大数据时代培训课件(PPT 22张)
大数据培训课件ppt
欧盟《通用数据保护条例》(GDPR)
01
对个人数据的收集、存储和使用进行严格规定,违反者将面临
重罚。
中国《网络安全法》
02
强调保护个人信息安全,对网络运营者、用户等各方责任和义
务进行明确规定。
美国《加州消费者隐私法》(CCPA)
03
赋予消费者对个人信息的更多权利,对企业的数据收集和使用
进行限制。
隐私保护技术与实践案例分享
利用大数据技术对交易数据、客户行为等进行分析,以识别和预防 金融欺诈和洗钱行为。
医疗行业大数据应用实践案例分享
精准医疗与个性化治疗
通过对大量医疗数据的挖掘和分析,为患者提供更精准、个性化 的治疗方案。
疾病预测与预防
通过对历史病例、流行病学数据等进行分析,预测疾病的发生和传 播趋势,为预防措施提供科学依据。
大数据培训课件
汇报人:可编辑
2023-12-22
CATALOGUE
目 录
• 大数据概述 • 大数据处理技术 • 大数据挖掘与分析 • 大数据安全与隐私保护 • 大数据应用实践与案例分析
01
CATALOGUE
大数据概述
大数据的定义与特点
定义
大数据是指数据量巨大、复杂度 高、处理速度快的数据集合。
医疗健康
利用大数据进行疾病预防、诊 断和治疗方案的优化。
商业智能
通过大数据分析,提高企业决 策效率和准确性。
智慧城市
通过大数据实现城市资源优化 配置,提高城市管理效率。
科研领域
大数据在科研领域的应用包括 数据挖掘、知识发现和科研协 作等方面。
02
CATALOGUE
大数据处理技术
数据采集与清洗
数据采集
2024年度《大数据时代》PPT课件
随着生物信息学的发展,大数据在基因测序、疾病诊断和治疗等领 域的应用将越来越广泛。
5G/6G与大数据
5G/6G通信技术将带来更高的数据传输速度和更低的延迟,为大数 据的实时处理和分析提供更强大的支持。
25
06
总结回顾与拓展思 考
2024/3/23
26
课程重点内容回顾
大数据的定义、特点与价值
探索大数据在产品研发、市场营销、客户服务等 方面的创新应用模式,提升企业竞争力。
20
05
大数据未来发展趋 势
2024/3/23
21
人工智能与大数据融合
深度学习算法应用于大数据分析
通过训练大量数据,深度学习算法能够发现数据中的隐藏模式和规律,提高预测的准确
性和效率。
智能数据分析工具
结合人工智能技术,开发智能数据分析工具,实现数据自动分类、异常检测、关联分析 等功能,提高数据分析的效率和准确性。
个性化学习
01
通过分析学生的学习习惯、能力和兴趣等数据,提供个性化的
学习资源和教学方法。
教育评估与改进
02
利用大数据对教育过程和结果进行全面评估,为教育政策和实
践提供科学依据。
在线教育与学习分析
03
通过在线学习平台收集和分析学生的学习数据,提高在线教育
的效果和质量。
14
其他行业应用
2024/3/23
创新业务模式
提高生活质量
大数据的应用可以催生新的商业模式和业 务机会,如个性化定制、智能制造等。
大数据在医疗、教育、交通等领域的应用 可以提高人们的生活质量和幸福感。
2024/3/23
6
02
大数据技术基础
大数据培训讲义PPT(共 75张)
大数据生态:软件是引擎
大数据技术要解决的问题
企业用以分析的数据越全面,分析的结果就越接近于真实。大数据分析意 味着企业能够从这些新的数据中获取新的洞察力,并将其与已知业务的各 个细节相融合。
大数据技术被设计用于在 成本可承受的条件下,通 过非常快速(velocity) 地采集、发现和分析,从 大量(volumes)、多 类别(variety)的数据 中提取价值(value), 将是IT 领域新一代的技 术与架构。
大数据
主讲人:刘永磊
大数据的定义理解
1
大数据时代的背景
什么是大数据 2
大数据的“4V”特征
3
大数据的构成
大数据时代的背景
半个世纪以来,随着计算机技术全面融入社会生活,信息爆炸已经积累到 了一个开始引发变革的程度。它不仅使世界充斥着比以往更多的信息,而且其 增长速度也在加快。互联网(社交、搜索、电商)、移动互联网(微博)、物 联网(传感器,智慧地球)、车联网、GPS、医学影像、安全监控、金融(银 行、股市、保险)、电信(通话、短信)都在疯狂产生着数据。
• 统计和分析:A/B test; top N排行榜;地域占比; 海量数据的查询、统计、更新等操作效率低
文本情感分析
• 非结构化数据
• 数据挖掘:关联规则分析;分类;聚类
图片、视频、word、pdf、ppt等文件存储
• 模型预测:预测模型;机器学习;建模仿真
不利于检索、查询和存储
• 半结构化数据
• 非关系数据库
(NoSQL)
• 数据仓库
• 云计算和云存储
• 实时流处理
分布式文件系统
分布式文件系统(Distributed File System)是指文件系统管理 的物理存储资源不一定直接连接在本地节点上,而是通过计算机 网络与节点相连。
2024大数据ppt课件完整版
目录 CONTENTS
• 大数据概述与发展趋势 • 数据采集与预处理技术 • 数据存储与管理技术 • 数据分析与挖掘算法 • 数据可视化与报表呈现技巧 • 大数据安全与隐私保护策略
01
大数据概述与发展趋势
大数据定义及特点
01
数据量在TB、 PB甚至EB级别以上的数据。
,降低医疗成本。
金融科技
利用大数据技术进行风 险控制和客户管理,提 高金融业务的智能化水
平。
智能制造
通过大数据分析优化生 产流程,提高生产效率
和产品质量。
02
数据采集与预处理技术
数据来源及采集方法
互联网数据
社交媒体、新闻网站、论坛等。
企业内部数据
CRM、ERP、SCM等系统数据。
数据来源及采集方法
动态交互式报表设计思路
实时更新
通过数据接口实现报表数据的实时更 新,反映最新业务情况。
交互操作
提供筛选、排序、分组等交互功能, 方便用户按需查看和分析数据。
图表联动
实现不同图表之间的联动,当用户在 一个图表上操作时,其他相关图表也 能相应变化。
个性化定制
提供报表样式、布局等个性化定制功 能,满足不同用户的需求。
基于文本的特征提取
对文本数据进行分词、词频统计等操 作。
特征提取和降维技术
• 基于图像的特征提取:提取图像的形状、纹理等 特征。
特征提取和降维技术
主成分分析(PCA)
流形学习
通过线性变换将原始数据变换为一组 各维度线性无关的表示。
通过保持数据的局部结构来发现数据 的全局结构,如Isomap、LLE等。
• 重复值处理:删除或合并重复数据记录。
(2024年)大数据应用培训课件
将不同来源、不同格式的数据进行融合,挖掘出更多有价值的信息 。
25
企业如何抓住大数据机遇
2024/3/26
制定大数据战略
明确企业大数据发展目标、路径和重点任务,制定切实可行的大 数据战略。
培养大数据人才
加强大数据人才培养和引进,打造一支具备专业技能和创新精神的 大数据团队。
推动业务创新
大数据是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数 据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能 力的海量、高增长率和多样化的信息资产。
特点
大数据具有5V特点,即Volume(大量)、Velocity(高速)、Variety(多样 )、Value(低价值密度)、Veracity(真实性)。
应用场景
提供Spark Streaming编程示例,包括数据 流的创建、转换和输出等操作。
列举Spark Streaming在实时数据分析、实 时推荐系统等领域的应用场景。
2024/3/26
11
03
CATALOGUE
大数据存储与处理技术
2024/3/26
12
数据存储技术
01
02
03
分布式文件系统
可信度评估
建立数据可信度评估机制,对数据来源、处理过 程、分析结果等进行全面评估。
2024/3/26
24
大数据技术发展趋势预测
2024/3/26
实时数据处理
随着物联网、5G等技术的快速发展,实时数据处理将成为大数据 领域的重要趋势。
数据智能化
利用人工智能、机器学习等技术,实现数据的自动分类、聚类、预 测等功能。
合作成果展示
展示合作所取得的成果,包括数据分析报告、可 视化图表、业务改进建议等。
2024大数据时代的ppt全新(2024)
数据量大
数据类型多样
大数据通常指数据量在TB、PB甚至EB级别 以上的数据。
大数据不仅包括结构化数据,如数据库中 的表格数据,还包括非结构化数据,如文 本、图像、音频和视频等。
处理速度快
价值密度低
大数据处理需要在秒级甚至毫秒级的时间 内完成分析结果,以满足实时性要求。
由于数据量巨大,其中有价值的信息可能 只占很小一部分,需要通过数据挖掘和分 析才能发现。
跨境数据流动管理
全球化背景下,跨境数据 流动的管理和监管成为重 要议题。
18
数据质量与可信度问题
数据质量问题
数据治理体系建设
海量数据中夹杂着大量低质量、不准 确甚至虚假信息,影响数据分析结果 。
建立完善的数据治理体系,提升数据 质量和可信度。
数据可信度挑战
如何确保数据来源的可靠性、数据处 理的透明性以及数据分析结果的可解 释性。
全性和可靠性。
9
对数据进行统一的管理 和维护,包括数据的增
删改查等操作。
大数据分析与挖掘
统计分析
对数据进行基本的统计和分析,如求和、平 均值、方差等。
文本分析
对文本数据进行分词、情感分析、主题提取 等操作。
2024/1/26
数据挖掘
利用机器学习、深度学习等技术,挖掘数据 中的潜在规律和模式。
社交网络分析
3
投资决策支持
大数据可以为投资决策提供实时、准确的市场信 息和趋势分析,帮助投资者做出更明智的决策。
2024/1/26
13
医疗行业应用案例
01
02
03
精准医疗
通过分析患者的基因组数 据、生活习惯等,医生可 以为患者制定个性化的治 疗方案,提高治疗效果。
大数据时代培训课件
数据正在迅速膨胀并变大,它决定着企业的未来发展,虽然很多企业可能并没有意识到数据爆炸性增长带来问题的隐患,但是随着时间的推移,人们将越来越多的意识到数据对企业的重要性。哈佛大学社会学教授加里·金说:“这是一场革命,庞大的数据资源使得各个领域开始了量化进程,无论学术界、商界还是政府,所有领域都将开始这种进程。”
处理和分析工具Hadoop
据IDC的预测,全球大数据市场2015年将达170亿美元规模,市场发展前景很大。而Hadoop作为新一代的架构和技术,因为有利于并行分布处理 “大数据”而备受重视。Apache Hadoop 是一个用java语言实现的软件框架,在由大量计算机组成的集群中运行海量数据的分布式计算,它可以让应用程序支持上千个节点和PB级别的数据。 Hadoop是项目的总称,主要是由分布式存储(HDFS)、分布式计算(MapReduce)等组成 。 优点:可扩展:不论是存储的可扩展还是计算的可扩展都是Hadoop的设计根本。经济:框架可以运行在任何普通的PC上。可靠:分布式文件系统的备份恢复机制以及MapReduce的任务监控保证了分布式处理的可靠性。高效:分布式文件系统的高效数据交互实现以及MapReduce结合Local Data处理的模式,为高效处理海量的信息作了基础准备。
大数据分析与处理方法介绍
众所周知,大数据已经不简简单单是数据大的事实了,而最重要的现实是对大数据进行分析,只有通过分析才能获取很多智能的,深入的,有价值的信息。那么越来越多的应用涉及到大数据,而这些大数据的属性,包括数量,速度,多样性等等都是呈现了大数据不断增长的复杂性,所以大数据的分析方法在大数据领域就显得尤为重要,可以说是决定最终信息是否有价值的决定性因素。
HDFS是一个高度容错性的分布式文件系统,能提供高吞吐量的数据访问,非常适合大规模数据集上的应用。
大数据培训课件
智能交通
运用大数据技术对交通流量、路 况、交通事故等多源数据进行挖 掘和分析,实现交通拥堵的预测 和疏导,提高交通运行效率和安 全性。
环境保护
利用大数据技术对环境监测数据 进行实时分析和预测,及时发现 和解决环境问题,为环境保护和 可持续发展提供有力支持。
THANKS
感谢观看
数据传输安全
分析数据传输过程中可能面临的安全威胁,探讨 如何通过SSL/TLS等协议来确保数据传输的安全 性。
密钥管理
阐述密钥管理的重要性和挑战,介绍常见的密钥 管理技术(如密钥交换、密钥存储等)及其最佳 实践。
数据脱敏与匿名化处理
数据脱敏技术
01
探讨数据脱敏的原理和方法,包括静态数据脱敏和动态数据脱
化规律。
社区发现
识别社交网络中的社区结构,分 析社区内的交互行为和信息传播
机制。
网络传播分析
研究信息在社交网络中的传播路 径、速度和影响范围,为舆情监
控和营销策略提供支持。
06
大数据安全与隐私保护
数据加密与传输安全
1 2 3
数据加密技术
介绍常见的加密算法(如AES、RSA等)及其原 理,探讨如何在实际应用中选择合适的加密算法 来保护数据的机密性。
特点
大数据具有5V特点,即Volume(大量)、Velocity(高速)、Variety(多样 )、Value(低价值密度)、Veracity(真实性)。
大数据技术架构
分布式存储技术
Hadoop的HDFS、HBase、 Cassandra等,用于存储海量
数据。
分布式计算技术
MapReduce、Spark、Flink等 ,用于处理和分析大数据。
文本挖掘与情感分析
大数据BigData培训课件
第十一页,共101页。
时间序列(xùliè)分析
• 商业组织积累了大量的交易历史信息,企业 的各级管理人员希望从这些数据(shùjù)中 分析出一些模式,以便从中发现商业时机,通 过趋势分析,甚至预先发现一些正在涌现出 来的时机.
12
第十二页,共101页。
时间序列(xùliè)分析
– 比方在金融效劳行业,分析人员可以开发针对性 的分析软件,对时间序列数据进行(jìnxíng)分析, 寻找有利可图的交易模式(profitable trading pattern),经过进一步验证之后,操作人员可以使 用这些交易模式进行(jìnxíng)实际的交易,获得 利润
分布在不同地理位置上的传感器,对所处环 境进行感知,不断生成数据.即便对这些数据 进行过滤(guòlǜ),仅保存局部有效数据,长时 间累积的数据量也是非常惊人的
4
第四页,共101页。
大数据(shùjù)时代
大规模数据(shùjù)主要来源2: 网站点击流数 据(shùjù)
为了进行有效的市场营销和推广,用户在网 上的每个点击及其时间都被记录下来;利用 这些数据(shùjù),效劳提供商可以对用户存 取模式进行仔细的分析,从而提供更加具有 针对性的效劳
19
第十九页,共101页。
关系数据库技术(jìshù)
• 关系数据库技术经过了将近 40 年的开展, 成为一门成熟的、同时仍在不断演进的主 流数据管理和分析技术.
• 关系数据管理技术的主流应用包括 (bāokuò)OLTP 应用、OLAP 应用以及数据 仓库等.
• SQL 语言作为存取关系数据库系统的语言 得到了标准化,经过不断扩充,其功能和表达 能力不断增强.
36
第三十六页,共101页。
大数据技术及应用培训优质PPT
医疗健康与生命科学
01
医疗健康
利用大数据技术对医疗数据进行收集、整理、分析和挖掘,为医疗诊断
和治疗提供更准确、更高效的方案。
02
生命科学
通过对生命科学领域的数据进行分析和研究,可以揭示生命的奥秘和疾
病的发生发展规律,为药物研发和治疗提供新的思路和方法。
03
案例分析
例如,某医疗机构利用大数据技术对患者的电子病历和医疗影像数据进
技术更新换代迅速
大数据技术发展迅速,需要不断跟进新技术,对人才提出更高的要 求。
跨界合作与创新
大数据技术与其他领域的跨界合作将产生更多创新应用,为各行业带 来新的发展机遇。
持续学习与技能提升的重要性
适应技术发展
大数据技术发展迅速,持 续学习和技能提升是适应 技术发展的关键。
提高职业竞争力
具备不断更新的技能将提 高个人在职业市场的竞争 力,获得更好的职业发展 机会。
随着业务对数据处理速度的要求提高,实时数据处理将成为大数据 技术的重要发展方向。
人工智能与大数据融合
人工智能技术的发展将促进大数据技术的智能化,提高数据处理和 分析的准确性。
大数据技术的未来挑战与机遇
数据安全与隐私保护
随着大数据技术的广泛应用,数据安全和隐私保护成为亟待解决的 问题,需要加强相关技术和法律手段的保障。
01
数据量大:数据量通常以TB或PB为单位 。
03
02
特点
04
速度快:需要实时或准实时的处理速度。
多样性:数据来源广泛,类型多样,包括 结构化、半结构化和非结构化数据。
05
06
复杂性:数据可能包含噪声、不完整甚至 错误的信息。
大数据技术的发展历程
大数据培训专题培训课件
市场营销
金融学
生活娱乐
总统选举
17
二.大数据的应用领域——政治领域
大数据帮助奥巴马 成功实现连任
奥巴马的数据团队对数以 千万计的选民邮件进行了大数 据挖掘,精确预测出了更可能 拥护奥巴马的选民类型,并进 行了有针对性的宣传,从而帮 助奥巴马成为了美国历史上唯 一一位在竞选经费处于劣势下 实现连任的总统。
2013年世界范围内狭义的大数据产业产值只有186亿美元 ,但广义的大数据应用几乎覆盖所有产业。据麦肯锡公司预 测,开放数据仅在教育、保健等7个行业便可释放3.2万亿~
5.4万亿美元的经济价值。
16
二.大数据的应用领域
教育学 情报学 公共服务
天文学
电子政务
传媒业
生物医学
商业智能 图书馆学
气候学
企业管理
全球网民平均每月 使用流量(MB)
12000 10000
10240
8000
6000
4000
2000
1024
1 0
10 100
1998 2000 2003 2008 2014
全球网民平均每月使用流量: 1M(1998) 10M(2000) 100M(2003) 1G(2008) 10G(2014)
全球流量累计达到1EB(即10亿GB) 的时间 一年(2001) 一个月(2004) 一周(2007) 一天(2013) 一天产生的信息量可刻满1.88亿张DVD光盘
18:00,你回到了家,你的可穿戴设备告诉你,今天你在室内和室外的时间分别 都是多少,你一天内吸入了多少雾霾。
22:00,晚上睡觉的时候,你家的孩子哭闹起来。你把孩子的哭声录入一个大 数据软件中。软件能告诉你孩子为什么哭。是饿了,还是哪里不舒服,还是说 只是想撒撒娇……
大数据培训课件pptx
将处理后的数据以易于理解的方式呈 现给用户,如仪表板、报告等。
Part
03
大数据工具与平台
Hadoop生态系统
Hadoop分布式文件系统(HDFS)
提供高可靠性的数据存储,支持大规模数据集。
MapReduce编程模型
用于处理和生成大数据集,通过映射和规约操作实现。
Hive数据仓库工具
提供数据汇总、查询和分析功能。
大数据的来源与类型
总结词
大数据的来源和类型
详细描述
大数据的来源主要包括互联网、物联网、社交媒体、企业数据库等。根据不同的 分类标准,大数据可以分为结构化数据、非结构化数据、时序数据、地理空间数 据等类型。
大数据的应用场景
总结词
大数据的应用场景
详细描述
大数据在各个领域都有广泛的应用,如商业智能、金融风控、医疗健康、智慧城市、科研等。通过大 数据分析,可以挖掘出海量数据中的有价值信息,为决策提供科学依据,提高企业的竞争力和创新能 力。
01
大数据可以帮助企业实时监测设备运行状态,预测设备维护需
求。
智能物流与供应链管理
02
大数据可以提高物流和供应链管理的智能化程度,优化资源配
置。
智能家居与智慧城市
03
大数据可以为智能家居和智慧城市建设提供数据支持和分析服
务。
大数据面临的挑战与解决方案
1 2
数据安全与隐私保护
加强数据安全和隐私保护技术的研究和应用,如 加密技术、匿名化处理等。
在数据丢失或损坏时,通过备份数据快速恢复数据,确保业务的连续性。
隐私保护法律法规与标准
法律法规
了解和遵守相关法律法规,如《个人信息保 护法》等,确保大数据处理合法合规。
大数据技术及应用培训优质PPT
详细描述
交通大数据可以帮助政府和企业优 化交通路线、减少拥堵和提高出行 效率。
具体应用
智能交通信号控制、路线规划、共 享单车调度等。
社交大数据
总结词
社交媒体利用大数据技术进行用 户画像、舆情分析和社交关系挖
掘。
详细描述
社交大数据可以帮助企业了解用 户需求、舆情趋势和社交网络结 构,提高品牌知名度和市场占有
率。
具体应用
用户画像分析、品牌监测、社交 广告等。
PART 04
大数据技术挑战与解决方 案
REPORTING
数据安全与隐私保护
数据加密
采用高级加密算法对数据进行加密,确保数据在 传输和存储过程中的安全性。
访问控制
实施严格的访问控制策略,限制对数据的访问权 限,防止未经授权的访问和泄露。
隐私保护
采用匿名化、去标识化等技术手段,对敏感数据 进行处理,保护用户隐私。
进行处理,提高处理效率。
内存计算
02
利用内存计算技术,将数据存储在内存中,减少磁盘I/O操作,
提高数据处理速度。
并行处理
03
将任务拆分成多个子任务,并行执行子任务,加快数据处理速
度。
数据孤岛问题与数据整合
数据接口标准化
制定统一的数据接口标准,规范不同系统之间的数据交换方式。
数据集成平台
建立数据集成平台,实现不同系统之间的数据整合和共享。
大数据技术的应用场景
• 总结词:大数据技术的应用场景包括商业智能、金融风控、医疗健康、 智慧城市和物联网等领域。
• 详细描述:大数据技术的应用场景非常广泛。在商业智能领域,企业利用大数据分析市场趋势、用户行为等,以制定更 精准的营销策略。在金融风控领域,大数据可以帮助银行、保险公司等机构识别和预防欺诈行为,降低风险。在医疗健 康领域,大数据可以用于疾病诊断、药物研发和患者管理等方面,提高医疗效率和精度。在智慧城市领域,大数据技术 可以用于城市规划、交通管理、环境保护等方面,提高城市治理水平。在物联网领域,大数据可以帮助企业更好地管理 和优化物联网设备的运行状态和性能。
大数据技术与应用培训课件ppt
数据查询与分析
数据查询
是指通过特定的查询语句或查询工具,从存储的数据中获取需要的信息。在大数据环境下,数据查询 需要考虑查询性能和查询效率,以满足快速响应和大规模数据查询的需求。
数据分析
是指利用统计分析、机器学习等方法对数据进行深入分析,挖掘数据的潜在价值和意义。数据分析是 大数据处理的核心环节,能够为决策提供科学依据和预测支持。
数据质量与准确性
01
02
03
数据清洗
对数据进行预处理,去除 异常值、缺失值和重复数 据,提高数据质量。
数据验证
通过数据校验规则,确保 数据的准确性和完整性。
数据溯源
建立数据溯源机制,追踪 数据来源和变化过程,提 高数据可信度。
数据处理性能优化
分布式处理
采用分布式计算框架,将 数据分散到多个节点进行 处理,提高处理效率。
是指利用数据库、日志、外部数据接口等方式收集分布在互 联网各个角落的数据。数据采集需要考虑到数据源的分布性 、数据格式的多样性以及数据采集的实时性等问题。
数据存储
是指将收集到的数据存储在特定的存储介质中,以便后续的 处理和分析。在大数据环境下,数据存储需要考虑存储空间 的利用率、数据的可扩展性和存储的安全可靠性等问题。
交通大数据
交通流量监测
通过大数据技术对城市道路、公共交通等交通工具的流量数据进行实 时监测和分析,了解交通拥堵状况和出行需求。
路径规划
基于大数据分析的路径规划算法,为用户提供更快捷、高效的出行路 线。
公共交通优化
通过对公共交通客流数据进行分析,优化公交线路、班次等资源配置 ,提高公共交通服务水平。
数据可视化
• 数据可视化是指将处理和分析后的数据以图形、表格、图表等 形式展示出来,以便更好地理解和解释数据。数据可视化能够 直观地展现数据的分布、趋势和关联性,有助于发现数据中的 规律和特征,为决策提供直观的依据。
大数据技术和应用(PPT 22张)
大数据的收集方式
物联网 云计算
移动互联网
车联网 手机、平板电脑、PC 遍布地球各个角落的各种各样的传感器
大数据的收集方式
物联网、云计算、移动互联网、车联网、手机、车联网、PC以及遍 布地球各个角落的各种各样的传感器,无一不是数据来源或者承载的方 式。
大数据领域的技术
Hadoop
Hadoop原本来自于谷歌一款名为MapReduce 的编程模型包。谷歌的MapReduce框架可以把一个 应用程序分解为许多并行计算指令,跨大量的计算 节点运行非常巨大的数据集。 Hadoop得以在大数据处理应用中广泛应用得益 于其自身在数据提取、变形和加载(ETL)方面上的天 然优势。Hadoop的分布式架构,将大数据处理引擎 尽可能的靠近存储,对例如像ETL这样的批处理操 作相对合适,因为类似这样操作的批处理结果可以 直接走向存储。Hadoop的MapReduce功能实现了 将单个任务打碎,并将碎片任务(Map)发送到多个 节点上,之后再以单个数据集的形式加载(Reduce)
其他大数据技术
Apache Drill
为了帮助企业 用户寻找更为有效、 加快Hadoop数据查
大数据的应用
大数据在风电领域的应用
首先,结合了大数据分析和天气建模技术的能源 电力系统能够提高风电的可靠性。以往对风资源的预 测不够精准,在风能无法贡献预期功力时,火电就要 作为后备电力。这样,电网对风电的依赖程度越高, 需要建设后备电站的成本就越高。另外,启用火电站 的就等于向环境中释放碳排。然而,在大数据分析的 帮助下,温度、气压、湿度、降雨量、风向和风力等 变量都得到充分考虑,对风电的预测更加精准。电网 调度人员可以提前做好调度安排,也有助于电网消纳 更多风torm的话,可能会是这样: 分布式实时计算系统。按照storm作者的说法,storm 对于实时计算的意义类似于hadoop对于批处理的意 义。 在淘宝,storm被广泛用来进行实时日志处理, 出现在实时统计、实时风控、实时推荐等场景中。一 般来说,我们从类kafka的metaQ或者基于hbase的 timetunnel中读取实时日志消息,经过一系列处理, 最终将处理结果写入到一个分布式存储中,提供给应 用程序访问。我们每天的实时消息量从几百万到几十 亿不等,数据总量达到TB级。对于我们来说,storm
大数据培训课件ppt
04
大数据应用场景
金融行业
风险评估与控制
金融监管
大数据可以帮助金融机构评估客户信 用风险、市场风险和操作风险,提高 风险预警和应对能力。
大数据培训课件
汇报人:可编辑 2023-12-24
contents
目录
• 大数据概述 • 大数据处理流程 • 大数据技术 • 大数据应用场景 • 大数据挑战与未来发展
01
大数据概述
大数据的定义
总结词
大数据是指在传统数据处理软件难以处理的庞大的、复杂的 数据集。
详细描述
大数据通常是指数据量巨大、类型多样、处理复杂的数据集 合,其规模和复杂度超出了传统数据处理软件的应对能力。 这些数据可能来自各种来源,包括社交媒体、企业数据库、 物联网设备等。
存储方案
关系型数据库、NoSQL数据 库、分布式文件系统等。
存储架构
集中式存储、分布式存储、云 存储等。
存储性能
数据压缩、数据去重、索引技 术等。
数据清洗
数据清洗
处理缺失值、异常值、重复值 ,保证数据质量。
缺失值处理
填充缺失值、删除缺失值、不 处理缺失值。
异常值处理
识别异常值、处理异常值。
重复值处理
02
大数据处理流程
数据采集
数据采集
数据源
采集工具
采集方法
定义数据源、选择采集 工具、确定采集方法、
实施采集。
包括数据库、API、社交 媒体、日志文件等。
大数据技术与应用培训课件ppt
03
大数据应用场景
电商行业应用
总结词
提升营销效果、个性化推荐、市场趋势预测
详细描述
大数据技术可以帮助电商企业分析用户行为、购买习惯和兴趣偏好,提升营销 效果和个性化推荐。同时,通过分析市场数据,预测市场趋势,帮助企业做出 更明智的决策。
金融行业应用
大数据技术与应用培 训课件
汇报人:可编辑
2023-12-25
目录
• 大数据概述 • 大数据处理技术 • 大数据应用场景 • 大数据挑战与解决方案 • 大数据未来展望
01
大数据概述
大数据的定义与特点
总结词
大数据是指数据量巨大、类型多样、处理复杂的数据集合。其特点包括数据量大、处理速度快 、价值密度低等。
02
大数据处理技术
数据采集与存储
数据采集
从各种数据源(如数据库、API、社交媒体等)获取原 始数据的过程。
数据存储
选择合适的存储解决方案(如关系型数据库、NoSQL 数据库、对象存储服务等)以安全、可靠地存储大数据 。
数据清洗与整合
01
数据清洗
去除重复、无效或错误的数据,确保数据质量。
02
数据整合
交通行业应用
要点一
总结词
智能交通管理、交通安全预警、出行路线规划
要点二
详细描述
大数据技术可以帮助交通行业实现智能交通管理,通过实 时分析交通流量和路况信息,优化交通信号灯的控制和道 路规划。同时,大数据技术还可以用于交通安全预警,通 过分析历史交通事故数据和实时路况信息,预测和预警潜 在的安全风险。此外,大数据技术还可以帮助出行者规划 最优的出行路线,提高出行效率和减少交通拥堵。
大数据模板培训课件(共 38张PPT)
改善 生活
穿戴的装备:根据睡眠模式、热量消耗、 时刻监控健康状况
提高医疗和研发:迅速解码DNA,结合海 迅速制定最优治疗方案
改善安全和执法:国家实时监控恐怖主义 防御网络攻击,警察利用社交、公共资源 配犯罪人员信息,捕捉罪犯
VS
用户行为
培亚马逊、S
用户消费
信用卡中心、
互联网大数据
用户地理位
简单罗列几个行业
挫折的名言 1、 我觉得坦途在前,人又何必因为一点小障碍而不走路呢?——鲁迅 2、 “不耻最后”。即使慢,弛而不息,纵会落后,纵会失败,但一定可以达到他所向的目标。——鲁迅 3、 故天将降大任于是人也,必先苦其心志,劳其筋骨,饿其体肤,空乏其身,行拂乱其所为,所以动心忍性,曾益其所不能。 战胜挫折的名言 1、卓越的人一大优点是:在不利与艰难的遭遇里百折不饶。——贝多芬 2、每一种挫折或不利的突变,是带着同样或较大的有利的种子。——爱默生 3、我以为挫折、磨难是锻炼意志、增强能力的好机会。——邹韬奋 4、斗争是掌握本领的学校,挫折是通向真理的桥梁。——歌德 激励自己的座右铭 1、 请记得,好朋友的定义是:你混的好,她打心眼里为你开心;你混的不好,她由衷的为你着急。 2、 要有梦想,即使遥远。 3、 努力爱一个人。付出,不一定会有收获;不付出,却一定不会有收获,不要奢望出现奇迹。 4、 承诺是一件美好的事情,但美好的东西往往不会变为现实。 工作座右铭 1、 不积跬步,无以至千里;不积小流,无以成江海。——《荀子劝学》 2、 反省不是去后悔,是为前进铺路。 3、 哭着流泪是怯懦的宣泄,笑着流泪是勇敢的宣言。 4、 路漫漫其修远兮,吾将上下而求索。——屈原《离骚》 5、 每一个成功者都有一个开始。勇于开始,才能找到成功的路。 国学经典名句 1、知我者,谓我心忧,不知我者,谓我何求。(诗经王风黍离) 2、人而无仪,不死何为。 (诗经风相鼠) 3、言者无罪,闻者足戒。 (诗经大序) 4、他山之石,可以攻玉。 (诗经小雅鹤鸣) 5、投我以桃,报之以李。 (诗经大雅抑) 6、天作孽,犹可违,自作孽,不可活。(尚书) 7、满招损,谦受益。 (尚书大禹谟) 青春座右铭 1、爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。 2、把手握紧,什么也没有;把手伸开,你就拥有了一切。 3、不在打击面前退缩,不在困难面前屈服,不在挫折面前低头,不在失败面前却步。勇敢前进! 4、当你能飞的时候就不要放弃飞。 5、当你能梦的时候就不要放弃梦。 激励向上人生格言 1、实现自己既定的目标,必须能耐得住寂寞单干。 2、世界会向那些有目标和远见的人让路。 3、为了不让生活留下遗憾和后悔,我们应该尽可能抓住一切改变生活的机会。 4、无论你觉得自己多么的不幸,永远有人比你更加不幸。 5、无论你觉得自己多么的了不起,也永远有人比你更强。 6、打击与挫败是成功的踏脚石,而不是绊脚石。 激励自己的名言 1、忍别人所不能忍的痛,吃别人所别人所不能吃的苦,是为了收获得不到的收获。 2、销售是从被别人拒绝开始的。 3、好咖啡要和朋友一起品尝,好机会也要和朋友一起分享。 4、生命之灯因热情而点燃,生命之舟因拼搏而前行。 5、拥有梦想只是一种智力,实现梦想才是一种能力。 6、有识有胆,有胆有识,知识与胆量是互相促进的。 7、体育锻炼可以(有时可以迅速)使人乐观(科学实验证明)。 8、勤奋,机会,乐观是成功的三要素。(注意:传统观念认为勤奋和机会是成功的要素,但是经过统计学和成功人士的分析得出,乐观是成功的第三要素) 9、自信是人格的核心。 10、获得的成功越大,就越令人高兴。
2024版年度大数据基础知识培训PPT课件
•大数据概述•大数据技术体系•大数据存储与管理•大数据处理技术目录•大数据应用实践•大数据挑战与未来发展01大数据概述大数据定义及特点定义特点萌芽期成熟期爆发期030201大数据发展历程大数据在金融领域应用广泛,如信用金融企业可以利用大数据进行市场分析、用户研究、产品优化等,提高企业竞企业大数据可以帮助医疗机构实现精准医疗、个性化治疗等,提高医疗质量和效率。
医疗教育政府可以利用大数据进行社会治理、城市规划、交通管理等,提高政府决政府0201030405大数据应用领域02大数据技术体系分布式文件系统Hadoop HDFS GlusterFS Ceph分布式数据库CassandraHBase高度可扩展的分布式库,适合处理大量写入操作和数据分片。
Redis分布式计算框架Hadoop MapReduce基于Hadoop的分布式计算框架,用于处理大规模数据集。
Spark快速、通用的大数据处理引擎,支持批处理、流处理和图处理等应用场景。
Flink高性能、高吞吐量的流处理框架,支持事件时间和状态管理。
Mahout MLlib TableauPower BI数据挖掘与分析工具03大数据存储与管理数据存储方式包括块存储、文件存储和对象存储等,分别适用于不同场景和需求。
分布式存储原理利用集群中多个节点的存储和计算能力,实现数据的分布式存储和访问。
数据存储技术如Hadoop 的HDFS 、Ceph 等,提供高可用、高可扩展的数据存储服务。
数据存储原理及方式数据清洗与预处理数据清洗定义01数据预处理步骤02数据清洗技术03数据安全与隐私保护数据安全概念确保数据在存储、传输和处理过程中的保密性、完整性和可用性。
隐私保护技术如数据脱敏、加密、匿名化等,保护个人隐私和数据安全。
数据安全法规与标准如GDPR、CCPA等,规定数据收集、处理和使用等方面的要求和规范。
04大数据处理技术1 2 3MapReduce编程模型Hadoop生态系统Spark批处理框架流处理基本概念Kafka流处理平台Flink流处理框架图计算基本概念Pregel图计算模型Giraph图计算框架机器学习技术机器学习基本概念TensorFlow机器学习框架Scikit-learn机器学习库05大数据应用实践互联网行业应用案例用户行为分析个性化推荐系统网络安全监测金融行业应用案例风险控制欺诈检测客户关系管理制造业应用案例智能制造供应链管理产品创新医疗健康智慧城市农业现代化利用大数据分析技术实现疾病预测、诊断辅助、药物研发等,提高医疗水平和患者满意度。
大数据培训课件ppt
详细描述
总结词:城市管理、政策制定、社会治理
详细描述
政府机构利用大数据分析城市运行状况、交通流量和环境质量,提高城市管理的科学性和精细化水平。
大数据可以为政策制定提供实证依据,评估政策实施效果,优化资源配置和提高公共服务的效率。
通过大数据分析社会舆情、犯罪率和公共安全事件等,有助于提高社会治理的针对性和有效性。
数据存储
去除重复、无效、错误数据,对缺失数据进行填充或删除,确保数据质量。
将不同来源的数据进行整合,形成统一的数据视图,便于后续的数据分析和挖掘。
数据整合
数据清洗
利用机器学习、统计学等方法,从大量数据中发现隐藏的模式和规律。
数据挖掘
运用可视化工具和统计分析方法,对数据进行深入分析,揭示数据背后的意义和趋势。
大数据可以帮助企业实时监控库存情况,预测未来需求,优化库存管理,避免缺货或积压现象。
总结词:提升营销效果、优化库存管理、个性化推荐
通过大数据分析疾病流行趋势和药物疗效,有助于药物研发和临床试验,加速新药上市进程。
大数据可以实时监测患者的生理指标和健康状况,实现远程监控和预警,提高医疗服务质量。
医疗机构通过大数据分析患者的症状、病史和治疗反应,为医生提供辅助诊断依据。
大数据培训课件
目录
contents
大数据概述大数据处理技术大数据应用案例大数据安全与隐私保护大数据未来发展展望
大数据概述
CATALOGUE
01
总结词
大数据是指数据量巨大、类型多样、处理复杂的数据集合,具有4V(体量、速度、多样性和价值)的特点。
要点一
要点二
详细描述
大数据通常指数据量达到TB级别以上的数据集合,这些数据可能来自各种不同的源,包括社交媒体、企业数据库、物联网设备等。大数据的特点可以概括为4V,即体量(Volume)、速度(Velocity)、多样(Variety)和价值(Value)。体量指数据的庞大数量,速度指数据处理的速度快,多样指数据的种类繁多,价值指从大数据中挖掘出的有用信息。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
班级:电信111
大数据简介
• 数据正在迅速膨胀并变大,它决定着企业的未来 发展,虽然很多企业可能并没有意识到数据爆炸 性增长带来问题的隐患,但是随着时间的推移, 人们将越来越多的意识到数据对企业的重要性。 • 哈佛大学社会学教授加里· 金说:“这是一场革命 ,庞大的数据资源使得各个领域开始了量化进程 ,无论学术界、商界还是政府,所有领域都将开 始这种进程。”
四个特征
• 数据量大(Volume) • 第一个特征是数据量大。大数据的起始计量单位至少是P(1000个T )、E(100万个T)或Z(10亿个T)。 • 类型繁多(Variety) • 第二个特征是数据类型繁多。包括网络日志、音频、视频、图片、地 理位置信息等等,多类型的数据对数据的处理能力提出了更高的要求 。 • 价值密度低(Value) • 第三个特征是数据价值密度相对较低。如随着物联网的广泛应用,信 息感知无处不在,信息海量,但价值密度较低,如何通过强大的机器 算法更迅速地完成数据的价值“提纯”,是大数据时代亟待解决的难 题。 • 速度快时效高(Velocity) • 第四个特征是处理速度快,时效性要求高。这是大数据区分于传统数 据挖掘最显著的特征。
ቤተ መጻሕፍቲ ባይዱ
大数据处理
• 周涛博士说:大数据处理数据时代理念的三大转变:要全体不要抽样 ,要效率不要绝对精确,要相关不要因果。 • 具体的大数据处理方法其实有很多,但是根据长时间的实践,此处总 结了一个基本的大数据处理流程。整个处理流程可以概括为四步,分 别是采集、导入和预处理、统计和分析,以及挖掘。 • 采集: • 大数据的采集是指利用多个数据库来接收发自客户端(Web、App或 者传感器形式等)的数据,并且用户可以通过这些数据库来进行简单 的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL 和Oracle等来存储每一笔事务数据,除此之外,Redis和MongoDB 这样的NoSQL数据库也常用于数据的采集。在大数据的采集过程中 ,其主要特点和挑战是并发数高,因为同时有可能会有成千上万的用 户来进行访问和操作,比如火车票售票网站和淘宝,它们并发的访问 量在峰值时达到上百万,所以需要在采集端部署大量数据库才能支撑 。并且如何在这些数据库之间进行负载均衡和分片的确是需要深入的 思考和设计。
大数据分析的五个基本方面
• 1. Analytic Visualizations(可视化分析) • 不管是对数据分析专家还是普通用户,数据可视化是数据 分析工具最基本的要求。可视化可以直观的展示数据,让 数据自己说话,让观众听到结果。 • 2. Data Mining Algorithms(数据挖掘算法) • 可视化是给人看的,数据挖掘就是给机器看的。集群、分 割、孤立点分析还有其他的算法让我们深入数据内部,挖 掘价值。这些算法不仅要处理大数据的量,也要处理大数 据的速度。 • 3. Predictive Analytic Capabilities(预测性分析能力) • 数据挖掘可以让分析员更好的理解数据,而预测性分析可 以让分析员根据可视化分析和数据挖掘的结果做出一些预 测性的判断。
大数据分析的五个基本方面
• 4. Semantic Engines(语义引擎) • 我们知道由于非结构化数据的多样性带来了数据分析的新 的挑战,我们需要一系列的工具去解析,提取,分析数据 。语义引擎需要被设计成能够从“文档”中智能提取信息 。 • 5. Data Quality and Master Data Management(数据 质量和数据管理) • 数据质量和数据管理是一些管理方面的最佳实践。通过标 准化的流程和工具对数据进行处理,可以保证一个预先定 义好的高质量的分析结果。
大数据处理
• • 导入/预处理: 虽然采集端本身会有很多数据库,但是如果要对这些海量数据进行有效的分 析,还是应该将这些来自前端的数据导入到一个集中的大型分布式数据库, 或者分布式存储集群,并且可以在导入基础上做一些简单的清洗和预处理工 作。导入与预处理过程的特点和挑战主要是导入的数据量大,每秒钟的导入 量经常会达到百兆,甚至千兆级别。 统计/分析: 统计与分析主要利用分布式数据库,或者分布式计算集群来对存储于其内的 海量数据进行普通的分析和分类汇总等,以满足大多数常见的分析需求,在 这方面,一些实时性需求会用到EMC 的GreenPlum、Oracle的Exadata,以 及基于MySQL的列式存储Infobright等,而一些批处理,或者基于半结构化 数据的需求可以使用Hadoop。统计与分析这部分的主要特点和挑战是分析 涉及的数据量大,其对系统资源,特别是I/O会有极大的占用。
大数据分析与处理方法介绍
• 众所周知,大数据已经不简简单单是数据大的事 实了,而最重要的现实是对大数据进行分析,只 有通过分析才能获取很多智能的,深入的,有价 值的信息。那么越来越多的应用涉及到大数据, 而这些大数据的属性,包括数量,速度,多样性 等等都是呈现了大数据不断增长的复杂性,所以 大数据的分析方法在大数据领域就显得尤为重要 ,可以说是决定最终信息是否有价值的决定性因 素。
大数据简介
• 随着云时代的来临,大数据(Big data)也吸引了越来越多的关注。 大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要 像MapReduce(分布式计算)一样的框架来向数十、数百或甚至数 千的电脑分配工作。 • 大数据到底有多大?一组名为“互联网上一天”的数据告诉我们,一 天之中,互联网产生的全部内容可以刻满1.68亿张DVD;发出的邮件 有2940亿封之多(相当于美国两年的纸质信件数量);发出的社区 帖子达200万个(相当于《时代》杂志770年的文字量);卖出的手 机为37.8万台…… • 这样的趋势会持续下去。我们现在还处于所谓“物联网”的最初级阶 段,而随着技术成熟,我们的设备、交通工具和迅速发展的“可穿戴 ”科技将能互相连接与沟通。科技的进步已经使创造、捕捉和管理信 息的成本降至2005年的六分之一,而从2005年起,用在硬件、软件 、人才及服务之上的商业投资也增长了整整50%,达到了4000亿美 元。