()()()()()()()n n n n n n n n nnnn n n n a b a b a b a b a b a b D a b a b a b ++++++=+++解 在此行列式中,每一个元素都可以利用二项式定理展开,从而变成乘积的和。
范德蒙行列式及应用论文
范德蒙行列式及应用论文范德蒙行列式,又称范德蒙行列,是数学中的一个重要概念,它在线性代数、向量空间、微积分等领域有着广泛的应用。
范德蒙行列式由荷兰数学家范德蒙(Vandermonde)首先提出,它的定义和性质在很多数学分支中都发挥了重要的作用,特别是在矩阵理论、数论、代数学等领域,范德蒙行列式都有着深远的影响。
范德蒙行列式的定义是:对于给定的n个不同的数a1,a2,...,an,范德蒙行列式定义为:a1 a2 ... ana1^2 a2^2 ... an^2a1^3 a2^3 ... an^3... ... ... ...a1^n a2^n ... an^n即为由这些数按照一定顺序排列而成的矩阵行列式,其中ai^k表示ai的k次幂。
范德蒙行列式的值可以通过列主元化简为非零值,从而成为一个n阶矩阵行列式。
范德蒙行列式的应用非常广泛,下面我们来谈谈范德蒙行列式在数学中的一些重要应用。
首先,在线性代数中,范德蒙行列式是矩阵的一个重要特征,它可以用来描述矩阵的性质和结构。
通过范德蒙行列式,我们可以判断矩阵的秩、可逆性、行列式值等信息,进而用于解线性方程组、矩阵变换、特征值特征向量的求解等问题。
其次,在微积分中,范德蒙行列式也有着重要的应用。
在多元函数的求导、积分、微分方程的求解过程中,常常需要用到雅可比行列式,而雅可比行列式与范德蒙行列式有着密切的关系。
通过范德蒙行列式,我们可以求解多元函数的偏导数、雅可比行列式的值,从而解决相关的微分方程和积分问题。
另外,在数论中,范德蒙行列式也有着重要的应用。
由于范德蒙行列式的特殊性质,它经常出现在数论中的不同问题中,例如组合数学、数列求和、多项式插值等方面。
通过范德蒙行列式,我们可以推导出一些数学定理和结论,解决一些数论问题。
除了以上提到的领域外,范德蒙行列式还在代数学、几何学、概率论、信号处理、图论等领域有着重要的应用。
它不仅是数学理论研究的基础,还是许多工程技术问题的解决工具。
范德蒙德行列式的研究与应用
范德蒙德行列式的研究与应用给定n个数$x_1,x_2,...,x_n$,范德蒙德行列式定义为:$$\begin{vmatrix}1 & x_1 & x_1^2 & \cdots & x_1^{n-1} \\1 & x_2 & x_2^2 & \cdots & x_2^{n-1} \\\vdots & \vdots & \vdots & \ddots & \vdots \\1 & x_n & x_n^2 & \cdots & x_n^{n-1} \\\end{vmatrix}$$1.行列式的值只与$x_1,x_2,...,x_n$有关,而与n无关。
2.当$x_1,x_2,...,x_n$中存在两个数相同时,行列式的值为0。
3.当$x_1,x_2,...,x_n$中的数互不相同时,行列式的值为:$$\prod_{1 \leq i < j \leq n} (x_j - x_i)$$其中$\prod$表示乘积。
1.插值多项式:给定n个互不相同的点$(x_1,y_1),(x_2,y_2),...,(x_n,y_n)$,根据这些点来构造一个插值多项式可以使用范德蒙德行列式。
具体而言,可以通过以下公式计算出多项式的系数:$$\begin{bmatrix}x_1^0 & x_1^1 & x_1^2 & \cdots & x_1^{n-1} \\x_2^0 & x_2^1 & x_2^2 & \cdots & x_2^{n-1} \\\vdots & \vdots & \vdots & \ddots & \vdots \\x_n^0 & x_n^1 & x_n^2 & \cdots & x_n^{n-1} \\\end{bmatrix}\begin{bmatrix}a_0\\a_1\\\vdots \\a_{n-1}\\\end{bmatrix}\begin{bmatrix}y_1\\y_2\\\vdots \\y_n\\\end{bmatrix}$$其中,$a_0,a_1,...,a_{n-1}$为待求的多项式系数。
范德蒙行列式的应用论文
范德蒙行列式的应用论文范德蒙行列式的应用摘要行列式是线性代数的主要内容之一,它是后续课程线性方程组、矩阵、向量空间和线性变换的基础,有着很重要的作用。
而n阶范德蒙行列式是线性代数中著名的行列式,它构造独特、形式优美,更由于它有广泛的应用,因而成为一个著名的行列式。
它的证明过程是典型行列式定理及数学归纳法的综合应用。
本文将通过对n阶范德蒙行列式的计算, 讨论它的各种位置变化规律, 介绍了如何构造范德蒙行列式进行行列式计算,以及探讨了范德蒙行列式在向量空间理论、线性变换理论以及微积分中的应用。
关键词:行列式;范德蒙行列式;向量空间理论;线性变换理论;微积分VANDERMONDE DETERMINANT OF APPLICATIONSABSTRACT The determinant is one of the main contents of linear algebra, which is the follow-up course of linear equations, matrixes, vector spaces and linear transformation of the base, has a very important role. The n-order Vandermonde determinant is the determinant of well-known in linear algebra, which constructs a unique form of beauty, but the more because it has a wide range of applications, and thus become a well-known determinant. It's proof process is typical determinant theorem and comprehensive application of mathematical induction. This article will through the n-order Vandermonde Determinant of calculation and discussing the variation of its various locations, describes how to construct a Vandermonde determinant of the determinant calculation, as well as to explore the Vandermonde determinant of applications in the theory of vector spaces, linear transformation theory and infinitesimal calculus.Key words: linear algebra,Vandermonde determinant,theory of vector spaces,linear transformation theory,infinitesimal calculus.第一章绪论1.1 引言我们首先来介绍范德蒙行列式的定义及其计算方法.形如行列式(1)称为n阶的范德蒙(Vandermonde)行列式.我们来证明,对任意的阶范德蒙行列式等于这n 个数的所有可能的差(1≤j<i≤n)的乘积.1.2 范德蒙德行列式的证明1.2.1 用数学归纳法证明范德蒙德行列式我们对作归纳法.(1)当时,结果是对的.(2)假设对于级的范德蒙行列式结论成立,现在来看级的情况.在中,第行减去第行的倍,第行减去第行的倍,也就是由下而上依次地从每一行减去它上一行的倍,有()()()后面这行列式是一个n-1级的范德蒙德行列式,根据归纳法假设,它等于所有可能差(2≤j<i≤n);而包含的差全在前面出现了.因之,结论对级范德蒙德行列式也成立.根据数学归纳法,完成了证明.用连乘号,这个结果可以简写为由这个结果立即得出,范德蒙德行列式为零的充分必要条件是这n个数中至少有两个相等.1.2.2 用定理证明范德蒙德行列式已知在级行列式中,第行(或第列)的元素除外都是零,那么这个行列式等于与它的代数余子式的乘积,在=中,从最后一行开始,每一行减去它相邻前一行的倍得=根据上述定理=提出每一列的公因子后得=最后一个因子是阶范德蒙行列式,用表示,则有=同样可得=()()()此处是一个n-2阶范德蒙行列式,如此继续下去,最后得=()()()1.3 范德蒙行列式的性质利用行列式的性质容易推得:1、若将范德蒙行列式逆时针旋转可得2、若将范德蒙行列3、若将范德蒙行列式第二章范德蒙行列式的应用2.1范德蒙行列式在行列式计算中的应用利用行列式的性质,我们可以简化行列式的计算。
范德蒙行列式及其应用
范德蒙行列式及其应用1 预备知识定义1.1)133(]1[p121211112111,n n n n n nx x x D x x x n x x x ---⋯⋯=,⋯⋯⋯⋯⋯⋯叫做 的阶范德蒙行列式.12111121111212111n i i i n i i i n n n n nx x x D n x x x x x x x x x ---+++⋯⋯⋯⋯⋯⋯⋯=⋯⋯⋯⋯⋯⋯叫做阶准范德蒙行列式.定理1.2)133(]1[p ∏≤≤≤-=ni j jin x x D 1)(.证明 方法一)133(]1[p由n D 的最后一行开始,每一行减去它的相邻的前一行乘以1x ,并由行列式的展开定理可得递推公式111312)())((----=n n n D x x x x x x D Λ,其中1-n D 是n x x x Λ32的n-1阶范德蒙行列式,由以上递推公式可求得∏≤≤≤-=ni j jin x x D 1)(.证明 方法二将n D 看作系数与121,,-n x x x Λ有关,未知量是n x 的一元多项式.则当)1,,2,1(-==n i x x i n Λ时,0=n D .所以121,,-n x x x Λ是n D 的根,所以,)1,2,1()(-=-n i D x x n i n Λ.又因为当j i ≠时,1),(=--j n i n x x x x ,所以*---=-)())()((12121n n n n n n x x x x x x x x x g D ΛΛ另一方面,如果将n D 按最后一列展开,可知道, n D 是n x 的n-1次多项式,且1-n n x 项的系数是n-1阶范德蒙行列式12122212111nn n n n nx x x D x x x ----⋯⋯=⋯⋯⋯⋯⋯与*可比较得 )(211n n x x x g D Λ=-.因此1121)())((-----=n n n n n n D x x x x x x D Λ;同理22122111)())((---------=n n n n n n D x x x x x x D Λ;依似类推,最后有)(1212x x D D -=.又因为11=D ,所以∏≤≤≤-=ni j jin x x D 1)(.另外利用行列式的性质可推得n 阶范德蒙行列式的性质)1(]2[p 性质1 若将n D 逆时针旋转ο90,可得值为 n n n D 2)1()1(--.性质2 若将n D 顺时针旋转ο90,可得值为n n n D 2)1()1(--.性质3 若将n D 旋转ο180,可得值为n D .2 范德蒙行列式在行列式计算中的应用2.1 简单变形 例1 计算()()()()11111nnn a a a n D a a a n -⋯-⋯⋯⋯⋯=-⋯-⋯解 由范德蒙行列式性质3得!)())()((111∏∏∏=≤≤≤≤≤≤=-=---=nk ni j ni j k j i i a j a D例2 计算n+1阶行列式211111111112122222222221111111111nn n n n n n n n n n n n n n n n n n n n n n n n n n n n n a a b a b a b a b a a b a b a b a b D a a b a b a b a b ---+++++++++⋯⋯=⋯⋯⋯⋯⋯⋯⋯解 从第i 行提取公因子)1,,2,1(+=n i a ni Λ,就可以得到转置的n+1阶范德蒙行列式,于是()111b nnn i iji j i n D a b =≤<≤+=-∏∏例3 计算行列式2111111212222221111n n n n n nn n x x x x x x x x x x D x x x x x ---⋯-⋯-=⋯⋯⋯⋯⋯⋯-解 从第i 行提取公因子)1,,2,1(1+=-n i x x i iΛ,然后再把第1列加到第2列,之后再把第2列加到第3列,⋯,再把第n-1列加到第n 列,就得到n 阶范德蒙行列式,于是()111nii j i j i ni x D x x x =≤<≤=--∏∏.例4 计算行列式()()()()()()11112122221222212221111n nnnn n n n n n n n n n n n D n n n n ----⋯--⋯--=⋯⋯⋯⋯⋯--⋯⋯解 由范德蒙行列式性质得()()()()()()()()12111111112122212122221222n n n n n n nnnn n n n n D n n n n n n n n +----⋯--⋯⋯⋯⋯⋯⋯=-⋯--⋯--()1!nn =-1!2!⋯2.2 升阶法求解 例1 计算n 阶行列式221111222222221*********n n n n n n n n n n n n nnnnx x x x x x x x D x x x x x x x x --------⋯⋯⋯⋯⋯⋯⋯⋯=⋯⋯解 将D 升阶为下面的n+1阶行列式221111112212222212211111122122111111n n n n n n n n n n n n n n n n n n n n n n n n n nx x x x x x x x x x x x x x x x x x x x xx x x x ----+-----------⋯⋯⋯⋯⋯⋯⋯⋯⋯∆=⋯⋯⋯既插入一行与一列,使1+∆n 是关于x x x x n ,,,21Λ的n+1阶范德蒙行列式,此处x 是变数.于是∏≤≤≤+----=∆ni j j in n x xx x x x x x 1211)()())((Λ,故1+∆n 是一个关于x 的n 次多项式,它可以写成{}ΛΛ++++-+-=∆-≤≤≤+∏12111))(1()(n n n ni j j in x x x x x x x.另一方面,将1+∆n 按其第n+1行展开,既得Λ+-+-=∆-+≤≤≤+∏11211)1()(n n n ni j j in Dx x x x,比较1+∆n 中关于1-n x的系数,既得∏≤≤≤-+++=ni j j in x xx x x D 121)()(Λ.例2 计算211122222111111111nnnnnnx x x x x x D x x x ++++++=+++L L L LL LL解 将行列式增加第一行第一列并保持行列式值不变21112100011111111nnnn nx x x D x x x +++=+++L L L L LL LL把第一列乘以-1分别加到其它的列得21112111111n n n n n x x x D x x x ---=L L L L L L L L 把第一行拆分得2211111122200011111111nn n n nn nnn nx x x x x x D x x x x x x =-L L L L LL L L L L L L L L LL第一个行列式按第一行展开提取i x 后为n 阶范德蒙行列式,第二个行列式为1n +阶范德蒙行列式()()()111121nniijijii j i nj i ni D x x x x x x =≤≤≤≤==----∏∏∏∏p p()()11121n ni i i j i i j i nx x x x ==≤≤⎡⎤=---⎢⎥⎣⎦∏∏∏p2.3 套用定理法求解 定理 2.3.1()12121211111211112121111,2,3,1n i n in i i i i p p p n n p p p i i i n n n n nx x x D x x x D i n x x x x x x x x x -----+⋯+++⋯⋯⋯⋯⋯⋯⋯==⋯=⋯-⋯⋯⋯⋯⋯⋯∑其中i p p p x x x -Λ21是1,2,3,⋯,n 中()n i -个数的正序排列,∑-in p p p x x x Λ21表示()n i -阶排列和,nD 为n 阶范德蒙行列式. W证明过程大部分是用数学归纳法给出其计算结果的,本文用代数教程中广泛使用的升阶法证明 证明 ()i 在行列式1+i D 中第1i +行和()1n +列相应的元素.考虑()1n +阶范德蒙行列式()122222121111121211111111121111n n i i i i ni i i i n i i i i n n n nnx x x x x x x x f x D x x x x x x x x x x x x x x x x ----++++⋯⋯⋯⋯⋯⋯⋯⋯==⋯=⋯⋯⋯⋯⋯⋯⋯⋯()()()()213111n x x x x x x xx --⋯--()()()3222n x x x x xx -⋯--⋯ ⋯ ⋯ ⋯ ()n x x -=()()()()121n ijj i nxx x x x x x x ≤<≤--⋯--∏ )(*()ii 由()*式的两端,分别计算多项式()f x 中i x 项的系数.在()*式的左端,由行列式计算得,ix 项的系数为行列式中该元素对应的代数余子式()()()()()111,11111i n i n i n i i A D D ++++++++=-=-在()*式的右端,由多项式计算得,由12,,n x x x ⋯为()0f x =的n 个不同根,根据根与系数的关系,ix 项的系数为()()()1212110,1,2,1nnn in i p p p ij p p p j i na x x x xx i n --⋯≤<≤=-⋯-=⋯-∑∏其中i p p p x x x -Λ21是1,2,3,⋯,n 中()n i -个数的正序排列,i p p p x x x -Λ21表示()n i -阶排列和.()iii 比较()f x 中i x 项的系数计算行列式1i D +,因为()*式的左右端i x 项的系数应相等,所以 ()()()12121111n in ii nn ii p p p ij p p p j i nD x x x xx --+-+⋯≤<≤-=-⋯-∑∏ ()()121211n in ii p p p ij p p p j i nD x x x xx --+⋯≤<≤=⋯-**∑∏()()1212110,1,2,1n nn ii p p p n p p p D x x x D i n -+⋯=-⋯=⋯-∑定理得证.利用定理可以计算各阶准范德蒙行列式,简便易行. 例1计算准范德蒙行列式1234562222221234564444444123456555555123456666666123456111111a a a a a a a a a a a a D a a a a a a a a a a a a aaaaaa=解 由定理,因为6,3,n i ==所以()123123416p p p ij p p p j i D a a a aa ≤<≤=-=∑∏()()12312445616ijj i a a a a a a a a a a a ≤<≤++⋯+-∏.可以看出升阶法求解中的例1套用定理求解更简单.3 范德蒙行列式在其它方面的应用例1设()21211112111111,1n n n n n n x x x a a a p x a a a ------⋯⋯=⋯⋯⋯⋯⋯⋯其中121,n a a a -,⋯是互不相同的数.(1)由行列式定义,说明()p x 是一个1n -次多项式; (2)由行列式的性质求()p x 的根.证明(1)将()p x 按第一行展开知它是x 的多项式,又1n x-的系数为()11n +-乘以一个范德蒙行列式,其值不为零(因为i a 互异),故()p x 为关于x 的1n -次多项式. (2)取()1,2,i x a i n ==⋯,则行列式两行相同其值为零,即有()0i p a =,故121,n a a a -,⋯是()p x 的全部根.例2 设()112n n f x a a x a x-=+++L 011,,,n εεε-L 为全部的n 次单位根,证明:()()()123112211132011345122341n n nn n n n n n n na a a a a a a a a a a a a a a D f f f a a a a a a a a a a εεε-------==L L L L L L LL L L L L证明 令ε为n 次原根,且假定()0,1,1iji n εε==-L 用范德蒙行列式()()()()212124211111111111n n n n n n εεεεεεεεε------∆=L L L L LLL LL左乘D ,再从每列分别提出()()()111,,n f ff εε-L 即得()()()()()()()()()()()()()()()()()()()111212121111111111n n n n n n n n n n f f f f f f D f f f f f f f f f f εεεεεεεεεεεεεεεεε----------∆==∆L L L L L LLL因为0∆≠,所以()()()()()()1101n n D f ff f f f εεεεε--==LL .只要熟悉了范德蒙行列式使用的形式和使用技巧,便可以很好地应用范德蒙行列式了.例3 如果n 次多项式()21121n n n n n o f x a a x a x a x a x ---=+++++L 有1n +个不同的根,那么()0f x ≡.证明 设121,,n x x x +L 是()f x 的1n +个不同的根,则有2111211112112222221112111100n n n n n o n nn n n o n n n n n n n n o n a a x a x a x a x a a x a x ax a x a a x a x a x a x --------+-+++⎧+++++=⎪+++++=⎪⎨⎪⎪+++++=⎩L L L L L L L L L L L L L L L L L L 上式可看作1n +个未知量10,,,n n a a a -L 1n +个方程的齐次线性方程组.其系数行列式为()2111222211121111101n n n ijj i n n n n n x x x x x x D x x x x x +≤≤++++==-≠∏p L L L L LLLL所以上式只有零解.即1100,n n a a a a -=====L 也就是说()0f x ≡.。
浅析Vandermonde行列式的性质与应用毕业论文
浅析Vandermonde行列式的性质与应用摘要:在线性代数与高等代数的学习中,行列式无疑是一个重点和难点,它是后续课程矩阵、向量空间和线性变换等的基础,且其计算具有一定的规律性和技巧性.而Vandermonde行列式是一类很重要的行列式,它构造独特、形式优美、性质特殊,是行列式中的一颗璀璨明珠.为了使我们对vandermonde行列式进一步加深了解与应用,同时开阔数学视野、培养发散思维能力,以便更好地为我们的科研和生活服务,本文主要阐述了Vandermonde行列式的证法及其相关性质,并用例举法介绍及总结了如何利用Vandermonde行列式计算某些特殊的行列式与其在多项式、向量空间等中的简单应用.关键词:行列式 Vandermonde Vandermonde行列式宁夏师范学院2012届本科毕业生毕业论文Analysis of Vandermonde determinant Properties and ApplicationsAbstract:Linear algebra and advanced algebra learning, the determinant is undoubtedly a key and difficult points, it is the follow-up course matrix, the basis of vector spaces and linear transformations, and its calculation with a certain regularity and skill. Vandermonde determinant is a very important determinant, it constructs a unique, beautiful form of special nature, is a shining pearl in the determinant. To enable us to further deepen the understanding and application of the Vandermonde determinant, and at the same time broaden their mathematical horizons, develop divergent thinking ability in order to better serve our research and living services, the paper mainly expounds the Vandermonde determinant permit law and its related properties, and introduced with examples of France and summarizes how to use the Vandermonde determinant for the calculation of some of the special determinant of the Vandermonde determinant polynomial, the vect or space.Keywords: Determinant Vandermonde Vandermonde determinant宁夏师范学院2012届本科毕业生毕业论文目录1 引言 (1)2 VANDERMONDE行列式的定义与证法 (2)2.1V ANDERMONDE行列式的定义 (2)2.2V ANDERMONDE行列式的证法 (2)3 VANDERMONDE行列式的性质 (4)3.1V ANDERMONDE行列式的翻转与变形 (4)3.2V ANDERMONDE行列式为0的充分必要条件 (5)3.3V ANDERMONDE行列式推广的性质定理 (5)4 VANDERMONDE行列式的应用 (7)4.1V ANDERMONDE行列式在行列式计算中的应用 (7)4.1.1 计算准Vandermonde行列式 (7)4.1.2 计算特殊的行列式 (7)4.2V ANDERMONDE行列式在多项式与向量空间中的应用 (10)4.2.1 Vandermonde行列式在多项式中的应用 (10)4.2.2 Vandermonde行列式在向量空间中的应用 (13)5 小结 (15)参考文献 (16)谢辞 (17)1 引言行列式最早出现在17世纪关于线性方程组的求解问题中,由日本数学家关孝和德国数学家莱布尼茨分别发明,而法国数学家范德蒙德(A-T.Vander- monde,1735-1796)对行列式理论做出了连贯的、逻辑的阐述,并命名了著名的Vandermonde 行列式.后许多数学家如柯西、雅可比、泰勒等对其不断发展完善,做了进一步的解析与应用,使得19世纪中期行列式与向量、矩阵完美融合.时至今日,行列式成为了线性代数与高等代数的主要内容与重点内容之一,是后续课程矩阵、向量空间和线性变换等的基础,而vandermonde行列式在多项式、向量空间、线性方程组、线性变换、矩阵的特征值与特征向量、微积分等理论中都有大量应用,例如对Cramer法则的补充、Lagrange插值公式的推导、向量空间基的证明、与Taylor公式结合求微积分问题等起了重要的作用[1],而其在简化行列式计算方面,更是灵活巧妙,成为了广大学生的有力工具.出于对n阶vandermonde行列式其独特的构造、优美的形式、特殊的性质的好奇与喜爱,我查阅了大量的参考文献后,决定就Vandermonde行列式的证法与相关性质,浅谈其在行列式计算、多项式、向量空间中的基本应用,使得对vandermonde行列式进一步加深了解与应用,培养自身的科研素养.当然我相信,随着科技的进步与更多数学家的进一步研究,Vandermonde行列式这颗璀璨明珠,将会在各领域绽放更耀眼的光芒.2 Vandermonde 行列式的定义与证法 2.1 Vandermonde 行列式的定义我们把型如 n V =121111211...1..................nn n n na a a a a a ---的行列式叫做Vandermonde 行列式,其值为1()i j j i na a ≤<≤-∏,即n V =121111211...1..................nn n n na a a a a a ---=1()i j j i na a ≤<≤-∏其中1()i j j i na a ≤<≤-∏表示12,,...n a a a 这n 个数的所有可能的差i j a a -(1j i n ≤<≤)的乘积(2n ≥)[2].2.2 Vandermonde 行列式的证法方法一:消元法(降阶法)[3]证明 从第n 行开始,每一行加上前一行的1a -倍,根据行列式的性质可知行列式的值不变,此时有n V =)()(...)(0)()(...)(0............... (01)1...111211211222131131123211112a a a a a a a a a a a a a a a a a a a a a a a a n n n n n n n n n n n n n n n n -------------------- 再按行列式首项展开得:n V =1·)()(...)()()(...)(......... (121121)1222131131123211112a a aa a aa a aa a a a a a a a a a a a a a a n n nn n n n n n n n n n n n n --------------------各列提公因式得:n V =21111()...()()n n a a a a a a ----·2313333231222223111...11........................n nn n n n n nn n n n n na a a a a a a a a a a a ----------- 注意到行列式2313333231222223111...11........................n nn n n n n nn n n n n na a a a a a a a a a a a -----------是1n -阶Vandermonde 行列式1-n V ,即已经将n V 用1-n V 表示出来,降了一阶,并且少了一元1a .重复用上述方法对1-n V 再进行求解,经过有限步则可以得到:1n V -=((21a a -)…111()()n n a a a a ---)·(()32122()...()n n a a a a a a ----)…(1n n a a --) =1()i j j i na a ≤<≤-∏即证.方法二:数学归纳法[4] 证明 (1)当2n =时, 221121 1 V a a a a ==-成立.(2)假设对于1n -阶成立,则对于n 阶,首先构造一个辅助的n 阶行列式: 11-n 112112212221121)(11 1 1------=n n n n n n x xa a a xa a a xa a a V显然,n aV V n =)(,将)(x V 按第n 列展开,得:1)(=x V ·n A 1x +·n A 22x +·13-++n n x A ·nn A其中),,2,1(n i A in =是行列式)(x V 中元素),,2,1(1n i x a i in ==-的代数余子式,且不含x ,因此可知)(x V 是一个n-1次的多项式,它的最高次1-n x 的系数是nn A ,按定义知11)1(--+=-=n n n n nn V V A .另一方面,根据行列式的性质知121,,-n a a a 是)(x V 的n-1个根,根据多项式的理论,得:)())((1211)(-----=n n x a x a x a x V V取n a x =代入,得:)())((1211)(-----=n n n n n x a a a a a a V V即 )())((1211-----=n n n n n n a a a a a a V V根据归纳假设,1-n V =11()i j j i n a a ≤<≤--∏,因此n V =1()i j j i na a ≤<≤-∏.由(1)(2)结论得证.3 Vandermonde 行列式的性质3.1 Vandermonde 行列式的翻转与变形n V =121111211...1..................n n n n nx x x x x x ---(1)将Vandermonde 行列式逆时针旋转90,得11(1)11211111(1)1n nn n n n n n n n x x x x V x x ------=-.(2)将Vandermonde 行列式顺时针旋转90,得1111(1)222111(1)1n n n n n n nn x x x x V x x ----=-.(3)将Vandermonde 行列式旋转180,得1111111111n n n n n n n x x x V x x x -----=.3.2 Vandermonde 行列式为0的充分必要条件一个Vandermonde 行列式121111211...1..................nn n n na a a a a a ---为0的充分必要条件是:12,,,n a a a 这n 个数中至少有两个相等.3.3 Vandermonde 行列式推广的性质定理行列式()n k V =122221211112111121211...1.......................................nnk k k n k k k nnn n nx x x x x x x x x x x x x x x ---+++=1212......n k n kp p p p p p x x x --∑·V (k=0,1,2…n -1)其中符号“()n k V ”中的下标“n ”表示n 阶行列式,“(k)”表示仅缺少的k 次方幂元素行;12,...n k p p p -是1,2,...n 中(n k -)个数的一个正序排列;12...n kp p p -∑表示对所有(n k -)阶排列求和;1(x -x )i j j i nV ≤<≤=∏[5].证明 (i )在行列式()1,2(...)n k n V x x x 中增补第(1k +)行和(1n +)列相应的元素,考虑(1n +)阶Vandermonde 行列式1211111212121111121211...11.....................()(,...,)........................n k k k k nn k k k k nk k k k nnn n nnx x x x x x x x f x V x x x x x x x x x x x x x x x x ----++++===213111()()()()n x x x x x x x x ----·))(()(2223x x x x x x n --- ·… … … … ))((11----n n n x x x x · ()n x x -=12()()...()n x x x x x x ---·1()i j j i nx x ≤<≤-∏(ii)由上式的两端分别计算多项式k x 中项的系数.在上式左端,由行列式 计算k x 的系数为:行列式中该元素对应的代数余子式(1)k n +-·()n k V ,在上式右端,由多项式计算知12,,...,n x x x 为()0f x =的n 个不同根,根据根与系数的关系,k x 项的系数为:(1)n k n k a --=-·1212,......n k n kp p p p p p x x x --∑·1(x -x )i j j i n≤<≤∏(k=0,1,2…n -1)其中12,...n k p p p -是1,2…n 中(n k -)个数的一个正序排列,12,...n kp p p -∑表示对所有(n k -)阶排列求和.(iii )比较)(x f 中k x 项的系数,计算行列式)(k n V .因为(*)式左右两端k x 项系数应该相等,所以(1)k n +-·)(k n V (1)n k -=-·1212,......n k n kp p p p p p x x x --∑·1(x -x )i j j i n≤<≤∏,则1212(),......n k n kn k p p p p p p V x x x --=∑·1(x -x )i j j i n≤<≤∏1212......n k n kp p p p p p x x x --=∑·V (k=0,1,2…n -1)定理得证.4 Vandermonde 行列式的应用4.1 Vandermonde 行列式在行列式计算中的应用4.1.1 计算准Vandermonde 行列式利用Vandermonde 行列式推广的性质定理可以计算各阶准Vandermonde 行列式(缺行的Vandermonde 行列式也叫做超Vandermonde 行列式或准Vandermon -de 行列式),简便易行[6].特别地,当k n =时,令0p =1,()n k V 即为Vandermonde 行列式n V .例1 计算准Vandermonde 行列式1234562222221234566(3)444444123456555555123456666666123456111111a a a a a a a a a a a a V a a a a a a a a a a a a a a a a a a =解 由定理,n =6,k =3,所以 1231236(3)p p p p p p V aa a =∑·∏≤<≤-61)(i j j ia a=123124456(...)a a a a a a a a a +++·∏≤<≤-61)(i j j ia a4.1.2 计算特殊的行列式Vandermonde 行列式在行列式计算中的应用,除了应用其推广的性质定理来计算各阶准Vandermonde 行列式之外,还可以用以下一些方法来计算某些类似Vandermonde 行列式的特殊的行列式.(1)法一: 所给行列式各行(列)都是某元素的不同方幂,但其方幂次数或其排列与Vandermonde 行列式不完全相同,需利用行列的性质(如提取公因式,调换各行(列)的次序等)将其化为Vandermonde 行列式[7].例2 计算n 阶行列式n nn n n n D 22222111=解 n D 1212122211111!--=n n n n n n)1()13)(12(!---=n n ·)]1([)2()24)(23(-----n n n!n =·)!1(-n ·)!2(-n ·!2·!1(2)法二:利用行列式性质,改变原行列式中的元素,产生以新元素为行(列)的Vandermonde 行列式.例3 计算)1(+n 阶行列式n n n n n n n n n n n n n n n n n n n n n n nn b b a b a b a a b b a b a b a a b b a b a b a a D 1111212111112122222221221111212111111+-+++-++-++------+=其中0≠i b ,0≠i a ,(1,,2,1+=n i )解 提取1+n D 各行的公因式,得:n n n n n a a a D 211=+·11222211111)(1)(1)(1---n n n nnn n a b a b a b a b a b a b (Vandermonde 行列式)上式右端的行列式是以新元素112211,,,++n n a b a b a b 为列元素的1+n 阶Vandermonde 行列式,所以:1+n D =n nn n a a a 21·∏+≤<≤-11)(n i j j jii a b a b(3)法三:如n 阶行列式n D 的第i 行(列)由两个分行(列)所组成,其中任意相邻两行(列)均含有相同分行(列),且n D 中含有n 个分行(列)组成的Vandermonde 行列式,那么将n D 的第i 行(列)乘以(1-)加到(1+i )行(列),消除一些分行(列),即可化成Vandermonde 行列式[8].例4 计算行列式△4=434233322322213124243232221214321sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin 1sin 1sin 1sin 11111ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕ++++++++++++解 在△4的第2行中去掉与第一行成比例的分行,得到△4=434233322322213124243232221214321sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin 1111ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕ++++++++在上面行列式的第3行中去掉与第2行成比例的分行,得到一个新的行列式,在此新行列式的第4行中去掉与第3行成比例的分行,得:△4=4333232134********321sin sin sin sin sin sin sin sin sin sin sin sin 1111ϕϕϕϕϕϕϕϕϕϕϕϕ=∏≤<≤-41)sin (sin i j j i ϕϕ(4)法四:行列式中其他各行(列)都是元素的不同方幂,只有一行(列)的元素不是相应元素的零次幂(即该行(列)元素都不是1),而是各行(列)元素的函数,利用行列式的性质将这一行(列)元素化为全是1的元素.例5 证明△3=ba a c cbc b a cb a +++222证明 将△3的第1行加到第3行上,得到△3=c b a c b a c b a c b a cba++++++222=222111)(c b a c b a c b a ++ ))()()((b c a c a b c b a ---++=4.2 Vandermonde 行列式在多项式与向量空间中的应用在线性方程组中,Cramer 法则有着非常重要的作用,它给出了一类重要的线性方程组的解的存在唯一性.而在许多行列式的计算与证明中,Vandermonde 行列式又是一个十分重要的行列式.两个如此“重要”的数学元素相结合,其产生的作用将更重要.Vandermonde 行列式在多项式与向量空间中的应用,主要就是结合Cramer 法则来证明相关的问题[9].下面一起来看几个典型的例子. 4.2.1 Vandermonde 行列式在多项式中的应用例6 证明一个n 次多项式至多有n 个互异的根. 证明 用反证法.设n n x a x a x a a x f ++++= 2210)(有n+1个互异的根,分别为:121 , , ,+n x x x ,则有:0)(2210=++++=n i n i i i x a x a x a a x f (11+≤≤n i )即⎪⎪⎩⎪⎪⎨⎧=++++=++++=+++++++000122111022221201221110n n n n n n nn na x a x a x a a x a x a x a a x a x a x a这个关于n a a a , , ,10 的齐次线性方程组的系数行列式是一个Vandermonde 行列式:0)( 11 111121!22221211≠-=∏+≤<≤+++n i j j in n n n n nx xx x x x x x x x x则由Cramer法则知该方程组只有零解,即0210=====n a a a a ,而n 次多项式)(x f 的最高次项的系数n a 是不为零的.这个矛盾表明)(x f 至多有n 个互异的根.例7 设多项式n k n k k x a x a x a x f +++= 2121)(,0≠i a , j i k k ≠,j i ≠,},,2,1{,n j i ∈,则)(x f 不可能有非零且重数大于1-n 的根.证明 用反证法.设0≠α是)(x f 的重数大于1-n 的根,则0)(,,0)(,0)()1('===-αααn ff f进而有0)(,,0)(,0)()1(1'===--αααααn n ff f即:⎪⎪⎪⎩⎪⎪⎪⎨⎧=+--+++--++--=+++=+++0)2()1()2()1()2()1(0021212122221111221121n n n k n n nn k k k n n kk k n k k a n k k k a n k k k a n k k k a k a k a k a a a ααααααααα 把上式看作是以n k n k k a a a ααα,,, 2121为未知量的齐次线性方程组,则其系数行列式为:)2()1()2()1()2()1()1()1()1(111222111221121+--+--+-----n k k k n k k k n k k k k k k k k k k k k n n n n n n1121121111---=n nn n n k k k k k k∏≤<≤≠-=ni j j ik k10)(由Cramer 法则知上面的齐次线性方程组只有零解,从而),,2,1(,0n i a k i ==α因为0≠i a ,所以必须0=α,这与假设0≠α矛盾,故)(x f 没有非零且重数大于1-n 的根.例8 证明:对于平面上n 个点),(i i b a (n a a a n i , , , , 121 ≤≤互不相等),必存在唯一的一个次数不超过n-1的多项式)(x f 通过这n 个点, 即 i i b a f =)()(1 n i ≤≤.分析 要证明n 个等式成立,也就是要证明n 个方程组成的方程组有解,很自然地会想到Cramer 法则,再根据系数行列式的特点,考虑用Vandermonde 行列式的结论.证明 设n n n n c x c x c x c x f ++++=---12211)( ,要使)(1 )(n i b a f i i ≤≤=,即满足关于n c c c , , , 21 的线性方程组:⎪⎪⎩⎪⎪⎨⎧=++++=++++=++++---------n n n n n n n n n n n n n n n n bc c a c a c a b c c a c a c a b c c a c a c a 12211212222112111221111该方程组的系数行列式为Vandermonde 行列式:111212221212111n n n n n n n n n a a a a a a a a a------,当n a a a , , , 21 互不相等时,该行列式不为0,由Cramer 法则知方程组有唯一解,即对于平面上n 个点),(i i b a (n a a a n i , , , , 121 ≤≤互不相等),必存在唯一的一个次数不超过n-1的多项式)(x f 通过这n 个点. 4.2.2 Vandermonde 行列式在向量空间中的应用例9 设n t t t 21 ,是互不相同的实数,证明向量组(12, , ,1-n i i i t t t )i=1,2,…n 是n 维向量空间n R 中的一个基.证明 只需证明12, , ,1-n i i i t t t 线性无关即可.令 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=---12122221121121 1 1 1 n m m m n n n t t t t t t t t t a a a A , 因为n t t t 21 ,是互不相同的实数,所以 0)(1≠-==∑≤<≤ni j j iT t tA A ,故12, , ,1-n i i i t t t (i=1,2,…n )线性无关,是n 维向量空间n R 中的一个基.例10 C[a,b]={f(x)|f(x)是定义在[a,b]上的连续实函数},证明 C[a,b]是R 上的向量空间.证明 我们知道,C[a,b]是R 上的无限维向量空间,要证该结论,只需对任意的正整数n ,可证得n x x x , , ,12线性无关即可.设R k k k k n ∈∃, , , , 210 ,使得02210=++++n n x k x k x k k取n+1个实数121, , , +n c c c ,使得b c c c a n ≤<<<≤+121 ,则由上式知:⎪⎪⎩⎪⎪⎨⎧=++++=++++=+++++++00121211022222101212110n n n n n nn nn c k c k c k k c k c k c k k c k c k c k k 即A ·⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0 00 10 n k k k , 其中⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=+++n n n n nn c c c c c c c c c A 121122221211 1 1 1 而0)(det 11≠-==∏+≤<≤n i j j i c c A A ,则A 可逆,用1-A 左乘A ·⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0 00 10 n k k k 的两端,得:0210=====n k k k k ,所以n x x x , , ,12线性无关. 故C[a,b]是R 上的向量空间,且是R 上的无限维向量空间.例11 设0dim >=n V F (即V 的维数为n ),存在集合V S ⊆, 使S 含无穷多个向量,且S 中任意n 个不同的向量都是V 的一个基.证明 设n ααα, , , 21 是V 的一个基,令{}F k k k k S n n ∈+++==-|13221αααα ,n n k k k k ααααβ13221-++++= ,让n k k k , , , 21 互不相同,则⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=---11211222212121 1 11), , , (), , , (21n n n n nn n k k k k k k k k k k k k n αααβββ由于⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=---112112222121 1 11n n n n nn k k k k k k k k k T ,其行列式是Vandermonde 行列式,即0)(det 1≠-==∏≤<≤ni j j ik kT T ,故), , , (21n k k k βββ 线性无关,是V 的一个基,且S 中含无穷多个向量.当然,Vandermonde 行列式与Cramer 法则相结合的应用远不仅此,二者还可用于求缺项)11( -≤≤n k x k 的多项式的表达式、Lagrange 插值公式的推导等,还可与泰勒公式相结合来证明有关高阶微积分的问题,因所需的专业 知识较深、综合性较强、推导计算等过程较复杂,这里不作研究.5 小结以上我们在回顾行列式相关知识的基础上,进一步比较系统地阐述了Vandermonde 行列式的一些重要性质与其在行列式计算、多项式、向量空间中的基本应用等知识,使得我们对vandermonde 行列式进一步加深了解与应用.在本文的撰写中,我通过查阅大量文献,在各代数学家研究的理论基础上选择并总结了适合大学生学习与应用的部分,通过举例向大家具体呈现了Vandermonde 行列式的应用方法,同时开阔了自己的数学视野,培养了发散思维能力与科研素养,为今后继续对行列式及vandermonde 行列式更深层次、更复杂层次的相关研究做铺垫.对于第一次论文的撰写,难免有纰漏,望老师提出宝贵的意见,以便更好地为我们的学习、科研和生活服务.参考文献[1] 张贤科,许甫华.高等代数[M].北京:清华大学出版社,1998年4月:102.[2] 王萼芳,石生明.高等代数[M].北京:高等教育出版社.2003年6月:79-81.[3] 李师正.高等代数解题方法与技巧[M].北京:高等教育出版社.2004年7月:95-96.[4] 张禾瑞,郝炳新. 高等代数[M].北京:高等教育出版社.1999年5月:119-120.[5] 黄玉蝉.多项式、线性方程组及Vandermonde行列式的相互应用[J].济南大学学报.1994(2):4-6.[6] 刘建中.范德蒙德行列式的一个性质的证明及其应用[J].河北大学学报(自然科学版).2000(4):8-10.[7] 袁旭华,杨海文,赵耀峰.几种类Vandermonde行列式的计算[J].延安大学学报(自然科学版).2006(1):7-9.[8] 王新长.Vandermonde行列式在高等代数中的应用[J].井冈山师范学院学报(自然科学版).2002(3):3-5.[9] 宴林.范德蒙行列式的应用[J].文山师范高等专科学校学报.2001(2):10-13.谢辞在论文的选题及撰写过程中得到我的指导教师的悉心指导,在此表示衷心的感谢!李老师严谨治学的态度使我受益匪浅,在论文写作的这段时间里,她时刻关心着我的论文完成情况,并时常给我指出论文中的缺点和需要改进的地方,并指导我如何查找资料,使得我最后顺利完成论文.同时感谢其他所有帮助过我的老师、同学以及一起努力过的朋友.。
范德蒙行列式的应用探究
范德蒙行列式的应用探究
范德蒙行列式(也称为双核格式或矩阵表示)是一种数学表示,指先把问题所
考虑的因果和变量抽象为不同维度罗列(行或列),叶构成表格,其中每一格按顺序表达一次变量的关系。
这种表示能够有效地帮助任务分解者清楚地辨明任务中存在的因果关系,以便创造出一种有针对性的解决方案。
通过使用范德蒙行列式,可以把任务中存在的因果关系构建起来。
这种表示方
法既可以把任务中各个因素用文字表达出来,也可以用简洁而准确的矩阵形式来表示。
因此,范德蒙行列式具有贴切地反映任务因果关系、把握任务结构、增强理解能力等优点,在模式分析、决策分析、任务调度等行业任务中得到了广泛应用。
例如,在服务行业中常常会遇到一组要求,也被称为SLA(服务级别协议)。
SLA的结构是复杂的,可能存在若干层次的流程关系、服务因素、责任者等,因此,使用范德蒙行列式详细描述SLA能够更好地阐明其各个层次之间的关系和联系,进而针对具体情况制定完善的SLA。
此外,范德蒙行列式也可以用于任务计划,例如在新产品的研发上。
对于一项
新产品的研发,可以采用范德蒙行列式来表示船将和其他因素之间的关系,把子任务放在一起详细描述,从而分析出每一步的责任、要求、能力等,以构建一个合理有效的研发计划。
范德蒙行列式在行业任务中有着广泛的应用,它能有效地帮助任务分解者对任
务中存在的因果关系有更清晰的认识,从而为创造出一种有针对性的解决方案提供有力的指导。
(整理)范德蒙行列式及其应用
范德蒙行列式及其应用摘要:在高等代数中,行列式无疑是一个重点和难点。
它主要应用于高等代数理论,作为一种特殊的行列式——范德蒙行列式不仅具有特殊的形式,而且有非常广泛的应用.本文主要探讨范德蒙行列式在向量空间理论,线性变化理论,多项式理论中以及行列式计算中的应用.关键词:范德蒙行列式;多项式;线性变换一. 范德蒙行列式定义及性质 1.范德蒙行列式的定义 定义1 关于变元1x ,2x n x 的n 阶行列式122221211112111n n n n n n nx x x D x x x x x x ---= (1)叫做1x ,2x n x 的n 阶范德蒙行列式,记作n V (1x ,2x ,…n x ).2.我们用定理证明范德蒙德行列式已知在级行列式中,第行(或第列)的元素除外都是零,那么这个行列式等于与它的代数余子式的乘积 ,在=中,从最后一行开始,每一行减去它相邻前一行的倍得=根据上述定理=提出每一列的公因子后得=最后一个因子是阶范德蒙行列式,用表示,则有=同样可得=()()()此处是一个n-2阶范德蒙行列式,如此继续下去,最后得=()()()由以上的计算可以得出,定理1 n 阶范德蒙行列式n V (1x ,2x ,…n x )=12222121111211...1nn n n n nx x x x x x x x x ---=∏(i j x x -).有这个结果立即得出定理2 n 阶范德蒙行列式为零的充分必要条件是1x ,2x ,…n x 这n 个数中至少有两个相等.二. 范德蒙行列式的应用范德蒙行列式由于其独特的构造和优美的形式,而有着广泛的应用.下面将集中说明范德蒙行列式在行列式计算和证明及在微积分计算中的应用,并对范德蒙行列式在线性空间理论,线性变换理论,多项式理论中的应用作出探讨.1. 范德蒙行列式在多项式理论中的应用在多项式理论中,涉及到求根问题的有许多.在分析有些问题时,范德蒙行列式能够起到关键作用的,若能够熟练有效地运用范德蒙行列式,则对我们最终解决问题会有直接的帮助. 例1 证明一个n 次多项式在至多有n 个互异根. 证 不妨设n>0,如果 f(x)=2012n n a a x a x a x ++++有n+1个互异的零点1x ,2x ,…n x ,1n x +,则有 ()i f x =22012=0i n+i i n i a a x a x a x ++++≤≤,11即 201121120222222012110,0,.......................0.n n nn n n n n n n a a x a x a x a a x a x a x a a x a x a x +++⎧++++=⎪++++=⎪⎨⎪⎪++++=⎩这个关于01,,...n a a a 的齐次线性方程组的系数行列式是范德蒙行列式211122222111111nn n n n n x x x x x x x x x +++=∏(i j x x -)≠0.因此010n a a a ====,这个矛盾表明 ,f (x )至多有n 个互异根. 例2 设12,,n a a a 是数域F 中互不相同的数,12,,n b b b 是数域F 中任一组给定的不全为零的数,则存在唯一的数域F 上次数小于n 的多项式()f x ,使(),1,2,i i f a b i n ==.证明 :设()1011n n f x c c x c x --=+++,有条件得,(),1,2,i i f a b i n ==.知101111110121221011,,.n n n n n n n n n c c a c a b c c a c a b c c ac a b ------⎧+++=⎪+++=⎪⎨⎪⎪+++=⎩因为12,,n a a a 互不相同,所以,方程组的系数行列式()21111212221211101n n ji i j nn nnna a a a a a D aa a a a --≤<≤-==-≠∏.则方程组有唯一解,即唯一解小于n 的多项式,使得()1011n n f x c c x c x --=+++,使得(),1,2,i i f a b i n ==.例 3 证明:对平面上n 个点()()()12,1,,,i i n a b i n a a a ≤≤互不相等,必存在唯一的一个次数不超过n-1的多项式()f x 通过该n 个点()(),1i i a b i n ≤≤,即()i i f a b =()1i n ≤≤.证明: 设()12121n n n n f x c xc x c x c ---=++++,要使()i i f a b =()1i n ≤≤,即满足关于12,,,n c c c 的线性方程组:12111211112212221212121,,.n n n n n n n n n n n n n n n n a c a c a c c b a c a c a c c b a c a c a c c b ---------⎧++++=⎪++++=⎪⎨⎪⎪++++=⎩,而该方程组的系数行列式为范德蒙行列式:121111222212111121111n n n n n n n n n n n n nn a a a a a a D a a a a a a -----------=.当12,,,n a a a 互不相等时该行列式不为零,由Cramer 定理知方程组有唯一解,即对平面上n 个点()()()12,1,,,i i n a b i n a a a ≤≤互不相等,必存在唯一的一个次数不超过n-1的多项式()f x 通过该n 个点.2. 范德蒙行列式在矩阵的特征值与特征向量中的应用例 4 A 是3阶方阵,A 有3个不同的特征值123,,,l l l ,对应的特征向量依次为123,,,a a a 令123b a a a =++.证明:2,,b Ab A b 线性无关.证 21231123()k b k Ab k A b k a a a ++=++22221122333112233()()k l a l a l a k l a l a l a ++++++=222121311222322333333()()()k k l k l a k k l k l a k k l k l a ++++++++=0.123,,a a a 线性无关,故有2111222223331101l l k l l k l l k ⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 由于i j l l ≠,则0A ≠,所以方程组只有零解, 即2,,b Ab A b 线性无关.例 5 设A 是n 阶矩阵,证明A 的属于不同特征值的特征向量线性无关. 证明:设12,,r λλλ是A 的两两不同的r 个特征值,非零向量12,,r ααα是其相应的特征向量,即r i r A αλα=,1i r ≤≤,假设11220r r x x x ααα+++=那么,()11220,11jr r Ax x x j r ααα+++=≤≤-,即()1110r r rjjj i i i i i i i i i i A x x A x ααλα===⎛⎫=== ⎪⎝⎭∑∑∑.由于其系数行列式()12,,0r V λλλ≠,故11220r r x x x ααα====,又0i α≠于是,0i x =,这证明了12,,r ααα线性无关.3. 范德蒙行列式在向量空间理论中的应用在向量空间理论中,我们常常会遇到需要用范德蒙行列式转化问题,通过转化,我们很容易就能得到需要的结论. 例。
范德蒙行列式的推广及其在教学中的应用
范德蒙行列式的推广及其在教学中的应用
范德蒙行列式的推广及其在教学中的应用
德蒙行列式是一种正交化处理方法,它也称作正交行列式。
它主要用于调整数据,使相应的变量之间形成一种平行关系。
在统计学中,德蒙行列式也称作正交因子分析的主成分分析。
范德蒙行列式是德蒙行式的一种推广,它将行列式的变量和系数扩展到多个变量之间形成多列。
范德蒙行列式对调整数据更有效,因为它考虑了多个变量之间的相互关系。
范德蒙行列式可以更好地探索数据集中的不同变量的关系。
此外,它还能估计出一个变量的综合指标,以衡量该变量出现的频率。
教学中,范德蒙行列式可以用于解释数据库中的复杂关系,帮助学生了解两个或多个变量之间的精确关系。
此外,该方法还可以建立一个可以衡量多个变量相互影响程度的联合指标,帮助学生更有效地理解多变量数据集和使用数据来测量其他变量时出现的潜在因素。
总体而言,范德蒙行列式可以提供有效的处理数据的方法,能够帮助学生学习多变量数据分析,解决复杂的理论问题。
它也可以用于教学过程中,帮助学生了解各种变量之间的关系,用数据形象化进行深入分析。
范德蒙行列式的几点重要的应用-应用数学毕业论文
阜阳师范学院信息工程学院Fuyang Shifan Xueyuan Xinxi Gongcheng Xueyuan诚信承诺书我谨在此承诺:本人所写的毕业论文《范德蒙行列式的几点重要的应用》均系本人独立完成,凡涉及其他作者的观点和材料均作了注释。
如有不实,本人愿承担相应后果,接受学校的处理。
承诺人(签名)年月日范德蒙行列式的几点重要的应用姓名:苏春 学号:200904010221 指导老师:王海坤摘要行列式是高等代数知识学习的基础,它在后续的学习中非常重要。
由于它有良好的特点和独特的形式而深受数学工作者的关注。
本文将立足于范德蒙行列式的性质, 探究其各种位置变化规律。
从而把一些似于它的行列式特点且根据一定的规律性和技巧性可以转化且利用它的性质特点进行优化处理,及如何构造它,把复杂的行列式进行优化,本文主要通过举例来探究它在多项式、线性变换、向量空间以及微积分等理论中的具体应用。
关键词:范德蒙行列式;行列式;微积分:向量空间;线性变换;多项式;1. 预备知识1.1 范德蒙行列式的定义我们把形式如下的行列式113121122322213211111----=n nn n n nnn a a a a a a a a a a a a D称为阶数为n 的范德蒙行列式(Vandermonde Determinant)。
下面我们来把范德蒙德行列式n D113121122322213211111----=n nn n n nnn a a a a a a a a a a a a D∏≤<≤-=ni j j i a a 1)(对于任意的)2(≥n n 恒成立. 作具体的证明:1.2 范德蒙行列式的证明1.2.1 范德蒙行列的归纳法的证明证明:用数学归纳法当2=n 时,有.)(112112212∏≤<≤-=-==i j j ia aa a a a D 故有当2=n 时成立。
假设对阶数为1-n 时成立原命题已证,现对阶数为n 时也证明同样成立。
范德蒙德行列式的应用
前言在线性代数中,行列式是一个重要的分支,同时在数学的各个领域和其他学科中行列式都有着广泛普遍的应用。
行列式本身有着悠久的历史。
行列式理论产生于十七世纪末,到十九世纪末,它的理论体系已基本形成了。
早在1545年卡当就给出了两个一元方程组的算法,但是未明确提出行列式这个概念。
1683年,日本数学家关孝和首次引进了行列式的概念。
同年,德国数学家莱布尼茨首先开始使用指标数的系统集合来表示有三个未知数的三个一次方程组的系数[]1。
莱布尼茨这种解决方程组的方法为行列式理论的进一步发展奠定了坚实的基础。
1771年,范德蒙德不仅把行列式应用于解线性方程组,而且对行列式理论本身进行了开创性研究,他是行列式的奠基者。
范德蒙德以拉格朗日著作中的预解式、置换理论等为理论基础,为群的概念研究奠定了基础。
范德蒙德行列式就是由他研究并总结得出的。
范德蒙德开创了将方程组与行列式分离开来的先河,他是第一个对行列式进行单独阐述的数学家。
他给出了二阶子式及其余子式的概念,并且给出了用二阶子式和它的余子式对行列式进行展开,从而得出其结果的法则,同时他也给出了专门记录行列式的符号。
1772年,皮埃尔-西蒙·拉普拉斯在他的论文中给出了子式的概念,他的思想就是基于范德蒙德著作中将行列式展开为若干个较小的行列式之和的方法。
自此时起,便是人们对行列式单独研究的开端。
19世纪才是人们对行列式理论深入研究的新的开始。
第一个给出行列式系统理论的是伟大数学家柯西。
他给出了行列式的乘法定理,双重组标记法等。
1832至1833年间卡尔·雅可得出了关于行列式计算的特殊结果,在此基础之上,1839年,卡塔兰发现了雅可比行列式。
1841年,雅可比发表了一篇关于函数的线性相关性与雅可比行列式的关系的论文。
而范德蒙德行列式是一类特殊的行列式,它有着独特的形式及其简明的计算结果,所以范德蒙德行列式不仅在数学领域中占据着重要地位,而且在各个领域中也有着广泛的应用,比如在进行行列式计算或变换时,如果我们能适当的变形化成范德蒙德行列式的形式,就能起到简化解题过程或者是减少计算量的效果。
范德蒙的行列式
范德蒙的行列式摘要:一、范德蒙行列式的定义二、范德蒙行列式的性质1.行列式与其转置行列式之间的关系2.行列式的可逆性3.行列式的乘积性质三、范德蒙行列式的计算方法1.递推法2.矩阵的行列式公式3.扩展行列式公式四、范德蒙行列式在数学中的应用1.线性方程组的求解2.矩阵的逆矩阵求解3.矩阵的LU 分解五、范德蒙行列式的推广1.范德蒙行列式的更高阶数2.带标号的范德蒙行列式正文:范德蒙行列式是一种特殊的行列式,它是以法国数学家范德蒙命名的。
范德蒙行列式具有很多重要的性质和应用,下面我们来详细了解一下。
一、范德蒙行列式的定义范德蒙行列式是一个n 阶行列式,它的定义如下:|A| = a11 * a22 * ...* ann- a12 * a21 * ...* an1+ a13 * a22 * ...* an2- a14 * a23 * ...* an3+ ...+ (-1)^(n-1) * a1n * a2n-1 * ...* ann其中,a11, a12, ..., ann 是矩阵A 的主对角线元素,a12, a21, ..., an1 是矩阵A 的次对角线元素,以此类推。
二、范德蒙行列式的性质1.行列式与其转置行列式之间的关系范德蒙行列式的转置行列式等于其本身,即|A| = |A^T|。
2.行列式的可逆性当且仅当矩阵A 可逆时,范德蒙行列式不为零。
3.行列式的乘积性质设矩阵A 和矩阵B 都是n 阶矩阵,则有|AB| = |A| * |B|。
三、范德蒙行列式的计算方法1.递推法对于n 阶矩阵A,我们可以通过递推的方式计算范德蒙行列式。
具体来说,我们可以先计算出n-1 阶矩阵A"的范德蒙行列式,然后用主对角线元素和次对角线元素的关系来计算n 阶矩阵A 的范德蒙行列式。
2.矩阵的行列式公式根据矩阵的行列式公式,我们可以直接计算出范德蒙行列式。
3.扩展行列式公式通过扩展行列式公式,我们也可以计算范德蒙行列式。
范德蒙行列式的证明及其应用
范德蒙行列式的证明及其应用在高等代数中,范德蒙行列式是一个具有特殊形式和重要性质的行列式。
它不仅在理论上有着深刻的意义,而且在实际的数学问题求解中也有着广泛的应用。
范德蒙行列式的形式如下:\\begin{vmatrix}1 & 1 & 1 &\cdots & 1 \\x_1 & x_2 & x_3 &\cdots & x_n \\x_1^2 & x_2^2 & x_3^2 &\cdots & x_n^2 \\\cdots &\cdots &\cdots &\cdots &\cdots \\x_1^{n 1} & x_2^{n 1} & x_3^{n 1} &\cdots & x_n^{n 1}\end{vmatrix}\接下来,我们先来证明范德蒙行列式。
证明范德蒙行列式通常使用数学归纳法。
当\(n = 2\)时,范德蒙行列式为:\begin{vmatrix}1 & 1 \\x_1 & x_2\end{vmatrix} = x_2 x_1\假设\(n 1\)阶范德蒙行列式成立,即:\\begin{vmatrix}1 & 1 & 1 &\cdots & 1 \\x_1 & x_2 & x_3 &\cdots & x_{n 1} \\x_1^2 & x_2^2 & x_3^2 &\cdots & x_{n 1}^2 \\\cdots &\cdots &\cdots &\cdots &\cdots \\x_1^{n 2} & x_2^{n 2} & x_3^{n 2} &\cdots & x_{n 1}^{n 2}\end{vmatrix} =\prod_{1\leq i < j\leq n 1} (x_j x_i)\对于\(n\)阶范德蒙行列式,将其按第一列展开:\begin{vmatrix}1 & 1 & 1 &\cdots & 1 \\x_1 & x_2 & x_3 &\cdots & x_n \\x_1^2 & x_2^2 & x_3^2 &\cdots & x_n^2 \\\cdots &\cdots &\cdots &\cdots &\cdots \\x_1^{n 1} & x_2^{n 1} & x_3^{n 1} &\cdots & x_n^{n 1}\end{vmatrix} =\sum_{k = 1}^n (-1)^{1 + k} 1 \timesM_{1k}\其中\(M_{1k}\)是原行列式中第一行第\(k\)列元素的余子式。
vandermonde行列式的一个推广及其在初等数学中的应用
vandermonde行列式的一个推广及其在初等数学中的应用
拉斐尔·范德蒙德(Rafael de laVandermonde)是一位法国数学家,他发明了一种矩阵,被称为范德蒙德矩阵(Vandermonde Matrix)。
范德蒙德矩阵是一种特殊的矩阵,它的每一行都是一个等差数列,每一列都是一个等比数列。
它的行列式可以用来计算一组数字的组合数。
范德蒙德矩阵的一个推广是多项式矩阵,它是一种特殊的范德蒙德矩阵,它的每一行都是一个多项式,每一列都是一个多项式的系数。
多项式矩阵的行列式可以用来计算一组多项式的组合数。
范德蒙德矩阵和多项式矩阵在初等数学中有着广泛的应用。
它们可以用来计算一组数字或多项式的组合数,这在求解多项式方程时非常有用。
此外,它们还可以用来计算组合数学中的组合数,以及概率论中的概率分布。
总之,范德蒙德矩阵和多项式矩阵是一种特殊的矩阵,它们的行列式可以用来计算一组数字或多项式的组合数,在初等数学中有着广泛的应用。
范德蒙行列式的一个性质的证明及其应用
范德蒙行列式的一个性质的证明及其应用一、范德蒙行列式(又称多元行列式)的定义范德蒙行列式是由矩阵中每一行和每一列所引出的多项式。
它对多元方程模型具有重要意义,例如体积、表面积等。
范德蒙行列式 $$A_{n\times n}=\begin{Vmatrix}a_{11} & a_{12} & \cdots & a_{1n} \\a_{21} & a_{22} & \cdots & a_{2n} \\\vdots & \vdots & \ddots & \vdots \\a_{n1} & a_{n2} & \cdots & a_{nn} \\\end{Vmatrix}$$它由矩阵中n个基元项组成,记做:$$A_{ij}=|A_{ij}|$$其中,$A_{ij}$表示矩阵中任意一个基元项,它满足关系:$$A_{ij}=a_{ij}*(-1)^{i+j}$$二、范德蒙行列式的一个性质及其应用1、性质:2、应用:范德蒙行列式的应用是非常广泛的,他可以用来求解任意维度的行列式,例如:(1)在工程中,可用范德蒙行列式进行多元行列式计算;(2)在金融领域,可以使用范德蒙行列式进行数据分析和风险防护;(3)在统计学中,可以使用范德蒙行列式对数据进行回归分析;(4)在科学研究中,可以使用范德蒙行列式进行矩阵计算。
三、结论范德蒙行列式是矩阵中每一行和每一列所引出的多项式,其有一个性质是,当任意一个子矩阵中只有一行或一列有值时,此子矩阵的行列式等于其第一行或第一列元素的乘积。
它的应用可以用来求解多元行列式的计算,如:在工程、金融、统计学和科学研究中都有重要应用。
范德蒙德行列式的研究与应用
毕业设计(论文)题目范德蒙德行列式的研究与应用院(系)数理学院专业班级xxxxxx学生姓名xxx 学号xxxx指导教师xxxx 职称xxx评阅教师xxxx 职称xxxx2014年5 月30日注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。
3.附件包括:任务书、开题报告、外文译文、译文原文(复印件)。
4.文字、图表要求:1)文字通顺,语言流畅,书写字迹工整,打印字体及大小符合要求,无错别字,不准请他人代写2)工程设计类题目的图纸,要求部分用尺规绘制,部分用计算机绘制,所有图纸应符合国家技术标准规范。
图表整洁,布局合理,文字注释必须使用工程字书写,不准用徒手画3)毕业论文须用A4单面打印,论文50页以上的双面打印4)图表应绘制于无格子的页面上5)软件工程类课题应有程序清单,并提供电子文档5.装订顺序1)设计(论文)2)附件:按照任务书、开题报告、外文译文、译文原文(复印件)次序装订3)其它学生毕业设计(论文)原创性声明本人以信誉声明:所呈交的毕业设计(论文)是在导师的指导下进行的设计(研究)工作及取得的成果,设计(论文)中引用他(她)人的文献、数据、图件、资料均已明确标注出,论文中的结论和结果为本人独立完成,不包含他人成果及为获得重庆科技学院或其它教育机构的学位或证书而使用其材料。
与我一同工作的同志对本设计(研究)所做的任何贡献均已在论文中作了明确的说明并表示了谢意。
毕业设计(论文)作者(签字):年月日重庆科技学院本科生毕业设计摘要摘要行列式最早出现于16世纪线性方程组的求解问题中。
范德蒙行列式的应用
范德蒙行列式的应用范德蒙行列式是线性代数中的一个重要概念,它在许多领域中都有广泛的应用。
本文将从几何、物理、概率和统计四个方面介绍范德蒙行列式的应用。
一、几何1.计算向量组的体积向量组的体积可以通过范德蒙行列式来计算。
假设有三个向量a,b和c,它们所构成的平行六面体的体积可以表示为:V=|a·(b×c)|其中,|b×c|表示向量b和向量c所构成的平面上的面积,a·(b×c)表示向量a与该平面垂直的投影长度。
因此,V可以写成:V=|a·(b×c)|=|a b c|=|abc|这里的“abc”就是一个3阶范德蒙行列式。
2.求解三角形面积在平面几何中,三角形面积可以通过海龙公式或海涅公式来计算。
而另一种方法是使用范德蒙行列式。
假设三角形顶点为A(x1,y1),B(x2,y2)和C(x3,y3),则三角形ABC所构成的面积S可以表示为:S=1/2 |x1 y1 1||x2 y2 1||x3 y3 1|这里的“xyz”就是一个3阶范德蒙行列式。
二、物理1.计算电荷分布的能量在电学中,电荷分布所具有的能量可以通过静电能公式来计算。
而静电能公式可以表示为:U=1/2 ∑i∑j qi qj / (4πεr)其中,qi和qj表示第i个和第j个电荷,r表示它们之间的距离,ε是真空介质中的介电常数。
而∑i∑j qi qj可以表示为一个n阶范德蒙行列式:∑i∑j qi qj =|q11 q12 … q1n||q21 q22 … q2n||… … … ||qn1 qn2 … qnn|因此,静电能公式可以写成:U=1/2|q11/q12/…/q1n||q21/q22/…/q2n||… … … ||qn1/qn2/…/qnn| / (4πεr)这里的“qi”就是一个长度为n的向量。
三、概率计算概率分布函数在概率论中,概率分布函数可以通过累积分布函数来计算。
范德蒙行列式的若干应用论文--大学毕业设计论文
海南师范大学目录第一章. 绪论1.1引言- - - - - - - - - - - - - - - - - - - - - 1 1.2范德蒙行列式的证明- - - - - - - - - - - - - - 11.2.1 用数学归纳法证明范德蒙行列式1.2.2 用定理证明范德蒙行列式1.3范德蒙行列式的性质- - - - - - - - - - - - - - 4 第二章. 范德蒙行列式的推广与应用- - - - - - - - - 52.1范德蒙行列式在行列式计算中的应用2.2范德蒙行列式在求解n阶k循环行列式中的应用2.3范德蒙行列式在解决多项式的求根问题中的应用2.4范德蒙行列式在解答整除问题中的应用2.5范德蒙行列式在等差数列拆项中的应用2.6范德蒙行列式在微积分中的应用参考文献致谢范德蒙行列式的若干应用作者:高亚南指导教师:黄晓芬博士摘要: 行列式是线性代数的主要内容之一,它是线性代数的决定因素,这是在矩阵,线性方程,向量空间和线性变换之后的的基础上,具有一个非常重要的作用。
该n阶行列式是Vandermonde行列式著名的线性代数,它构建了一个独特而美丽的外形,而且还因为它具有广泛的应用前景,因而成为一个众所周知的决定因素。
范德蒙行列式不仅仅是极为重要的行列式之一,而且也是近代线性代数的一个分支。
范德蒙行列式的应用十分广泛,不仅应用于一些行列式的计算当中,而且它还可以于证明行列式的一些问题,一些关于多项式的证明以及数列拆项等问题上。
本文将从线性代数、多项式理论,行列式向量空间理论等方面进行研究证明。
关键词: 行列式;范德蒙行列式;微积分;多项式理论;Vandermonde Determinant Of ApplicationsAuthor:Gao Yanan Tutor:Doctor Huang XiaofenAbstract:The determinant is one of the main content of linear algebra, it is a major determinant of linear algebra, this is in the matrix, linear equations, vector Spaces andlinear transformation, on the basis of has a very important role. The n order determinant is a famous Vandermonde determinant of linear algebra, it constructed aunique and beautiful appearance, but also because it has a broad application prospect,thus become a well known determinant. Vandermonde determinant, is a kind of extremely important determinant, at the same time is a branch of modern linear algebra. V andermonde determinant application is more extensive, not only applied tosome determinant calculation, and it can also prove that the determinant of someproblem and some certificates and some of the characteristics about the polynomialvector linear independence on such issues. This article will from linear algebra, theoryof polynomial, calculus, determinant, etc are studied.Key words: Determinant, vandermonde determinant, infinitesimal calculus,theoryof polynomial第一章.绪论1.1引言范德蒙行列式,是具有深刻研究价值的行列式,同时也是近代线性代数的一个分支。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
毕业设计(论文)题目范德蒙德行列式的研究与应用院(系)数理学院专业班级xxxxxx学生姓名xxx 学号xxxx指导教师xxxx 职称xxx评阅教师xxxx 职称xxxx2014年5 月30日注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。
3.附件包括:任务书、开题报告、外文译文、译文原文(复印件)。
4.文字、图表要求:1)文字通顺,语言流畅,书写字迹工整,打印字体及大小符合要求,无错别字,不准请他人代写2)工程设计类题目的图纸,要求部分用尺规绘制,部分用计算机绘制,所有图纸应符合国家技术标准规范。
图表整洁,布局合理,文字注释必须使用工程字书写,不准用徒手画3)毕业论文须用A4单面打印,论文50页以上的双面打印4)图表应绘制于无格子的页面上5)软件工程类课题应有程序清单,并提供电子文档5.装订顺序1)设计(论文)2)附件:按照任务书、开题报告、外文译文、译文原文(复印件)次序装订3)其它学生毕业设计(论文)原创性声明本人以信誉声明:所呈交的毕业设计(论文)是在导师的指导下进行的设计(研究)工作及取得的成果,设计(论文)中引用他(她)人的文献、数据、图件、资料均已明确标注出,论文中的结论和结果为本人独立完成,不包含他人成果及为获得重庆科技学院或其它教育机构的学位或证书而使用其材料。
与我一同工作的同志对本设计(研究)所做的任何贡献均已在论文中作了明确的说明并表示了谢意。
毕业设计(论文)作者(签字):年月日重庆科技学院本科生毕业设计摘要摘要行列式最早出现于16世纪线性方程组的求解问题中。
范德蒙德行列式是《线性代数》的重要内容和研究工具。
同时是近代线性代数的一个重要分支。
在许多方面都有着广泛的应用,它是后续课程,线性方程组、矩阵、向量空间和线性变换的基础。
范德蒙德行列式不仅是形式优美,同时有着广泛的应用。
首先明确什么是范德蒙德行列式。
了解范德蒙德行列式的证明过程。
然后探讨它在向量空间理论、线性变换理论、多项式理论中以及行列式计算中的应用,对范德蒙德行列式应用于n阶行列式的计算进行探讨。
在向量空间理论中,会经常遇到需要用范德蒙德行列式转化的问题,通过转化很容易就能够得到所需结论的方法进行探讨。
在线性变换中巧妙的使用范德蒙德行列式的方法进行探讨。
在多项式理论中利用范德蒙德行列式涉及到求根方法进行探讨。
关键字:范德蒙德行列式线性方程组向量空间线性变换ABSTRACTThe determinant appeared at the earliest which was used to solve the problem concerning the liner equations in 16 centuries, but the day was up to now the theoretical application in determinant was far used in lots of domains. Vandermonde’s determinant is regar ded an a kind of special determinant, which not only have the special form but also have the extensive application.Firstly, we should know what is the Vandermonde’s determinant, then,understanding the proof of Vandermonde’s determinant’s process, finally,we inquired into the Vandermonde’s determinant in vector space、linear transformation、polynomial theories and determinant’s calculation of application. For Vandermonde’s determinant used in n determinant calculation in order to exploring. In the vector space theory, it will often encounter problems which need Vandermonde’s determinant to transformating. By converting ,it is very easy to be able to get the necessary conclusions to exploring ways. Linear transformation in clever ways to use Vandermonde’s determinant to explore. Using Vandermonde’s determinant involves rooting methods are discussed in the polynomial theory.Keywords:Vandermonde’s determinant;liner equations;vector space;linear transformation目录摘要 (I)ABSTRACT (II)目录 (III)1 绪论 (1)2 问题分析 (3)3.1范德蒙德行列式的定义以及它的计算方法 (4)3.2范德蒙德行列式的化简 (5)3.3范德蒙德行列式的应用 (9)3.3.1向量空间理论中的应用 (9)3.3.2在线性变换理论中的应用 (10)4 范德蒙德行列式的引理和定理 (13)4.1缺少若干行且改变某行数据的广义范德蒙德行列式的引理和定理 (13)5 总结 (18)参考文献 (19)致谢 (20)1 绪论这个论文就是议论和概括范德蒙德行列式的算法、推广和应用。
范德蒙德行列式的证明过程是行列式定义与数学归纳法的综合应用,是线性代数中著名的行列式。
范德蒙德行列式的应用就是:探讨它的计算方法,各种位置变化规律,如何应用范得蒙行列式计算行列式,它在向量空间理论、线性变换理论及微积分中的计算。
如何将给定行列式化成范德蒙德行列式的标准形式是其中最重要的。
利用范德蒙德行列式结论计算并不复杂。
首先,通过探讨范德蒙德行列式的计算方法、各种位置变化规律、以及应用范德蒙德行列式计算行列式,将给定行列式化成范德蒙德行列式的标准形式,然后,把它在线性变换理论、微积分中、向量空间理论的应用辅以实例加以研究。
在1545年,卡当给出了两个一次方程组的解法,但是卡当并没有给出行列式的概念,于1693年,德国数学家莱布尼茨首先开始使用指标数的系统集合来表示有三个未知数的三个一次方程组的系数。
在1683年,日本数学家关孝和在《解伏题之法》中首次引进了行列式的概念,为行列式理论的进一步发展奠定了坚实的基础。
行列式理论就是:莱布尼茨这种解决方程组的方法。
然后在1771年,范德蒙德不仅对行列式理论的开创性工作本身进行研究,而且把行列式应用于线性方程组的解,同时他也是行列式的奠基人。
也为群的概念奠定了研究基础研究以拉格朗日的预解式和置换理论为理论基础。
范德蒙德行列式就是由他研究并总结出来的。
开创了将方程组与行列式分离开来的先河就是范德蒙德。
单独阐述了行列式理论的数学家是范德蒙德。
首次给出二阶子式及其余子式的系统概念的也是范德蒙德,同时第一次给出了用二阶子式和它的余子式对行列式进行相应地展开得到相应地结果法则,并用专门的符号记录行列式的也是范德蒙德。
1772年,皮诶尔-西蒙.拉普拉斯在他的论文中给出了余子式的概念,他的思想就是基于范德蒙德著作中将行列式展开为若干个较小的行列式之和的方法。
此时起,是人们对行列式单独研究的开端。
人们对行列式理论深入研究的新的开始是从19世纪开始的。
伟大的数学家柯西是第一个给出行列式系统理论的。
是他给出的行列式的乘法定理、双重组标记法等。
而在1832~1833年间,得出了计算行列式的特殊结果是另一著名数学家卡尔·雅可。
1839年,卡塔兰的雅可比行列式就是在这个基础之上发现的。
一类特殊的行列式,它有着独特的形式及其简明的计算结果就是范德蒙德行列式,所以不仅在数学领域中占据着重要地位,而且也有着广泛的应用在各个领域中,如果我们能够适当的变形化成范德蒙德行列式的形式在进行行列式计算或变换时,就能起到:简化解题过程或者是减少计算量的效果。
有些行列式经过简单变形后便可应用范德蒙德行列式,我们运用范德蒙德行列式进行计算或者变换的时候;有些行列式需要增加一行一列才可以应用范德蒙德行列式的相关性质进行计算,还有些行列式则需要经过加边、拆行方可利用范德蒙德行列式。
当我们遇到齐式元素的行列式时,我们则可以考虑利用行列式的乘法后。
当我们遇到以多项式系数和常数项为元素的行列式时候。
在应用范德蒙德行列式进行计算,我们首先可以借助单位原根以及范德蒙德行列式进行计算。
从而也就出现了范德蒙德行列式的推广形式。
因为其幂次的排列顺序与范德蒙德行列式不完全相同,所以所求的行列式的各行或各列都是某个元素的不同幂次,是常见的化为范德蒙德行列式的方法, 需利用行列式的相关性质,例如:提取公因式、拆行或者拆列、调换各列或各行的顺序等等,把所求行列式化为范德蒙德行列式后进行进一步的计算就是利用这些范德蒙德行列式的计算结果。
范德蒙德行列式和范德蒙德行列式的推广形式与线性泛函逼近、函数插值、数字信号等自然科学与工程技术领域中需要解决的问题密切相关,所以,我们有必要对其性质进行讨论,以便于我们更好的利用范德蒙德行列式及其推广形式的性质和结果来解决相应的问题。
化复杂为简便,化繁琐为简单是利用范德蒙德行列式解题的本质。
可以使研究者对范德蒙德行列式的计算方法及其推广应用等方面的研究达到事半功倍的效果在于正确的使用范德蒙德行列式解题。
总结范得蒙行列式算法、推广及其应用, 结合实际例题,找到将给定行列式化成范得蒙行列式标准形式有效途径,提出相应的应用。
2 问题分析明确范德蒙德行列式的形式,了解范德蒙德行列式的证明过程,最后探讨范德蒙德行列式在向量空间理论,线性变换理论,行列式计算及微积分中的应用。