大数据技术及应用培训精品PPT课件
合集下载
大数据技术与应用培训课件
相关法律法规
除了《个人信息保护法》和《数据安全法》,我国还制定了其他相关法律法规,如《网络 安全法》、《电子商务法》等,为大数据安全与隐私保护提供了法律保障。
06
大数据技术发展趋势与挑战
大数据技术发展趋势
数据量爆炸式增长
随着互联网、物联网等技术的快 速发展,数据量呈现爆炸式增长 ,大数据技术应运而生。
02
大数据技术架构与关键技术
大数据技术架构
分布式存储架构
数据仓库架构
采用分布式文件系统或分布式数据库 ,实现数据的分布式存储和管理。
将分布式存储和计算架构进行整合, 形成数据仓库,实现数据的集中管理 和分析。
分布式计算架构
采用分布式计算框架,如Hadoop、 Spark等,实现数据的分布式处理和 分析。
精准地定位目标客户群体。
风险控制
利用大数据技术对金融交易行为 、市场动态等进行实时监控和分 析,以识别和预测潜在风险,保
障金融业务的安全稳定。
精准营销
基于客户画像和行为分析,为金 融客户提供个性化的产品推荐和 营销策略,提高营销效果和客户
满意度。
电商行业大数据应用案例
商品推荐
通过分析用户的浏览历史、购买记录等数据,为电商用户提供个 性化的商品推荐服务,提高用户购买率和满意度。
个性化治疗
基于患者的基因组、生活习惯等数据,为患者提供个性化的治疗方 案和服务,提高治疗效果和生活质量。
医疗资源优化
通过大数据技术对医疗资源使用情况进行实时监控和分析,以优化医 疗资源的配置和利用效率,提高医疗服务的质量和效率。
05
大数据安全与隐私保护
大数据安全概述
大数据安全定义
大数据安全是指保护大数据免受未经授权的访问、泄露、 破坏、修改或销毁。
除了《个人信息保护法》和《数据安全法》,我国还制定了其他相关法律法规,如《网络 安全法》、《电子商务法》等,为大数据安全与隐私保护提供了法律保障。
06
大数据技术发展趋势与挑战
大数据技术发展趋势
数据量爆炸式增长
随着互联网、物联网等技术的快 速发展,数据量呈现爆炸式增长 ,大数据技术应运而生。
02
大数据技术架构与关键技术
大数据技术架构
分布式存储架构
数据仓库架构
采用分布式文件系统或分布式数据库 ,实现数据的分布式存储和管理。
将分布式存储和计算架构进行整合, 形成数据仓库,实现数据的集中管理 和分析。
分布式计算架构
采用分布式计算框架,如Hadoop、 Spark等,实现数据的分布式处理和 分析。
精准地定位目标客户群体。
风险控制
利用大数据技术对金融交易行为 、市场动态等进行实时监控和分 析,以识别和预测潜在风险,保
障金融业务的安全稳定。
精准营销
基于客户画像和行为分析,为金 融客户提供个性化的产品推荐和 营销策略,提高营销效果和客户
满意度。
电商行业大数据应用案例
商品推荐
通过分析用户的浏览历史、购买记录等数据,为电商用户提供个 性化的商品推荐服务,提高用户购买率和满意度。
个性化治疗
基于患者的基因组、生活习惯等数据,为患者提供个性化的治疗方 案和服务,提高治疗效果和生活质量。
医疗资源优化
通过大数据技术对医疗资源使用情况进行实时监控和分析,以优化医 疗资源的配置和利用效率,提高医疗服务的质量和效率。
05
大数据安全与隐私保护
大数据安全概述
大数据安全定义
大数据安全是指保护大数据免受未经授权的访问、泄露、 破坏、修改或销毁。
大数据技术及应用简介PPT课件
41
随机样本划分的数据块分布
42
大数据逼近式集成学习计算框架
子集Ɗ 子集Ɗ 子集Ɗ
大数据 Ɗ
子集Ɗ
子集Ɗ 子集Ɗ 子集Ɗ
子集Ɗ
计算操作
大数据划分 子集抽样
子集Ɗ
子模型
返回计算新 一批子模型
子集Ɗ
子模型
集成模型Π
子集Ɗ
子模型
子集Ɗ
子模型
子模型计算
子模型加入 Π + {πj´}
集成模型测试 输出模型Π
区域智能数据中心
支持多种终端访问
区域智能数据中心
46
大数据分析平台集群
47
支撑海量数据处理 、
挖掘与分析运算
云计算引擎
Open API
提供数据挖掘平台 与第三方应用系统
的扩展接口
关键技术
数据处理分析流程图形 化
设计数据处理分析流程 自动执行资源调度及优
化 工作流引擎
大数据分析平台
提供海量复杂数据 处理、分析与挖掘
14
• 人工采集
数据采集 • 自动化采集
数据 采集
数据 存储
数据 处理
分析 挖掘
应用
15
中央磁盘存储
数据存储
云存储
数据 采集
数据 存储
数据 处理
分析 挖掘
应用
16
数据处理、转换和融合
数据 采集
数据 存储
数据 处理
分析 挖掘
应用
17
关联分析
数据分析与挖掘
分类模型
聚类分析
数据 采集
数据 存储
数据 处理
基础性战略资源,全面实施促进大数据发展行动,加快推动 数据资源共享开放和开发应用。建设国家大数据平台、数据 中心等基础设施。
随机样本划分的数据块分布
42
大数据逼近式集成学习计算框架
子集Ɗ 子集Ɗ 子集Ɗ
大数据 Ɗ
子集Ɗ
子集Ɗ 子集Ɗ 子集Ɗ
子集Ɗ
计算操作
大数据划分 子集抽样
子集Ɗ
子模型
返回计算新 一批子模型
子集Ɗ
子模型
集成模型Π
子集Ɗ
子模型
子集Ɗ
子模型
子模型计算
子模型加入 Π + {πj´}
集成模型测试 输出模型Π
区域智能数据中心
支持多种终端访问
区域智能数据中心
46
大数据分析平台集群
47
支撑海量数据处理 、
挖掘与分析运算
云计算引擎
Open API
提供数据挖掘平台 与第三方应用系统
的扩展接口
关键技术
数据处理分析流程图形 化
设计数据处理分析流程 自动执行资源调度及优
化 工作流引擎
大数据分析平台
提供海量复杂数据 处理、分析与挖掘
14
• 人工采集
数据采集 • 自动化采集
数据 采集
数据 存储
数据 处理
分析 挖掘
应用
15
中央磁盘存储
数据存储
云存储
数据 采集
数据 存储
数据 处理
分析 挖掘
应用
16
数据处理、转换和融合
数据 采集
数据 存储
数据 处理
分析 挖掘
应用
17
关联分析
数据分析与挖掘
分类模型
聚类分析
数据 采集
数据 存储
数据 处理
基础性战略资源,全面实施促进大数据发展行动,加快推动 数据资源共享开放和开发应用。建设国家大数据平台、数据 中心等基础设施。
大数据培训课件ppt
欧盟《通用数据保护条例》(GDPR)
01
对个人数据的收集、存储和使用进行严格规定,违反者将面临
重罚。
中国《网络安全法》
02
强调保护个人信息安全,对网络运营者、用户等各方责任和义
务进行明确规定。
美国《加州消费者隐私法》(CCPA)
03
赋予消费者对个人信息的更多权利,对企业的数据收集和使用
进行限制。
隐私保护技术与实践案例分享
利用大数据技术对交易数据、客户行为等进行分析,以识别和预防 金融欺诈和洗钱行为。
医疗行业大数据应用实践案例分享
精准医疗与个性化治疗
通过对大量医疗数据的挖掘和分析,为患者提供更精准、个性化 的治疗方案。
疾病预测与预防
通过对历史病例、流行病学数据等进行分析,预测疾病的发生和传 播趋势,为预防措施提供科学依据。
大数据培训课件
汇报人:可编辑
2023-12-22
CATALOGUE
目 录
• 大数据概述 • 大数据处理技术 • 大数据挖掘与分析 • 大数据安全与隐私保护 • 大数据应用实践与案例分析
01
CATALOGUE
大数据概述
大数据的定义与特点
定义
大数据是指数据量巨大、复杂度 高、处理速度快的数据集合。
医疗健康
利用大数据进行疾病预防、诊 断和治疗方案的优化。
商业智能
通过大数据分析,提高企业决 策效率和准确性。
智慧城市
通过大数据实现城市资源优化 配置,提高城市管理效率。
科研领域
大数据在科研领域的应用包括 数据挖掘、知识发现和科研协 作等方面。
02
CATALOGUE
大数据处理技术
数据采集与清洗
数据采集
大数据技术与应用培训课件
YARN
Spark是一个快速、通用的大规模数据处理引擎,提供了Java、Scala、Python和R等语言的API。
Spark概述
MLlib是Spark的机器学习库,提供了多种常见的机器学习算法和工具。
MLlib
弹性分布式数据集(RDD)是Spark的基本数据结构,提供了丰富的操作来处理和分析数据。
人才培养难题
大数据技术需要与业务场景深度融合才能发挥最大价值,如何实现技术与业务的融合是企业需要解决的问题。
技术与业务融合
未来企业将更加依赖数据进行决策,大数据技术将帮助企业实现更加精准的市场分析和用户画像。
数据驱动决策
人工智能与大数据融合
数据共享与开放
数据安全与隐私保护加强
人工智能技术的发展将进一步推动大数据技术的应用,两者将相互融合为企业创造更多商业价值。
RDD
Spark SQL是Spark用来处理结构化数据的模块,提供了SQL查询和DataFrame API两种方式。
Spark SQL
Spark Streaming是Spark提供的实时数据流处理模块,可以处理来自不同数据源的数据流。
Spark Streaming
02
01
03
04
05
Flink是一个流处理和批处理的开源平台,提供了高吞吐、低延迟的数据处理能力。
持续学习与实践
THANKS
感谢观看
制定量化指标
了解企业现有的数据资源,包括内部数据和外部数据,明确数据的来源、质量和可用性。
梳理数据资源
根据业务需求和目标,选择合适的大数据技术,如Hadoop、Spark、Flink等,以及相关的数据处理和分析工具。
技术选型
对选定的技术和工具进行评估,包括性能、稳定性、易用性、社区支持等方面,确保能够满足项目需求。
大数据技术原理与应用ppt课件
• 在 TaskTracker 端,以 map/reduce task 的数目作 为资源的表示过于简单,没有考虑到 cpu/ 内存的占
用情况。
• MapReduce 框架在有任何重要的或者不重要的变化
( 例如 bug 修复,性能提升和特性化 ) 时,都会强
制进行系统级别的升级更新。强制让分布式集群系统
的每一个用户端同时更新。
完整最新ppt
26
Hadoop YARN MR调度
完整最新ppt
27
Yarn vs MR 1.0
• MR1.0
–Job Tracker
• 资源管理 • 任务调度、监控
• Yarn
–ResourceManager
• 调度、启动每一个 Job 所属的 ApplicationMaster、另 外监控 ApplicationMaster
完整最新ppt
Cite from Dean and Ghemawat (OSDI 2004)
17
MapReduce并行处理的基本过程
6.主节点启动每个 Map节点执行程序, 每个map节点尽可能 读取本地或本机架 的数据进行计算
7.每个Map节点处理读取的 数据块,并做一些数据整 理工作(combining, sorting 等)并将中间结果存放在 本地;同时通知主节点计 算任务完成并告知中间结 果数据存储位置
• 其中一个开源实现即Hadoop MapReduce
完整最新ppt
15
MapReduce并行处理的基本过程
1.有一个待处理的大 数据,被划分为大 小相同的数据块(如 64MB),及与此相应 的用户作业程序
2.系统中有一个负责调 度的主节点(Master), 以及数据Map和Reduce 工作节点(Worker)
大数据培训课件(PPT 27页)
• 大数据的“大”还体现在企业的数据观突 破了传统的管理视野。
– 举例:商超的促销定价怎么做
处理大数据需要专门的技术方案
传统数据
• 数据库 • OLTP系统 • 中心式架构
大数据
• 数据仓库 • OLAP • 数据挖掘 • 云计算架构 • Hadoop
所以,马云说…
• “我们正从IT(信息技术)时代走向DT(数 据技术)时代”、“IT时代是制造,DT时 代是创造”。
理性面对 厘清思路
• 大数据来了?还是狼来了?大数据的本质 是“基于数据的决策”,摒弃“基于经验 的决策”,传统企业应当从客户端、产品 端、管理端寻找介入机会,切不可陷入技 术端陷阱。
– 举例:谷歌流感趋势预测饱受质疑
设立机构 转换职能
• 企业应当设立信息化部门,甚至设立大数 据开发管理部门,该部门不再是后勤支撑 角色,而是要总领性规划企业的数据战略。 支持通过数据整合颠覆公司低效的流程和 业务,信息化部门的职能从软硬件日常维 护转向助推商业逻辑重构。
我对大数据的理解
• 大数据是指超大规模的数据集合,往往还 具有类型多样、快速流转、和价值密度低 等特点,人们无法通过传统数据技术,以 可接受的代价来驾驭处理它。
两点认识
• 大数据的“大”不只是“数量大”,类型 多样、快速流转和价值密度低才是其有别 于传统“数据”概念的关键所在。
– 举例:NEC用脸部识别技术提升销售
• 2015.7 《国务院关于积极推进“互联网+”行动的指导意见》 • 2015.9 《国务院关于促进大数据发展行动纲要》 • 2015.5《安徽省人民政府办公厅关于促进电子政务协调发
展的实施意见》 • 2015.9 《安徽省委省政府关于加快调结构转方式促升级
– 举例:商超的促销定价怎么做
处理大数据需要专门的技术方案
传统数据
• 数据库 • OLTP系统 • 中心式架构
大数据
• 数据仓库 • OLAP • 数据挖掘 • 云计算架构 • Hadoop
所以,马云说…
• “我们正从IT(信息技术)时代走向DT(数 据技术)时代”、“IT时代是制造,DT时 代是创造”。
理性面对 厘清思路
• 大数据来了?还是狼来了?大数据的本质 是“基于数据的决策”,摒弃“基于经验 的决策”,传统企业应当从客户端、产品 端、管理端寻找介入机会,切不可陷入技 术端陷阱。
– 举例:谷歌流感趋势预测饱受质疑
设立机构 转换职能
• 企业应当设立信息化部门,甚至设立大数 据开发管理部门,该部门不再是后勤支撑 角色,而是要总领性规划企业的数据战略。 支持通过数据整合颠覆公司低效的流程和 业务,信息化部门的职能从软硬件日常维 护转向助推商业逻辑重构。
我对大数据的理解
• 大数据是指超大规模的数据集合,往往还 具有类型多样、快速流转、和价值密度低 等特点,人们无法通过传统数据技术,以 可接受的代价来驾驭处理它。
两点认识
• 大数据的“大”不只是“数量大”,类型 多样、快速流转和价值密度低才是其有别 于传统“数据”概念的关键所在。
– 举例:NEC用脸部识别技术提升销售
• 2015.7 《国务院关于积极推进“互联网+”行动的指导意见》 • 2015.9 《国务院关于促进大数据发展行动纲要》 • 2015.5《安徽省人民政府办公厅关于促进电子政务协调发
展的实施意见》 • 2015.9 《安徽省委省政府关于加快调结构转方式促升级
大数据培训课件(PPT2)精编版
。
医药研发
运用大数据技术对海量的医药研 发数据进行分析和挖掘,加速新 药研发进程,提高研发效率和成
功率。
教育行业:个性化教育与智能辅导
个性化教育
通过大数据分析,对学生的学习历史、能力水平、兴趣爱 好等信息进行深入挖掘和分析,为教师提供更加准确、个 性化的教学方案和建议,提高教学效果。
智能辅导
利用大数据技术,对学生的学习数据进行实时监测和分析 ,发现学生的学习问题和薄弱环节,提供针对性的智能辅 导和练习建议。
聚类分析
将数据分成不同的组或簇 ,使得同一组内的数据尽 可能相似,不同组间的数 据尽可能不同。
关联规则挖掘
寻找数据项之间的有趣联 系或规则。
序列模式挖掘
发现数据序列中的频繁模 式。
机器学习算法原理及应用
监督学习
利用已知输入和输出数据进行训练,得到一 个模型,用于预测新数据的输出。
强化学习
智能体通过与环境交互,学习如何采取最佳 行动以最大化累积奖励。
行为,及时预警和防范金融欺诈行为。
医疗行业:精准医疗与健康管理
精准医疗
通过大数据分析,对患者的基因 信息、生活习惯、病史等进行深 度挖掘和分析,为医生提供更加 准确、个性化的诊疗方案,提高
治疗效果。
健康管理
利用大数据技术,对个人的健康 数据进行实时监测和分析,提供 个性化的健康管理计划和建议, 帮助人们更好地管理自己的健康
无监督学习
在没有已知输出的情况下,从输入数据中学 习数据的内在结构和特征。
深度学习
利用神经网络模型,学习数据的复杂和抽象 特征表示。
深度学习在大数据分析中的应用
图像识别
通过训练深度神经网络,实现对图像内容的 自动识别和分类。
医药研发
运用大数据技术对海量的医药研 发数据进行分析和挖掘,加速新 药研发进程,提高研发效率和成
功率。
教育行业:个性化教育与智能辅导
个性化教育
通过大数据分析,对学生的学习历史、能力水平、兴趣爱 好等信息进行深入挖掘和分析,为教师提供更加准确、个 性化的教学方案和建议,提高教学效果。
智能辅导
利用大数据技术,对学生的学习数据进行实时监测和分析 ,发现学生的学习问题和薄弱环节,提供针对性的智能辅 导和练习建议。
聚类分析
将数据分成不同的组或簇 ,使得同一组内的数据尽 可能相似,不同组间的数 据尽可能不同。
关联规则挖掘
寻找数据项之间的有趣联 系或规则。
序列模式挖掘
发现数据序列中的频繁模 式。
机器学习算法原理及应用
监督学习
利用已知输入和输出数据进行训练,得到一 个模型,用于预测新数据的输出。
强化学习
智能体通过与环境交互,学习如何采取最佳 行动以最大化累积奖励。
行为,及时预警和防范金融欺诈行为。
医疗行业:精准医疗与健康管理
精准医疗
通过大数据分析,对患者的基因 信息、生活习惯、病史等进行深 度挖掘和分析,为医生提供更加 准确、个性化的诊疗方案,提高
治疗效果。
健康管理
利用大数据技术,对个人的健康 数据进行实时监测和分析,提供 个性化的健康管理计划和建议, 帮助人们更好地管理自己的健康
无监督学习
在没有已知输出的情况下,从输入数据中学 习数据的内在结构和特征。
深度学习
利用神经网络模型,学习数据的复杂和抽象 特征表示。
深度学习在大数据分析中的应用
图像识别
通过训练深度神经网络,实现对图像内容的 自动识别和分类。
大数据技术与应用基础第1章大数据概述精品PPT课件
数据,这部分数据属于结构化数据,可直接进行处理使用,为公司决策提供依据。
(2)互联网及移动互联网。 移动互联网促进更多用户从传统的数据使用者转变为数据生产者。
(3)物联网。 物联网技术的发展,使得视频、音频、RFID、M2M、物联网和传感
器等产生大量数据,其数据规模更巨大。
三、大数据的产生及数据类型
内容 导航
CONTENTS
大数据的发展
第1章 大数据概述
P1
大数据的概念及特性
大数据的产生及数据类型
大数据计算模式和系统 大数据的主要技术层面和技术内容
大数据的典型应用
四、信息安全的要素
第1章 大数据概述
P1
第1章 大数据概述
P1
THANtening, this course is expected to bring you value and help
内容 导航
CONTENTS
大数据的发展
第1章 大数据概述
P1
大数据的概念及特征
大数据的产生及数据类型
大数据计算模式和系统 大数据的主要技术层面和技术内容 大数据的典型应用
一、大数据的发展
大数据综述
Google上每天需要处理24PB的数据;
淘宝累计的交易数据量高达100PB;
每天会有2.88万个小时的视频上传到 Youtobe; 根据国际数据公司IDC的测算,到2020 年数字世界将产生35000EB的数据。
第1章 大数据概述
P1
大规模的行业/企业大数据已 远远超出了现有传统的计算 技术和信息系统的处理能力。 因此,寻求有效的大数据处 理技术、方法和手段已经成 为现实世界的迫切需求。
一、大数据的发展
大数据有多重要
(2)互联网及移动互联网。 移动互联网促进更多用户从传统的数据使用者转变为数据生产者。
(3)物联网。 物联网技术的发展,使得视频、音频、RFID、M2M、物联网和传感
器等产生大量数据,其数据规模更巨大。
三、大数据的产生及数据类型
内容 导航
CONTENTS
大数据的发展
第1章 大数据概述
P1
大数据的概念及特性
大数据的产生及数据类型
大数据计算模式和系统 大数据的主要技术层面和技术内容
大数据的典型应用
四、信息安全的要素
第1章 大数据概述
P1
第1章 大数据概述
P1
THANtening, this course is expected to bring you value and help
内容 导航
CONTENTS
大数据的发展
第1章 大数据概述
P1
大数据的概念及特征
大数据的产生及数据类型
大数据计算模式和系统 大数据的主要技术层面和技术内容 大数据的典型应用
一、大数据的发展
大数据综述
Google上每天需要处理24PB的数据;
淘宝累计的交易数据量高达100PB;
每天会有2.88万个小时的视频上传到 Youtobe; 根据国际数据公司IDC的测算,到2020 年数字世界将产生35000EB的数据。
第1章 大数据概述
P1
大规模的行业/企业大数据已 远远超出了现有传统的计算 技术和信息系统的处理能力。 因此,寻求有效的大数据处 理技术、方法和手段已经成 为现实世界的迫切需求。
一、大数据的发展
大数据有多重要
大数据技术及应用培训优质PPT
医疗健康与生命科学
01
医疗健康
利用大数据技术对医疗数据进行收集、整理、分析和挖掘,为医疗诊断
和治疗提供更准确、更高效的方案。
02
生命科学
通过对生命科学领域的数据进行分析和研究,可以揭示生命的奥秘和疾
病的发生发展规律,为药物研发和治疗提供新的思路和方法。
03
案例分析
例如,某医疗机构利用大数据技术对患者的电子病历和医疗影像数据进
技术更新换代迅速
大数据技术发展迅速,需要不断跟进新技术,对人才提出更高的要 求。
跨界合作与创新
大数据技术与其他领域的跨界合作将产生更多创新应用,为各行业带 来新的发展机遇。
持续学习与技能提升的重要性
适应技术发展
大数据技术发展迅速,持 续学习和技能提升是适应 技术发展的关键。
提高职业竞争力
具备不断更新的技能将提 高个人在职业市场的竞争 力,获得更好的职业发展 机会。
随着业务对数据处理速度的要求提高,实时数据处理将成为大数据 技术的重要发展方向。
人工智能与大数据融合
人工智能技术的发展将促进大数据技术的智能化,提高数据处理和 分析的准确性。
大数据技术的未来挑战与机遇
数据安全与隐私保护
随着大数据技术的广泛应用,数据安全和隐私保护成为亟待解决的 问题,需要加强相关技术和法律手段的保障。
01
数据量大:数据量通常以TB或PB为单位 。
03
02
特点
04
速度快:需要实时或准实时的处理速度。
多样性:数据来源广泛,类型多样,包括 结构化、半结构化和非结构化数据。
05
06
复杂性:数据可能包含噪声、不完整甚至 错误的信息。
大数据技术的发展历程
大数据分析与应用实践培训ppt
05
大数据安全与隐私保护
大数据安全挑战与风险
数据泄露风险 大数据的集中存储增加了数据泄露的风险,可能导致敏感信息被 非法获取和利用。
恶意攻击风险
大数据平台成为黑客攻击的重要目标,可能遭受网络攻击、病毒传 播等威胁。
数据失真风险
大数据的多样性和复杂性可能导致数据失真,影响数据分析结果的 准确性和可靠性。
流行病预测
基于历史疫情数据和人口流动数据,预测流行病的传播趋势和爆发时 间,为防控措施提供支持。
医疗资源优化
通过分析医疗资源的使用情况和管理数据,优化医疗资源配置和管理 ,提高医疗服务的效率和质量。
交通行业大数据应用
交通流量管理
通过分析道路交通流量数据和交通管理数据,优化交通信 号灯配时和交通疏导方案,缓解交通拥堵和提高道路通行 效率。
大数据分析与应用实 践培训
汇报人:可编辑
2023-12-23
contents
目录
• 大数据分析概述 • 大数据分析技术 • 大数据分析工具 • 大数据应用实践 • 大数据安全与隐私保护 • 大数据未来发展趋势与展望
01
大数据分析概述
大数据的定义与特征
01
02
03
定义
大数据是指数据量巨大、 类型多样、处理复杂的数 据集合。
用户行为分析
商品推荐
通过分析用户的浏览、购买、搜索等行为 数据,了解用户需求和喜好,优化产品推 荐和营销策略。
基于用户的行为数据和购买历史,为用户 推荐相关商品,提高转化率和用户满意度 。
供应链优化
营销效果评估
通过分析销售数据和库存数据,预测商品 需求,优化库存管理和物流配送,降低库 存成本和缺货率。
交通安全预警
大数据技术及应用培训优质PPT
行。
详细描述
交通大数据可以帮助政府和企业优 化交通路线、减少拥堵和提高出行 效率。
具体应用
智能交通信号控制、路线规划、共 享单车调度等。
社交大数据
总结词
社交媒体利用大数据技术进行用 户画像、舆情分析和社交关系挖
掘。
详细描述
社交大数据可以帮助企业了解用 户需求、舆情趋势和社交网络结 构,提高品牌知名度和市场占有
率。
具体应用
用户画像分析、品牌监测、社交 广告等。
PART 04
大数据技术挑战与解决方 案
REPORTING
数据安全与隐私保护
数据加密
采用高级加密算法对数据进行加密,确保数据在 传输和存储过程中的安全性。
访问控制
实施严格的访问控制策略,限制对数据的访问权 限,防止未经授权的访问和泄露。
隐私保护
采用匿名化、去标识化等技术手段,对敏感数据 进行处理,保护用户隐私。
进行处理,提高处理效率。
内存计算
02
利用内存计算技术,将数据存储在内存中,减少磁盘I/O操作,
提高数据处理速度。
并行处理
03
将任务拆分成多个子任务,并行执行子任务,加快数据处理速
度。
数据孤岛问题与数据整合
数据接口标准化
制定统一的数据接口标准,规范不同系统之间的数据交换方式。
数据集成平台
建立数据集成平台,实现不同系统之间的数据整合和共享。
大数据技术的应用场景
• 总结词:大数据技术的应用场景包括商业智能、金融风控、医疗健康、 智慧城市和物联网等领域。
• 详细描述:大数据技术的应用场景非常广泛。在商业智能领域,企业利用大数据分析市场趋势、用户行为等,以制定更 精准的营销策略。在金融风控领域,大数据可以帮助银行、保险公司等机构识别和预防欺诈行为,降低风险。在医疗健 康领域,大数据可以用于疾病诊断、药物研发和患者管理等方面,提高医疗效率和精度。在智慧城市领域,大数据技术 可以用于城市规划、交通管理、环境保护等方面,提高城市治理水平。在物联网领域,大数据可以帮助企业更好地管理 和优化物联网设备的运行状态和性能。
详细描述
交通大数据可以帮助政府和企业优 化交通路线、减少拥堵和提高出行 效率。
具体应用
智能交通信号控制、路线规划、共 享单车调度等。
社交大数据
总结词
社交媒体利用大数据技术进行用 户画像、舆情分析和社交关系挖
掘。
详细描述
社交大数据可以帮助企业了解用 户需求、舆情趋势和社交网络结 构,提高品牌知名度和市场占有
率。
具体应用
用户画像分析、品牌监测、社交 广告等。
PART 04
大数据技术挑战与解决方 案
REPORTING
数据安全与隐私保护
数据加密
采用高级加密算法对数据进行加密,确保数据在 传输和存储过程中的安全性。
访问控制
实施严格的访问控制策略,限制对数据的访问权 限,防止未经授权的访问和泄露。
隐私保护
采用匿名化、去标识化等技术手段,对敏感数据 进行处理,保护用户隐私。
进行处理,提高处理效率。
内存计算
02
利用内存计算技术,将数据存储在内存中,减少磁盘I/O操作,
提高数据处理速度。
并行处理
03
将任务拆分成多个子任务,并行执行子任务,加快数据处理速
度。
数据孤岛问题与数据整合
数据接口标准化
制定统一的数据接口标准,规范不同系统之间的数据交换方式。
数据集成平台
建立数据集成平台,实现不同系统之间的数据整合和共享。
大数据技术的应用场景
• 总结词:大数据技术的应用场景包括商业智能、金融风控、医疗健康、 智慧城市和物联网等领域。
• 详细描述:大数据技术的应用场景非常广泛。在商业智能领域,企业利用大数据分析市场趋势、用户行为等,以制定更 精准的营销策略。在金融风控领域,大数据可以帮助银行、保险公司等机构识别和预防欺诈行为,降低风险。在医疗健 康领域,大数据可以用于疾病诊断、药物研发和患者管理等方面,提高医疗效率和精度。在智慧城市领域,大数据技术 可以用于城市规划、交通管理、环境保护等方面,提高城市治理水平。在物联网领域,大数据可以帮助企业更好地管理 和优化物联网设备的运行状态和性能。
大数据技术与应用培训课件ppt
数据查询与分析
数据查询
是指通过特定的查询语句或查询工具,从存储的数据中获取需要的信息。在大数据环境下,数据查询 需要考虑查询性能和查询效率,以满足快速响应和大规模数据查询的需求。
数据分析
是指利用统计分析、机器学习等方法对数据进行深入分析,挖掘数据的潜在价值和意义。数据分析是 大数据处理的核心环节,能够为决策提供科学依据和预测支持。
数据质量与准确性
01
02
03
数据清洗
对数据进行预处理,去除 异常值、缺失值和重复数 据,提高数据质量。
数据验证
通过数据校验规则,确保 数据的准确性和完整性。
数据溯源
建立数据溯源机制,追踪 数据来源和变化过程,提 高数据可信度。
数据处理性能优化
分布式处理
采用分布式计算框架,将 数据分散到多个节点进行 处理,提高处理效率。
是指利用数据库、日志、外部数据接口等方式收集分布在互 联网各个角落的数据。数据采集需要考虑到数据源的分布性 、数据格式的多样性以及数据采集的实时性等问题。
数据存储
是指将收集到的数据存储在特定的存储介质中,以便后续的 处理和分析。在大数据环境下,数据存储需要考虑存储空间 的利用率、数据的可扩展性和存储的安全可靠性等问题。
交通大数据
交通流量监测
通过大数据技术对城市道路、公共交通等交通工具的流量数据进行实 时监测和分析,了解交通拥堵状况和出行需求。
路径规划
基于大数据分析的路径规划算法,为用户提供更快捷、高效的出行路 线。
公共交通优化
通过对公共交通客流数据进行分析,优化公交线路、班次等资源配置 ,提高公共交通服务水平。
数据可视化
• 数据可视化是指将处理和分析后的数据以图形、表格、图表等 形式展示出来,以便更好地理解和解释数据。数据可视化能够 直观地展现数据的分布、趋势和关联性,有助于发现数据中的 规律和特征,为决策提供直观的依据。
大数据技术和应用(PPT 22张)
大数据的收集方式
物联网 云计算
移动互联网
车联网 手机、平板电脑、PC 遍布地球各个角落的各种各样的传感器
大数据的收集方式
物联网、云计算、移动互联网、车联网、手机、车联网、PC以及遍 布地球各个角落的各种各样的传感器,无一不是数据来源或者承载的方 式。
大数据领域的技术
Hadoop
Hadoop原本来自于谷歌一款名为MapReduce 的编程模型包。谷歌的MapReduce框架可以把一个 应用程序分解为许多并行计算指令,跨大量的计算 节点运行非常巨大的数据集。 Hadoop得以在大数据处理应用中广泛应用得益 于其自身在数据提取、变形和加载(ETL)方面上的天 然优势。Hadoop的分布式架构,将大数据处理引擎 尽可能的靠近存储,对例如像ETL这样的批处理操 作相对合适,因为类似这样操作的批处理结果可以 直接走向存储。Hadoop的MapReduce功能实现了 将单个任务打碎,并将碎片任务(Map)发送到多个 节点上,之后再以单个数据集的形式加载(Reduce)
其他大数据技术
Apache Drill
为了帮助企业 用户寻找更为有效、 加快Hadoop数据查
大数据的应用
大数据在风电领域的应用
首先,结合了大数据分析和天气建模技术的能源 电力系统能够提高风电的可靠性。以往对风资源的预 测不够精准,在风能无法贡献预期功力时,火电就要 作为后备电力。这样,电网对风电的依赖程度越高, 需要建设后备电站的成本就越高。另外,启用火电站 的就等于向环境中释放碳排。然而,在大数据分析的 帮助下,温度、气压、湿度、降雨量、风向和风力等 变量都得到充分考虑,对风电的预测更加精准。电网 调度人员可以提前做好调度安排,也有助于电网消纳 更多风torm的话,可能会是这样: 分布式实时计算系统。按照storm作者的说法,storm 对于实时计算的意义类似于hadoop对于批处理的意 义。 在淘宝,storm被广泛用来进行实时日志处理, 出现在实时统计、实时风控、实时推荐等场景中。一 般来说,我们从类kafka的metaQ或者基于hbase的 timetunnel中读取实时日志消息,经过一系列处理, 最终将处理结果写入到一个分布式存储中,提供给应 用程序访问。我们每天的实时消息量从几百万到几十 亿不等,数据总量达到TB级。对于我们来说,storm
大数据技术与应用培训课件ppt
创建定制的报告,以便快速了解 数据的关键指标和趋势。
03
大数据应用场景
电商行业应用
总结词
提升营销效果、个性化推荐、市场趋势预测
详细描述
大数据技术可以帮助电商企业分析用户行为、购买习惯和兴趣偏好,提升营销 效果和个性化推荐。同时,通过分析市场数据,预测市场趋势,帮助企业做出 更明智的决策。
金融行业应用
大数据技术与应用培 训课件
汇报人:可编辑
2023-12-25
目录
• 大数据概述 • 大数据处理技术 • 大数据应用场景 • 大数据挑战与解决方案 • 大数据未来展望
01
大数据概述
大数据的定义与特点
总结词
大数据是指数据量巨大、类型多样、处理复杂的数据集合。其特点包括数据量大、处理速度快 、价值密度低等。
02
大数据处理技术
数据采集与存储
数据采集
从各种数据源(如数据库、API、社交媒体等)获取原 始数据的过程。
数据存储
选择合适的存储解决方案(如关系型数据库、NoSQL 数据库、对象存储服务等)以安全、可靠地存储大数据 。
数据清洗与整合
01
数据清洗
去除重复、无效或错误的数据,确保数据质量。
02
数据整合
交通行业应用
要点一
总结词
智能交通管理、交通安全预警、出行路线规划
要点二
详细描述
大数据技术可以帮助交通行业实现智能交通管理,通过实 时分析交通流量和路况信息,优化交通信号灯的控制和道 路规划。同时,大数据技术还可以用于交通安全预警,通 过分析历史交通事故数据和实时路况信息,预测和预警潜 在的安全风险。此外,大数据技术还可以帮助出行者规划 最优的出行路线,提高出行效率和减少交通拥堵。
03
大数据应用场景
电商行业应用
总结词
提升营销效果、个性化推荐、市场趋势预测
详细描述
大数据技术可以帮助电商企业分析用户行为、购买习惯和兴趣偏好,提升营销 效果和个性化推荐。同时,通过分析市场数据,预测市场趋势,帮助企业做出 更明智的决策。
金融行业应用
大数据技术与应用培 训课件
汇报人:可编辑
2023-12-25
目录
• 大数据概述 • 大数据处理技术 • 大数据应用场景 • 大数据挑战与解决方案 • 大数据未来展望
01
大数据概述
大数据的定义与特点
总结词
大数据是指数据量巨大、类型多样、处理复杂的数据集合。其特点包括数据量大、处理速度快 、价值密度低等。
02
大数据处理技术
数据采集与存储
数据采集
从各种数据源(如数据库、API、社交媒体等)获取原 始数据的过程。
数据存储
选择合适的存储解决方案(如关系型数据库、NoSQL 数据库、对象存储服务等)以安全、可靠地存储大数据 。
数据清洗与整合
01
数据清洗
去除重复、无效或错误的数据,确保数据质量。
02
数据整合
交通行业应用
要点一
总结词
智能交通管理、交通安全预警、出行路线规划
要点二
详细描述
大数据技术可以帮助交通行业实现智能交通管理,通过实 时分析交通流量和路况信息,优化交通信号灯的控制和道 路规划。同时,大数据技术还可以用于交通安全预警,通 过分析历史交通事故数据和实时路况信息,预测和预警潜 在的安全风险。此外,大数据技术还可以帮助出行者规划 最优的出行路线,提高出行效率和减少交通拥堵。
大数据培训课件ppt
总结词:辅助诊断、病患监测、药物研发
详细描述
总结词:城市管理、政策制定、社会治理
详细描述
政府机构利用大数据分析城市运行状况、交通流量和环境质量,提高城市管理的科学性和精细化水平。
大数据可以为政策制定提供实证依据,评估政策实施效果,优化资源配置和提高公共服务的效率。
通过大数据分析社会舆情、犯罪率和公共安全事件等,有助于提高社会治理的针对性和有效性。
数据存储
去除重复、无效、错误数据,对缺失数据进行填充或删除,确保数据质量。
将不同来源的数据进行整合,形成统一的数据视图,便于后续的数据分析和挖掘。
数据整合
数据清洗
利用机器学习、统计学等方法,从大量数据中发现隐藏的模式和规律。
数据挖掘
运用可视化工具和统计分析方法,对数据进行深入分析,揭示数据背后的意义和趋势。
大数据可以帮助企业实时监控库存情况,预测未来需求,优化库存管理,避免缺货或积压现象。
总结词:提升营销效果、优化库存管理、个性化推荐
通过大数据分析疾病流行趋势和药物疗效,有助于药物研发和临床试验,加速新药上市进程。
大数据可以实时监测患者的生理指标和健康状况,实现远程监控和预警,提高医疗服务质量。
医疗机构通过大数据分析患者的症状、病史和治疗反应,为医生提供辅助诊断依据。
大数据培训课件
目录
contents
大数据概述大数据处理技术大数据应用案例大数据安全与隐私保护大数据未来发展展望
大数据概述
CATALOGUE
01
总结词
大数据是指数据量巨大、类型多样、处理复杂的数据集合,具有4V(体量、速度、多样性和价值)的特点。
要点一
要点二
详细描述
大数据通常指数据量达到TB级别以上的数据集合,这些数据可能来自各种不同的源,包括社交媒体、企业数据库、物联网设备等。大数据的特点可以概括为4V,即体量(Volume)、速度(Velocity)、多样(Variety)和价值(Value)。体量指数据的庞大数量,速度指数据处理的速度快,多样指数据的种类繁多,价值指从大数据中挖掘出的有用信息。
详细描述
总结词:城市管理、政策制定、社会治理
详细描述
政府机构利用大数据分析城市运行状况、交通流量和环境质量,提高城市管理的科学性和精细化水平。
大数据可以为政策制定提供实证依据,评估政策实施效果,优化资源配置和提高公共服务的效率。
通过大数据分析社会舆情、犯罪率和公共安全事件等,有助于提高社会治理的针对性和有效性。
数据存储
去除重复、无效、错误数据,对缺失数据进行填充或删除,确保数据质量。
将不同来源的数据进行整合,形成统一的数据视图,便于后续的数据分析和挖掘。
数据整合
数据清洗
利用机器学习、统计学等方法,从大量数据中发现隐藏的模式和规律。
数据挖掘
运用可视化工具和统计分析方法,对数据进行深入分析,揭示数据背后的意义和趋势。
大数据可以帮助企业实时监控库存情况,预测未来需求,优化库存管理,避免缺货或积压现象。
总结词:提升营销效果、优化库存管理、个性化推荐
通过大数据分析疾病流行趋势和药物疗效,有助于药物研发和临床试验,加速新药上市进程。
大数据可以实时监测患者的生理指标和健康状况,实现远程监控和预警,提高医疗服务质量。
医疗机构通过大数据分析患者的症状、病史和治疗反应,为医生提供辅助诊断依据。
大数据培训课件
目录
contents
大数据概述大数据处理技术大数据应用案例大数据安全与隐私保护大数据未来发展展望
大数据概述
CATALOGUE
01
总结词
大数据是指数据量巨大、类型多样、处理复杂的数据集合,具有4V(体量、速度、多样性和价值)的特点。
要点一
要点二
详细描述
大数据通常指数据量达到TB级别以上的数据集合,这些数据可能来自各种不同的源,包括社交媒体、企业数据库、物联网设备等。大数据的特点可以概括为4V,即体量(Volume)、速度(Velocity)、多样(Variety)和价值(Value)。体量指数据的庞大数量,速度指数据处理的速度快,多样指数据的种类繁多,价值指从大数据中挖掘出的有用信息。
大数据技术及应用PPT课件
.
17
大数据技术介绍
何为大数据
技术能力视角
大数据指的是规模超过现有数据库工具获取、 存储、管理和分析能力的数据集额,并同时强 调并不是超过某个特定数量级的数据集才是大 数据
大数据内涵视角
大数据是具备海量、高速、多样、可变等特征 的多维数据集,需要通过可伸缩的体系结构实 现高效的存储、处理和分析。
.
• 实时数据流处理的要求,是区别大数 据引用和传统数据仓库技术,BI技术 的关键差别之一;
• 1s 是临界点,对于大数据应用而言, 必须要在1秒钟内形成答案,否则处 理结果就是过时和无效的;
.
30
中央政府对大数据的重视程度
习近平 政府管理不仅要讲究策略,还要讲究手段,比如大数据技术
的应用,2014年3月8日 “大数据”首次写入政府工作报告
该是一种什么样的体验。(其实你的信息,什么时候想要什么东西都
已经被商户预测啦,已经提前将商品运往目的地。甚至你路过的广告
屏,视频网站,包括使用的APP都将引导你消费。)
3.数据足够大就称呼其为大数据吗?(其实不然,关键在于其中承载
的信息。数据处理之后才可以称之为信息或者叫做知识。其实大数据
可以这样理解,当数据增长速度超过了计算机处理能力的增长速度,
大量的不相关信息;对未来趋势与模式的可预测分析;深度 复杂分析(机器学习、人工智能Vs传统商务智能)
实时分析而非批量式分析;数据输入、处理与丢弃; 立竿见影而非事后见效
.
26
大数据技术
Volume
1Bity
1K B
1 M B
1G B
1T B
1P B
1E B
1Z B
1Y B
1PB相当于50%的全美学术研究图书馆藏书信息内容 5EB相当于至今全世界人类所讲过的话语 1ZB如同全世界海滩上的沙子数量总和 1YB相当于7000位人类体内的微细胞总和
大数据技术原理与应用精品PPT课件
•FsImage文件没有记录块存储在哪个数据节点,而是由名 称节点把这些映射保留在内存中。当数据节点加入HDFS 集群时,数据节点会把自己所包含的块列表告知给名称节 点,此后会定期执行这种告知操作,以确保名称节点的块 映射是最新的。
3.3.2名称节点和数据节点
EditLog文件 •因为FsImage文件一般都很大(GB级别的很常见),如 果所有的更新操作都往FsImage文件中添加,这样会导致 系统运行的十分缓慢。因此,通常先往EditLog文件里面写。 由于EditLog 要小很多,因此就不会这样。每次执行写操 作之后,且在向客户端发送成功代码之前, EditLog文件 都需要同步更新。
群,具有很好的可伸缩性
●安全 含义:保障系统的安全性 HDFS实现情况:安全性较弱
3.2 HDFS简介
总体而言,HDFS要实现以下目标: ●容错 ●流式数据读写 ●能存储大数据集 ●强大的跨平台兼容性
HDFS在实现上述优良特性的同时,也使得自身具有一些应用局限性,主 ●不支持多用户写入及任意修改文件
●并发控制 含义:客户端对于文件的读写不应该影响其他客户端
对同一个文件的读写 HDFS实现情况:机制非常简单,任何时间都只允许有
一个程序在写入某个文件
3.1.3分布式文件系统的设计需求
●文件复制(容错机制) 含义:一个文件可以拥有在不同位置的多个副本 HDFS实现情况:HDFS采用了多副本机制
●硬件和操作系统的异构性(可伸缩性) 含义:可以在不同的操作系统和计算机上实现同
•名称节点起来之后,HDFS中的更新操作会重新写到 EditLog文件中。
3.3.2名称节点和数据节点
名称节点的启动
•在名称节点启动的时候,它会将FsImage文件中的内容 加载到内存中,之后再执行EditLog文件中的各项操作, 使得内存中的元数据和实际的同步,存在内存中的元数 据支持客户端的读操作。
3.3.2名称节点和数据节点
EditLog文件 •因为FsImage文件一般都很大(GB级别的很常见),如 果所有的更新操作都往FsImage文件中添加,这样会导致 系统运行的十分缓慢。因此,通常先往EditLog文件里面写。 由于EditLog 要小很多,因此就不会这样。每次执行写操 作之后,且在向客户端发送成功代码之前, EditLog文件 都需要同步更新。
群,具有很好的可伸缩性
●安全 含义:保障系统的安全性 HDFS实现情况:安全性较弱
3.2 HDFS简介
总体而言,HDFS要实现以下目标: ●容错 ●流式数据读写 ●能存储大数据集 ●强大的跨平台兼容性
HDFS在实现上述优良特性的同时,也使得自身具有一些应用局限性,主 ●不支持多用户写入及任意修改文件
●并发控制 含义:客户端对于文件的读写不应该影响其他客户端
对同一个文件的读写 HDFS实现情况:机制非常简单,任何时间都只允许有
一个程序在写入某个文件
3.1.3分布式文件系统的设计需求
●文件复制(容错机制) 含义:一个文件可以拥有在不同位置的多个副本 HDFS实现情况:HDFS采用了多副本机制
●硬件和操作系统的异构性(可伸缩性) 含义:可以在不同的操作系统和计算机上实现同
•名称节点起来之后,HDFS中的更新操作会重新写到 EditLog文件中。
3.3.2名称节点和数据节点
名称节点的启动
•在名称节点启动的时候,它会将FsImage文件中的内容 加载到内存中,之后再执行EditLog文件中的各项操作, 使得内存中的元数据和实际的同步,存在内存中的元数 据支持客户端的读操作。
大数据技术与应用培训课件ppt精品模板分享(带动画)
用户画像:通过数据挖掘,对电商平台的用户进行精准画像,包括性别、年龄、地域、职业 等特征
购买偏好:分析用户的购买偏好,包括商品类别、品牌、价格等,为电商平台提供个性化推 荐和定制化营销方案
浏览行为:通过对用户浏览行为的监测和分析,了解用户的兴趣和需求,优化商品陈列和页 面设计
营销策略:根据用户行为数据,制定针对性的营销策略,提高用户转化率和订单价值
什么是数据可视化
可视化类型:表格、 图表、地图等
可视化工具: Tableau、 PowerBI、D3.js 等
可视化最佳实践: 明确目的、选择合 适的图表、优化布 局、色彩搭配等
提升决策效率
助力企业升级 转型
增强业务创新 能力
实现数据驱动 的精准决策
发展趋势:持续增长,影响范围更广,与各行业融合 技术创新:人工智能、区块链、物联网等技术的融合,推动大数据发展 应用前景:智慧城市、金融风控、医疗健康等领域,大数据将发挥更大作用 挑战与问题:数据安全、隐私保护、技术人才短缺等问题需要解决
分布式存储系 统:将数据分 散存储在多个 节点上,提高 存储容量和可
靠性
数据仓库:将 存储的数据进 行整合、清洗 和加工,为数 据分析提供支
持
数据存储与管理 数据预处理 分布式计算 大数据挖掘
数据挖掘:从大量数据中提取有用的信息和知识 可视化技术:将数据以图形、图像、动画等方式呈现,便于理解和分析 大数据挖掘与可视化应用:为企业提供决策支持、市场分析、风险评估等服务 大 数 据 挖 掘 与 可 视 化 工 具 : 如 Ta b l e a u 、 Po w e r B I 等 , 提 高 工 作 效 率 和 成 果 质 量
了解自身背景和需求,明确学习目标和方向。 结合实际工作场景,选择合适的大数据技术和工具,提高工作效率和质量。 通过实践操作,加深对大数据技术与应用的理解和掌握,提高解决问题的能力。 不断学习和更新知识,跟上大数据技术和应用的最新发展,提升自身竞争力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大数据时代
大数据时代的思维变革
“更多”-不是随机样本,而是全体数据
当数据处理技术已经发生翻天覆地的变化时,在大数据时代进行抽样分 析就像在汽车时代骑马一样。一切都改变了,我们需要的是所有的数据, “样本=总体”。
➢让数据“发声” ➢小数据时代的随机采样,最少的数据获得最多的信息 ➢全数据模式,样本=总体
大数据时代的商业变革
“数据化”-一切皆可“量化”
大数据发展的核心动力来源于人类测量、记录和分析世界的渴望。信息 技术变革随处可见,但是如今信息技术变革的重点在“T”(技术)上,而 不是在“I”(信息)上。现在,我们是时候把聚光灯打向“I”,开始关注信 息本身了。
➢数据,从最不可能的地方提取出来 ➢数据化,不是数字化 ➢量化一切,数据化的核心 ➢当文字变成数据 ➢当方位变成数据 ➢当沟通成为数据 ➢一切事物的数据化
•大数据,变革生活 •大数据,变革商业 •大数据,变革思维 •大数据,开启重大的时代转型 •预测是大数据的核心
大数据时代
第一个故事,百货公司知道女孩怀孕 第二个故事,搜索热词里的商机 第三个故事,阿里知道谁需要贷款 第四个故事,中移动挽留流失客户 第五个故事:每天,我们借助大数据完成微信上的互动 第六个故事:大数据解救每一位“路盲” 第七个故事:大数据协助大闸蟹养殖
大数据时代
通过数据挖掘,使工作人员从每天长达数千小时视频违章信息筛选工作中脱 离出来,将原来需要数十小时的视频审核工作,缩短为几个小时完成,大大提高了 工作效率。且可以有效避免人为舞弊的情况。
违章类型:吸烟 违章时间:2014-01-16 违章视频时间:10:57---10:58 违章车辆:陕A XXXXX 违章人:张XX
大数据时代
国家电网大数据案例,基于PMS(电力生产系统)系统 数据,构建基于词云图分析的文本信息挖掘及可视化实现 对电网设备的家族缺陷信息的快速分析。
大数据时代
信息查询: 设备类型 断路器
设备型号 LW25-126
高压开关设备缺陷统计分析结果
一次系统-其他 二次系统-其他
厂家
设备类型
设备型号
投运日期
大数据时代
大数据时代的商业变革
“价值”-“取之不尽,用之不竭”的数据创新
数据就像一个神奇的钻石矿,当它的首要价值被发掘后仍能不断给予。 它的真实价值就像漂浮在海洋中的冰山,第一眼只能看到冰山的一角,而绝 大部分都隐藏在表面之下。
➢数据创新1:数据的再利用 ➢数据创新2:重组数据 ➢数据创新3:可扩展数据 ➢数据创新4:数据的折旧值 ➢数据创新5:数据废气 ➢数据创新6:开放数据 ➢给数据估值
大数据时代
• 数据:2014年10月纳税人A申报营业额为10万。 • 信息: 2014年10月纳税人A申报营业额比去年同
期减少了25 %。 • 知识:原因是纳税人A在华东地区的渠道销售不利,
或其产品B进入了衰退期,还是公司整体营销活动 落后,竞争者强力促销导致?或是其它原因。针对 这一问题公司应对的策略是什么? • 智慧:应对的行动方案可能有多种,但(战略)选择 哪个靠智慧。行动则又会产生新的交易数据。
大数据技术及应用
目录
1 大数据时代 2 大数据技术 3 大数据应用
大数据时代
大数据时代
生活、工作与思维的大变革
Living, working and thinking big changes
一场生活、工作与思维的大变革
大数据开启了一次重大的时代转型。就想望远镜让我们能够感受宇宙,显微 镜让我们能够观测微生物一样,大数据正在改变我们的生活以及理解世界的方式, 成为新发明和新服务的源泉,而更多的改变正蓄势待发……
➢大数据价值的3大构成 ➢大数据掌控公司 ➢大数据技术公司 ➢大数据思维公司和个人 ➢全新的数据中间商 ➢专家的消亡与数据科学家的崛起 ➢大数据,决定企业的竞争力
大数据时代
大数据时代的管理变革
“风险”-让数据主宰一切的隐忧
额定电流
……
630A
……
630A
…...
630A
......
……
……
流程应用
详细记录信息
检修计划流程
大修技改流程
厂家设计改进 流程
物资采购流程
供应商评估流 程
6
大数据时代
西安公交集团大数据案例 公交司机驾驶行为直接影响到乘客的安全,如全国公交一样,西安公交集团在
每辆公交车上安装了监控设备,每日审核监控视频,对开车过程中出现违章行为的 司机进行罚款处理,但由于公交车多,视频数量极大,这给分析处理视频的工作人 员带来了很大的工作压力,因此公交集团希望能够建立一种快速视频识别分析手段, 以缓解当前这种情况。
额定电压
西安西开高压电器股份 有限公司
断路器
河南平顶山高压电器股 份有限公司
断路器
查 询
西安西电高压开关有限 责任公司
……
断路器 ……
LW25-126 lw25-126 Lw25-126
…….
2007-12-1 2008-3-1 2008-3-20
…….
252KV 252KV 252KV
…….
数据挖掘分析
大数据时代
大数据时代的商业变革
“角色定位”-数据、技术与思维的三足鼎立
微软以1.1亿美元的价格购买了大数据公司Farecast,而两年后谷歌则以 7亿美元的价格购买了给Farecast提供数据的ITA Software公司。如今,我们 正处在大数据时代的早期,思维和技术是最有价值的,但是最终大部分价值 还是必须从数据本身来挖掘。
大数据时代
大数据时代的思维变革
“更杂”-满足精确性,包容混杂性
执迷于精确性是信息缺乏时代和模拟时代的产物。只有5%的数据是有框 架且能适用于传统数据库的。如果不能接受混乱,剩下95%的非框架数据都 无法被利用,只有接受不精确性,我们才能打开一扇从未涉足的世界的窗户。
➢允许不精确 ➢大数据的简单算法比小数据的复杂算法更有效 ➢纷繁的数据越多越好 ➢混杂性,不是竭力避免,而是标准途径 ➢新的数据库设计的诞生
大数据时代
大数据时代的思维变革
“更好”-不是因果关系,而是相关关系
知道“是什么”就够了,没必要知道“为什么”。在大数据时代,我们 不必非得知道现象背后的原因,而是要让数据自己“发声”。
➢关联物,预测的关键 ➢“是什么”,而不是“为什么” ➢改变,从操作方式开始 ➢大数据,改变人类探索世界的方法
大数据时代