高考数学函数专题复习 普通高中数学复习资料
2024年高考数学高频考点(新高考通用)函数的概念及其表示(精练:基础+重难点)解析版
【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)第06讲函数的概念及其表示(精讲)【A组在基础中考查功底】则函数根据函数图像可知:(f x 故选:ACD.8.已知函数4 ()f x xx=+A.-3B 【答案】ABC四、解答题12.定义在R 上的函数()f x 对任意实数x 都有()2243f x x x -=-+.(1)求函数()f x 的解析式;(2)若函数()()23g x f x x =-+在[],1m m +上是单调函数,则求实数m 的取值范围.【答案】(1)()21f x x =-(2)(][),01,-∞+∞ 【分析】(1)配方后,利用整体法求解函数解析式;(2)求出()g x 的单调区间,与[],1m m +比较,得到不等式,求出实数m 的取值范围.【详解】(1)()()2224321f x x x x -=-+=--,故函数()f x 的解析式为()21f x x =-;(2)()()2223122121x x g x x x x =-+=---++=在(),1-∞上单调递减,在()1,+∞上单调递增,因为()g x 在[],1m m +上是单调函数,所以m 1≥或11m +≤,解得0m ≤或m 1≥,所以实数m 的取值范围是(][),01,-∞+∞ .【B 组在综合中考查能力】由图可得当且仅当0t<<时)的,故()()()()36494922f f f f m n =⨯=+=+.【C 组在创新中考查思维】,该函数在当32m>时,当x>m时()2,3f x⎛∈-∞-⎝①,当1,22aa >>时,()f x 在[]0,1上单调递增,②,由2222a a a x ⎛⎫-+⨯=- ⎪⎝⎭解得12x a +=或1x -=。
高一数学复习资料总结
高一复习资料总结一、 函数1. 函数:①函数的周期()()f x T f x +=②函数的奇偶性:定义域关于圆点对称()()0f x f x +-=(奇函数) ()()0f x f x -=(偶函数) 若(0)f 有定义,则(0)0f =③函数的单调性(定义证明)设:12,x x D ∈,且12x x <; 证明:12()()0f x f x -<单调增函数(或12()()0f x f x ->单调减函数) 2.指数函数:①有理数幂的运算性质m na=nma②()(,1)xf x a a o a =>≠定义域R ,值域()0f x >图像:>1a 01a <<3.对数函数 ①对数的运算条件:0,0,01M N a a >>>≠且 log log log a a a M N MN+=log log log a a aMM N N-= 化简log log n a a M n M=log a NaN = log 10a = log 1a a = 求值换底公式log log log a a a bb a= (0,0c 1)b c >>≠且②()log a f x x = (0,1)a a >≠ 定义域0x > 值域 R 对数函数()log a f x x =图像1a > 01a <<二、三角函数弧长公式:l r α=(α弧度单位) 扇形面积:12S lr = 15718'57.3rad =︒=︒1.定义:sin yrα= cos x r α= tan y x α=2.同角三角函数的基本关系式:①平方关系:22sin cos 1αα+=②商的关系:sin tan cos ααα=cos cot sin ααα=3.诱导公式:sin(180)sin sin(180)sin sin(360)sin sin()sin sin(90)cos sin(90)cos sin(270)cos sin(270)cos αααααααααααααααα︒-=︒+=-︒-=--=-︒+=︒-=︒-=-︒+=-cos(180)cos cos(180)cos cos(360)cos cos()cos cos(90)sin cos(90)sin cos(270)sin cos(270)sin αααααααααααααααα︒-=-︒+=-︒-=-=︒+=-︒-=︒-=-︒+= 4.两角和与两角差的三角函数:sin()sin cos cos sin cos()cos cos sin sin tan tan tan()1tan tan tan tan tan()(1tan tan )αβαβαβαβαβαβαβαβαβαβαβαβ±=±±=±±=+=+-5.二倍角公式:2sin 22sin cos 2tan tan 21tan αααααα==- 2222cos 2cos sin 2cos 1 12sin ααααα=-=-=-降幂公式:21cos 2sin 2αα-= 21cos 2cos 2αα+=辅助角公式:sin cos )a b αααθ+=+tan baθ=6.正弦函数与余弦函数的图像及性质(周期性、增减性):sin y x = 增区间2,222k k ππππ⎡⎤-+⎢⎥⎣⎦ k Z ∈减区间32,222k k ππππ⎡⎤++⎢⎥⎣⎦k Z ∈cos y x = 增区间[]2,2k k πππ- k Z ∈减区间[]2,2k k πππ+ k Z ∈注意:在△ABC中,若1sin cos A A ≤+≤[]0,90A ∈︒︒若0sin cos 1A A ≤+≤,则[]90,135A ∈︒︒若1sin cos 0A A -≤+≤,则[]135,180A ∈︒︒7.函数sin()yA x ωθ=+的图像:①五点法作图②平移和交换:sin()y A x ωθ=+2T πω= ;tan()y x ωθ=+T πω=振幅:A 角速度:ω 初相:θ三.向量及其运算:1.向量的概念:既有大小又有方向的量。
普高高考数学必考知识点归纳总结
普高高考数学必考知识点归纳总结数学作为普通高中高考的一门必考科目,是考生们备战高考的重点之一。
在数学学科中,有一些必考知识点是考生们不能忽视的,掌握好这些知识点能够为考生们取得理想的成绩奠定坚实的基础。
本文将对普高高考数学必考知识点进行归纳总结,帮助考生们理清思路、系统复习。
一、函数与方程1. 函数的概念与性质函数的定义、定义域与值域、奇偶性、周期性、单调性、最值等。
2. 一元二次函数函数表达式、图像与性质、零点与因式分解、二次函数的最值等。
3. 常用函数的图像与性质指数函数、对数函数、幂函数、反比例函数等。
4. 一次函数与二次函数的联立方程方程组的解、解的个数与形式等。
二、几何与空间1. 直线与曲线直线的性质、方程、与曲线的交点等。
2. 圆与圆的位置关系直径、弦、切线等。
3. 向量向量的概念、运算、平行与垂直、数量积与向量积等。
4. 空间几何体点、线、面与体的性质、体的表面积与体积等。
三、概率论与统计1. 随机事件与概率事件的概念、事件的运算、频率与概率的关系等。
2. 排列组合与二项式定理排列与组合的计算、二项式定理的应用等。
3. 统计与误差分析统计量的计算、误差类型与分析等。
四、解析几何1. 平面解析几何点、直线与曲线的方程、距离公式等。
2. 空间解析几何点、直线与平面的方程、距离公式等。
五、导数与微分1. 函数导数的计算与应用导数的定义、基本导数、导数的四则运算、函数的极值与最值等。
2. 微分的计算与应用微分的定义、微分中值定理、函数的近似计算等。
六、数列与数学归纳法1. 数列的概念与性质数列的定义、公式、递推关系等。
2. 等差数列与等比数列等差数列的性质、通项公式、前n项和公式等,等比数列的性质、通项公式、前n项和公式等。
七、立体几何1. 空间中的直线与平面直线与平面的交点、平行与垂直等。
2. 空间中的立体球、柱、锥、棱柱、棱锥等的表面积与体积等。
这些高考数学必考知识点涵盖了数学学科的主要内容,考生们可以根据这个总结进行复习,并结合相关的习题进行训练,提高解题能力和应试水平。
2024年高三数学高考知识点总结
2024年高三数学高考知识点总结一、函数与方程1. 函数的概念与性质- 函数的定义及函数关系的表示方法- 函数的定义域、值域和区间- 函数的奇偶性、周期性及单调性2. 一次函数与二次函数- 一次函数的性质及图像- 二次函数的性质及图像- 一次函数与二次函数的应用3. 指数函数与对数函数- 指数函数的性质及图像- 对数函数的性质及图像- 指数函数与对数函数的应用4. 三角函数- 正弦函数、余弦函数、正切函数的性质及图像- 三角函数之间的关系及图像的性质- 三角函数的应用5. 幂函数与反比例函数- 幂函数的性质及图像- 反比例函数的性质及图像- 幂函数与反比例函数的应用6. 方程和不等式- 一元一次方程与一元一次不等式的解法- 一元二次方程与一元二次不等式的解法- 方程与不等式的应用7. 绝对值方程与绝对值不等式- 绝对值方程与绝对值不等式的解法及应用- 带有绝对值的一元二次方程的解法二、数列与数学归纳法1. 数列的概念与性质- 数列的定义及常见数列的形式- 等差数列与等比数列的性质及通项公式2. 数列的通项公式与求和公式- 等差数列的通项公式及前n项和公式- 等比数列的通项公式及前n项和公式- 递推数列的通项公式及前n项和公式3. 数学归纳法- 数学归纳法的基本思想及应用- 利用数学归纳法证明不等式4. 递归数列与逼近法- 递归数列的定义及应用- 逼近法解决数学问题三、三角恒等变换1. 三角函数的和差化积与积化和差- 正弦、余弦、正切的和差化积公式- 正弦、余弦、正切的积化和差公式2. 三角函数的倍角化半角与半角化倍角- 正弦、余弦、正切的倍角化半角公式- 正弦、余弦、正切的半角化倍角公式3. 三角方程的基本解法- 使用三角函数的恒等变换解三角方程- 利用等效代换解三角方程4. 三角函数的图像与性质- 三角函数图像的性质及平移、伸缩、翻转操作- 三角函数图像的综合性质及应用四、平面几何与立体几何1. 二维几何相关知识- 平面几何基本概念及性质- 二维几何形状的性质与判定2. 三角形相关知识- 三角形的内角和与外角和的性质- 三角形的中线、高线、角平分线的性质及应用3. 圆相关知识- 圆的基本概念及性质- 弧长与扇形面积的计算- 切线与切线定理的应用4. 直线与圆的位置关系- 直线与圆的位置关系的判定及性质- 直线与圆的切线与切点的性质与计算5. 空间几何相关知识- 空间几何基本概念及性质- 空间几何形状的性质与判定6. 空间几何立体的计算- 空间几何立体的体积与表面积的计算- 立体的展开图与折叠图的应用五、概率与统计1. 概率的基本概念与性质- 随机事件与样本空间的概念- 概率的定义及性质- 概率的计算方法2. 排列、组合与概率计算- 排列与组合的基本概念与计算方法- 包含条件的排列与组合的计算方法- 概率计算中的排列与组合问题的应用3. 随机变量与概率分布- 随机变量的定义及性质- 离散型和连续型随机变量的概率分布- 随机变量的数学期望与方差的计算4. 概率统计与抽样调查- 总体与样本的概念及表示方法- 抽样调查的基本方法与误差分析- 统计量的计算与应用六、向量与矩阵1. 向量的基本概念与性质- 向量的定义及表示方法- 向量的数量乘法、加法、减法与向量的线性相关性2. 向量的线性组合与线性方程组- 向量的线性组合与线性方程组概念- 线性方程组的解的判定与求解3. 矩阵的基本概念与运算- 矩阵的定义及表示方法- 矩阵的乘法、加法、减法与矩阵的性质4. 矩阵的转置、行列式与逆矩阵- 矩阵的转置运算与性质- 矩阵的行列式及其性质与应用- 矩阵的逆矩阵的定义与求解5. 矩阵的秩与线性方程组- 矩阵的秩的定义及性质- 秩与线性方程组解的存在性与唯一性的关系这只是对____年高三数学高考知识点进行的一个预测总结,具体内容还需要参考教材或高考大纲进行复习和学习。
高考数学一轮复习知识点大全-函数
第二部分 函数1. 了解映射:f A B →的概念注意:(1)映射可以是多对一,也可以是一对一的对应,但不能是一对多的对应;(2)A 中元素在B 中必须都有象且唯一;(3)B 中元素在A 中不一定都有原象,若有原象也不一定唯一.2. 函数:f A B →是特殊的映射.特殊在定义域A 和值域C 都是非空数集!注意值域C B ⊆.函数的三要素:定义域、对应法则、值域,其中值域由定义域和对应法则确定, 也就是说,确定一个函数,只需确定函数的定义域和对应法则.3. 求函数定义域的常用方法:(1)偶次根式的被开方数非负;分式的分母不能为零;对数log a x 中0x >,0a >且1a ≠;三角形中0A π<<, 最大角3π≥,最小角3π≤等等.(2)根据实际问题的要求确定自变量的范围.注意单位.[注]:定义域要用集合或区间表示,不能用不等式表示.4. 求函数值域(最值)的方法:基本初等函数直接利用单调性;导数;均值定理;三角代换;数形结合;几何意义等.5. 指数函数()x f x a =()0,1a a >≠且的反函数是()1log a f x x -=()0,1a a >≠且, 反之亦然.它们的定义域与值域互换,图象关于直线y =x 对称.6. 函数的奇偶性:(1)具有奇偶性的函数的定义域的特征:定义域必须关于原点对称!为此确定函数的奇偶性时,务必先判定函数定义域是否关于原点对称.(2)确定函数奇偶性的常用方法(若函数的解析式较为复杂,应先化简,再判断其奇偶性,但要注意定义域的变化,如2()1x x f x x -=-): ①直接利用奇偶性定义判断:②利用奇偶性定义的等价形式:()()0f x f x ±-=或()()()()10f x f x f x -=±≠.如:奇函数(lg y x =±,11x x a y a +=-()0,1a a >≠且的判断. (3)函数奇偶性的性质:① 奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同;偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.② 若()f x 为偶函数,则()()f x f x =,此性质常用于根据单调性解不等式. ③ 若()f x 为奇函数,且0在函数的定义域中,则必有()00f =,常用此性质解题,但要注意:()00f =是()f x 为奇函数的既不充分也不必要条件.7. 函数的单调性:(1)确定函数的单调性或单调区间的常用方法:①在解答题中常用:定义法:(取值――作差――变形――定号);导数法:(在区间(),a b 内,若总有()'0f x >,则()f x 为增函数;反之,若()f x 在区间(),a b 内为增函数,则()'0f x ≥.请注意两者的区别:前者不含等号,后者含等号.②选择填空题还可用数形结合法、特殊值法等等, 特别要注意b y ax x=+型函数的图象和单调性在解题中的运用 (,a b 同号时,对勾函数;,a b 异号时,在()()0,,0+∞-∞上分别单调)③复合函数法:复合函数单调性的特点是同增异减.如:函数()20.5log 2y x x =-+的单调递增区间是?(答:(1,2)).关注定义域. 函数sin 23y x π⎛⎫=-⎪⎝⎭的单调递增区间是?(应首先将x 的系数化为正数) 答:511(,),1212k k k ππππ++∈Z . (2)特别提醒:求单调区间时要注意,一是勿忘定义域;二是不能用不等式表示;三是单调区间尽可能包括端点,但由导数求得的单调区间一律为开区间.(3)注意函数单调性与奇偶性的应用:①比较大小;②解不等式;③求参数范围.8. 常见的图象变换:(1)平移变换:()f x →()f x a ±或 ()f x a ±;函数()y f x a =±)0(>a 的图象是把函数()x f y =的图象沿x 轴左(右)平移a 个单位得到的;函数()x f y =±a )0(>a 的图象是把函数()x f y =的图象沿y 轴向上(下)平移a 个单位得到的;(2)伸缩变换:()f x →()f ax 或 ()af x ;函数()ax f y =)0(>a 的图象是把函数()x f y =的图象沿x 轴伸缩为原来的a1倍得到的;函数()x af y =)0(>a 的图象是把函数()x f y =的图象沿y 轴 伸缩为原来的a 倍得到的.*9. 函数的对称性:(1)一个函数本身的性质:若()()f a x f b x +=-对任意x 恒成立,则函数()f x 的图象关于直线2a b x +=轴对称;若()()0f a x f b x ++-=对任意x 恒成立,,则()f x 的图象关于点,02a b +⎛⎫ ⎪⎝⎭中心对称. (2)两个函数的关系:若()f x 与()g x 关于直线x a =对称,则()()2g x f a x =-;若()f x 与()g x 关于点(),0a 中心对称,则()()0f a x g a x ++-=.(3)特别关注形如ax b y cx d+=+的函数,其图象是双曲线,其两渐近线分别是直线d x c=-(由分母为零确定)和直线a y c =(由分子、分母中x 的系数确定),对称中心是点(,)d a c c- (4)如何画出|()|f x 的图象?如何画出(||)f x 的图象?*10. 函数的周期性:对于函数()f x ,如果存在一个非零常数T ,使得定义域内的每一个x值,都满足()()f x T f x +=,那么这个函数()f x 就叫作周期函数.注意:①周期函数的定义域一定是无界的;②定义在R 上的常数函数也是周期函数,因而周期函数不一定有最小正周期;(1) 若()f x 图象有两条对称轴,()x a x b a b ==≠,则()f x 是周期函数,且2||a b -为一个周期;(2) 若()f x 图象有两个对称中心(,0),(,0)()A a B b a b ≠,则()f x 是周期函数,且2||a b -为一个周期;(3) 如果函数()y f x =的图象有一个对称中心(,0)A a 和一条对称轴()x b a b =≠,则函数()y f x =必是周期函数,且4||a b -为一个周期;(4)若0a ≠,且()f x 满足()()x a f x f +=-,或1()()f x a f x +=; 或1()()f x a f x +=-;则均可得出2a 是()f x 的一个周期.11. 指数式、对数式:log a N a N =,log log log c a c b b a=, log log m n a a n b b m =,()n m mn a a =. 12. 指、对、幂函数:①指数函数x y a =的图象分两类(0a >、0a <);②对数函数log a y x =的图象也分两类(1a >、01a <<);③幂函数y x α=的图象首先关注第一象限,再根据定义域及奇偶性作出其它象限的图象.在同一坐标系中作出不同类型的幂函数.13. 指数、对数值的大小比较主要方法为:(1)化同底后利用函数的单调性;(2)作差或作商法;(3)利用中间量(0或1);14. 函数的应用:求解数学应用题,要特别注意:设(解答中涉及到的字母),定义域(实际问题,注意单位),答(将所得的数学结果,回归到实际问题中去).*15. 抽象函数:抽象函数通常是指没有给出函数的具体的解析式,只给出了其它一些条件(如:函数的定义域、单调性、奇偶性、解析递推式等)的函数问题.求解抽象函数问题的常用方法是:(1)利用赋值法探究性质(如令x =0或1,求出(0)f 或(1)f ;令y x =或y x =-或将x 换成-x ,将y 换成-y 等);(2)利用函数的性质进行演绎探究(如奇偶性、单调性、周期性、对称性等);(3)借鉴函数模型进行类比探究.几类常见的抽象函数为 :①正比例函数型:()(0)f x kx k =≠ -----()()()f x y f x f y ±=±;②幂函数型:2()f x x = -----()()()f xy f x f y =,()()()x f x f y f y =; ③指数函数型:()x f x a = -----()()()f x y f x f y +=,()()()f x f x y f y -=; ④对数函数型:()log a f x x = -----()()()f xy f x f y =+,()()()x f f x f y y =-; ⑤三角函数型:()tan f x x = ----- ()()()1()()f x f y f x y f x f y ++=-. 需要注意的是:函数模型只是满足所对应的抽象函数的一种函数类型,它只能帮助我们思考问题,但不能作为推理、论证的依据.16. 高考试题中关于基本初等函数性质考查的基本类型:函数是北京高考考查能力的重要素材,以函数为基础与其它章节在知识交汇点命制的考查能力的试题在历年的高考试卷中占有较大的比重.以选择题、填空题形式主要考查函数的基本概念、函数图象、函数性质(单调性、奇偶性、周期性)等重要知识;同时关注函数知识的应用,突出函数与方程的思想、数形结合的思想. 例1:对于函数: ①1()45f x x x=+-,②21()log ()2x f x x =-,③()cos(2)cos f x x x =+-, 判断如下两个命题的真假:命题甲:()f x 在区间(1,2)上是增函数;命题乙:()f x 在区间(0,)+∞上恰有两个零点12,x x ,且121x x <. 能使命题甲、乙均为真的函数的序号是( D )(A )① (B )② (C )①③ (D )①② 例2:如图,动点P 在正方体1111ABCD A B C D -的对角线1BD 上.过点P 作垂直于平面11BB D D 的直线,与正方体表面相交于M N ,.(1)设BP x =,MN y =,则函数()y f x =的图象大致是( B )(2)设BP x =,四边形面积1D MBN S y =,则函数()y f x =的图象大致是( B )例3:已知函数2,1,()1,1,x ax x f x ax x ⎧-+≤=⎨->⎩若1212,,x x x x ∃∈≠R ,使得12()()f x f x =成立, 则实数a 的取值范围是( A )(A )2a(B )2a (C )22a (D )2a 或2a第三部分 导数1. 导数的背景:瞬时速度与瞬时变化率(平均变化率的极限).AB CDM N P A 1B 1C 1D 1。
高中数学重点知识归纳2024
高中数学重点知识归纳2024一、函数与极限1. 函数的定义与性质(1)函数的定义:在某一变化过程中,如果有两个变量x和y,并且对于x在某一范围内的每一个值,按照对应法则f,都有唯一确定的y值与之对应,那么就称y是x的函数,记作y=f(x)。
(2)函数的性质:单调性、奇偶性、周期性、有界性。
2. 函数的图像与变换(1)函数图像:函数的图像是所有函数值对应的点在坐标系中的集合。
(2)函数变换:函数图像的平移、伸缩、对称等变换。
3. 初等函数(1)幂函数:y=x^α(α为实数)。
(2)指数函数:y=a^x(a为正常数)。
(3)对数函数:y=log_a x(a为正常数)。
(4)三角函数:y=sin x、y=cos x、y=tan x等。
4. 函数极限(1)数列极限:当n趋向于无穷大时,数列{a_n}的极限是A,记作lim(n→∞)a_n=A。
(2)函数极限:当x趋向于x_0时,函数f(x)的极限是A,记作lim(x→x_0)f(x)=A。
二、导数与微分1. 导数的定义与计算(1)导数的定义:函数在某一点x_0的导数是自变量在该点的增量与函数值增量的比值在增量趋向于0时的极限。
(2)导数的计算:利用导数的四则运算法则、复合函数的导数法则、隐函数的导数法则等。
2. 导数的应用(1)切线斜率:函数在某一点x_0的导数表示该点切线的斜率。
(2)函数的单调性:利用导数的符号判断函数的单调性。
(3)函数的极值:利用导数为0的点判断函数的极值。
(4)函数的最值:利用导数和单调性判断函数的最值。
3. 微分(1)微分的定义:函数在某一点x_0的微分是自变量在该点的增量与函数值增量的比值乘以自变量的增量。
(2)微分的计算:利用微分的四则运算法则、复合函数的微分法则等。
三、积分与级数1. 定积分(1)定积分的定义:函数在区间[a, b]上的定积分是自变量在该区间上的积分和的极限。
(2)定积分的计算:利用定积分的基本性质、牛顿-莱布尼茨公式等。
高中数学函数经典复习题含答案
高中数学函数经典复习题含答案1、求函数的定义域1)y=(x-1)/(x^2-2x-15)先求分母为0的解:x^2-2x-15=0x-5)(x+3)=0得到:x=5或x=-3但是x=-3不在定义域内,因为分母为0时分式无意义,所以定义域为(-∞,-3)∪(-3,5)∪(5,+∞)2)y=1-((x+1)/(x+3))-3先求分母为0的解:x+3=0得到:x=-3但是x=-3不在定义域内,因为分母为0时分式无意义,所以定义域为(-∞,-3)∪(-3,-1)∪(-1,+∞)2、设函数1/(x-1)+(2x-1)+4-x^2的定义域为[1,∞),则函数f(x^2)的定义域为[1,∞);函数f(x-2)的定义域为[3,∞)。
3、若函数f(x+1)的定义域为[-2,3],则函数f(2x-1)的定义域为[-1,2],函数f(2x-1)的值域为[-2,3]。
4、已知函数f(x)的定义域为[-1,1],且函数F(x)=f(x+m)-f(x-m)的定义域存在,求实数m的取值范围。
因为F(x)的定义域存在,所以f(x+m)和f(x-m)的定义域必须都存在,即:1≤x+m≤11≤x-m≤1将两个不等式联立,得到:1≤x≤1m≤x≤m所以m的取值范围为[-1,1]。
二、求函数的值域5、求下列函数的值域:1)y=x+2/x-3 (x∈R)先求分母为0的解:x-3=0得到:x=3但是x=3不在定义域内,因为分母为0时分式无意义,所以定义域为(-∞,3)∪(3,+∞)当x→±∞时,y→±∞,所以值域为(-∞,-2]∪[2,+∞)2)y=x+2/x-3 (x∈[1,2])先求分母为0的解:x-3=0得到:x=3但是x=3不在定义域内,因为分母为0时分式无意义,所以定义域为[1,3)∪(3,2]∪(2,+∞)当x→1+时,y→-∞,当x→2-时,y→+∞,所以值域为(-∞,-2]∪[2,+∞)3)y=22/(3x-13x-1)先求分母为0的解:3x-13x-1=0得到:x=4但是x=4不在定义域内,因为分母为0时分式无意义,所以定义域为(-∞,4)∪(4,+∞)当x→±∞时,y→0,所以值域为(0,+∞)4)y=(5x^2+9x+4)/(2x-6) (x≥5)当x→+∞时,y→+∞,当x→5+时,y→+∞,所以值域为[5,+∞)5)y=(x-3)/(x+1)+x+1先求分母为0的解:x+1=0得到:x=-1但是x=-1不在定义域内,因为分母为0时分式无意义,所以定义域为(-∞,-1)∪(-1,+∞)化简得到y=x-2,所以值域为(-∞,-2]∪[-2,+∞)6)y=(x-3+x+1)/(2x-1x+2)先求分母为0的解:2x-1=0或x+2=0得到:x=1/2或x=-2但是x=1/2不在定义域内,因为分母为0时分式无意义,所以定义域为(-∞,1/2)∪(1/2,-2)∪(-2,+∞)化简得到y=1/2,所以值域为{1/2}7)y=x^2-x/(x+2)先求分母为0的解:x+2=0得到:x=-2但是x=-2不在定义域内,因为分母为0时分式无意义,所以定义域为(-∞,-2)∪(-2,+∞)化简得到y=x-2-5/(x+2),所以值域为(-∞,-13/4]∪[1/4,+∞)8)y=(2-x^2-x)/(3x+6)先求分母为0的解:3x+6=0得到:x=-2但是x=-2不在定义域内,因为分母为0时分式无意义,所以定义域为(-∞,-2)∪(-2,+∞)化简得到y=-1/3,所以值域为{-1/3}三、求函数的解析式1、已知函数f(x-1)=x-4x,求函数f(x),f(2x+1)的解析式。
(完整版)高三一轮复习函数专题1---函数的基本性质
函数专题1、函数的基本性质复习提问:1、如何判断两个函数是否属于同一个函数。
2、如何求一个函数的定义域(特别是抽象函数的定义域问题)3、如何求一个函数的解析式。
(常见方法有哪些)4、如何求函数的值域。
(常见题型对应的常见方法)5、函数单调性的判断,证明和应用(单调性的应用中参数问题)6、函数的对称性(包括奇偶性)、周期性的应用7、利用函数的图像求函数中参数的范围等其他关于图像问题 知识分类一、函数的概念:函数的定义含有三个要素,即定义域A 、值域C 和对应法则f .当函数的定义域及从定义域到值域的对应法则确定之后,函数的值域也就随之确定.因此,定义域和对应法则为函数的两个基本条件,当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数. 1、试判断以下各组函数是否表示同一函数?(1)f (x )=2x ,g (x )=33x ;(2)f (x )=x x ||,g (x )=⎩⎨⎧<-≥;01,01x x(3)f (x )=1212++n n x ,g (x )=(12-n x )2n -1(n ∈N *);(4)f (x )=x1+x ,g (x )=x x +2;(5)f (x )=x 2-2x -1,g (t )=t 2-2t -1.二、函数的定义域(请牢记:凡是说定义域范围是多少,都是指等式中变量x 的范围) 1、求下列函数的定义域:(1)y=-221x +1(2)y=422--x x (3)x x y +=1 (4)y=241+-+-x x(5)y=3142-+-x x (8)y=3-ax (a为常数)2、(1)已知f (x )的定义域为 [ 1,2 ] ,求f (2x -1)的定义域; (2)已知f (2x -1)的定义域为 [ 1,2 ],求f (x )的定义域;3、若函数)(x f y =的定义域为[ 1,1],求函数)41(+=x f y )41(-⋅x f 的定义域 5、已知函数682-+-=k x kx y 的定义域为R ,求实数k 的取值范围。
2024年高考数学总复习第二章《函数与基本初等函数》函数的图象
2024年高考数学总复习第二章《函数与基本初等函数》§2.7函数的图象最新考纲 1.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.2.学会运用函数图象理解和研究函数的性质,解决方程解的个数与不等式解的问题.1.描点法作图方法步骤:(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质即奇偶性、周期性、单调性、最值(甚至变化趋势);(4)描点连线,画出函数的图象.2.图象变换(1)平移变换(2)对称变换①y =f (x )――――――→关于x 轴对称y =-f (x );②y =f (x )――――――→关于y 轴对称y =f (-x );③y =f (x )―――――→关于原点对称y =-f (-x );④y =a x (a >0且a ≠1)――――――→关于y =x 对称y =log a x (a >0且a ≠1).(3)伸缩变换①y =f (x )―――――――――――――――――――――――→a >1,横坐标缩短为原来的1a 倍,纵坐标不变0<a <1,横坐标伸长为原来的1a 倍,纵坐标不变y =f (ax ).②y =f (x )――――――――――――――――――――→a >1,纵坐标伸长为原来的a 倍,横坐标不变0<a <1,纵坐标缩短为原来的a 倍,横坐标不变y =af (x ).(4)翻折变换①y =f (x )――――――――――→保留x 轴上方图象将x 轴下方图象翻折上去y =|f (x )|.②y =f (x )―――――――――――→保留y 轴右边图象,并作其关于y 轴对称的图象y =f (|x |).概念方法微思考1.函数f (x )的图象关于直线x =a 对称,你能得到f (x )解析式满足什么条件?提示f (a +x )=f (a -x )或f (x )=f (2a -x ).2.若函数y =f (x )和y =g (x )的图象关于点(a ,b )对称,求f (x ),g (x )的关系.提示g (x )=2b -f (2a -x )题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)函数y =f (1-x )的图象,可由y =f (-x )的图象向左平移1个单位得到.(×)(2)当x ∈(0,+∞)时,函数y =|f (x )|与y =f (|x |)的图象相同.(×)(3)函数y =f (x )与y =-f (x )的图象关于原点对称.(×)(4)函数y =f (x )的图象关于y 轴对称即函数y =f (x )与y =f (-x )的图象关于y 轴对称.(×)题组二教材改编2.[P35例5(3)]函数f (x )=x +1x的图象关于()A .y 轴对称B .x 轴对称C .原点对称D .直线y =x 对称答案C 解析函数f (x )的定义域为(-∞,0)∪(0,+∞)且f (-x )=-f (x ),即函数f (x )为奇函数,故选C.3.[P32T2]小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间后,为了赶时间加快速度行驶,与以上事件吻合得最好的图象是.(填序号)答案③解析小明匀速运动时,所得图象为一条直线,且距离学校越来越近,故排除①.因交通堵塞停留了一段时间,与学校的距离不变,故排除④.后来为了赶时间加快速度行驶,故排除②.故③正确.4.如图,函数f (x )的图象为折线ACB ,则不等式f (x )≥log 2(x +1)的解集是.答案(-1,1]解析在同一坐标系内作出y =f (x )和y =log 2(x +1)的图象(如图).由图象知不等式的解集是(-1,1].题组三易错自纠5.下列图象是函数y 2,x <0,-1,x ≥0的图象的是()答案C6.把函数f (x )=ln x 的图象上各点的横坐标扩大到原来的2倍,得到的图象的函数解析式是________________.答案y =解析根据伸缩变换方法可得,所求函数解析式为y =7.(2018·太原调研)若关于x 的方程|x |=a -x 只有一个解,则实数a 的取值范围是__________.答案(0,+∞)解析在同一个坐标系中画出函数y =|x |与y =a -x 的图象,如图所示.由图象知,当a >0时,方程|x |=a -x 只有一个解.题型一作函数的图象分别画出下列函数的图象:(1)y =|lg(x -1)|;(2)y =2x +1-1;(3)y =x 2-|x |-2;(4)y =2x -1x -1.解(1)首先作出y =lg x 的图象,然后将其向右平移1个单位,得到y =lg(x -1)的图象,再把所得图象在x 轴下方的部分翻折到x 轴上方,即得所求函数y =|lg(x -1)|的图象,如图①所示(实线部分).(2)将y =2x 的图象向左平移1个单位,得到y =2x +1的图象,再将所得图象向下平移1个单位,得到y =2x +1-1的图象,如图②所示.(3)y =x 2-|x |-2x 2-x -2,x ≥0,x 2+x -2,x <0,其图象如图③所示.(4)∵y =2+1x -1,故函数的图象可由y =1x 1个单位,再向上平移2个单位得到,如图④所示.思维升华图象变换法作函数的图象(1)熟练掌握几种基本函数的图象,如二次函数、反比例函数、指数函数、对数函数、幂函数、形如y =x +1x的函数.(2)若函数图象可由某个基本函数的图象经过平移、翻折、对称和伸缩得到,可利用图象变换作出,但要注意变换顺序.题型二函数图象的辨识例1(1)函数y =x 2ln|x ||x |的图象大致是()答案D 解析从题设提供的解析式中可以看出函数是偶函数,x ≠0,且当x >0时,y =x ln x ,y ′=1+ln x 0,1e 上单调递减,在区间1e,+∞ D.(2)设函数f (x )=2x ,则如图所示的函数图象对应的函数解析式是()A .y =f (|x |)B .y =-|f (x )|C .y =-f (-|x |)D .y =f (-|x |)答案C 解析题图中是函数y =-2-|x |的图象,即函数y =-f (-|x |)的图象,故选C.思维升华函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的周期性,判断图象的循环往复;(5)从函数的特征点,排除不合要求的图象.跟踪训练1(1)函数f (x )=1+log 2x 与g (x )=12x 在同一直角坐标系下的图象大致是()答案B 解析因为函数g (x )=12为减函数,且其图象必过点(0,1),故排除A ,D.因为f (x )=1+log 2x的图象是由y =log 2x 的图象上移1个单位得到的,所以f (x )为增函数,且图象必过点(1,1),故可排除C ,故选B.(2)函数y =1ln|e x -e -x |的部分图象大致为()答案D 解析令f (x )=1ln|e x -e -x |,则f (-x )=1ln|e -x -e x |=1ln|e x -e -x |=f (x ),∴f (x )是偶函数,图象关于y 轴对称,排除B ,C.当x >1时,y =1ln|e x -e -x |=1ln (e x -e -x ),显然y >0且函数单调递减,故D 正确.题型三函数图象的应用命题点1研究函数的性质例2(1)已知函数f (x )=x |x |-2x ,则下列结论正确的是()A .f (x )是偶函数,单调递增区间是(0,+∞)B .f (x )是偶函数,单调递减区间是(-∞,1)C .f (x )是奇函数,单调递减区间是(-1,1)D .f (x )是奇函数,单调递增区间是(-∞,0)答案C 解析将函数f (x )=x |x |-2x去掉绝对值,得f (x )x 2-2x ,x ≥0,-x 2-2x ,x <0,画出函数f (x )的图象,如图,观察图象可知,函数f (x )的图象关于原点对称,故函数f (x )为奇函数,且在(-1,1)上单调递减.(2)设f (x )=|lg(x -1)|,若0<a <b 且f (a )=f (b ),则ab 的取值范围是________.答案(4,+∞)解析画出函数f (x )=|lg(x -1)|的图象如图所示.由f (a )=f (b )可得-lg(a -1)=lg(b -1),解得ab =a +b >2ab (由于a <b ,故取不到等号),所以ab >4.命题点2解不等式例3函数f (x )是定义在[-4,4]上的偶函数,其在[0,4]上的图象如图所示,那么不等式f (x )cos x<0的解集为.答案-π2,-1∪1,π2解析当x ∈0,π2y =cos x >0.当x ∈π2,4y =cos x <0.结合y =f (x ),x ∈[0,4]上的图象知,当1<x <π2时,f (x )cos x <0.又函数y =f (x )cos x为偶函数,所以在[-4,0]上,f (x )cos x<0-π2,-1,所以f (x )cos x<0-π2,-1∪1,π2命题点3求参数的取值范围例4(1)已知函数f (x )12log x ,x >0,2x ,x ≤0,若关于x 的方程f (x )=k 有两个不等的实数根,则实数k 的取值范围是.答案(0,1]解析作出函数y =f (x )与y =k 的图象,如图所示,由图可知k ∈(0,1].(2)已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是.答案解析先作出函数f (x )=|x -2|+1的图象,如图所示,当直线g (x )=kx 与直线AB 平行时斜率为1,当直线g (x )=kx 过A 点时斜率为12,故f (x )=g (x )有两个不相等的实根时,k 的取值范围思维升华(1)注意函数图象特征与性质的对应关系.(2)方程、不等式的求解可转化为函数图象的交点和上下关系问题.跟踪训练2(1)(2018·昆明检测)已知f (x )=2x -1,g (x )=1-x 2,规定:当|f (x )|≥g (x )时,h (x )=|f (x )|;当|f (x )|<g (x )时,h (x )=-g (x ),则h (x )()A .有最小值-1,最大值1B .有最大值1,无最小值C .有最小值-1,无最大值D .有最大值-1,无最小值答案C 解析画出y =|f (x )|=|2x -1|与y =g (x )=1-x 2的图象,它们交于A ,B 两点.由“规定”,在A ,B 两侧,|f (x )|≥g (x ),故h (x )=|f (x )|;在A ,B 之间,|f (x )|<g (x ),故h (x )=-g (x ).综上可知,y =h (x )的图象是图中的实线部分,因此h (x )有最小值-1,无最大值.(2)设函数f (x )=|x +a |,g (x )=x -1,对于任意的x ∈R ,不等式f (x )≥g (x )恒成立,则实数a 的取值范围是.答案[-1,+∞)解析如图作出函数f (x )=|x +a |与g (x )=x -1的图象,观察图象可知,当且仅当-a ≤1,即a ≥-1时,不等式f (x )≥g (x )恒成立,因此a 的取值范围是[-1,+∞).高考中的函数图象及应用问题高考中考查函数图象问题主要有函数图象的识别,函数图象的变换及函数图象的应用等,多以小题形式考查,难度不大,常利用特殊点法、排除法、数形结合法等解决.熟练掌握高中涉及的几种基本初等函数是解决前提.一、函数的图象和解析式问题例1(1)如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP =x .将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为()答案B 解析当x ∈0,π4时,f (x )=tan x +4+tan 2x ,图象不会是直线段,从而排除A ,C ;当x ∈π4,3π4时,1+5,22.∵22<1+5,∴D ,故选B.(2)已知函数f (x )的图象如图所示,则f (x )的解析式可以是()A .f (x )=ln|x |x B .f (x )=e x xC .f (x )=1x2-1D .f (x )=x -1x答案A 解析由函数图象可知,函数f (x )为奇函数,应排除B ,C.若函数为f (x )=x -1x,则x →+∞时,f (x )→+∞,排除D ,故选A.(3)(2018·全国Ⅱ)函数f (x )=e x -e -x x 2的图象大致为()答案B 解析∵y =e x -e -x 是奇函数,y =x 2是偶函数,∴f (x )=e x -e -x x 2是奇函数,图象关于原点对称,排除A 选项.当x =1时,f (1)=e -e -11=e -1e >0,排除D 选项.又e>2,∴1e <12,∴e -1e >32,排除C 选项.故选B.二、函数图象的变换问题例2已知定义在区间[0,4]上的函数y =f (x )的图象如图所示,则y =-f (2-x )的图象为()答案D 解析方法一先作出函数y =f (x )的图象关于y 轴的对称图象,得到y =f (-x )的图象;然后将y =f (-x )的图象向右平移2个单位,得到y =f (2-x )的图象;再作y =f (2-x )的图象关于x 轴的对称图象,得到y =-f (2-x )的图象.故选D.方法二先作出函数y =f (x )的图象关于原点的对称图象,得到y =-f (-x )的图象;然后将y=-f (-x )的图象向右平移2个单位,得到y =-f (2-x )的图象.故选D.方法三当x =0时,y =-f (2-0)=-f (2)=-4.故选D.三、函数图象的应用例3(1)已知函数f (x )|,x ≤m ,2-2mx +4m ,x >m ,其中m >0.若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是.答案(3,+∞)解析在同一坐标系中,作y =f (x )与y =b 的图象.当x >m 时,x 2-2mx +4m =(x -m )2+4m-m 2,所以要使方程f (x )=b 有三个不同的根,则有4m -m 2<m ,即m 2-3m >0.又m >0,解得m >3.(2)不等式3sin π2x-12log x<0的整数解的个数为.答案2解析不等式3sin π2x12log x<0,即3sinπ2x<12log x.设f(x)=3sinπ2x,g(x)=12log x,在同一坐标系中分别作出函数f(x)与g(x)的图象,由图象可知,当x为整数3或7时,有f(x)<g(x),所以不等式3sin π2x12log x<0的整数解的个数为2.(3)已知函数f(x)sinπx,0≤x≤1,log2020x,x>1,若实数a,b,c互不相等,且f(a)=f(b)=f(c),则a+b+c的取值范围是.答案(2,2021)解析函数f(x)sinπx,0≤x≤1,log2020x,x>1的图象如图所示,不妨令a<b<c,由正弦曲线的对称性可知a+b=1,而1<c<2020,所以2<a+b+c<2021.1.(2018·浙江)函数y=2|x|sin2x的图象可能是()答案D解析由y =2|x |sin 2x 知函数的定义域为R ,令f (x )=2|x |sin 2x ,则f (-x )=2|-x |sin(-2x )=-2|x |sin 2x .∵f (x )=-f (-x ),∴f (x )为奇函数.∴f (x )的图象关于原点对称,故排除A ,B.令f (x )=2|x |sin 2x =0,解得x =k π2(k ∈Z ),∴当k =1时,x =π2,故排除C.故选D.2.如图,不规则四边形ABCD 中,AB 和CD 是线段,AD 和BC 是圆弧,直线l ⊥AB 交AB 于E ,当l 从左至右移动(与线段AB 有公共点)时,把四边形ABCD 分成两部分,设AE =x ,左侧部分的面积为y ,则y 关于x 的图象大致是()答案C解析当l 从左至右移动时,一开始面积的增加速度越来越快,过了D 点后面积保持匀速增加,图象呈直线变化,过了C 点后面积的增加速度又逐渐减慢.故选C.3.已知函数f (x )=log a x (0<a <1),则函数y =f (|x |+1)的图象大致为()答案A解析先作出函数f(x)=log a x(0<a<1)的图象,当x>0时,y=f(|x|+1)=f(x+1),其图象由函数f(x)的图象向左平移1个单位得到,又函数y=f(|x|+1)为偶函数,所以再将函数y=f(x+1)(x>0)的图象关于y轴对称翻折到y轴左边,得到x<0时的图象,故选A.4.若函数f(x)ax+b,x<-1,ln(x+a),x≥-1的图象如图所示,则f(-3)等于()A.-12B.-54C.-1D.-2答案C解析由图象可得-a+b=3,ln(-1+a)=0,得a=2,b=5,∴f(x)2x+5,x<-1,ln(x+2),x≥-1,故f(-3)=2×(-3)+5=-1,故选C.5.函数f(x)的图象向右平移1个单位,所得图象与曲线y=e x关于y轴对称,则f(x)的解析式为()A.f(x)=e x+1B.f(x)=e x-1C.f(x)=e-x+1D.f(x)=e-x-1答案D解析与y=e x的图象关于y轴对称的函数为y=e-x.依题意,f(x)的图象向右平移一个单位,得y=e-x的图象.∴f(x)的图象由y=e-x的图象向左平移一个单位得到.∴f(x)=e-(x+1)=e-x-1.6.(2018·承德模拟)已知函数f(x)的定义域为R,且f(x)2-x-1,x≤0,f x-1),x>0,若方程f(x)=x+a有两个不同实根,则实数a的取值范围为() A.(-∞,1)B.(-∞,1]C .(0,1)D .(-∞,+∞)答案A解析当x ≤0时,f (x )=2-x -1,当0<x ≤1时,-1<x -1≤0,f (x )=f (x -1)=2-(x -1)-1.类推有f (x )=f (x -1)=22-x -1,x ∈(1,2],…,也就是说,x >0的部分是将x ∈(-1,0]的部分周期性向右平移1个单位得到的,其部分图象如图所示.若方程f (x )=x +a 有两个不同的实数根,则函数f (x )的图象与直线y =x +a 有两个不同交点,故a <1,即a 的取值范围是(-∞,1).7.设函数y =f (x +1)是定义在(-∞,0)∪(0,+∞)上的偶函数,在区间(-∞,0)上是减函数,且图象过点(1,0),则不等式(x -1)f (x )≤0的解集为.答案{x |x ≤0或1<x ≤2}解析画出f (x )的大致图象如图所示.不等式(x -1)f (x )≤0>1,x )≤0<1,x )≥0.由图可知符合条件的解集为{x |x ≤0或1<x ≤2}.8.设函数y =f (x )的图象与y =2x -a 的图象关于直线y =-x 对称,且f (-2)+f (-4)=1,则实数a =.答案-2解析由函数y =f (x )的图象与y =2x -a 的图象关于直线y =-x 对称,可得f (x )=-a -log 2(-x ),由f (-2)+f (-4)=1,可得-a -log 22-a -log 24=1,解得a =-2.9.已知f (x )是以2为周期的偶函数,当x ∈[0,1]时,f (x )=x ,且在[-1,3]内,关于x 的方程f (x )=kx +k +1(k ∈R ,k ≠-1)有四个实数根,则k 的取值范围是.答案-13,解析由题意作出f (x )在[-1,3]上的示意图如图所示,记y =k (x +1)+1,∴函数y =k (x +1)+1的图象过定点A (-1,1).记B (2,0),由图象知,方程有四个实数根,即函数f (x )与y =kx +k +1的图象有四个交点,故k AB <k <0,k AB =0-12-(-1)=-13,∴-13<k <0.10.给定min{a ,b },a ≤b ,,b <a ,已知函数f (x )=min{x ,x 2-4x +4}+4,若动直线y =m与函数y =f (x )的图象有3个交点,则实数m 的取值范围为.答案(4,5)解析作出函数f (x )的图象,函数f (x )=min{x ,x 2-4x +4}+4的图象如图所示,由于直线y=m 与函数y =f (x )的图象有3个交点,数形结合可得m 的取值范围为(4,5).11.已知函数f (x )2(1-x )+1,-1≤x <0,3-3x +2,0≤x ≤a的值域为[0,2],则实数a 的取值范围是.答案[1,3]解析先作出函数f (x )=log 2(1-x )+1,-1≤x <0的图象,再研究f (x )=x 3-3x +2,0≤x ≤a的图象.令f ′(x )=3x 2-3=0,得x =1(x =-1舍去),由f ′(x )>0,得x >1,由f ′(x )<0,得0<x <1.又f (0)=f (3)=2,f (1)=0.所以1≤a ≤ 3.12.已知函数f (x )=2x ,x ∈R .(1)当实数m 取何值时,方程|f (x )-2|=m 有一个解?两个解?(2)若不等式f 2(x )+f (x )-m >0在R 上恒成立,求实数m 的取值范围.解(1)令F (x )=|f (x )-2|=|2x -2|,G (x )=m ,画出F (x )的图象如图所示.由图象可知,当m =0或m ≥2时,函数F (x )与G (x )的图象只有一个交点,原方程有一个实数解;当0<m <2时,函数F (x )与G (x )的图象有两个交点,原方程有两个实数解.(2)令f (x )=t (t >0),H (t )=t 2+t ,t >0,因为H (t )-14在区间(0,+∞)上是增函数,所以H (t )>H (0)=0.因此要使t 2+t >m 在区间(0,+∞)上恒成立,应有m ≤0,即所求m 的取值范围为(-∞,0].13.已知函数f (x )2+2x -1,x ≥0,2-2x -1,x <0,则对任意x 1,x 2∈R ,若0<|x 1|<|x 2|,下列不等式成立的是()A .f (x 1)+f (x 2)<0B .f (x 1)+f (x 2)>0C .f (x 1)-f (x 2)>0D .f (x 1)-f (x 2)<0答案D解析函数f (x )的图象如图实线部分所示,且f (-x )=f (x ),从而函数f (x )是偶函数且在[0,+∞)上是增函数,又0<|x 1|<|x 2|,∴f (x 2)>f (x 1),即f (x 1)-f (x 2)<0.14.已知函数f (x )=x |x -1|,g (x )=1+x +|x |2,若f (x )<g (x ),则实数x 的取值范围是.答案解析f (x )+1x -1,x >1,1+11-x,x <1,g (x )+x ,x ≥0,,x <0,作出两函数的图象如图所示.当0≤x <1时,由-1+11-x=x +1,解得x =5-12;当x >1时,由1+1x -1=x +1,解得x =5+12.结合图象可知,满足f (x )<g (x )的x -∞,5-12∪1+52,+∞15.已知函数f (x )-x 2+x ,x ≤1,13logx ,x >1,g (x )=|x -k |+|x -2|,若对任意的x 1,x 2∈R ,都有f (x 1)≤g (x 2)成立,则实数k 的取值范围为____________.答案-∞,74∪94,+∞解析对任意的x 1,x 2∈R ,都有f (x 1)≤g (x 2)成立,即f (x )max ≤g (x )min .观察f (x )-x 2+x ,x ≤1,13log x ,x >1的图象可知,当x =12时,函数f (x )max =14.因为g (x )=|x -k |+|x -2|≥|x -k -(x -2)|=|k -2|,所以g (x )min =|k -2|,所以|k -2|≥14,解得k ≤74或k ≥94.故实数k 的取值范围是-∞,74∪94,+∞16.已知函数f (x )(x -1)2,0≤x ≤2,14x -12,2<x ≤6.若在该函数的定义域[0,6]上存在互异的3个数x 1,x 2,x 3,使得f (x 1)x 1=f (x 2)x 2=f (x 3)x 3=k ,求实数k 的取值范围.解由题意知,直线y =kx 与函数y =f (x )(x ∈[0,6])的图象至少有3个公共点.函数y =f (x )的图象如图所示,由图知k ,1 6.。
高中数学高考三角函数复习专题
高中数学高考三角函数复习专题三角函数复专题一、核心知识点归纳:1、正弦函数、余弦函数和正切函数的图象与性质:函数性质:y=sinx y=cosx y=tanx图象定义域 R R R\{kπ+π/2|k∈Z}值域 [-1,1] [-1,1] R最值y_max=1 (when x=2kπ) y_max=1 (when x=2kπ+π/2) 无最大值y_min=-1 (when x=2kπ-π) y_min=-1 (when x=2kπ) 无最小值周期性2π 2π π奇偶性奇函数偶函数奇函数单调性在[2kπ-π/2,2kπ+π/2](k∈Z)上是增函数;在[2kπ+π/2,2kπ+3π/2](k∈Z)上是减函数。
在[kπ,kπ+π](k∈Z)上是减函数。
在[kπ-π/2,kπ+π/2](k∈Z)上是增函数;在[kπ+π/2,kπ+3π/2](k∈Z)上是减函数。
对称中心(kπ,0)(k∈Z) 对称中心(kπ+π/2,0)(k∈Z) 无对称中心对称性奇对称偶对称无对称轴对称轴x=kπ+π/2 (k∈Z) 对称轴x=kπ (k∈Z) 无对称轴2.正、余弦定理:在△ABC中有:①正弦定理:a/sinA=b/sinB=c/sinC=2R(R为△ABC外接圆半径)注意变形应用:sinA=2R/asinB=2R/bsinC=2R/c②面积公式:S△ABC=1/2absinC=1/2acsinB=1/2bcsinA ③余弦定理:b²=c²+a²-2accosBc²=a²+b²-2abcosCa²=b²+c²-2bccosA三、例题集锦:考点一:三角函数的概念1.如图,设A是单位圆和x轴正半轴的交点,P、Q是单位圆上的两点,O是坐标原点,∠AOP=π/6,∠AOQ=α,α∈[0,π)。
若Q(√3/2,y),求cos(α-π/6)。
高考函数专题复习
高考函数专题复习函数是高考数学中的一个重要知识点,掌握好函数的相关概念和性质对于高考数学的考试成绩至关重要。
下面将对高考函数专题进行复。
一、函数的定义与性质1. 函数的定义:函数是一种特殊的关系,表示从一个集合(定义域)到另一个集合(值域)的每个元素之间,都有唯一的对应关系。
2. 函数的性质:- 定义域和值域:定义域是所有自变量可能取值的集合,值域是所有函数值可能取值的集合。
- 奇偶性:若对于函数的任意自变量x,有f(-x) = f(x),则函数是偶函数;若对于函数的任意自变量x,有f(-x) = -f(x),则函数是奇函数。
- 单调性:若对于函数的任意两个自变量x1和x2,若x1<x2,则有f(x1)≤f(x2)时,函数是递增函数;若x1<x2,则有f(x1)≥f(x2)时,函数是递减函数。
二、常见的函数类型1. 线性函数:y = kx + b,其中k和b是常数。
线性函数的图像是一条直线。
2. 幂函数:y = x^a,其中a是常数。
幂函数的图像形状多种多样。
3. 指数函数:y = a^x,其中a>0且不等于1。
指数函数的图像上升或下降。
4. 对数函数:y = loga(x),其中a>0且不等于1。
对数函数的图像上升或下降。
5. 三角函数:正弦函数、余弦函数、正切函数等。
三角函数图像呈周期性变化。
三、相关概念与应用1. 复合函数:一个函数的输入是另一个函数的输出,形成了复合函数。
2. 反函数:如果函数f的定义域和值域对换,且每个自变量有唯一的对应函数值,则称这个新函数为f的反函数。
3. 函数方程与函数图像:给定一个函数方程,可以通过画函数图像来表示函数的性质和变化趋势。
4. 函数的应用:函数在现实生活中有广泛应用,如数学建模、物理问题的求解、金融数学等。
四、解题技巧1. 利用定义域、值域等性质来确定函数的范围。
2. 利用平移、伸缩等函数变换来求解复合函数的性质。
3. 利用函数的奇偶性和单调性来解答相应的题目。
高中数学函数基础+讲义-2023届高三数学一轮复习专题
函数基础一、定义域的五种考法1.分式型:分母不为零f(x)=1定义域{x|x≠1}x−12.二次根式型:根式里大于等于零f(x)=√x−1定义域{x|x≥-1}3.对数函数:真数大于零log₂(x-1)定义域{x|x>1}(x2−2x−8)的单调区间,一定要先求定义域.注意:高考常见,求函数y=log124.正切函数型,k∈Zf(x)=tan(x-1)定义域x−1≠kπ+π25.抽象函数f(2x+1)定义域为[-1,1],求f(x-1)的定义域.∵-1≤x≤1-1≤2x+1≤3-1≤x-1≤30≤x≤4∴f(x-1)的定义域为[0,4]二、求值域的八种方法1.换元法若在同一个函数中出现x⁴与x²、x⁶与x³、x与√x、ax+b与√cx+d等,即两部分在次数上含平方关系,设低次数项为t,高次数项用t²的形式表达出来,则转化为关于t的二次函数类型,注意新元t的取值范围.求y=2x−1+√1−x值域.令√1−x=t,则1-x=t²,x=1-t²,且t≥0,于是y=2(1−t2)−1+t=−2t2+t+1=−2(t−14)2+98,(t≥0)函数值域为(−∞,98].2.配方法若函数是二次函数形式,即可化为.y=ax²+bx+c(a≠0)型函数,可通过配方后结合二次函数性质求值域,但要注意二次函数在给定区间上最值的求法.如求函数y=x−2√x+3的值域,因为y=(√x−1)2+2≥2,故值域为[2,+∞).3.反表示法如求函数y=x−1x+2(x≥−1)的值域,由y=x−1x+2解出x x=2y+11−y(y≠1),而x≥-1,所以2y+11−y≥−1,即y+2y−1≤0,所以-2≤y<1,故函数值域为[-2,1).4.分离常数法形如y=ax+bcx+d的函数求值域,可用分离常数法.y=1−2xx−1=−2(x−1)−1x−1=−2−1x−1≠−2值域(-∞,-2)U(-2,+∞)小技巧:分母不管是什么,先写一个与分母一样的式子,然后再配.5.判别式法求函数y =2x 2+2x+3x 2+x+1的值域.∵x²+x+1>0恒成立∴y =2x 2+2x+3x 2+x+1可变形为.yx²+yx+y=2x²+2x+3,即(y-2)x²+(y -2)x+y-3=0,x∈R当y≠2时,由△=(y -2)²-4(y-2)(y-3)≥0,得(y-2).(10-3y)≥0,解得2≤y ≤103,此时2≤y ≤103,必须讨论二次项系数y-2是否为0.又当y=2时,代入方程(y-2)x²+(y -2)x+y-3=0,x 无解.综上所述,函数值域为(2,103]. 6.三角换元法求函数y =x −√1−x 2的值域.可以设x=cosθ,θ∈[0,π],注意取值范围.设x =cosθ,θ∈[0,π],y =cosθ−sinθ=√2cos (θ+π4)根据θ∈[0,π] π4≤θ+π4≤5π4−1≤cos (θ+π4)≤√22函数值域[−√2,1].求形如且x∈R)的函数值域.7.中间变量法如求函数y=x2+4x2−1的值域,由y=x2+4x2−1得x2=y+4y−1(y≠1),而x²≥0,所以y+4y−1≥0,所以y>1或y≤-4,故所求函数的值域为(-∞,-4]U(1,+∞).8.均值不等式法”求函数y=3xx2+x+1(x≥0)的值域.方法一:当x=0时,y=0;当x≠0时,y=3x+1x +1(x⟩0)因为x+1x ≥2√x⋅1x=2,所以y=3x+1x+1≤32+1=1又x>0时,x²+x+1>0,3x>0,∴y>0综上,值域为[0,1]方法二:判别式法因为x²+x+1>0恒成立.yx²+yx+y=3xyx²+(y-3)x+y=0y=0时,x=0y≠0时,令Δ≥0(y-3)²-4y²≥0.y²+2y-3≤0-3≤y≤1又∵定义域x≥0,故y≥0综上所述,值域为[0,1]三、函数求解析式1.配凑法已知f(x+1x )=x3+1x3,求f(x).解:f(x+1x )=x3+1x3=(x+1x)3−3(x+1x)f(x)=x³-3x(x≥2或x≤-2) 2.换元法已知f(2x+1)=lgx,求f(x)解:令2x +1=t(t⟩1),则x=2t−1f(t)=lg2t−1,f(x)=lg2x−1(x⟩1)3.待定系数法已知f(x)是一次函数,且满足3f(x+1)-2f(x-1)=2x+17,求f(x).解:设f(x)=ax+b(a≠0),则3f(x+1)-2f(x-1)=3ax+3a+3b-2ax+2a-2b=ax+b+5a=2x+17∴a=2b=7∴f(x)=2x+74.消元方程组已知f(x)满足2f(x)+f(1x)=3x,求f(x)解:2f(x)+f(1x)=3x①令x=1x,换一下2f(1x )+f(x)=3x②①②联立解方程;消去f(1x)2×①-②得3f(x)=6x−3xf(x)=2x−1 x5.反设法函数f(x)是定义域为R的奇函数,当x>0时,f(x)=-x+1,则当x<0时,f(x)的表达式为()A.f(x)=-x+1B.f(x)=-x-1C.f(x)=x+1.D.f(x)=x-1解:设t=-x,x=-t(t<0)则f(-t)=t+1又f(-t)=-f(t)f(t)=-t-1f(x)=-x-1(x<0)试数法点(2,-1)在f(x)=-x+1上,f(x)为奇函数,点(-2,1)在x<0的解析式上,代入A、B、C、D中,只有B符合.图像法根据奇函数的图像性质,关于原点对称.故选B.四、函数单调性1.导数法若函数f(x)在(a,b)内可导,·当.f′(x)>0时,该函数在区间(a,b)内单调递增.当f′(x)<0时,函数在(a,b)内单调递减.2.复合函数同增异减法u=g(x)增增减减y=f(u)增减增减增减减增3.常见的几个结论(1)当k>0时,y=k·f(x)与y=f(x)函数单调性相同.当k<0时,y=k·f(x)与y=f(x)函数单调性相反.(2)若f(x)≥0,则函数y=f(x)与函数y=√f(x),y=f2(x)的单调性相同.(3)当f(x)的值恒为正或恒为负时,函数1和函数f(x)的单调性相反.f(x)(4)若f(x)>0,g(x)>0,公共区间上都是增(减)函数,则y=f(x)g(x)在此区间上是增(减)函数.(5)增函数+增函数=增函数减函数+减函数=减函数增函数-减函数=增函数减函数-增函数=减函数(6)若f(x)与g(x)的单调性相同,则f(g(x))为增函数;若f(x)与g(x)的单调性相反,则f(g(x))为减函数.五、函数奇偶性1.若奇函数f(x)的定义域为R,则f(0)=0.假设f(0)=2,因为奇函数性质关于原点对称,(0,2)关于原点的对称点为(0,-2),f(0)=-2,与f(0)=2矛盾,故f(0)只能等于0.2.奇偶四则运算结论偶函数±偶函数=偶函数奇函数±奇函数=奇函数假设偶函数.y=x²,奇函数y=x,便于记忆.偶函数×偶函数=偶函数(x².x²=x⁴,x⁴为偶函数)奇函数×奇函数=偶函数(x·x=x²,x²,为偶函数)偶函数×奇函数=奇函数(x.x²=x³,x³为奇函数)3.复合函数的奇偶性对于复合函数f(g(x)),若g(x)为偶函数,f(x)为偶函数或奇函数,f(g(x))为偶函数,若g(x)为奇函数,f(g(x))与f(x)的奇偶性相同.其中f(g(x))的定义域关于原点对称,f(x),g(x)有奇偶性.4.奇偶函数的一些性质(1)若函数f(x)(x∈A)是偶函数,则f(|x|)=f(x)(x∈A)恒成立.(2)若偶函数f(x)在x=0处可导,则.f′(0)=0.(3)若f(x)是奇函数,f(x)的最大值+最小值=0,若g(x)=f(x)+a,g(x)的最大值+最小值=2a.(4)判断一个复杂函数的奇偶性,一定要先判断函数的定义域,定义域关于原点对称才能判断奇偶性,若定义域不关于原点对称,则函数非奇非偶.六、函数周期性与对称性1.定义对于函数f(x),如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫作周期函数,非零常数T 叫作函数的周期.设函数f(x),若.f(x+a)=-f(x)或f (x +a )=±1f (x )(a ⟩0),则函数f(x)的最小正周期为2a例:f(x+a)=-f(x),求f(x)的周期.令x=x+a∵f(x+2a)=-f(x+a)-f(x+a)=f(x)(题干减号挪到另一边)f(x+2a)=f(x)∴周期为2a2.求周期常用的三个方法 (1)利用定义f(x+T)=f(x)(3)特殊函数利用图像求周期.3.常见的周期公式 (1)f(x+a)=f(x+b),f(x)的周期为|b-a|.(2)f(x+a)=-f(x),f(x)的周期为2a. (往往题干出现的是f(x+a)=-f(x)或(2)利用公式求三角函数周期T =2π|ω|或T =π|ω|.(3)f(x+a)=±1f(x),f(x)的周期为2a.(4)f(x+a)=1−f(x)1+f(x),f(x)的周期为2a.(5)f(x+a)=1+f(x)1−f(x),f(x)的周期为4a.4.对称性的四个结论(1)y=f(x),x∈R满足.f(a+x)=f(a−x)y=f(x)图像关于直线x=a对称.(2)f(a+x)=f(b−x)f(x)图像关于x=a+b2轴对称,(中心对称轴可由(a+x)+(b−x)2得到,简记:一个函数相加除以2).(3)若2b=f(x+a)+f(a-x),则函数y=f(x)关于点(a,b)为中心对称.(4)函数y=f(a+x)与函数y=f(b-x)的图像关于直线x=b−a2对称(对称轴由a+x=b-x,解出x得x=b−a2,简记:两个函数相等解方程).例:若f(x+1)为奇函数,则y=f(x)的图像关于为中心对称.∵y=f(x+1)为奇函数.∴f(-x+1)=-f(x+1)⇒f(1-x)+f(x+1)=0由(3)可知,f(x)关于点(1,0)为中心对称.5.周期与对称公式的记忆方法若等式两边x的符号相同,则为周期性;若等式两边x的符号相反,则为对称性.其中,函数值相等为轴对称,函数值相反,为中心对称,且括号内的式子相加除以2得对称轴或对称中心..6.遇到一个抽象函数,最重要的是:先判断出来说的是周期还是对称,十分重要.七、函数翻折变换1.函数的翻折变换(1)y=f(x)⇒y=f(x±u)左加右减(2)y=f(x)⇒y=f(x)±h上加下减(3)y=f(x)与y=-f(x)关于x轴对称(4)y=f(x)与y=f(-x)关于y轴对称(5)y=f(x)与y=-f(-x)关于原点对称(6)f(x)与|f(x)|:将f(x)图像x轴下方翻折上去f(x)与f(|x|)→{f(x)x≥0f(−x)x<0把f(x)图像右侧保留,左侧去掉,将y轴右侧图像做关于y轴对称的图像.2.函数的点线对称(1)点(x,y)关于(a,b)的对称点的坐标为(2a-x,2b-y)曲线f(x,y)=0关于点(a,b)的对称方程是f(2a-x,2b-y)=0(2)点(x,y)关于x=a的对称点为(2a-x,y),关于y=b的对称点为(x,2b-y)曲线f(x,y)=0关于x=a的对称曲线方程为f(2a-x,y)=0曲线f(x,y)=0关于y=b的对称曲线方程为f(x,2b-y)=0例:直线2x-y+5=0关于x=3的对称直线是.将x换成2×3-x=6-x,代入2x-y+5=0,2(6-x)-y+5=0,答案:2x+y-17=0.八、指数与对数常用公式1.分数指数幂a m n =√[n ]a m (a ⟩0,m,n ∈N ∗,且n>1)0的正分数指数幂是0,0的负分数指数幂无意义(0°高中一般不会考)2.对数的性质(1)零和负数没有对数(2)logₐ1=0(3)logₐa =1(4)logₐaᵏ=k(5)a log a N=Ny =aˣ与y =logₐx 互为反函数①两个函数图像关于y=x 对称.反函数性质②y=f(x)图像上一点(a,b),则点(b,a)必在其反函数图像上.3.对数运算公式若a>0且a≠1,M>0,N>0,那么(1)logₐ(M ⋅N )=logₐM +logₐN(2)log aM N =log a M −log a N (3)logₐMⁿ=nlogₐM且n>1)且a≠1)(4)换底公式:log a b =log a blog a a (a ⟩0)且a≠1,c>0,且c≠1,b>0) (5)换底公式推论:log a b ⋅log b a =1log a M ⋅log b N =log a N ⋅log b M (a ⟩0,a ≠1,b >0,b ≠1,M,N >0)4.证明(1)logₐ(mn )=logₐm +logₐn设p =logₐm,q =logₐnaᵖ=ma⁴=n又因a P −1=m ⋅n,由对数定义p +q =logₐ(mn )=logₐm +logₐn.令logₐb =m,aᵐ=b∴m =log c b log c a总结:两个对数公式的证明,会让你更深刻地理解公式,从而更好地利用公式.且a,b,c 都不为1) 即九、函数零点问题1.求零点的三个方法(1)解方程f(x)=0,实数解即为函数的零点.(2)零点存在性定理,在定义域内取a 、b,f(a)·f(b)<0,说明a,b 之间至少有一个零点.(3)图像法:这是高考中最常出现的类型,首先给你一个复杂的函数,比方说方程f (x )=eˣ(2x −1)−ax +a 此函数有唯一零点,我们令f (x )=0,eˣ(2x −1)−ax +a =0移项eˣ(2x −1)=a −ax,令y₁=eˣ(2x −1),y₂=ax −a,说f(x)有唯一零点,等价于y ₁和y ₂有且只有一个交点,画出图像,让其有且只有一个交点即可.2、二次函数零点判断一元二次方程根的分布规律:设函数f(x)=ax²+bx+c,(a>0)3.ax²+bx+c=0(a>0)的一根大于m ,一根小于mf (m )<04.若ax²+bx+c=0(a>0)的两根x ₁,x ₂满足:m ₁一1.ax²+bx+c=0(a>0)有两个正根2.ax²+bx+c=0(a>0)两个根均大于m ,。
第6讲、函数的概念(教师版)2025高考数学一轮复习讲义
第6讲函数的概念知识梳理1、函数的概念(1)一般地,给定非空数集A ,B ,按照某个对应法则f ,使得A 中任意元素x ,都有B 中唯一确定的y 与之对应,那么从集合A 到集合B 的这个对应,叫做从集合A 到集合B的一个函数.记作:)(x f y x =→,A x ∈.集合A 叫做函数的定义域,记为D ,集合)({x f y y =,}A x ∈叫做值域,记为C .(2)函数的实质是从一个非空集合到另一个非空集合的映射.2、函数的三要素(1)函数的三要素:定义域、对应关系、值域.(2)如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为同一个函数.3、函数的表示法表示函数的常用方法有解析法、图象法和列表法.4、分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.【解题方法总结】1、基本的函数定义域限制求解函数的定义域应注意:(1)分式的分母不为零;(2)偶次方根的被开方数大于或等于零:(3)对数的真数大于零,底数大于零且不等于1;(4)零次幂或负指数次幂的底数不为零;(5)三角函数中的正切tan y x =的定义域是{,x x R ∈且,2x kx k Z π⎫≠+∈⎬⎭;(6)已知()f x 的定义域求解()f g x ⎡⎤⎣⎦的定义域,或已知()f g x ⎡⎤⎣⎦的定义域求()f x 的定义域,遵循两点:①定义域是指自变量的取值范围;②在同一对应法则∫下,括号内式子的范围相同;(7)对于实际问题中函数的定义域,还需根据实际意义再限制,从而得到实际问题函数的定义域.2、基本初等函数的值域(1))0(≠+=k b kx y 的值域是R .(2))0(2≠++=a c bx ax y 的值域是:当0>a 时,值域为}44{2ab ac y y -≥;当0<a 时,值域为}44{2ab ac y y -≥.(3))0(≠=k xky 的值域是}0{≠y y .(4)0(>=a a y x 且)1≠a 的值域是)0(∞+,.(5)0(log >=a x y a 且)1≠a 的值域是R .必考题型全归纳题型一:函数的概念例1.(2024·山东潍坊·统考一模)存在函数()f x 满足:对任意x ∈R 都有()A .()3f x x=B .()2sin f x x=C .()22f x x x +=D .()21f x x =+【答案】D【解析】对于A ,当1x =时,()(1)11f f ==;当=1x -时,()(1)11f f =-=-,不符合函数定义,A 错误;对于B,令0x =,则()sin (0)0f x f ==,令πx =,则()2sinπ(0)πf f ==,不符合函数定义,B 错误;对于C,令0x =,则(0)0f =,令2x =-,则()22(2)(0)2(2)f f +--==,不符合函数定义,C 错误;对于D,()221||1f x x x =+=+,x ∈R ,则||0x ≥,则存在0x ≥时,2()1f x x =+,符合函数定义,即存在函数2()1,(0)f x x x =+≥满足:对任意x ∈R 都有()21f x x =+,D正确,故选:D例2.(2024·重庆·二模)任给[]2,0u ∈-,对应关系f 使方程20u v +=的解v 与u 对应,则()v f u =是函数的一个充分条件是()A .[4,4]v ∈-B .(]4,2v ∈-C .[2,2]v ∈-D .[]4,2v ∈--【答案】A【解析】根据函数的定义,对任意[2,0]u ∈-,按2v u =-,在v 的范围中必有唯一的值与之对应,2[0,4]u ∈,则2[4,0]u -∈-,则v 的范围要包含[4,0]-,故选:A .例3.(2024·全国·高三专题练习)如图,可以表示函数()f x 的图象的是()A .B .C .D .【答案】D【解析】根据函数的定义,对于一个x ,只能有唯一的y 与之对应,只有D 满足要求故选:D变式1.(2024·全国·高三专题练习)函数y =f (x )的图象与直线1x =的交点个数()A .至少1个B .至多1个C .仅有1个D .有0个、1个或多个【答案】B【解析】若1不在函数f (x )的定义域内,y =f (x )的图象与直线1x =没有交点,若1在函数f (x )的定义域内,y =f (x )的图象与直线1x =有1个交点,故选:B.【解题方法总结】利用函数概念判断题型二:同一函数的判断例4.(2024·高三课时练习)下列各组函数中,表示同一个函数的是().A .()2lg f x x =,()2lg g x x=B .()1lg 1x f x x +=-,()()()lg 1lg 1g x x x =+--C .()f u =,()g vD .()2f x =,()g x =【答案】C【解析】对于A :()2lg f x x =的定义域为R ,()2lg g x x =的定义域为()0,∞+.因为定义域不同,所以()f x 和()g x 不是同一个函数.故A 错误;对于B :()1lg1x f x x +=-的定义域为()(),11,-∞-⋃+∞,()()()lg 1lg 1g x x x =+--的定义域为()1,+∞.因为定义域不同,所以()f x 和()g x 不是同一个函数.故B 错误;对于C :()f u =()1,1-,()g v ()1,1-,所以定义域相同.又对应关系也相同,所以为同一个函数.故C 正确;对于D :()2f x =的定义域为[)0,∞+,()g x =R .因为定义域不同,所以()f x 和()g x 不是同一个函数.故D 错误;故选:C例5.(2024·全国·高三专题练习)下列四组函数中,表示同一个函数的一组是()A .,y x u =B .2y s =C .21,11x y m n x -==+-D .y y ==【答案】A【解析】对于A ,y x =和u =的定义域都是R ,对应关系也相同,是同一个函数,故选项A 正确;对于B ,函数y R ,函数2s =的定义域为[0,)+∞,定义域不同,不是同一个函数,故选项B 错误;对于C ,函数211x y x -=-的定义域为{|1}x x ≠,函数1m n =+的定义域为R ,定义域不同,不是同一个函数,故选项C 错误;对于D ,函数y ={|1}x x ≥,函数y =(,1][1,)∞∞--⋃+,定义域不同,不是同一个函数,故选项D 错误,故选:A .例6.(2024·全国·高三专题练习)下列各组函数中,表示同一函数的是()A .()lnx f x e =,()g x x=B .24(),()22x f x g x x x -==-+C .0()f x x =,()1g x =D .()||f x x =,{1x ∈-,0,1},2()g x x =,{1x ∈-,0,1}【答案】D【解析】对于A :()f x 的定义域是(0,)+∞,()g x 的定义域是R ,两个函数的定义域不相同,不是同一函数,对于B :()2f x x =-,(2)x ≠-,()g x 的定义域是R ,两个函数的定义域不相同,不是同一函数,对于C :()f x 的定义域为{|0}x x ≠,()g x 的定义域是R ,两个函数的定义域不相同,不是同一函数,对于D :()f x 对应点的坐标为{(1,1)-,(0,0),(1,1)},()g x 对应点的坐标为{(1,1)-,(0,0),(1,1)},两个函数对应坐标相同,是同一函数,故选:D .【解题方法总结】当且仅当给定两个函数的定义域和对应法则完全相同时,才表示同一函数,否则表示不同的函数.题型三:给出函数解析式求解定义域例7.(2024·北京·高三专题练习)函数()f x =的定义域为________.【答案】{}1x x ≥【解析】令2101x x -≥+,可得10x -≥,解得1x ≥.故函数()f x ={}1x x ≥.故答案为:{}1x x ≥.例8.(2024·全国·高三专题练习)若1y =,则34x y +=_________.【答案】5-或13【解析】由12y x =+-有意义可得2290,90,20x x x -≥-≥-≠,所以3x =或3x =-,当3x =时,1y =,3413x y +=,当3x =-时,1y =,345x y +=-,故答案为:5-或13.例9.(2024·高三课时练习)函数()23()log 32f x x x =+-的定义域为______.【答案】[)1,3【解析】要使函数有意义,则22230320x x x x ⎧+-≥⎨+->⎩,解得13x ≤<.所以函数的定义域为[1,3).故答案为:[1,3).变式2.(2024·全国·高三专题练习)已知正数a ,b 满足2,log b aa b a b==,则函数()f x =___________.【答案】(]0,2【解析】由log b a a b =可得a b b a =,即2a b b b =,所以22aa b b=⇒=,代入2a b =即22b b =,解得2b =或0b =(舍),则4a =所以()f x =401log 02x x >⎧⎪⎨-≥⎪⎩解得02x <≤所以函数定义域为(]0,2故答案为:(]0,2变式3.(2024·全国·高三专题练习)已知等腰三角形的周长为40cm ,底边长()y cm 是腰长()x cm 的函数,则函数的定义域为()A .()10,20B .()0,10C .()5,10D .[)5,10【答案】A【解析】由题设有402y x =-,由4020402x x x x ->⎧⎨+>-⎩得1020x <<,故选A.【解题方法总结】对求函数定义域问题的思路是:(1)先列出使式子()f x 有意义的不等式或不等式组;(2)解不等式组;(3)将解集写成集合或区间的形式.题型四:抽象函数定义域例10.(2024·全国·高三专题练习)已知函数(1y f =的定义域为{|01}x x ≤≤,则函数()y f x =的定义域为_____【答案】[1,2]【解析】令1u =01x ≤≤得:10011x x -≤-≤⇔≤-≤,所以01112≤≤⇔≤≤,即12u ≤≤,所以,函数()y f x =的定义域为[1,2].故答案为:[1,2]例11.(2024·高三课时练习)已知函数()f x 的定义域为11,22⎡⎤-⎢⎥⎣⎦,则函数212y f x x ⎛⎫=-- ⎪⎝⎭的定义域为______.【答案】11,01,22⎡⎤⎡⋃⎢⎥⎢⎣⎦⎣⎦【解析】因为函数()y f x =的定义域为11,22⎡⎤-⎢⎥⎣⎦,所以在函数212y f x x ⎛⎫=-- ⎪⎝⎭中,2111222x x ---≤≤,解得102x ≤≤或112x ≤≤,故函数212y f x x ⎛⎫=-- ⎪⎝⎭的定义域为⎤⎡⋃⎥⎢⎣⎦⎣⎦.故答案为:11,01,22⎡⎤⎡⋃⎢⎥⎢⎣⎦⎣⎦.例12.(2024·全国·高三专题练习)已知函数()1f x +定义域为[]1,4,则函数()1f x -的定义域为_______.【答案】[]3,6【解析】因()1f x +的定义域为[]1,4,则当14x ≤≤时,215x ≤+≤,即()f x 的定义域为[]2,5,于是()1f x -中有215x ≤-≤,解得36x ≤≤,所以函数()1f x -的定义域为[]3,6.故答案为:[]3,6变式4.(2024·全国·高三专题练习)已知函数()f x 的定义域为[]3,6,则函数y =的定义域为______【答案】3,22⎡⎫⎪⎢⎣⎭【解析】由函数()f x 的定义域是[]3,6,得到326x ,故1232620log (2)0x x x ⎧⎪⎪->⎨⎪->⎪⎩即332212x x x ⎧⎪⎪>⎨⎪<<⎪⎩.解得:322x < ;所以原函数的定义域是:3,22⎡⎫⎪⎢⎣⎭.故答案为:3,22⎡⎫⎪⎢⎣⎭.变式5.(2024·全国·高三专题练习)已知函数()f x 的定义域为[2,3]-,则函数(21)f x -的定义域为__________.【解析】由2213x -≤-≤解得122x -≤≤,所以函数(21)f x -的定义域为1[,2]2-.故答案为:1[,2]2-【解题方法总结】1、抽象函数的定义域求法:此类型题目最关键的就是法则下的定义域不变,若)(x f 的定义域为)(b a ,,求)]([x g f 中b x g a <<)(的解x 的范围,即为)]([x g f 的定义域,口诀:定义域指的是x 的范围,括号范围相同.已知)(x f 的定义域,求四则运算型函数的定义域2、若函数是由一些基本函数通过四则运算结合而成的,其定义域为各基本函数定义域的交集,即先求出各个函数的定义域,再求交集.题型五:函数定义域的应用例13.(2024·全国·高三专题练习)若函数()f x =R ,则实数a 的取值范围是__________.【答案】[0,4)【解析】()f x 的定义域是R ,则210ax ax ++>恒成立,0a =时,2110ax ax ++=>恒成立,0a ≠时,则2Δ40a a a >⎧⎨=-<⎩,解得04a <<,综上,04a ≤<.故答案为:[0,4).例14.(2024·全国·高三专题练习)已知()2()ln 1f x x ax =-+的定义域为R ,那么a 的取值范围为_________.【答案】(2,2)-【解析】依题可知,210x ax -+>的解集为R ,所以240a ∆=-<,解得22a -<<.故答案为:(2,2)-.例15.(2024·全国·高三专题练习)函数21()43f x ax ax =++的定义域为(,)∞∞-+,则实数a的取值范围是___________.⎢⎣⎭【解析】因为函数21()43f x ax ax =++的定义域为R ,所以2430ax ax ++≠的解为R ,即函数243y ax ax =++的图象与x 轴没有交点,(1)当0a =时,函数3y =与x 轴没有交点,故0a =成立;(2)当0a ≠时,要使函数243y ax ax =++的图象与x 轴没有交点,则()24120a a ∆=-<,解得304a <<.综上:实数a 的取值范围是30,4⎡⎫⎪⎢⎣⎭.故答案为:30,4⎡⎫⎪⎢⎣⎭变式6.(2024·全国·高三专题练习)若函数()f x R ,则实数a 的取值范围是__________.【答案】11,22⎡⎤--⎢⎥⎣⎦【解析】由函数()f x =R,得221202x ax a---≥恒成立,化简得2210x ax a --+≥恒成立,所以由()24410a a ∆=--≤解得:⎣⎦.故答案为: ⎣⎦.【解题方法总结】对函数定义域的应用,是逆向思维问题,常常转化为恒成立问题求解,必要时对参数进行分类讨论.题型六:函数解析式的求法例16.(2024·全国·高三专题练习)求下列函数的解析式:(1)已知()21sin cos f x x -=,求()f x 的解析式;(2)已知2112f x x x x ⎛⎫+=+ ⎪⎝⎭,求()f x 的解析式;(3)已知()f x 是一次函数且()()3121217f x f x x +--=+,求()f x 的解析式;(4)已知()f x 满足()()23f x f x x +-=,求()f x 的解析式.【解析】(1)设1sin x t -=,[]0,2t ∈,则sin 1x t=-∵()221sin cos 1sin f x x x-==-∴()()22112f t t t t =--=-,[]0,2t ∈即()22f x x x =-,[]0,2x ∈(2)∵222111()2f x x x x x x ⎛⎫+=+=+- ⎪⎝⎭由勾型函数1y x x=+的性质可得,其值域为(][),22,-∞-+∞U 所以()(][)22,22,f x x x ∞∞=-∈--⋃+,(3)由f (x )是一次函数,可设f (x )=ax +b (a ≠0),∴3[a (x +1)+b ]-2[a (x -1)+b ]=2x +17,即ax +(5a +b )=2x +17,∴2,517,a a b =⎧⎨+=⎩解得2,7,a b =⎧⎨=⎩∴f (x )的解析式是f (x )=2x +7.(4)∵2f (x )+f (-x )=3x ,①∴将x 用x -替换,得()()23f x f x x -+=-,②由①②解得f (x )=3x .例17.(2024·全国·高三专题练习)根据下列条件,求()f x 的解析式(1)已知()f x 满足()2141f x x x +=++(2)已知()f x 是一次函数,且满足()()3129f x f x x +-=+;(3)已知()f x 满足()()120f f x x x x ⎛⎫+=≠ ⎪⎝⎭【解析】(1)令1t x =+,则1x t =-,故()()()22141122f t t t t t =-+-+=+-,所以()222f x x x +=-;(2)设()f x kx b =+,因为()()3129f x f x x +-=+,所以()31329k x b kx b x ++--=+,即23229kx k b x ++=+,所以22329k k b =⎧⎨+=⎩,解得13k b =⎧⎨=⎩,所以()3f x x =+;(3)因为()()120f f x x x x ⎛⎫+=≠ ⎪⎝⎭①,所以()112f x f x x⎛⎫+= ⎪⎝⎭②,2⨯②-①得()23f x x x=-,所以()()2033xf x x x =-≠.例18.(2024·全国·高三专题练习)根据下列条件,求函数()f x 的解析式.(1)已知)1fx =+()f x 的解析式为__________.(2)已知()f x 满足12()3f x f x x ⎛⎫+= ⎪⎝⎭,求()f x 的解析式.(3)已知(0)1f =,对任意的实数x ,y 都有()()(21)f x y f x y x y -=--+,求()f x 的解析式.【解析】(1)方法一(换元法)1t =,则2(1)x t =-,1t ≥.所以22()(1)2(1)1(1)f t t t t t =-+-=-≥,所以函数()f x 的解析式为2()1(1)f x x x =-≥.方法二(配凑法):))211111fx x =+=++-=-.11≥,所以函数()f x 的解析式为2()1(1)f x x x =-≥.(2)将1x代入12()3f x f x x ⎛⎫+= ⎪⎝⎭,得132()f f x x x ⎛⎫+= ⎪⎝⎭,因此12()()3,132()(),f x f x x f f x x x ⎧+=⎪⎪⎨⎪+=⎪⎩,解得1()2(0)f x x x x =-≠.(3)令0x =,得22()(0)(1)1()()1f y f y y y y y y -=--+=+-=-+-+,所以2()1f y y y =++,即2()1f x x x =++.变式7.(2024·全国·高三专题练习)已知2211(11x x f x x--=++,求()f x 的解析式.【解析】由2211()11x x f x x --=++,令1,11x t t x -=≠-+,则11t x t -=+,所以22211()21(),1111()1t t t f t t t t t--+==≠--+++,所以22()(1)1xf x x x =≠-+.变式8.(2024·广东深圳·高三深圳外国语学校校考阶段练习)写出一个满足:()()()2f x y f x f y xy +=++的函数解析式为______.【答案】()2f x x=【解析】()()()2f x y f x f y xy +=++中,令0x y ==,解得()00f =,令y x =-得()()()22f x x f x f x x -=+--,故()()22f x f x x +-=,不妨设()2f x x =,满足要求.故答案为:()2f x x=变式9.(2024·全国·高三专题练习)已知定义在()0+∞,上的单调函数()f x ,若对任意()0x ∈+∞,都有()12log 3f f x x ⎛⎫+= ⎪⎝⎭,则方程()2f x =_______.【答案】{}416,.【解析】∵定义在()0+∞,上的单调函数()f x ,对任意()0x ∈+∞,都有()12log 3f f x x ⎛⎫+= ⎪⎝⎭,令()12log f x x c +=,则()3f c =,在上式中令x c =,则()1122log log 3f c c c c c +==-,,解得2c =,故()122log f x x =-,由()2f x =122log 2x -=2log x =在同一坐标系中作出函数2log y x =和y 的图像,可知这两个图像有2个交点,即()42,和()164,,则方程()2f x ={}416,.故答案为:{}416,.【解题方法总结】求函数解析式的常用方法如下:(1)当已知函数的类型时,可用待定系数法求解.(2)当已知表达式为()[]x g f 时,可考虑配凑法或换元法,若易将含x 的式子配成()x g ,用配凑法.若易换元后求出x ,用换元法.(3)若求抽象函数的解析式,通常采用方程组法.(4)求分段函数的解析式时,要注意符合变量的要求.(5)当出现大基团换元转换繁琐时,可考虑配凑法求解.(6)若已知成对出现()f x ,1()f x或()f x ,()f x -,类型的抽象函数表达式,则常用解方程组法构造另一个方程,消元的方法求出()f x .题型七:函数值域的求解例19.(2024·全国·高三专题练习)求下列函数的值域(1)34xy x+=-;(2)25243y x x =-+;(3)y x =;(4)22436x x y x x ++=+-;(5)4y =;(6)y x =+(7)y =;(8)y =(9)312x y x +=-;(10)2211()212x x y x x -+=>-.【解析】(1)分式函数37144x y x x +==----,定义域为{}4x x ≠,故704x ≠-,所有1y ≠-,故值域为(,1)(1,)-∞-⋃-+∞;(2)函数25243y x x =-+中,分母()221124321t x x x =-+=+≥-,则(]50,5y t=∈,故值域为(]0,5;(3)函数y x =-中,令120x -≥得12x ≤,易见函数y =y x =-都是减函数,故函数y x =在12x ≤时是递减的,故12x =时min 12y =-,故值域为1,2⎡⎫-+∞⎪⎢⎣⎭;(4)()2243131,3622x x x y x x x x x +++===+≠-+---,故值域为{1y y ≠且25y ⎫≠⎬⎭;(5)44y ==[]13,x ∈-而20(1)44x ≤--+≤,[]0,4x ∈,02∴≤≤,42440∴-≤≤-,即24y ≤≤,故值域为[]2,4;(6)函数y x =1,2⎛⎤-∞ ⎥⎝⎦,令0t =≥,所以212t x -=,所以221,20221t t y t t t -=+=-++≥,对称轴方程为1t =,所以1t =时,函数max 111122y =-++=,故值域为(],1-∞;(7)由题意得3050x x -≥⎧⎨-≥⎩,解得35x ≤≤,则2225y x =+=+≤≤,故()[]2410,1x --+∈,[]0,2,224y ∴≤≤,由y 2y ≤≤,故函数的值域为2⎤⎦;(8)函数y ==[]5,1--,()[]24043,x +∈-+,故[]0,2y =,即值域为[]0,2;(9)函数317322x y x x +==+--,定义域为{}2x x ≠,故702x ≠-,所有3y ≠,故值域为(,3)(3,)-∞+∞ ;(10)函数()()()()()22212122112121212212212x x x x y x x x x ⎡⎤-+-+-+===-++⎢⎥---⎢⎥⎣⎦,令21t x =-,则由12x >知,0t >,12122y t t ⎛⎫=++ ⎪⎝⎭,根据对勾函数2t t+在(递减,在)+∞递增,可知t =时,min 111222y =⨯=,故值域为1,2⎫+∞⎪⎭.例20.(2024·全国·高三专题练习)若函数()y f x =的值域是[]1,3-,则函数()32(1)g x f x =-+的值域为__.【答案】[]3,5-【解析】因为函数()y f x =的值域是[]1,3-,所以函数(1)y f x =+的值域为[]1,3-,则2(1)y f x =-+的值域为[]6,2-,所以函数()32(1)g x f x =-+的值域为[]3,5-.故答案为:[]3,5-.例21.(2024·全国·高三专题练习)函数sin 2cos 2x y x +=-的值域为_____【答案】⎣⎦【解析】sin 2cos 2x y x +=-表示点()cos ,sin x x 与点()2,2-连线的斜率,()cos ,sin x x 的轨迹为圆221x y +=,sin 2cos 2x y x +∴=-表示圆221x y +=上的点与点()2,2-连线的斜率,由图象可知:过()2,2-作圆221x y +=的切线,斜率必然存在,则设过()2,2-的圆221x y +=的切线方程为()22y k x +=-,即220kx y k ---=,∴圆心()0,0到切线的距离1d ==,解得:k =结合图象可知:圆221x y +=上的点与点()2,2-连线的斜率的取值范围为⎤⎥⎣⎦,即sin 2cos 2x y x +=-的值域为⎣⎦.故答案为:⎣⎦.变式10.(2024·重庆渝中·高三重庆巴蜀中学校考阶段练习)函数25y x =+的最大值为______.【答案】25/0.4【解析】因为11y =,令t =,则2t ≥,令()1g x x x =+,[)2,x ∞∈+,因为函数()1g x x x=+在[)2,+∞上单调递增,所以()5,2g x ⎡⎫∈+∞⎪⎢⎣⎭,5,2⎡⎫+∞⎪⎢⎣⎭,则120,15⎛⎤∈ ⎥⎝⎦,即函数25y x =+的最大值为25,当且仅当0x =时取等号.故答案为:25变式11.(2024·全国·高三专题练习)函数y 的值域为______.【答案】【解析】由y =1020x x -≥⎧⎨+≥⎩,所以21x -≤≤,y =的定义域为[2,1]-,y ==设212t x ⎛⎫=-+ ⎪⎝⎭,则9,04t ⎡⎤∈-⎢⎥⎣⎦,y =y ∈.故答案为:.【解题方法总结】函数值域的求法主要有以下几种(1)观察法:根据最基本函数值域(如2x ≥0,0xa >及函数的图像、性质、简单的计算、推理,凭观察能直接得到些简单的复合函数的值域.(2)配方法:对于形如()20y ax bx c a =++≠的值域问题可充分利用二次函数可配方的特点,结合二次函数的定义城求出函数的值域.(3)图像法:根据所给数学式子的特征,构造合适的几何模型.(4)基本不等式法:注意使用基本不等式的条件,即一正、二定、三相等.(5)换元法:分为三角换元法与代数换元法,对于形y ax b =++过换元将原函数转化为二次型函数.(6)分离常数法:对某些齐次分式型的函数进行常数化处理,使函数解析式简化内便于分析.(7)判别式法:把函数解析式化为关于x 的―元二次方程,利用一元二次方程的判别式求值域,一般地,形如y Ax B =+22ax bx cy dx ex f++=++的函数值域问题可运用判别式法(注意x 的取值范围必须为实数集R ).(8)单调性法:先确定函数在定义域(或它的子集)内的单调性,再求出值域.对于形如d cx b ax y +++=或d cx b ax y +++=的函数,当ac >0时可利用单调性法.(9)有界性法:充分利用三角函数或一些代数表达式的有界性,求出值域.因为常出现反解出y 的表达式的过程,故又常称此为反解有界性法.(10)导数法:先利用导数求出函数的极大值和极小值,再确定最大(小)值,从而求出函数的值域.题型八:分段函数的应用例22.(2024·四川成都·成都七中统考模拟预测)已知函数2(1),0()34,0f x x f x x x x +≤⎧=⎨-->⎩,则()()4f f -=()A .-6B .0C .4D .6【答案】A【解析】由分段函数知:当0x ≤时,周期1T =,所以()()()44511346f f f -=-+==--=-,所以()()()()()466716f f f f f -=-=-+==-.故选:A例23.(2024·河南·统考模拟预测)已知函数()()1331,1,log 52,1,x x f x x x +⎧-≥⎪=⎨-+-<⎪⎩且()2f m =-,则()6f m +=()A .-16B .16C .26D .27【答案】C【解析】当m 1≥时,()11231231m m f m m ++=-⇒-=-⇒=-⇒∈∅,当1m <时,()()32log 5224f m m m =-⇒-+-=-⇒=-,所以()()21623126f m f ++==-=,故选:C例24.(2024·全国·高三专题练习)已知()222,02,0x x x f x x x x ⎧-+≥=⎨+<⎩,满足()()f a f a <-,则a 的取值范围是()A .()(),20,2-∞-B .()(),22,∞∞--⋃+C .()()2,00,2-⋃D .()()2,02,-+∞ 【答案】D【解析】当a<0时,()()222,2f a a a f a a a =+-=--,所以()()2222f a f a a a a a <-⇔+<--,即220a a +<,解得20a -<<,当0a >时,()()222,2f a a a f a a a =-+-=-,所以()()2222f a f a a a a a <-⇔-+<-,即220a a ->,解得2a >,所以,a 的取值范围是()()2,02,-+∞ 故选:D变式12.(多选题)(2024·全国·高三专题练习)已知函数()22,0log ,0x x f x x x ⎧≤⎪=⎨>⎪⎩,则使()()1f f x =的x 可以是()A .4-B .1-C .1D .4【答案】BCD【解析】①当()0f x ≤时,由()()()21f x f f x ==,可得()0f x =,若0x ≤时,则()20xf x =>,此时()0f x =无解,若0x >时,由()2log 0f x x ==,解得1x =;②当()0f x >时,由()()()2log 1f f x f x ==,可得()2f x =或()12f x =.若0x ≤时,则()()20,1x f x =∈,由()122x f x ==可得=1x -,方程()2f x =无解,若0x >时,由()21log 2f x x ==可得x2x =,由()2log 2f x x ==可得14x =或4x =.综上所述,满足()()1f f x =的x的取值集合为12,,,424⎧⎫⎪⎪-⎨⎬⎪⎪⎩⎭.故选:BCD.变式13.(多选题)(2024·全国·高三专题练习)已知函数()35,01,0x x f x x x x -+≥⎧⎪=⎨+<⎪⎩,若()52f f a ⎡⎤=-⎣⎦,则实数a 的值可能为()A .73B .43-C .1-D .116【答案】ACD【解析】根据题意,函数()35,01,0x x f x x x x -+≥⎧⎪=⎨+<⎪⎩,当0a ≥时,()35f a a =-+,其中当503a ≤≤时,()0f a ≥,此时()()533552f f a a =--+⎦+⎤=-⎡⎣,解可得56a =,符合题意;当53a >时,()0f a <,此时()()1535352f f a a a =-++=--+⎡⎤⎣⎦,解可得73a =或116,符合题意;当a<0时()1f a a a=+,必有()0f a <,此时()11512f f a a a a a⎛⎫=++=- ⎪⎝⎭+⎡⎤⎣⎦,变形可得12a a +=-或12-,若12a a+=-,解可得1a =-,若112a a +=-,无解;综合可得:1a =-或56或73或116,分析可得选项可得:ACD 符合;故选:ACD .【解题方法总结】1、分段函数的求值问题,必须注意自变量的值位于哪一个区间,选定该区间对应的解析式代入求值2、函数区间分类讨论问题,则需注意在计算之后进行检验所求是否在相应的分段区间内.。
高考数学基础函数知识点汇总
高考数学基础函数知识点汇总函数是高考数学中的重要内容,也是数学学习中的基础和核心。
掌握好函数的相关知识,对于解决数学问题、提高数学素养至关重要。
下面为大家详细汇总高考数学中基础函数的知识点。
一、函数的定义函数是一种特殊的对应关系,设集合 A、B 是非空的数集,如果按照某个确定的对应关系 f,使对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数 f(x)和它对应,那么就称 f:A→B 为从集合 A 到集合 B 的一个函数。
其中,集合 A 叫做函数的定义域,集合{f(x)|x∈A}叫做函数的值域。
需要注意的是,定义域、值域和对应关系是函数的三要素,当且仅当定义域、对应关系都相同时,两个函数才是相同的函数。
二、函数的表示方法1、解析法:用数学表达式表示两个变量之间的对应关系,如 y =f(x)。
2、列表法:通过列出表格来表示两个变量之间的对应关系。
3、图象法:用图象表示两个变量之间的对应关系,形象直观。
三、常见函数类型1、一次函数形如 y = kx + b(k,b 为常数,k≠0)的函数称为一次函数。
当 b = 0 时,y = kx 是正比例函数,其图象是过原点的直线。
一次函数的图象是一条直线,k 决定直线的倾斜程度,b 决定直线与 y 轴的交点位置。
2、二次函数一般式:y = ax²+ bx + c(a≠0)顶点式:y = a(x h)²+ k(a≠0,顶点坐标为(h, k))交点式:y = a(x x₁)(x x₂)(a≠0,x₁,x₂为函数与 x 轴交点的横坐标)二次函数的图象是一条抛物线,对称轴为 x = b/2a,顶点坐标为(b/2a, (4ac b²)/4a) 。
a 的正负决定抛物线的开口方向,a > 0 时开口向上,a < 0 时开口向下。
3、反比例函数形如 y = k/x(k 为常数,k≠0)的函数称为反比例函数,其图象是双曲线。
当 k > 0 时,图象在一、三象限;当 k < 0 时,图象在二、四象限。
高三函数专题复习
函数、函数与方程及函数的应用考 点 整 合1.函数的性质(1)单调性(ⅰ)用来比较大小,求函数最值,解不等式和证明方程根的唯一性.(ⅱ)常见判定方法:①定义法:取值、作差、变形、定号,其中变形是关键,常用的方法有:通分、配方、因式分解;②图象法;③复合函数的单调性遵循“同增异减”的原则;④导数法.(2)奇偶性:①若f (x )是偶函数,那么f (x )=f (-x );②若f (x )是奇函数,0在其定义域内,则f (0)=0;③奇函数在关于原点对称的区间内有相同的单调性,偶函数在关于原点对称的区间内有相反的单调性;(3)周期性:常见结论有①若y =f (x )对x ∈R ,f (x +a )=f (x -a )或f (x -2a )=f (x )(a >0)恒成立,则y =f (x )是周期为2a 的周期函数;②若y =f (x )是偶函数,其图象又关于直线x =a 对称,则f (x )是周期为2|a |的周期函数;③若y =f (x )是奇函数,其图象又关于直线x =a 对称,则f (x )是周期为4|a |的周期函数;④若f (x +a )=-f (x )⎝ ⎛⎭⎪⎫或f (x +a )=1f (x ),则y =f (x )是周期为2|a |的周期函数. 2.函数的图象(1)对于函数的图象要会作图、识图和用图,作函数图象有两种基本方法:一是描点法;二是图象变换法,其中图象变换有平移变换、伸缩变换和对称变换.(2)在研究函数性质特别是单调性、值域、零点时,要注意结合其图象研究.3.求函数值域有以下几种常用方法:(1)直接法;(2)配方法;(3)基本不等式法;(4)单调性法;(5)求导法;(6)分离变量法.除了以上方法外,还有数形结合法、判别式法等.4.函数的零点问题(1)函数F (x )=f (x )-g (x )的零点就是方程f (x )=g (x )的根,即函数y =f (x )的图象与函数y =g (x )的图象交点的横坐标.(2)确定函数零点的常用方法:①直接解方程法;②利用零点存在性定理;③数形结合,利用两个函数图象的交点求解.5.应用函数模型解决实际问题的一般程序 读题(文字语言)⇒建模(数学语言)⇒求解(数学应用)⇒反馈(检验作答)与函数有关的应用题,经常涉及到物价、路程、产值、环保等实际问题,也可涉及角度、面积、体积、造价的最优化问题.解答这类问题的关键是确切的建立相关函数解析式,然后应用函数、方程、不等式和导数的有关知识加以综合解答.热点一 函数性质的应用【例1】 (1)已知定义在R 上的函数f (x )=2|x -m |-1(m 为实数)为偶函数,记a =f (log 0.53),b =f (log 25),c =f (2m ),则a ,b ,c 的大小关系为________(从小到大排序).(2)已知函数f (x )(x ∈R )满足f (-x )=2-f (x ),若函数y =x +1x 与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则()∑=+mi i i y x 1=________.探究提高 (1)可以根据函数的奇偶性和周期性,将所求函数值转化为给出解析式的范围内的函数值.(2)利用函数的对称性关键是确定出函数图象的对称中心(对称轴).【训练1】 (1)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________.(2)已知函数f (x )是定义在R 上的周期为2的奇函数,当0<x <1时,f (x )=4x ,则f ⎝ ⎛⎭⎪⎫-52+f (1)=________.热点二 函数图象的应用【例2】 (1)已知函数f (x )=⎩⎨⎧-x 2+2x ,x ≤0,ln (x +1),x >0.若|f (x )|≥ax ,则实数a 的取值范围是________.(2)设函数f (x )=e x (2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0使得f (x 0)<0,则实数a 的取值范围是________.探究提高 (1)涉及到由图象求参数问题时,常需构造两个函数,借助两函数图象求参数范围.(2)图象形象地显示了函数的性质,因此,函数性质的确定与应用及一些方程、不等式的求解常与图象数形结合研究.【训练2】 设奇函数f (x )在(0,+∞)上为增函数,且f (2)=0,则不等式f (x )-f (-x )x<0的解集为________.热点三 函数与方程问题[微题型1] 函数零点个数的求解【例3-1】 函数f (x )=4cos 2x 2·cos ⎝ ⎛⎭⎪⎫π2-x -2sin x -|ln(x +1)|的零点个数为________.探究提高 解决这类问题的常用方法有解方程法、利用零点存在的判定或数形结合法,尤其是求解含有绝对值、分式、指数、对数、三角函数式等较复杂的函数零点问题,常转化为熟悉的两个函数图象的交点问题求解.[微题型2] 由函数的零点(或方程的根)求参数【例3-2】 (1)设函数f (x )=⎩⎪⎨⎪⎧x -1e x ,x ≥a ,-x -1,x <a ,g (x )=f (x )-b .若存在实数b ,使得函数g (x )恰有3个零点,则实数a 的取值范围为________.(2)已知函数f (x )=⎩⎨⎧2-|x |,x ≤2,(x -2)2,x >2,函数g (x )=b -f (2-x ),其中b ∈R ,若函数y =f (x )-g (x )恰有4个零点,则b 的取值范围是________.探究提高 利用函数零点的情况求参数值或取值范围的方法(1)利用零点存在的判定定理构建不等式求解.(2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.【训练3】设函数f(x)=x2+3x+3-a·e x(a为非零实数),若f(x)有且仅有一个零点,则a的取值范围为________.1.解决函数问题忽视函数的定义域或求错函数的定义域,如求函数f(x)=1x ln x的定义域时,只考虑x>0,忽视ln x≠0的限制.2.如果一个奇函数f(x)在原点处有意义,即f(0)有意义,那么一定有f(0)=0.3.三招破解指数、对数、幂函数值的大小比较.(1)底数相同,指数不同的幂用指数函数的单调性进行比较;(2)底数相同,真数不同的对数值用对数函数的单调性比较;(3)底数不同、指数也不同,或底数不同,真数也不同的两个数,常引入中间量或结合图象比较大小.4.对于给定的函数不能直接求解或画出图形,常会通过分解转化为两个函数图象,然后数形结合,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点.一、填空题1.函数f(x)=ln x+1-x的定义域为________.2.函数f(x)=log5(2x+1)的单调增区间是________.3.函数f (x )=⎩⎨⎧2x ,x ≤0,-x 2+1,x >0的值域为________.4.定义在区间[0,3π]上的函数y =sin 2x 的图象与y =cos x 的图象的交点个数是________.5.设f (x )是定义在R 上且周期为2的函数,在区间[-1,1]上,f (x )=⎩⎨⎧ax +1,-1≤x <0,bx +2x +1,0≤x ≤1,其中a ,b ∈R .若f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫32,则a +3b 的值为________.6.已知函数f (x )=x 3+x ,对任意的m ∈[-2,2],f (mx -2)+f (x )<0恒成立,则x 的取值范围是________.7.已知函数f (x )=⎩⎨⎧x -[x ],x ≥0,f (x +1),x <0,其中[x ]表示不超过x 的最大整数.若直线y =k (x +1)(k >0)与函数y =f (x )的图象恰有三个不同的交点,则实数k 的取值范围是________.8.设函数f (x )=⎩⎨⎧2x -a ,x <1,4(x -a )(x -2a ),x ≥1.(1)若a=1,则f(x)的最小值为________;(2)若f(x)恰有2个零点,则实数a的取值范围是________.二、解答题9.已知函数f(x)=x2-2ln x,h(x)=x2-x+a.(1)求函数f(x)的极值;(2)设函数k(x)=f(x)-h(x),若函数k(x)在[1,3]上恰有两个不同零点,求实数a 的取值范围.。
函数的概念与性质(5知识点+4重难点+5方法技巧+5易错易混)(解析版)2025高考数学一轮知识清单
专题03函数的概念与性质(思维构建+知识盘点+重点突破+方法技巧+易混易错)知识点1函数的有关概念1、函数的概念:一般地,设,A B 是非空的数集,如果对于集合A 中的任意一个数x ,按照某种确定的对应关系f ,在集合B 中都有唯一确定的y 和它对应,那么就称:f A B →为从集合A 到集合B 的一个函数,记作(),y f x x A =∈.2、函数的三要素:(1)在函数(),y f x x A =∈中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;(2)与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域。
显然,值域是集合B 的子集.(3)函数的对应关系:(),y f x x A =∈.3、相等函数与分段函数(1)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.(2)分段函数:在函数定义域内,对于自变量x 取值的不同区间,有着不同的对应关系,这样的函数称为分段函数。
分段函数的定义域是各段定义域的并集,值域是各段值域的并集。
分段函数虽然是由几个部分构成,但它表示的是一个函数,各部分函数定义域不可以相交。
知识点2函数的单调性1、单调函数的定义设函数f (x )的定义域为I.如果对于定义域I 内某个区间D 上的任意两个自变量的值21,x x ,当21x x <时,都有)()(21x f x f <,那么就说函数f(x)在区间D 上是单调递增函数。
当21x x <时,都有)()(21x f x f >,那么就说函数f(x)在区间D 上是单调递减函数。
单调性的图形趋势(从左往右)上升趋势下降趋势2、函数的单调区间若函数y =f(x)在区间D 上是增函数或减函数,则称函数y =f(x)在这一区间上具有(严格的)单调性,区间D 叫做y =f(x)的单调区间.【注意】(1)函数单调性关注的是整个区间上的性质,单独一点不存在单调性问题,故单调区间的端点若属于定义域,则区间可开可闭,若区间端点不属于定义域则只能开.(2)单调区间D ⊆定义域I .(3)遵循最简原则,单调区间应尽可能大;(4)单调区间之间可用“,”分开,不能用“∪”,可以用“和”来表示;3、函数单调性的性质若函数)(x f 与)(x g 在区间D 上具有单调性,则在区间D 上具有以下性质:(1))(x f 与C x f +)((C 为常数)具有相同的单调性.(2))(x f 与)(x f -的单调性相反.(3)当0>a 时,)(x af 与)(x f 单调性相同;当0<a 时,)(x af 与)(x f 单调性相反.(4)若)(x f ≥0,则)(x f 与)(x f 具有相同的单调性.(5)若)(x f 恒为正值或恒为负值,则当0>a 时,)(x f 与)(x f a具有相反的单调性;当0<a 时,)(x f 与)(x f a具有相同的单调性.(6))(x f 与)(x g 的和与差的单调性(相同区间上):简记为:↗+↗=↗;(2)↘+↘=↘;(3)↗﹣↘=↗;(4)↘﹣↗=↘.(7)复合函数的单调性:对于复合函数y =f [g (x )],若t =g (x )在区间(a ,b )上是单调函数,且y =f (t )在区间(g (a ),g (b ))或(g (b ),g (a ))上是单调函数若t =g (x )与y =f (t )的单调性相同,则y =f [g (x )]为增函数若t =g (x )与y =f (t )的单调性相反,则y =f [g (x )]为减函数.简称“同增异减”.知识点3函数的奇偶性1、函数的奇偶性奇偶性定义图象特点偶函数如果对于函数()f x 的定义域内任意一个x ,都有()()f x f x -=,那么函数f (x )是偶函数关于y 轴对称奇函数如果对于函数f (x )的定义域内任意一个x ,都有()()f x f x -=-,那么函数()f x 是奇函数关于原点对称2、函数奇偶性的几个重要结论(1)()f x 为奇函数⇔()f x 的图象关于原点对称;()f x 为偶函数⇔()f x 的图象关于y 轴对称.(2)如果函数()f x 是偶函数,那么()()f x f x =.(3)既是奇函数又是偶函数的函数只有一种类型,即()0f x =,x ∈D ,其中定义域D 是关于原点对称的非空数集.(4)奇函数在两个对称的区间上具有相同的单调性,偶函数在两个对称的区间上具有相反的单调性.(5)偶函数在关于原点对称的区间上有相同的最大(小)值,取最值时的自变量互为相反数;奇函数在关于原点对称的区间上的最值互为相反数,取最值时的自变量也互为相反数.知识点4函数的周期性1、周期函数的定义对于函数()y f x =,如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有()()+=f x T f x ,那么就称函数()f x 为周期函数,称T 为这个函数的周期.2、最小正周期:如果在周期函数()f x 的所有周期中存在一个最小的正数,那么这个最小正数就叫做()f x 的最小正周期.知识点5函数的对称性1、关于线对称若函数()y f x =满足()()f a x f b x +=-,则函数()y f x =关于直线2a b x +=对称,特别地,当a =b =0时,函数()y f x =关于y 轴对称,此时函数()y f x =是偶函数.2、关于点对称若函数()y f x =满足()()22-=-f a x b f x ,则函数()y f x =关于点(a ,b )对称,特别地,当a =0,b =0时,()()f x f x =--,则函数()y f x =关于原点对称,此时函数()f x 是奇函数.重难点01求函数值域的七种方法法一、单调性法:如果一个函数为单调函数,则由定义域结合单调性可快速求出函数的最值(值域).(1)若函数y =f (x )在区间[a ,b ]上单调递增,则y max =f (b ),y min =f (a ).(2)若函数y =f (x )在区间[a ,b ]上单调递减,则y max =f (a ),y min =f (b ).(3)若函数y =f (x )有多个单调区间,那就先求出各区间上的最值,再从各区间的最值中决定出最大(小)值.函数的最大(小)值是整个值域范围内的最大(小)值.【典例1】(23-24高三·全国·专题)函数()221f x x =-([]2,6x ∈)的最大值为()A .2B .23C .25D .235【答案】B【解析】因为函数21y x =-在[]2,6上单调递增,所以根据单调性的性质知:函数()221f x x =-在[]2,6上单调递减,所以当2x =时,函数()221f x x =-取到最大值为()2222213f ==-.故选:B 【典例2】(23-24高三·全国·专题)函数()lg f x x x =+的定义域为1,1010⎡⎤⎢⎥⎣⎦,则值域为()A .9,1110⎡⎤-⎢⎥⎣⎦B .9,1110⎡⎤⎢⎥⎣⎦C .99,10⎡⎤-⎢⎥⎣⎦D .[]9,11-【答案】A【解析】因为函数()lg f x x x =+的定义域为1,1010⎡⎤⎢⎥⎣⎦,且lg ,y x y x ==在1,1010⎡⎤⎢⎥⎣⎦内单调递增,可知()f x 在1,1010⎡⎤⎢⎥⎣⎦内单调递增,可知()f x 在1,1010⎡⎤⎢⎥⎣⎦内的最小值为191010f ⎛⎫=- ⎪⎝⎭,最大值为()1011f =,所以值域为9,1110⎡⎤-⎢⎥⎣⎦.故选:A.法二、图象法:作出函数的图象,通过观察曲线所覆盖函数值的区域确定值域,以下函数常会考虑进行数形结合.(1)分段函数:尽管分段函数可以通过求出每段解析式的范围再取并集的方式解得值域,但对于一些便于作图的分段函数,数形结合也可很方便的计算值域.(2)()f x 的函数值为多个函数中函数值的最大值或最小值,此时需将多个函数作于同一坐标系中,然后确定靠下(或靠上)的部分为该()f x 函数的图象,从而利用图象求得函数的值域.【典例1】(23-24高三上·河南新乡·月考)对R x ∀∈,用()M x 表示()f x ,()g x 中的较大者,记为()()(){}max ,M x f x g x =,若函数()(){}2max 3,1M x x x =-+-,则()M x 的最小值为.【答案】1【解析】当()231x x -+≥-,即220x x --≤,即12x -≤≤时,()3M x x =-+,当()231x x -+<-,220x x -->,即2x >或1x <-时,()()21M x x =-,所以()[]()()()23,1,21,,12,x x M x x x ∞∞⎧-+∈-⎪=⎨-∈--⋃+⎪⎩,函数图象如图所示:由图可得,函数()M x 在(),1-∞-,()1,2上递减,在()2,+∞上递增,所以()()min 2231M x M ==-+=.【典例2】(23-24高三上·重庆北碚·月考)高斯是德国著名的数学家,近代数学奠基者之一,用其名字命名的“高斯函数”为:对于实数x ,符号[]x 表示不超过x 的最大整数,例如[e]3-=-,[2.1]2=,定义函数()[]f x x x =-,则函数()f x 的值域为.【答案】[0,1)【解析】由高斯函数的定义可得:当01x ≤<时,[]0x =,则[]x x x -=,当12x ≤<时,[]1x =,则[]1x x x -=-,当23x ≤<时,[]2x =,则[]2x x x -=-,当34x ≤<时,[]3x =,则[]3x x x -=-,易见该函数具有周期性,绘制函数图象如图所示,由图象知()f x 的值域为[0,1).法三、配方法:主要用于二次函数或可化为二次函数的函数,要特别注意自变量的取值范围.【典例1】(23-24高三上·全国·专题)函数()f x )A .[]0,2B .[)0,∞+C .[)2,+∞D .()()0,22,+∞U 【答案】A【解析】令2230x x --+≥得,31x -≤≤,故定义域为[]3,1-,()[]0,2f x ==.故选:A【典例2】(2023高三·江西萍乡·开学考)函数212y x x =-++的值域为.【答案】4(,0)[,)9-∞+∞ 【解析】由题得220,1x x x -++≠∴≠-且2x ≠.因为221992()244x x x -++=--+≤,且220x x -++≠.所以原函数的值域为4(,0)[,)9-∞+∞ .法四、换元法:换元法是将函数解析式中关于x 的部分表达式视为一个整体,并用新元t 代替,将解析式化归为熟悉的函数,进而解出最值(值域).(1)在换元的过程中,因为最后是要用新元解决值域,所以一旦换元,后面紧跟新元的取值范围.(2)换元的作用有两个:①通过换元可将函数解析式简化,例如当解析式中含有根式时,通过将根式视为一个整体,换元后即可“消灭”根式,达到简化解析式的目的.②可将不熟悉的函数转化为会求值域的函数进行处理【典例1】(2023高三上·广东河源·开学考试)函数()2f x x =的最大值为.【答案】178()0t t =≥,则21x t =-,所以()22117222048y t t t t ⎛⎫=-++=--+≥ ⎪⎝⎭,由二次函数的性质知,对称轴为14t =,开口向下,所以函数2117248y t ⎛⎫=--+ ⎪⎝⎭在10,4⎡⎤⎢⎣⎦单调递增,在1,4⎛⎫+∞ ⎪⎝⎭上单调递减.所以当14t ==,即1516x =时,()f x 取得最大值为max 151517()()1688f x f ===.【典例2】(23-24高三·全国·专题)函数1y x =-的值域为()A .1,2⎛⎤-∞ ⎥⎝⎦B .[)0+,∞C .1,2⎡⎫+∞⎪⎢⎣⎭D .1,2⎛⎫+∞ ⎪⎝⎭【答案】Ct =,()0t ≥,则212t x -=,所以函数()22211112222t t t y t t +-=++=++=,函数在[)0,+∞上单调递增,0=t 时,y 有最小值12,所以函数1y x =-1,2⎡⎫+∞⎪⎢⎣⎭.故选:C法五、分离常数法:主要用于含有一次的分式函数,形如+=+ax by cx d或2++=+ax bx e y cx d (a ,c 至少有一个不为零)的函数,求其值域可用此法以+=+ax by cx d为例,解题步骤如下:第一步,用分子配凑出分母的形式,将函数变形成=++a ey c cx d的形式,第二步,求出函数=+e y cx d 在定义域范围内的值域,进而求出+=+ax by cx d的值域。
高中数学函数知识点总结材料(全)
高中数学函数知识点总结1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。
2 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况 注重借助于数轴和文氏图解集合问题。
空集是一切集合的子集,是一切非空集合的真子集。
{}{}如:集合,A x x x B x ax =--===||22301 若,则实数的值构成的集合为B A a ⊂3. 注意下列性质:{}()集合,,……,的所有子集的个数是;1212a a a n n要知道它的来历:若B 为A 的子集,则对于元素a 1来说,有2种选择(在或者不在)。
同样,对于元素a 2, a 3,……a n ,都有2种选择,所以,总共有2n 种选择, 即集合A 有2n 个子集。
当然,我们也要注意到,这2n 种情况之中,包含了这n 个元素全部在何全部不在的情况,故真子集个数为21n -,非空真子集个数为22n -()若,;2A B A B A A B B ⊆⇔==(3)德摩根定律:()()()()()()C C C C C C U U U U U U A B A B A B A B ==,有些版本可能是这种写法,遇到后要能够看懂4. 你会用补集思想解决问题吗?(排除法、间接法) 如:已知关于的不等式的解集为,若且,求实数x ax x aM M M a --<∈∉50352的取值范围。
7. 对映射的概念了解吗?映射f :A →B ,是否注意到A 中元素的任意性和B 中与之对应元素的唯一性,哪几种对应能构成映射?(一对一,多对一,允许B 中有元素无原象。
)注意映射个数的求法。
如集合A 中有m 个元素,集合B 中有n 个元素,则从A 到B 的映射个数有n m个。
如:若}4,3,2,1{=A ,},,{c b a B =;问:A 到B 的映射有 个,B 到A 的映射有 个;A 到B 的函数有 个,若}3,2,1{=A ,则A 到B 的一一映射有 个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数专题 基本定义1.映射f : A →B 的概念。
在理解映射概念时要注意: ⑴A 中元素必须都有象且唯一;⑵B 中元素不一定都有原象,但原象不一定唯一。
如(1)设:f M N →是集合M 到N 的映射,下列说法正确的是 A 、M 中每一个元素在N 中必有象 B 、N 中每一个元素在M 中必有原象 C 、N 中每一个元素在M 中的原象是唯一的 D 、N 是M 中所在元素的象的集合(答:A ); (2)点),(b a 在映射f 的作用下的象是),(b a b a +-,则在f 作用下点)1,3(的原象为点________(答:(2,-1));(3)若}4,3,2,1{=A ,},,{c b a B =,,,a b c R ∈,则A 到B 的映射有 个,B 到A 的映射有 个,A 到B 的函数有 个(答:81,64,81); (4)设集合{1,0,1},{1,2,3,4,5}M N =-=,映射:f M N →满足条件“对任意的x M ∈,()x f x +是奇数”,这样的映射f 有____个(答:12);(5)设2:x x f →是集合A 到集合B 的映射,若B={1,2},则B A 一定是_____(答:∅或{1}).2.函数f : A →B 是特殊的映射。
特殊在定义域A 和值域B 都是非空数集!据此可知函数图像与x 轴的垂线至多有一个公共点,但与y 轴垂线的公共点可能没有,也可能有任意个。
如(1)已知函数()f x ,x F ∈,那么集合{(,)|(),}{(,)|1}x y y f x x F x y x =∈=中所含元素的个数有 个(答: 0或1); (2)若函数42212+-=x x y 的定义域、值域都是闭区间]2,2[b ,则b = (答:2)3.同一函数的概念。
构成函数的三要素是定义域,值域和对应法则。
而值域可由定义域和对应法则唯一确定,因此当两个函数的定义域和对应法则相同时,它们一定为同一函数。
如若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“天一函数”,那么解析式为2y x =,值域为{4,1}的“天一函数”共有______个(答:9)4.求函数定义域的常用方法(在研究函数问题时要树立定义域优先的原则):(1)根据解析式要求如偶次根式的被开方大于零,分母不能为零,对数log a x 中0,0x a >>且1a ≠,三角形中0A π<<, 最大角3π≥,最小角3π≤等。
如(1)函数lg 3y x =-的定义域是____(答:(0,2)(2,3)(3,4));(2)若函数2743kx y kx kx +=++的定义域为R ,则k ∈_______(答:30,4⎡⎫⎪⎢⎣⎭); (3)函数()f x 的定义域是[,]a b ,0b a >->,则函数()()()F x f x f x =+-的定义域是__________(答:[,]a a -);(4)设函数2()lg(21)f x ax x =++,①若()f x 的定义域是R ,求实数a 的取值范围;②若()f x 的值域是R ,求实数a 的取值范围(答:①1a >;②01a ≤≤) (2)根据实际问题的要求确定自变量的范围。
(3)复合函数的定义域:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域由不等式()a g x b ≤≤解出即可;若已知[()]f g x 的定义域为[,]a b ,求()f x 的定义域,相当于当[,]x a b ∈时,求()g x 的值域(即()f x 的定义域)。
如 (1)若函数)(x f y =的定义域为⎥⎦⎤⎢⎣⎡2,21,则)(log 2x f 的定义域为__________(答:{}42|≤≤x x );(2)若函数2(1)f x +的定义域为[2,1)-,则函数()f x 的定义域为________(答:[1,5]).5.求函数值域(最值)的方法:(1)配方法――二次函数(二次函数在给出区间上的最值有两类:一是求闭区间[,]m n 上的最值;二是求区间定(动),对称轴动(定)的最值问题。
求二次函数的最值问题,勿忘数形结合,注意“两看”:一看开口方向;二看对称轴与所给区间的相对位置关系),如(1)求函数225,[1,2]y x x x =-+∈-的值域(答:[4,8]);(2)当]2,0(∈x 时,函数3)1(4)(2-++=x a ax x f 在2=x 时取得最大值,则a 的取值范围是___(答:21-≥a );(3)已知()3(24)x b f x x -=≤≤的图象过点(2,1),则1212()[()]()F x f x f x --=-的值域为______(答:[2, 5])(2)换元法――通过换元把一个较复杂的函数变为简单易求值域的函数,其函数特征是函数解析式含有根式或三角函数公式模型,如(1)22sin 3cos 1y x x =--的值域为_____(答:17[4,]8-);(2)21y x =++_____(答:(3,)+∞)t =,0t ≥。
运用换元法时,要特别要注意新元t 的范围);(3)sin cos sin cos y x x x x =++的值域为____(答:1[1,2-+);(4)4y x =+的值域为____(答:4]);(3)函数有界性法――直接求函数的值域困难时,可以利用已学过函数的有界性,来确定所求函数的值域,最常用的就是三角函数的有界性,如求函数2sin 11sin y θθ-=+,313x x y =+,2sin 11cos y θθ-=+的值域(答: 1(,]2-∞、(0,1)、3(,]2-∞); (4)单调性法――利用一次函数,反比例函数,指数函数,对数函数等函数的单调性,如求1(19)y x x x =-<<,229sin 1sin y x x =++,532log x y -=+______(答:80(0,)9、11[,9]2、[2,10]); (5)数形结合法――函数解析式具有明显的某种几何意义,如两点的距离、直线斜率、等等,如(1)已知点(,)P x y 在圆221x y +=上,求2yx +及2y x -的取值范围(答:[33-、[);(2)求函数y =[10,)+∞);(3)求函数y =及y 的值域(答:)+∞、()注意:求两点距离之和时,要将函数式变形,使两定点在x 轴的两侧,而求两点距离之差时,则要使两定点在x 轴的同侧。
(6)判别式法――对分式函数(分子或分母中有一个是二次)都可通用,但这类题型有时也可以用其它方法进行求解,不必拘泥在判别式法上,也可先通过部分分式后,再利用均值不等式:①2b y k x =+型,可直接用不等式性质,如求232y x =+的值域(答:3(0,]2) ②2bxy x mx n=++型,先化简,再用均值不等式,如(1)求21x y x =+的值域(答:1(,]2-∞);(2)求函数3y x =+的值域(答:1[0,]2) ③22x m x n y x mx n ''++=++型,通常用判别式法;如已知函数2328log 1mx x ny x ++=+的定义域为R ,值域为[0,2],求常数,m n 的值(答:5m n ==)④2x m x n y mx n ''++=+型,可用判别式法或均值不等式法,如求211x x y x ++=+的值域(答:(,3][1,)-∞-+∞)(7)不等式法――利用基本不等式,)a b a b R ++≥∈求函数的最值,其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值,不过有时须要用到拆项、添项和两边平方等技巧。
如设12,,,x a a y 成等差数列,12,,,x b b y 成等比数列,则21221)(b b a a +的取值范围是____________.(答:(,0][4,)-∞+∞)。
(8)导数法――一般适用于高次多项式函数,如求函数32()2440f x x x x =+-,[3,3]x ∈-的最小值。
(答:-48)提醒:(1)求函数的定义域、值域时,你按要求写成集合形式了吗?(2)函数的最值与值域之间有何关系?6.分段函数的概念。
分段函数是在其定义域的不同子集上,分别用几个不同的式子来表示对应关系的函数,它是一类较特殊的函数。
在求分段函数的值0()f x 时,一定首先要判断0x 属于定义域的哪个子集,然后再代相应的关系式;分段函数的值域应是其定义域内不同子集上各关系式的取值范围的并集。
如(1)设函数2(1).(1)()41)x x f x x ⎧+<⎪=⎨≥⎪⎩,则使得()1f x ≥的自变量x 的取值范围是__________(答:(,2][0,10]-∞-); (2)已知1(0)()1(0)x f x x ≥⎧=⎨-<⎩ ,则不等式(2)(2)5x x f x +++≤的解集是________(答:3(,]2-∞)7.求函数解析式的常用方法:(1)待定系数法――已知所求函数的类型(二次函数的表达形式有三种:一般式:2()f x ax bx c =++;顶点式:2()()f x a x m n =-+;零点式:12()()()f x a x x x x =--,要会根据已知条件的特点,灵活地选用二次函数的表达形式)。
如已知()f x 为二次函数,且 )2()2(--=-x f x f ,且f(0)=1,图象在x 轴上截得的线段长为22,求()f x 的解析式 。
(答:21()212f x x x =++) (2)代换(配凑)法――已知形如(())f g x 的表达式,求()f x 的表达式。
如(1)已知,sin )cos 1(2x x f =-求()2xf的解析式(答:242()2,[f x xx x =-+∈);(2)若221)1(xx xx f +=-,则函数)1(-x f =_____(答:223x x -+); (3)若函数)(x f 是定义在R 上的奇函数,且当),0(+∞∈x 时,)1()(3x x x f +=,那么当)0,(-∞∈x 时,)(x f =________(答:(1x ). 这里需值得注意的是所求解析式的定义域的等价性,即()f x 的定义域应是()g x 的值域。
(3)方程的思想――已知条件是含有()f x 及另外一个函数的等式,可抓住等式的特征对等式的进行赋值,从而得到关于()f x 及另外一个函数的方程组。
如(1)已知()2()32f x f x x +-=-,求()f x 的解析式(答:2()33f x x =--); (2)已知()f x 是奇函数,)(xg 是偶函数,且()f x +)(x g = 11-x ,则()f x = __(答:21x x -)。