8拉深模具设计

合集下载

拉深模具的设计拉深模具的分类及典型结构拉深模按其工序顺序可分...

拉深模具的设计拉深模具的分类及典型结构拉深模按其工序顺序可分...

拉深模具的设计拉深模具的分类及典型结构拉深模按其工序顺序可分为首次拉深模和后续各工序拉深模,它们之间的本质区别是压边圈的结构和定位方式上的差异。

按拉伸模使用的冲压设备又可分为单动压力机用拉深模、双动压力机用拉深模及三动压力机用拉深模,它们的本质区别在于压边装置的不同(弹性压边和刚性压边)。

按工序的组合来分,又可分为单工序拉深模、复合模和级进式拉深模。

此外还可按有无压边装置分为无压边装置拉深模和有压边装置拉深模等。

下面将介绍几种常见的拉深模典型结构。

1一凸模;2一定位板;3一凹模;4一下模座图 1 无压边装置的首次拉深模1.首次拉深模(1)无压边装置的首次拉深模(图1)此模具结构简单,常用于板料塑性好,相对厚度时的拉深。

工件以定位板 2 定位,拉深结束后的卸件工作由凹模底部的台阶完成,拉深凸模要深入到凹模下面,所以该模具只适合于浅拉深。

(2)具有弹性压边装置的首次拉深模这是最广泛采用的首次拉深模结构形式(图2)压边力由弹性元件的压缩产生。

这种装置可装在上模部分(即为上压边),也可装在下模部分(即为下压边)。

上压边的特征是由于上模空间位置受到限制,不可能使用很大的弹簧或橡皮,因此上压边装置的压边力小,这种装置主要用在压边力不大的场合。

相反,下压边装置的压边力可以较大,所以拉深模具常采用下压边装置。

(3)落料首次拉深复合模图 3 为在通用压力机上使用的落斜首次拉深复合模。

它一般采用条料为坯料,故需设置导料板与卸料板。

拉深凸模 9 的顶面稍低于落料凹模 10 ,刃面约一个料厚,使落料完毕后才进行拉深。

拉深时由压力机气垫通过顶杆 7 和压边圈 8 进行压边。

拉深完毕后靠顶杆 7 顶件,卸料则由刚性卸料板 2 承担。

1一凸模;2一上模座;3一打料杆;4一推件块;5一凹模;6一定位板;7一压边圈;8一下模座;9一卸料螺钉图 2 有压边装置的首次拉深模(4)双动压力机上使用的首次拉滦模(图4)因双动压力机有两个滑块,其凸模 1 与拉深滑块(内滑块)相连接,而上模座2(上模座上装有压边圈3)与压边滑块(外滑块)相连。

冲压模具课程设计说明书 2

冲压模具课程设计说明书 2

一、零件的工艺性分析1.工件的冲压工艺性分析如图1所示,该工件形状简单对称,为轴对称拉深件,在圆周方向上的变形是均匀的,属普通冲压件。

模具加工也比较容易。

试制定该工件的冲压工艺规程、设计其模具、编制模具零件的加工工艺规程。

图1 圆筒拉深件图2 拉深件的三维图2.工件材料化学成分和机械性能分析(1)材料分析工件的材料为08钢,属于优质碳素结构钢,优质沸腾钢,强度、硬度低,冷变形塑性很好,可深冲压加工,焊接性好。

成分偏析倾向大,时效敏感性大,故冷加工时应采用消除应力热处理或水韧处理,防止冷加工断裂。

08钢的主要机械性能如下:σ(兆帕) 280-390抗拉强度bσ(兆帕) 180屈服强度s抗剪强度(兆帕) 220-310延伸率δ 32%(2)结构分析工件为一窄凸缘筒形件,结构简单,圆角半径为r=7,厚度为t=0.5mm,满足筒形拉深件底部圆角半径大于一倍料厚的要求,因此,零件具有良好的结构工艺性。

(3)精度分析工件上尺寸均为未注公差尺寸,普通拉深即可达到零件的精度要求。

经上述分析,产品的材料性能符合冷冲压加工要求。

在零件工艺性分析的基础上制定其工艺路线如下:零件的生产包括落料、拉深(需计算确定拉深次数)、修边(采用机械加工)等工序,为了提高生产效率,可以考虑工序的复合,经比较决定采用落料与第一次拉深复合。

二、工件的拉深工艺分析及计算1.毛坯尺寸计算(1)计算原则相似原则:拉深前坯料的形状与拉深件断面形状相似;等面积原则:拉深前坯料面积与拉深件面积相等。

(2)计算方法由以上原则可知,旋转体拉深件采用圆形毛坯,其直径按面积相等的原则计算。

计算坯料尺寸时,先将拉深件划分为若干便于计算的简单几何体,分别求出其面积后相加,得拉深件总面积A。

图3 拉深件的坯料计算如图3所示,筒形件坯料尺寸,将圆筒件分成三个部分,每个部分面积分别为:(3)确定零件修边余量由于板料的各向异性和模具间隙不均等因素的影响,拉深后零件的边缘不整齐,甚至出现耳子,需在拉伸后进行修边。

拉深件模具设计

拉深件模具设计

筒形工具盒学校:江西机电学院专业:模具设计与制造班级:10大模一班姓名:林佳佳学号:2号指导老师:徐秋如老师完成时间:2012年7月6日目录第一章工件的工艺性分析 (1)1.1 工艺性分析 01.2拉深时的工艺性 (1)1.3材料的工艺性 (2)第二章冲压工艺方案的确定 (1)第三章拉深工序尺寸的确定 (3)第四章必要的工艺计算 (5)4.1排样方案的确定及计算 (5)4.2冲压力的计算 (6)4.3压力中心的计算 (8)4.4工作尺寸的计算 (8)第五章模具的总体设计 (8)5.1模具类型的选择 (9)5.2定位方式的选择 (9)5.3料方式的控制 (10)5.4 卸料零件的确定 (9)5.5顶件装置的确定 (9)5.6导向方式的选择 (10)第六章主要零部件的结构设计 (10)6.1凸凹模 (10)6.2拉深凸模 (11)6.3落料凹模 (11)第七章辅助装置的设计 (12)7.1固定卸料装置 (12)7.2刚性推件装置 (12)7.3螺钉与销钉的选择 (12)7.4弹性压边装置 (12)第八章模架的选用 (12)心得小结 (14)参考文献 (14)第一章工件的工艺性分析1.1 工艺性分析拉深件名称:筒形工具盒生产批量:中小批量材料:08钢料厚:1mm技术要求:工件要求平整,无拉深痕迹,未注公差IT14.零件图如下:零件图拉深件的工艺性是指拉深件对拉深工艺的适应性。

在一般情况下,对拉深件工艺性影响最大的几何形状尺寸和精度要求。

良好的拉深工艺性应能满足材料较省、工序较少、模具加工较容易、寿命较高、操作方便及产品质量稳定等要求。

此工件为无凸圆筒形工件,要求内形尺寸,没有厚度的要求。

此工件的形状满足拉深工件的要求,可用拉深工序加工。

1.2 拉深时的工艺性分析拉深零件的结构工艺性是指拉深零件采用拉深成形工艺的难易程度。

良好的工艺性是指坯料消耗少、工序少,模具结构简单、加工容易,产品质量稳定、废料少和操作简单方便等。

拉深模具的设计及要求

拉深模具的设计及要求

拉深模具的设计及要求拉深模具是一种用于加工带拉深工艺的金属件的模具,在工业生产中有着广泛的应用。

它具有较高的精度要求和复杂的结构设计,下面将详细介绍拉深模具的设计及要求。

拉深模具的设计主要包括以下几个方面:模具结构设计、零件设计、材料选择和加工工艺设计。

首先,模具结构设计是拉深模具设计的基础,包括上模座、下模座、滑块、导柱、导套等部件的位置和尺寸确定。

模具的结构设计直接关系到模具的使用寿命和加工精度,需要综合考虑模具的稳定性和刚度,确保在拉深过程中不产生误差和变形。

其次,零件设计是拉深模具设计的关键步骤,零件设计的合理性直接影响到拉深模具的成型效果。

拉深模具的零件设计需要考虑到产品的结构特点和尺寸要求,确定好拉深模具的凸模、凹模、脱模槽等关键部位的形状和尺寸,以确保产品在拉深过程中不出现问题,并且能够满足产品的设计要求。

材料选择是拉深模具设计的一项重要内容。

由于拉深模具在使用中会承受较大的压力和磨损,所以对模具的材料有较高的要求。

常见的拉深模具材料有工具钢、合金钢、高速钢等,这些材料都具有较高的硬度和耐磨性,能够满足模具的使用寿命要求。

最后,加工工艺设计是拉深模具设计的最后一步。

合理的加工工艺设计能够提高拉深模具的生产效率和质量,减少生产成本。

加工工艺设计包括模具加工的工艺流程和方法,确定合理的加工顺序和切削参数,避免过剩材料和切削震动等问题。

同时,需要设计好模具的装配关系和检测方法,确保拉深模具的质量。

除了以上几个方面的设计要求外,拉深模具设计还需要考虑到产品的成本、生产效率和安全性。

对于成本来说,需要在保证质量的前提下尽量减少材料消耗和加工工艺复杂度,提高生产效率。

对于生产效率来说,需要注重模具的易维修性和易更换性,减少因模具故障和更换带来的停机时间。

对于安全性来说,需要设计合理的模具保护装置和操作工具,确保操作人员的安全。

综上所述,拉深模具的设计及要求涉及到模具结构设计、零件设计、材料选择和加工工艺设计等多个方面。

模具设计与制造第7章拉深工艺与模具设计

模具设计与制造第7章拉深工艺与模具设计
有无明显缺陷。
尺寸测量
使用测量工具对拉深制品的尺 寸进行测量,以检查其是否符 合设计要求。
壁厚测量
使用壁厚测量仪对拉深制品的 壁厚进行测量,以检查其是否 均匀。
强度测试
对拉深制品进行拉伸或压缩试 验,以检测其力学性能是否满
足要求。
提高拉深制品质量的措施
选用优质材料
选用质量稳定、性能良好的材料,以提高拉深制品的基 本质量。
的强度和刚度等因素。
压力过大会导致工件破裂或模 具损坏,而压力过小则会导致
工件起皱或形状不规整。
压力控制需要与速度控制和温 度控制等参数进行协调,以确 保整个拉深过程的稳定性和可
靠性。
拉深工艺的速度控制
速度控制是拉深工艺中的另一 个重要参数,它直接影响到工
件的表面质量和尺寸精度。
速度控制需要考虑到工件的材 质、厚度、润滑条件以及模具
拉深工艺的应用领域
汽车行业
汽车覆盖件、油箱、仪 表盘等部件的制造。
家用电器行业
电子行业
航空航天行业
空调、冰箱、洗衣机等 产品的外壳和内部零件
的制造。
手机、电脑等产品的外 壳和内部结构件的制造。
飞机蒙皮、机身部件等 高精度、高质量要求的
零件的制造。
拉深工艺的发展趋势
高精度、高质量
柔性化、个性化
随着科技的发展,对拉深工艺的精度和 产品质量要求越来越高,高精度、高质 量的模具和加工设备成为发展的趋势。
破裂。
凸模设计
凸模的作用是将材料拉入凹模, 因此需要具有足够的刚性和强度。 凸模的直径应与凹模相匹配,以
保持适当的间隙。
压边圈设计
压边圈的作用是控制材料流动, 防止材料起皱。压边圈的宽度和 重量应适中,以确保压力均匀。

拉深工艺及拉深模具的设计

拉深工艺及拉深模具的设计

拉深工艺及拉深模具的设计拉深工艺是一种常见的金属加工方法,用于将平面金属材料加工成具有凹凸形状的器件或零件。

它通常涉及到将金属板材通过拉伸的方式使其变形,以达到所需的形状和尺寸。

而拉深模具则是用于支撑和引导金属板材在拉深过程中发生变形的工具。

拉深工艺的设计需要考虑多个因素,包括材料的性质、板材的厚度和尺寸、拉深的形状和深度等。

首先,根据所需拉深的形状设计模具的结构和形状,并确定所需的深度和尺寸。

其次,需要选择合适的材料和工艺参数,以确保金属材料在拉深过程中能够保持良好的塑性变形能力,并且不会发生过度拉伸、断裂或破裂。

此外,还需要考虑到加工效率和成本等因素,以优化拉深工艺的设计。

拉深模具的设计是实现拉深工艺的关键。

它通常由多个部分组成,包括上模板、下模板、导柱、导套、导向装置、弹簧等。

上模板和下模板是用于支撑金属板材并施加压力的主要部分,它们的形状和结构决定了拉深的形状和深度。

导柱和导套用于引导上模板的移动,以确保拉深的精度和稳定性。

导向装置用于确保上模板和下模板的对位精度,避免偏移和倾斜。

而弹簧则用于提供足够的弹性力,以使上模板在拉深过程中能够平稳地移动。

在拉深模具的设计过程中,需要考虑到多个因素。

首先,需要进行模具的结构和形状设计,确保其能够满足所需拉深的形状和深度。

其次,需要选择合适的材料,以确保模具具有足够的强度和硬度。

同时,还需要进行模具的冷却设计,以提高模具的寿命和加工效率。

此外,需要进行模具的装配和调试,确保其能够正常使用并满足要求的加工精度和质量。

总之,拉深工艺及拉深模具的设计需要考虑到多个因素,包括材料的性质、工艺参数、加工效率和成本等。

通过合理的设计和优化可以实现高效、精确和稳定的拉深加工。

拉伸工艺与拉深模具设计

拉伸工艺与拉深模具设计
“起皱”和筒壁传力区的“拉裂”是拉深工艺能否顺利进行的主要障碍。为此,必须了解起 皱和拉裂的原因,在拉深工艺和拉深模设计等方面采取适当的措施,保证拉深工艺的顺利进行,提高拉深件的 质量。
1.凸缘变形区的起皱 拉深过程中,凸缘区变形区的材料在切向压应力 σ 的作用下,可能会产生失稳起皱,如图 4.2.6 所示。 凸缘区会不会起皱,主要决定于两个方面:一方面是切向压应力 σ 的大小,越大越容易失稳起皱;另一方面 是凸缘区板料本身的抵抗失 稳的能力,凸缘宽度越大,厚度越薄,材料弹性模量和硬化模量越小,抵抗失稳 能力越小。这类似于材料力学中的压杆稳定问题。压杆是否稳定不仅 取决于压力而且取决于压杆的粗细。在 拉深过程中 是随着拉深的进行而增加的,但凸缘变形区的相对厚度 也在增大。这说明拉深过程中失稳起皱的 因素在增加而抗失稳起皱的能力也在增加。
图 4.2.4
在厚度方向,由于压料圈的作用,产生压应力 ,通常 和 的绝对值比 大得多。厚度方向上材料的的变形 情况取决于径向拉应力 和切向压应力 之间比例关系,一般在材料产生切向压缩和径向伸长的同时,厚度有所 增厚,越接近于外缘,板料增厚越多。如果不压料( =0),或压料力较小( 小),这时板料增厚比较大。当 拉深变形程度较大,板料又比较薄时,则在坯料的凸缘部分,特别是外缘部分,在切向压应力 作用下可能失 稳而拱起,产生起皱现象。
此外,影响极限拉深系数的因素还有拉深方法、拉深次数、拉深速度、拉深件的形状等。 采用反拉深、软模拉深等可以降低极限拉深系数;首次拉深极限拉深系数比后次拉深极限拉深 系数小;拉深速度慢,有利于拉深工作的正常进行,盒形件角部拉深系数比相应的圆筒形件的
拉深系数小。 3.极限拉深系数的确定 由于影响极限拉深系数的因素很多,目前仍难采用理论计算方法准确确定极限拉深系数。

拉深工艺及拉深模设计

拉深工艺及拉深模设计

拉深工艺及拉深模设计本章内容简介:本章在分析拉深变形过程及拉深件质量影响因素的基础上,介绍拉深工艺计算、工艺方案制定和拉深模设计。

涉及拉深变形过程分析、拉深件质量分析、圆筒形件的工艺计算、其它形状零件的拉深变形特点、拉深工艺性分析与工艺方案确定、拉深模典型结构、拉深模工作零件设计、拉深辅助工序等。

学习目的与要求:1.了解拉深变形规律、掌握拉深变形程度的表示;2.掌握影响拉深件质量的因素;3.掌握拉深工艺性分析。

重点:1. 拉深变形特点及拉深变形程度的表示;2.影响拉深件质量的因素;3.拉深工艺性分析。

难点:1.拉深变形规律及拉深变形特点;2.拉深件质量分析;3.拉深件工艺分析。

拉深:利用拉深模将一定形状的平面坯料或空心件制成开口空心件的冲压工序。

拉深工艺可以在普通的单动压力机上进行,也可在专用的双动、三动拉深压力机或液压机上进行。

拉深件的种类很多,按变形力学特点可以分为四种基本类型,如图5-1所示。

图5-1 拉深件示意图5.1 拉深变形过程分析5.1.1 拉深变形过程及特点图5-2所示为圆筒形件的拉深过程。

直径为D、厚度为t的圆形毛坯经过拉深模拉深,得到具有外径为d、高度为h的开口圆筒形工件。

图5-2 圆筒形件的拉深1.在拉深过程中,坯料的中心部分成为筒形件的底部,基本不变形,是不变形区,坯料的凸缘部分(即D-d的环形部分)是主要变形区。

拉深过程实质上就是将坯料的凸缘部分材料逐渐转移到筒壁的过程。

2.在转移过程中,凸缘部分材料由于拉深力的作用,径向产生拉应力,切向产生压应力。

在和的共同作用下,凸缘部分金属材料产生塑性变形,其“多余的三角形”材料沿径向伸长,切向压缩,且不断被拉入凹模中变为筒壁,成为圆筒形开口空心件。

3.圆筒形件拉深的变形程度,通常以筒形件直径d与坯料直径D的比值来表示,即m=d/D(5-1)其中m称为拉深系数,m越小,拉深变形程度越大;相反,m越大,拉深变形程度就越小。

5.1.2 拉深过程中坯料内的应力与应变状态拉深过程是一个复杂的塑性变形过程,其变形区比较大,金属流动大,拉深过程中容易发生凸缘变形区的起皱和传力区的拉裂而使工件报废。

拉深模具设计要点

拉深模具设计要点

拉深模具设计要点拉深是一种利用模具将平面金属片加工成三维形状的工艺方法,而拉深模具的设计则是实现该工艺方法的关键。

本文将介绍拉深模具设计的要点,并探讨如何提高拉深模具的性能和效率。

一、拉深模具的种类按照不同的结构和用途,拉深模具可分为单向拉深模具、多向拉深模具、复合拉深模具等。

单向拉深模具只能将金属片拉深成一个方向的凸轮形状;多向拉深模具能够将金属片拉深成多个方向的形状,适用于复杂的零件生产;复合拉深模具则是结合两种或以上的拉深形式,可以实现更为多样化的零件加工。

二、拉深模具的设计要点1. 材料选择拉深模具的制造材料需具有高强度、高硬度、高韧性、高温耐性等性质,以确保模具的耐用性和稳定性。

常用的材料有合金钢、硬质合金、高速钢等。

2. 模具结构设计模具的设计应考虑加工时的工艺流程和金属片的物理特性,以确保成品的质量。

模具的结构设计应考虑到材料密度改变的情况,特别是拉深部位的弯曲角度、曲面度和收缩率等,同时也需考虑到模具的割缝和表面质量等因素。

3. 模具形状和尺寸设计在拉深模具的形状和尺寸设计上,设计师需考虑到零件的性能要求和装配要求,并确保模具能够适应所选定的加工设备。

同时,模具的深度、前侧角度、后侧角度、侧壁角度等参数也需符合零件加工的要求。

4. 模具表面的处理模具表面的处理是一项重要的工艺,可有效提高模具的耐用性和零件质量,常见的处理方法包括氮化、硬质化、涂层等。

在选择表面处理时,需要考虑到材料的成本和零件的性能要求。

三、拉深模具的加工与维护在拉深模具加工时,操作人员需根据零件的要求精确调整机器参数,以确保零件的生产质量和效率。

同时,模具的维护也是不可忽视的,需要经常检查模具的磨损程度、裂纹和变形情况,及时更换或修理模具,以保持模具的正常使用寿命。

在现代工业生产中,拉深模具已成为一种普遍应用的加工方法,而模具设计则是实现该方法和产生高质量产品的重要保障。

为了提高拉深模具的性能和效率,设计师需要考虑到材料选择、结构设计、模具形状和尺寸设计等多个方面,以制作出高质量、耐用的模具,为生产提供坚实的保障。

落料拉深复合模具设计

落料拉深复合模具设计

随着现代工业的发展和人们的生活不断改善,各种新型的工具不断地问世为人们的生活提供方便,而在制造这些工具的过程离不开模具。

各种模具在不同的时代发生着飞跃的变化,随之出现许多不同的制造方式。

由于产品的材料和工艺特性不同,生产用的设备也各异,模具种类繁多,但用的最为广泛的大约有以下几种:冷冲压模、塑料成型模、锻造模、精密铸造模、粉末冶金模、橡胶成型模、玻璃成型模、窑业制品模、食品糖果模、建材用模等。

其中以冷冲压模、塑料模的技术要求和复杂程度较高。

我的设计课题是:内胆的拉深,主要介绍的是无凸缘筒形件拉深模的设计过程。

我参考了大量有关拉深模模具设计实例等方面的资料。

拉深是利用拉深模将板料制成各种空心件的一种方法,是冲压生产中应用最主要的工序之一。

我设计的是无凸缘内胆拉深模设计和制造,材料为08钢板,厚度t=1mm。

采用的工序为落料拉深复合工序和拉深单工。

设计的主要内容:工件的工艺性分析;冲压工艺方案的确定;模具的技术要求及材料选用;主要设计尺寸的计算;工作部分尺寸计算;模具的总体设计;主要零部件的结构设计;模具的总装图;模具的装配等。

最后生成装配工程图和相关的零件图。

关键词:模具落料拉深装配图零件图With the development of modern industry and people's lives continue to improve, a varietyof new tools continue to come out to provide convenience to people's lives and in the process of manufacture of these tools can not be separated from the mold. Various molds at different times, changes in the leap, followed by a number of different manufacturing methods.Materials and workmanship of the product characteristics, production equipment also vary a wide range of mold, but the most widely used in approximately the following: cold stamping mold, plastic molding, forging mold, the mold of precision casting, powder metallurgy mold, rubber molding, glass molding, ceramic products, mold, food candy mold, building materials and mold. Among them, the high technical requirements and complexity of the cold stamping mold, plastic mold.In the design, introduces the mold drawing. In this design, I made reference to the large number of Die mold design example. The drawing is a drawing die as a processing method of the sheet metal stamping into a variety of hollow, is the most widely used in the stamping process. I designed the interior of no flange drawing die design and manufacturing materials for the steel plate 08, the thickness t = 1mm. Processing methods for the blanking pull deep composite processes and drawing a single process. Processing method is relatively simple. The main content of the design: the process of the workpiece analysis; program of stamping process; mold the technical requirements and material selection; the calculation of the main design dimensions; work part size calculation; the overall design of the mold; the structural design of the main components; the mold assembly diagrams; mold assembly. Finally, to generate assemblydrawings and part drawings.Keyword: mould blanking deep drawing assembly drawing parts drawing目录摘要 (I)ABSTRACT (II)目录 (III)引言 (1)一材料分析 (2)1.1工件材料分析 (2)1.2模具材料分析 (2)1.2.1 模具零件的材料 (2)1.2.2 要针对模具失效形式选用钢材 (2)1.2.3 要根据制品批量大小 (2)1.2.4 要根据冲模零件的作用选择 (2)1.2.5 要根据冲模精密程度选用 (2)二零件工艺性分析 (3)冲压工艺方案 (3)三拉深工艺参数的计算 (5)3.1确定修边余量 (5)3.2计算毛坯直径D (5)3.3判断是否采用压边圈 (5)3.4确定拉深系数 (5)3.4.1 先判断能否一次拉出 (5)3.4.2 用计算法确定拉深次数 (5)3.4.3 由查表法确定拉深次数 (5)3.4.4 由推算法确定拉深系数 (6)3.4.5 确定各次拉深半成品尺寸 (6)3.5画出工序图 (7)四落料拉深复合模工艺计算 (8)4.1落料凸、凹模刃口尺寸计算 (8)4.2首次拉深凸、凹模尺寸计算 (9)4.3落料排样设计 (9)4.4画出零件的排样图 (10)五二次拉深模工作部分尺寸计算 (11)5.1第二次拉深凸、凹模尺寸计算 (11)5.2第三次拉深凸、凹模尺寸计算 (11)5.3第四次拉深凸、凹模尺寸计算 (11)六计算工序冲压力 (12)6.1落料力的计算 (12)6.2卸料力、推件力、顶件力的计算 (12)6.3拉深力的计算 (13)6.4压边力的计算 (13)6.5压力中心的计算 (14)七冲压设备的选用 (15)7.1落料拉深复合模设备的选用 (15)7.2二次拉深模设备的选用 (15)八模具零部件结构的确定 (17)8.1落料拉深复合模零部件设计 (17)8.1.1 标准模架的选用 (17)8.1.2 卸料零件的选择 (17)8.1.3 定位方式的选择 (19)8.1.4 其他零部件结构 (20)8.2二次拉深模零部件设计 (20)九模具的装配 (20)9.1落料拉深复合模装配图 (21)9.2二次拉深模装配图 (22)十模具的检验 (23)10.1模具检测的内容 (23)10.2模具检测的方法 (24)结束语 (25)参考文献 (26)致谢 (27)附录 (28)引言模具工业是国民经济的基础工业,受到政府和企业界的高度重视,发达国家有“模具工业是进入富裕社会的源动力”之说,可见其重视的程度。

第四章 拉深工艺及模具设计

第四章 拉深工艺及模具设计
24.10.2023
拉深过程中影响起皱的主要因素
板料的相对厚度 t/D
t dt d
t/D 越小,拉深变形区抗失稳的能力越差,越易起皱。
拉深系数 m(切向压应力的大小)
m 越小,拉深变形程度越大,切向压应力的数值越大;另外, 变形区的宽度越大,抗失稳的能力变小,越易起皱。
模具工作部分几何形状
用锥形凹模拉深时,由于毛坯的 过渡形状使拉深变形区有较大的抗失 稳能力,与平端面凹模相比可允许用 相对厚度较小的毛坯而不致起皱。
划分为五个区: I 凸缘部分 II 凹模圆角部分 III 筒壁部分 IV 凸模圆角部分 V 筒底部分
下标1、2、3分别代表 坯料径向、厚向、切 向的应力和应变
坯料各区的应力与应变是很不均匀的。
24.10.2023
IV
24.10.2023
I II
III V
三、拉深变形过程中凸缘变形区的应力分布
拉深至某一瞬时 R t
使
max 1 max
出现在
R t0.7~0.9R 0
即拉深早期。
24.10.2023
四、筒壁传力区的受力分析
(1)压边力Q 引起的摩擦应力
M
2 Q dt
(2)材料流过凹模圆角半径产生弯 曲变形的阻力
W 14b
rd
t t
2
(3)材料流过凹模圆角后又被拉直 成筒壁的反向弯曲力
'WW14b
t rdt
2
24.10.2023
§4-3 直壁旋转体零件的拉深
一、拉深毛坯尺寸的确定
拉深毛坯尺寸的确定原则: 体积不变原则: 若拉深前后料厚不变,拉深前坯料表面积与拉深后
冲件表面积近似相等,得到坯料尺寸。

拉深模具设计说明书

拉深模具设计说明书

前言冷冲压是建立在金属塑性变形的基础上,在常温下利用安装在压力机上的模具对材料施加压力,使其产生分离或塑性变形,从而获得一定形状、尺寸和性能的零件的一种压力加工方法。

在冷冲压加工中,将材料(金属或非金属)加工成零件(或半成品)的一种特殊工艺装备称为冷冲压模具(俗称冷冲模)。

冷冲模在实现冷冲压加工中是必不可少的工艺装备,没有先进的模具技术,先进的冲压工艺就无法实现。

冷冲压的特点有:1,节省材料2,制品有较好的互换性3制品有较好的互换性4生产效率高5操作简单6由于冷冲压生产效率高,材料利用律,故生产的制品成本较低。

冷冲压加工在汽车、拖拉机、电机、电器、仪表和日用品生产中,已占据十分重要的地位,特别是在电子工业产品生产中,已成为不可缺少的主要加工方法之一。

随着科学技术的不断进步和工业生产的迅速发展,冲压及模具技术也在不断革新与发展。

主要表现在以下几个方面:一.工艺分析计算方法现代化现在已开始采用有限变形的弹塑性有限方法,对复杂成形件的成形过程进行应力应变分析的计算机模拟。

二.模具设计制造技术现代化工业发达国家正在大力开展模具计算辅助设计和制造(CAD/CAM)的研究。

采用这一技术,一般可提高模具设计制造效率的2-3倍,应用这一技术,不仅可以缩短模具设计制造周期,还可提高模具质量,减少设计和政治早人员的重复劳动,使设计者有可能把精力用在创新开发上。

三.冲压生产机械化与自动化与柔性化为了适应大批量,高效率生产的需要,在冲压模具和设备上广泛应用了各种自动化的进出料机构。

对于大型冲压件,专门配置了机械手和机器人,这不仅大大的提高了冲压件的生产品质和生产率,而且也增加了冲压工作和冲压工人的安全性。

在中小件的大批量生产方面,现已广泛应用于多工位压力机活、或高速压力机。

在小批量生产方面,正在发展柔性制造系统(FMS)。

四.为了满足产品更新换代快和小批量生产的需要,发展了一些新的成形工艺,简易模具,数控冲压设备和冲压柔性制造技术等。

落料拉深模具课程设计

落料拉深模具课程设计

落料拉深模具课程设计一、教学目标本课程旨在通过学习落料拉深模具的相关知识,使学生掌握模具的基本结构、工作原理及其设计方法,培养学生分析和解决实际问题的能力。

具体的教学目标如下:1.知识目标:(1)了解落料拉深模具的分类及应用范围;(2)掌握模具的基本结构及其主要零部件的作用;(3)理解模具工作原理,学会计算模具的压力和行程;(4)熟悉模具设计的基本步骤和方法。

2.技能目标:(1)能够根据实际需求,选择合适的模具类型和参数;(2)学会使用相关软件进行模具设计;(3)具备分析和解决模具在使用过程中出现的问题的能力。

3.情感态度价值观目标:(1)培养学生对模具行业的兴趣,提高其职业认同感;(2)培养学生团结协作、勇于创新的精神;(3)使学生认识到模具在现代制造业中的重要地位,增强其责任感。

二、教学内容本课程的教学内容主要包括以下几个部分:1.落料拉深模具的基本概念和分类;2.模具的结构及其主要零部件的作用;3.模具的工作原理及其计算方法;4.模具设计的基本步骤和方法;5.模具的制造和维护。

三、教学方法为了提高教学效果,本课程将采用多种教学方法,包括:1.讲授法:用于传授基本概念、原理和方法;2.案例分析法:通过分析实际案例,使学生更好地理解模具设计和应用;3.实验法:学生进行模具实验,培养学生的动手能力;4.讨论法:鼓励学生积极参与课堂讨论,提高其分析和解决问题的能力。

四、教学资源为了支持教学,我们将准备以下教学资源:1.教材:选用权威、实用的教材,为学生提供系统的知识体系;2.参考书:提供相关领域的参考书籍,丰富学生的知识储备;3.多媒体资料:制作精美的课件和视频,增强课堂教学的趣味性;4.实验设备:保障学生能够进行实际操作,提高其动手能力。

五、教学评估本课程的教学评估将采用多元化的评价方式,以全面、客观地评价学生的学习成果。

评估方式包括:1.平时表现:通过课堂参与、提问、讨论等环节,评估学生的学习态度和积极性;2.作业:布置适量的作业,检查学生对知识的掌握程度和应用能力;3.考试成绩:通过期中和期末考试,检验学生对课程知识的全面理解;4.实践报告:学生进行模具设计实践,评估其动手能力和实际应用能力。

拉深模的分类及典型结构

拉深模的分类及典型结构

3—定位圈; 4—凸模; 5— Nhomakorabea6—打料杆; 7—螺母; 8—模柄; 9、
14—
10—打料盘; 11—凹模;
12—
13—凸模固定板
拉深模的分类及典型结构
1.2 拉深模的典型结构
带凸缘制件落料拉深复合模
1、4、10、11、19—内六角螺钉;
2—下模座; 3—固定卸料板;
5—上模座; 6—
7、12—圆柱销; 8—打料杆;
1—顶杆; 2—安全口; 3—通气孔; 4—打料杆; 5—上模座;6—打料盘; 7—凹模; 8—凸模; 9—挡料销;10—压边圈; 11—定距块;12—下模座
拉深模的分类及典型结构
1.2 拉深模的典型结构
带凸缘制件的拉深模
1—定程块; 2—六角螺母;
3—上模座; 4—
5—内六角螺钉; 6—打料盘;
9—模柄;
13—凸凹模(落料凸模、拉深凹模);
14—打料块; 15—落料凹模;
16—
17—压边圈;
18—顶件杆
拉深模的分类及典型结构
1.2 拉深模的典型结构
落料拉深压形复合模
1、5、8、11、19—内六角螺钉;
2—下模座; 3—导向装置;
4—固定卸料板; 6—垫板;
7—
9—打料杆;
10—模柄; 12—圆柱销;
7—
8—凸模;
9—压边圈; 10—
11—卸料螺钉
拉深模的分类及典型结构
1.2 拉深模的典型结构
无压边装置的后次拉深模 1—上模座; 2—垫板; 3— 4—凸模; 5—定位板; 6— 7— 8—下模座
拉深模的分类及典型结构
1.2 拉深模的典型结构
有弹性压边装置和打料装置的后次拉深模

第08章--拉深模具设计PPT课件

第08章--拉深模具设计PPT课件

以由弹簧或橡皮产生,也可以由气垫产生。
5
带凸缘零 件的拉深模结 构,毛坯用定 位板定位,在 下模座上安装 了定距垫块, 用来控制拉深 深度,以保证 制件的拉深高 度和凸缘直径。
图8.6 凸缘件拉深模(定距垫块) 6
图8.7 凸缘件拉深模(打料块定距)
毛坯用固定挡料销定位,打料块同时起定距垫块的作用, 作用同样是控制拉深高度和凸缘直径。
第8章 拉深模具设计
8.1 单动压力机首次拉深模
8.1.1 无压边圈的拉深模
适用于底部平整、 拉深变形程度不大、 相对厚度(t/D)较大和 拉深高度较小的零件。
1
图8.1 无压边圈有顶出装置的拉深模
8.1.2 带压边圈的拉深模
板料毛坯 被拉入凹模。 在拉簧力的作 用下,刮件环 又紧贴凸模, 在凸模上行时 可以将制件脱 出,由下模座 孔中落下。
下止点
30°
60°
曲轴转角α
90° 23
8.6.4 模具工作部分尺寸的计算
1. 凸、凹模间隙 2. 凸、凹模圆角半径 3. 凸、凹模工作尺寸及公差 4. 凸模通气孔
24
8.6.5 模具的总体设计
模具的总装图如 图8.26所示。
采用正装式结构, 落料拉深凸凹模安装 在上模;
刚性卸料板卸去 废料,也起导尺作用,
线,
若落料拉深力曲线处于许用负荷曲线之下,则所选设备符合
工作要求;
若落料拉深力曲线超出许可范围(见图8.25),则需选择标称
压力更大型号的压力机,继续以上校核过程。
26
图8.25 许用负荷与实际负荷
27
用导尺和固定挡 料销定位;
打料块将卡在凸 凹模内的工件推出。
图8.26 落料首次拉深复合模 25

第四章 拉深工艺与模具设计

第四章 拉深工艺与模具设计

t D

Ky (1
m1 )
以后各次拉深中制件不起皱的条件是: 实践证明:
t di1

K
y
(
1 m1
1)
直壁圆筒形件的首次拉深中起皱最易发生的时刻:拉深的初期
(二)拉裂 当筒壁拉应力超过筒壁材料的抗拉强度时,拉深件就会在底部圆角与 筒壁相切处——“危险断面”产生破裂。
为防止拉裂,可以从以下几方面考虑: (1)根据板材成形性能,采用适当的拉深比和压边力; (2)增加凸模表面粗糙度;改善凸缘部分的润滑条件; (3)合理设计模具工作部分形状;选用拉深性能好的材料等。
第四章 拉深工艺与模具设计
拉深变形过程分析
直壁旋转体零件拉深 工艺计算
非直壁旋转体零件拉深 成形方法
盒形件的拉深
拉深工艺设计 拉深模具的类型与结构
其他拉深方法 拉深模工作部分的设计
返回
拉伸:
拉深是利用拉深模具将冲裁好的平板毛坯压制成各种开口的空心工 件,或将已制成的开口空心件加工成其它形状空心件的一种冲压加 工方法。拉深也叫拉延。
(二)筒壁传力区的受力分析
1.压边力Q引起的摩擦力:
m

2Q dt
2.材料流过凹模圆角半径产生弯曲变形的阻力
w

1 4

b
rd
t t
/
2
3.材料流过凹模圆角后又被拉直成筒壁的反向弯曲w 力 仍按上式进行计
算,拉深初期凸模圆角处的弯曲应力也按上式计算
w
w

1 4

b
rd
t t
2)筒底圆角半径rn
筒底圆角半径rn即是本道拉深凸模的圆角半径rp,确定方法如下:
r r 一般情况下,除末道拉深工序外,可取 pi = di。 对于末道拉深工序:

拉深工艺与拉深模设计

拉深工艺与拉深模设计
D d124d2(h1)6.2r81 d8r2
82449 9(76 3.8)6.2 87.584 87.52 20.572 20m8m
案例分析(毛坯尺寸计算) 电容器外壳 由图4-2可得:
d1=17.6mm d2=21.2mm h1=26.8mm h=28.6mm r=1.8mm h/d=28.6÷21.2=1.35
r
y
α
O
y
a)
b)
圆心重心位置
a)圆弧与水平线相交
b)圆弧与垂直线相交
O
2)作图解析法 ①将零件按母线分成若干个简单的几何部分;
②求出各简单几何部分的重心至旋转轴的旋转半径r1、r2、 r3……rn;并求出各部分母线长度l1、l2、l3……ln;则其 乘积之和lr= l1r1+l2r2+l3r3+……+lnrn;
当零件尺寸标注在外形时
D dD m a0 x .7 5 0 d
D pD m a0 x.7 5 Z0 p
当零件尺寸标注在内形时
dddm in 0.40 d
dpdm in 0.4Z0 p
D0 -Δ
Z /2
D +Δ 0
Z /2
Dp
dp
Dd
a)
零件尺寸标注
dd
b)
对于多次拉深,工序尺寸无需严格要求,凸、凹
(2)凸模圆角半径的确定 首次拉深,凸模圆角半径
rp1=(0.7~1.0)rd1 最后一次拉深,凸模圆角半径
r—零件圆角半径。
rpn=r
如果r<t时,则rpn≥t,然后整形。
中间各次拉深,凸模圆角半径
rpi-1=0.5(di-1-di-2t)
式中 di-1,di—各工序的外径(mm)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8 拉深模具设计本章内容:各种拉深模具结构与工作原理,单动压力机拉深模、双动压力机拉深模;首次拉深模、以后各次拉深用拉深模(后次拉深模);单工序拉深模、落料拉深模、落料拉深冲孔模、落料正反拉深冲孔翻边模等。

本章难点:单动压力机拉深复合模的工作原理、结构。

8.1 单动压力机首次拉深模单动压力机首次拉深模所用的毛坯一般为平面形状,模具结构相对简单。

根据拉深工作情况的不同,可以分为几种不同的类型。

8.1.1 无压边圈的拉深模适用于底部平整、拉深变形程度不大、相对厚度(t/D)较大和拉深高度较小的零件。

第8章 拉伸模具设计 ·203··203·图8.1 无压边圈有顶出装置的拉深模冲压工艺与模具设计·204··204·图8.2 无压边圈工件拉深模8.1.2 带压边圈的拉深模图8.3 带固定压边圈的拉深模第8章 拉伸模具设计 ·205··205·图8.4 有弹性压边装置的正装式拉深模图8.5 有弹性压边装置的倒装式拉深模冲压工艺与模具设计·206··206·图8.6 凸缘件拉深模(定距垫块) 图8.7 凸缘件拉深模(打料块定距)8.2 单动压力机后次拉深模第8章 拉伸模具设计 ·207··207·由于首次拉深的拉深系数有限,许多零件经首次拉深后,其尺寸和高度不能达到要求,还需要经第二次、第三次甚至更多次拉深,这里统称为后次拉深。

后次拉深模的定位方式、压边方式、拉深方法以及所用毛坯与首次拉深模有所不同。

图8.8 无压边圈的后次拉深模冲压工艺与模具设计·208··208·图8.9 无压边圈的反向后次拉深模图8.10 有压边圈的反向后次拉深模第8章 拉伸模具设计 ·209··209·图8.11 双动正反向拉深原理图8.12 有压边圈的后次拉深模8.3 单动压力机落料拉深模拉深工序可以与一种或多种其他冲压工序(如落冲压工艺与模具设计·210· ·210·料、冲孔、成形、翻边、切边等)复合,构成拉深复合模。

在单动压力机的一个工作行程内,落料拉深模可完成落料、拉深两道(甚至更多道)工序,工作效率高,但结构较复杂,设计时要特别注意模具中所复合的各冲压工序的工作次序。

8.3.1 凸缘制件的落料拉深模图8.13 带凸缘制件落料拉深复合模第8章 拉伸模具设计 ·211··211· 8.3.2 球形制件落料拉深模图8.14 球形制件落料拉深复合模8.3.3 矩形制件落料拉深模图8.15 油箱落料拉深复合模图8.16 矩形制件落料拉深复合模·212·8.3.4 落料拉深压形模图8.17 落料拉深压形复合模8.3.5 落料拉深冲孔模·213·图8.18 落料拉深冲孔复合模·214·图8.19 拉深切边冲孔复合模8.4 单动压力机落料、正反拉深、冲孔和翻边复合模·215··216·图8.20 落料、正反拉深、冲孔翻边复合模8.5 双动压力机拉深模·217·图8.21 双动压力机大型零件拉深模(凸模导向)图8.22 双动压力机大型零件拉深模(压边圈导向)8.6 拉深模设计实例·218·如图8.23所示零件,材料为08钢,厚度1mm t =,大批量生产。

试确定拉深工艺,设计拉深模。

8.6.1 零件的工艺性分析该零件为带凸缘筒形件,要求内形尺寸,料厚1mm t =,没有厚度不变的要求;零件的形状简单、对称,底部圆角半径2m m r =>t ,凸缘处的圆角半径2mm 2R t ==,满足拉深工艺对形状和圆角半径的要求;尺寸0.1020.1mm φ+为IT12级,其余尺寸为未注公差,满足拉深工艺对精度等级的要求;零件所用材08钢的拉深性能较好,易于拉深成形。

综上所述,该零件的拉深工艺性较好,可用拉深工序加工。

图8.23 带凸缘筒形件8.6.2 工艺方案确定为了确定零件的成形工艺方案,先应计算拉深次数及有关工序尺寸。

板料厚度t =1mm ,按中线尺寸计算。

·219·1. 计算坯料直径根据零件尺寸查表4-2(P111)得切边余量2.2mm R ∆=,故实际凸缘直径t (55.4d =+2 2.2)mm 59.8mm ⨯=。

由表7-6查得带凸缘圆筒件的坯料直径计算公式为222221122436.2884 6.28 4.56D d rd r d h Rd R d d =++++++-确定各参数为116.1mm d =,2.5mm R r ==,221.1mm d =,27mm h =,326.1mm d =,459.8mm d =, 代入上式得:32002895mm 78mm D =+≈。

式中:3200mm 2为筒形部位的表面积,2895 mm 2为凸缘部位的表面积。

2. 判断可否一次拉深成形根据/1/78 1.28%t D ==,t /59.8/21.1 2.83d d ==,/32/21 1.52H d ==,t /21.1/780.27m d D ===,查表4-6(P120)可知1[]0.35m =,说明该零件不能一次拉深成形,需要多次拉深。

3. 确定首次拉深工序件尺寸初定t 1/ 1.3d d =,查表7-8得1[]0.51m =,取10.52m =,则:110.5278mm 40.5mm d m D =⨯=⨯=取11 5.5mm r R ==为了使以后各次拉深时凸缘不再变形,取首次拉入凹模的材料面积比最后一次拉入凹模的材料面积(即筒形部位的表面积)增加5%,故坯料直径修正为3200105%2895mm 79mm D =⨯+≈·220·可得首次拉深高度为:22221t 1111110.250.14()0.43()()H D d r R r R d d =-+++- 220.25(7959.8)0.43(5.5 5.5)mm 21.2mm 40.5⎡⎤=⨯-+⨯+=⎢⎥⎣⎦验算所取1m 是否合理:根据/1/78 1.28%t D ==,t 1/59.8/40.5 1.48d d ==查表4-7(P120)可知11[/]0.58H d =。

因为1111/21.2/40.50.52[/]H d H d ==<,因此所取1m 是合理的。

4. 计算以后各次拉深的工序件尺寸查表7-8,得到2[]0.75m =,3[]0.78m =,4[]0.80m =,则: 221[]0.7540.5mm 30.4mm d m d =⨯=⨯=332[]0.7830.4mm 23.7mm d m d =⨯=⨯=443[]0.8023.7mm 19.0mm d m d =⨯=⨯=因为323.721.1d =>,419.021.1d =<,故共需四次拉深。

调整以后各次拉深系数,取2[]0.77m =,3[]0.80m =,4[]0.844m = (必须保证421.1d =)。

所以以后各次拉深工序件的直径为2210.7740.5mm 31.2mm d m d =⨯=⨯=3320.8031.2mm 25.0mm d m d =⨯=⨯=4430.84425.0mm 21.1mm d m d =⨯=⨯=以后各次拉深工序件的圆角半径取:22 4.5mm r R ==,33 3.5mm r R ==,442.5mm r R ==设第二次拉深时多拉入3%的材料(其余2%的材料返回到凸缘上),第三次拉深时多拉入1.5%的材料(其余1.5%的材料返回到凸缘上),则第二次和第三次拉深的假想坯料直径分别为3200103%2895mm 78.7mm D '=⨯+=·221· 3200101.5%2895mm 78.4mmD ''=⨯+=以后各次拉深工序件的高度为 22222222222220.250.14()0.43()()0.25(78.759.8)0.43(4.5 4.5)mm 24.8mm 31.2t H D d r R r R d d '=-+++-⎡⎤=⨯-+⨯+=⎢⎥⎣⎦22223333323220.250.14()0.43()()0.25(78.459.8)0.43(3.5 3.5)mm 28.7mm 31.2t H D d r R r R d d ''=-+++-⎡⎤=⨯-+⨯+=⎢⎥⎣⎦最后一次拉深后达到零件的高度,上一道工序多拉入的 1.5%的材料全部返回到凸缘,拉深工序至此结束。

将上述中线尺寸计算的工序件尺寸换算成与零件图相同的标注形式后,所得各工序件的尺寸如图8.24所示。

图8.24 各次拉深工序尺寸5. 工艺方案根据上述计算结果,本零件需要落料(制成79mm φ的坯料)、四次拉深和切边(达到零件要求的凸缘直径55.4mm φ)共六道冲压工序。

考虑该零件的首次拉深高度较小,且坯料直径(79φmm)与首次拉深后的筒体直径(39.5φmm)的差值较大,为了提高生产效率,可将坯料的落料与首次拉深复合。

因此,该零件的冲压工艺方案为落料与首次拉深复合→第二拉深→第三次拉深→第四次拉深→切边。

以下仅以落料与首次拉深复合为例介绍拉深模设计过程。

8.6.3 落料与首次拉深复合工序力的计算1. 落料力取08钢的强度极限为b 400MPa σ=,因此:落料力79π140099274N bF Lt σ==⨯⨯=100kN ≈。

板厚1mm t =,可以采用刚性卸料板卸料。

2. 拉深力与压料力拉深力L 21b 0.70 3.1440.51400N 35608N 36kN FK d t σ==⨯⨯⨯⨯=≈ 压料力2222Y 1π()/4 3.14(7940.5) 2.5/4N 9029N 9kNF D d p =-=⨯-⨯=≈ 3. 初选压力机标称压力确定机械式拉深压力机标称压力时必须注意,当拉深工作行程较大,特别是落料拉深复合时,由于滑块的受力行程大于压力机的标称压力行程(即曲柄开始受力时的工作转角α大于标称压力角),必须使落料拉深力曲线位于压力机滑块的许用负荷曲线之下(见图8.25),而不能简单地按压力机标称压力大于拉深力(或拉深力与压料力之和)的原则去确定规格。

图8.25 许用负荷与实际负荷实际生产中可以按下式初步确定拉深工序所需的压力机标称压力:g F ≥L Y (1.8 2.0)()F F +~本例拉深的高度不大(121.2mm H =),因此有:g F ≥L Y 1.8()N 81(kN)F F +=由于此复合模工作时落料工序和拉深工序是先后进行的,并未产生落料力和拉深力的叠加。

相关文档
最新文档