第三十二章 核苷酸代谢
合集下载
核苷酸的代谢医学课件
饮食治疗
对于嘌呤核苷酸代谢紊乱的患者, 应采用低嘌呤饮食,限制高嘌呤食 物的摄入,如动物内脏、海鲜等。
药物治疗
对于高尿酸血症和痛风患者,可以 使用抑制尿酸合成的药物,如别嘌 呤醇、丙磺舒等。
酶抑制治疗
对于嘌呤核苷酸分解代谢紊乱的患 者,可以使用酶抑制药物,如环孢 素、他克莫司等。
细胞移植治疗
对于嘌呤核苷酸合成途径受阻的患 者,可以考虑进行造血干细胞移植 治疗。
核苷酸代谢在医学中有重要的应用价值,如治疗疾病 和进行生物医学研究。
核苷酸代谢是生物体内一个重要的生化过程,包括合 成和降解两个主要途径。
核苷酸代谢物和相关酶在代谢调控中具有重要作用, 可以影响细胞生长、分化、凋亡等生物学过程。
下一步研究方向
深入研究核苷酸代谢及相关酶的分子机制和调节 作用,探讨其在医学中的应用价值。
背景
核苷酸是核酸的基本组成单位,而核酸是生命活动中至关重 要的物质之一。核苷酸代谢是生物体内维持生命活动所必需 的基本过程之一,涉及到许多医学领域,如遗传学、分子生 物学、肿瘤学、药物学等。
核苷酸代谢在医学中的重要性
遗传性疾病
许多遗传性疾病是由于核苷酸代谢中的基因突变 或缺陷所引起的,如嘌呤、嘧啶代谢障碍等。
THANKS
嘌呤核苷酸合成是细胞生存和增殖的基本条件,如果合成减少,会导致细胞生长和代谢异常。
嘌呤核苷酸分解代谢紊乱
由于嘌呤核苷酸分解代谢紊乱,会产生过多的尿酸,引起高尿酸血症和痛风等疾病。
嘌呤核苷酸合成途径受阻
由于嘌呤核苷酸合成途径受阻,会导致细胞内DNA和RNA合成受阻,影响细胞的正常分裂和增殖。
核苷酸代谢紊乱的医学治疗
03
核苷酸代谢与医学
核苷酸代谢与能量代谢
对于嘌呤核苷酸代谢紊乱的患者, 应采用低嘌呤饮食,限制高嘌呤食 物的摄入,如动物内脏、海鲜等。
药物治疗
对于高尿酸血症和痛风患者,可以 使用抑制尿酸合成的药物,如别嘌 呤醇、丙磺舒等。
酶抑制治疗
对于嘌呤核苷酸分解代谢紊乱的患 者,可以使用酶抑制药物,如环孢 素、他克莫司等。
细胞移植治疗
对于嘌呤核苷酸合成途径受阻的患 者,可以考虑进行造血干细胞移植 治疗。
核苷酸代谢在医学中有重要的应用价值,如治疗疾病 和进行生物医学研究。
核苷酸代谢是生物体内一个重要的生化过程,包括合 成和降解两个主要途径。
核苷酸代谢物和相关酶在代谢调控中具有重要作用, 可以影响细胞生长、分化、凋亡等生物学过程。
下一步研究方向
深入研究核苷酸代谢及相关酶的分子机制和调节 作用,探讨其在医学中的应用价值。
背景
核苷酸是核酸的基本组成单位,而核酸是生命活动中至关重 要的物质之一。核苷酸代谢是生物体内维持生命活动所必需 的基本过程之一,涉及到许多医学领域,如遗传学、分子生 物学、肿瘤学、药物学等。
核苷酸代谢在医学中的重要性
遗传性疾病
许多遗传性疾病是由于核苷酸代谢中的基因突变 或缺陷所引起的,如嘌呤、嘧啶代谢障碍等。
THANKS
嘌呤核苷酸合成是细胞生存和增殖的基本条件,如果合成减少,会导致细胞生长和代谢异常。
嘌呤核苷酸分解代谢紊乱
由于嘌呤核苷酸分解代谢紊乱,会产生过多的尿酸,引起高尿酸血症和痛风等疾病。
嘌呤核苷酸合成途径受阻
由于嘌呤核苷酸合成途径受阻,会导致细胞内DNA和RNA合成受阻,影响细胞的正常分裂和增殖。
核苷酸代谢紊乱的医学治疗
03
核苷酸代谢与医学
核苷酸代谢与能量代谢
核苷酸代谢生物化学
嘧啶衍生物进一步分解为二氧化碳、 水和氨,而磷酸核糖则进一步发生代 谢。
核苷一磷酸的分解
核苷一磷酸在磷酸酶的作用下,将其中的特殊化学键转移给特殊化学物质,生成 相应的单糖和磷酸。
单糖进一步发生代谢,而磷酸则参与其他生化反应。
核苷二磷酸的分解
核苷二磷酸在磷酸酶的作用下,将其中的特殊化学键转移给特殊化学物质,生成相应的单糖和磷酸。
单糖进一步发生代谢,而磷酸则参与其他生化反应。
04
核苷酸代谢的调控
酶的调节
01
酶的激活与抑制
酶的活性可以通过共价修饰(如磷酸化、去磷酸化)、变构效应、与配
体的结合等方式进行激活或抑制,从而调节核苷酸代谢的速度和方向。
Hale Waihona Puke 02酶的浓度调节酶的合成和降解可以调节其在细胞内的浓度,进而影响核苷酸代谢的速
率。
核苷酸的分解代谢
嘌呤核苷酸的分解
嘌呤核苷酸首先在核苷酸酶的作用下 ,将其中的特殊化学键转移给特殊化 学物质,生成相应的嘌呤衍生物和磷 酸核糖。
嘌呤衍生物进一步分解为尿酸,而磷 酸核糖则进一步发生代谢。
嘧啶核苷酸的分解
嘧啶核苷酸在核苷酸酶的作用下,将 其中的特殊化学键转移给特殊化学物 质,生成相应的嘧啶衍生物和磷酸核 糖。
合成过程包括脱氧、磷酸化等步骤,最终 形成脱氧核苷酸。
脱氧核苷酸是DNA的重要组成部分,对 维持生物体的遗传信息具有重要意义。
核苷三磷酸的合成
核苷三磷酸是由核苷二磷酸在激酶催化下 合成的。
合成过程需要消耗能量,如ATP等。
核苷三磷酸是RNA的重要组成部分,对 维持生物体的正常代谢具有重要意义。
03
细胞信号转导的调节
信号转导蛋白
细胞内的信号转导蛋白可以感知 核苷酸代谢产物的浓度,进而调 节核苷酸代谢酶的活性。
核苷一磷酸的分解
核苷一磷酸在磷酸酶的作用下,将其中的特殊化学键转移给特殊化学物质,生成 相应的单糖和磷酸。
单糖进一步发生代谢,而磷酸则参与其他生化反应。
核苷二磷酸的分解
核苷二磷酸在磷酸酶的作用下,将其中的特殊化学键转移给特殊化学物质,生成相应的单糖和磷酸。
单糖进一步发生代谢,而磷酸则参与其他生化反应。
04
核苷酸代谢的调控
酶的调节
01
酶的激活与抑制
酶的活性可以通过共价修饰(如磷酸化、去磷酸化)、变构效应、与配
体的结合等方式进行激活或抑制,从而调节核苷酸代谢的速度和方向。
Hale Waihona Puke 02酶的浓度调节酶的合成和降解可以调节其在细胞内的浓度,进而影响核苷酸代谢的速
率。
核苷酸的分解代谢
嘌呤核苷酸的分解
嘌呤核苷酸首先在核苷酸酶的作用下 ,将其中的特殊化学键转移给特殊化 学物质,生成相应的嘌呤衍生物和磷 酸核糖。
嘌呤衍生物进一步分解为尿酸,而磷 酸核糖则进一步发生代谢。
嘧啶核苷酸的分解
嘧啶核苷酸在核苷酸酶的作用下,将 其中的特殊化学键转移给特殊化学物 质,生成相应的嘧啶衍生物和磷酸核 糖。
合成过程包括脱氧、磷酸化等步骤,最终 形成脱氧核苷酸。
脱氧核苷酸是DNA的重要组成部分,对 维持生物体的遗传信息具有重要意义。
核苷三磷酸的合成
核苷三磷酸是由核苷二磷酸在激酶催化下 合成的。
合成过程需要消耗能量,如ATP等。
核苷三磷酸是RNA的重要组成部分,对 维持生物体的正常代谢具有重要意义。
03
细胞信号转导的调节
信号转导蛋白
细胞内的信号转导蛋白可以感知 核苷酸代谢产物的浓度,进而调 节核苷酸代谢酶的活性。
核苷酸代谢PPT演示课件
ON H
胞嘧啶
ON H
尿嘧啶
O CH3
HN
ON H 胸腺嘧啶
β-脲 基 丙 酸
HOOC
NH2 CH2
O
N CH2
H
H 2O
HOOC
NH2 CH CH3
O
N C H 2 β-脲 基 异 丁 酸
H
H 2O
H 2N
CH2
CH2 COOH
CO2 + NH3
H 2N
CH2
CH COOH
CH3
•59
β-丙 氨 酸
腺嘌呤核苷酸
H2O
Pi NH2
N
N H2O
脱氨酶 核苷酸酶
NH3
NN R- 5'-P
次黄嘌呤核苷酸
H2O
OH Pi
N
N
N N 腺嘌呤核苷脱氨酶
R
NN
•27
R
OH
N
N
Pi
OH
核糖1-磷酸 N
N
N NR
次黄嘌呤核苷
OH
N
N
HO N N H
尿酸
核苷磷酸化酶
NN H
2H++O_.2
次黄嘌呤
O2+H2O
黄嘌呤氧化酶
G
(-)
PRPP
Azas
•69
嘧啶核苷酸的分解代谢
•70
NH3 尿嘧啶←胞嘧啶
β-脲基丙酸
胸腺嘧啶 β-脲基异丁酸
β-丙氨酸
β-氨基异丁酸
•71
= =
= =
PRPP
谷氨酰胺 (Gln)
=
6-MP
PRA 氮杂丝氨酸
核苷酸代谢(生物化学课件)
甘氨酰胺核苷酸(GAR)
合成酶
H2C-NH-CHO
ATP
H2C-NH-CHO
AIR合成酶
O=C-NH
Mg2+ Gln Glu
R 5/ P
HN=C-NH
R 5/ P
Mg2+ ATP ADP
Pi
甲酰甘氨酰胺核苷酸(FGAR) 甲酰甘氨脒核苷酸(FGAM)
O
HC N CH
羧化酶
HO-C
N CH
合成酶
H2N C N
氨基甲酰磷酸合成酶Ⅱ
CO2 +谷氨酰胺
(CPS-Ⅱ)
NH2 C=O
2×ATP 2×(ADP+Pi) 谷氨酸 O-PO32-
氨基甲酰磷酸
天冬氨酸氨基 甲酰转移酶
Asp Pi
O
O
HO-C NH2
CH2
二氢乳清酸酶
HN
NADP+
NADPH+H+
脱氢酶
C
H2O O N COOH
O N COOH
H
O
H
HN
氨基甲酰天冬氨酸
腺嘌呤 + PRPP APRT AMP + PPi
次黄嘌呤 + PRPP HGPRT IMP + PPi
鸟嘌呤 + PRPP 腺嘌呤核苷
HGPRT 腺苷激酶
GMP + PPi AMP
ATP ADP
4.补救合成的特点
(1) 节省从头合成时的能量和氨基酸。 (2) 某些组织器官如脑、骨髓等主要是进行补救合成。
部位 肝是主要合成器官,其次是小肠和胸腺;而脑、 骨髓则很难进行此途径。
嘌呤环的C、N原子来自谷氨酰胺、天冬氨酸、一碳单
生物化学课件第章核苷酸代谢文稿演示
AMP
腺苷酸代 琥珀酸
NH3
IMP
GMP XMP
(四) 脱氧核糖核苷酸的生成
体内脱氧核糖核苷酸是通过相应的核糖核苷酸 还原生成的。
这种还原反应是由核糖核苷酸还原酶催化,在 二磷酸核苷(NDP)水平上进行的。
脱氧核糖核苷酸的生成过程
P
P O CH2 O
碱基
P
P O CH2 O
碱基
核糖核苷酸还原酶
dGTP
ADP
dADP
dATP
(五) 嘌呤核苷酸的抗代谢物
• 嘌呤核苷酸的抗代谢物是一些嘌呤、氨基 酸或叶酸等的类似物。
• 主要以竞争性抑制干扰或阻断嘌呤核苷酸 的合成代谢,从而进一步阻止核酸以及蛋 白质的生物合成。
(一)嘌呤核苷酸的从头合成 •合成部位
肝、小肠和胸腺的胞液。
• 嘌呤碱合成的元素来源
CO2
甘氨酸
天冬氨酸
甲酰基 (一碳单位)
甲酰基 (一碳单位)
谷氨酰胺 (酰胺基)
1. 从头合成途径
(1) IMP的合成
ATP AMP
R-5-P
PRPP
PRPP合成酶
Gln
Glu
酰胺转移酶
5-磷酸核糖胺 (PRA)
ATP GTP
调节的意义
既满足需要,又不致于浪费。 维持ATP与GTP浓度的平衡。
(二)嘌呤核苷酸的补救合成 • 参与补救合成的酶
腺嘌呤磷酸核糖转移酶 (adenine phosphoribosyl transferase, APRT) 次黄嘌呤-鸟嘌呤磷酸核糖转移酶(hypoxanthineguanine phosphoribosyl transferase, HGPRT) 腺苷激酶(adenosine kinase)
高中生物核苷酸代谢精品PPT课件
从头合成
ATP
(CO2/NH3/AA/戊糖)
核苷酸Βιβλιοθήκη 半合成(补救合成)分解的现成嘌呤、嘧啶
dNDP
二. 嘌呤核苷酸的合成
(一). 嘌呤环各原子的来源
CO2 甘氨酸
Asp 一碳单位
6
N
15
7
8C
24
3
9
N
一碳单位
N5,N10-次甲基四氢叶酸 Gln
(二).嘌呤核苷酸的合成
1.从头合成 (脑,骨髓缺乏有关的酶)
起始物:5‘-磷酸核糖-1-焦磷酸(pRpp) 在起始物上合成嘌呤环(10步)
终产物:次黄嘌呤核苷酸(IMP)
2.补救途径
HGPRT
次黄嘌呤 + PRPP
IMP + PPi
腺嘌呤/鸟嘌呤 + PRPP
AMP/GMP + PPi
腺嘌呤/鸟嘌呤 + 1-P-核糖
A/G
AMP/GMP
Pi
基因缺陷导致HGPRT缺失而表现为Lesch-Nyhan综合症(自毁容貌综合症)
Lesch-Nyhan综合症
三. 嘧啶核苷酸的合成
(一). 嘧啶环各原子的来源 Gln
CO2
Asp
(二). 嘧啶核苷酸的合成
1.从头合成 起始物:以CO2,Glu等为原料直接合成嘧啶环(4步) 终产物:乳清酸
乳清酸 + PRPP 乳清酸核苷酸(OMP)
2.补救途径
尿嘧啶 + PRPP
UMP + PPi
核苷酸代谢
•核苷酸的分解代谢 •核苷酸的生物合成
第一节、核苷酸的分解代谢
不同动物嘌呤碱的分解的终产物
动物类型
生物化学核苷酸代谢及代谢调控PPT课件
氨甲酰磷酸合成酶 催化的反应
N5-羧基氨基咪唑核苷酸
N-琥珀酰-5-氨基咪 唑-4-酰胺核苷酸
N5-羧基氨基咪唑核苷酸 5-氨基-4-羧酸咪唑核苷酸
N-琥珀酰-5-氨基咪 唑-4-酰胺核苷酸
5-氨基咪唑-4-酰胺核苷酸
N-甲酰胺咪唑4-酰胺核苷酸
次黄嘌呤核苷酸
由IMP合成AMP 和 GMP
嘌呤核苷酸 合成的调控
(四)辅酶核苷酸的生物合成
1.烟酰胺核苷酸的合成
烟酸 + 5-磷酸核糖焦磷酸 → 烟酸单核苷酸 + PPi (烟酸单核苷酸焦磷 酸化酶)
烟酸单核苷酸 + ATP → 脱酰胺-NAD + PPi (脱酰胺-NAD焦磷酸化酶) 脱酰胺-NAD + 谷氨酰胺 + ATP → NAD + 谷氨酸 + AMP + PPi(NAD合 成酶) NAD + ATP → NADP + ADP (NAD激酶)
灵长类、鸟类、爬虫类、昆虫
NAD + ATP → NADP + ADP (NAD激酶)
FMN + ATP → FAD + PPi(FAD焦磷酸化酶)
掌握有关的抗代谢物及与抗癌药的关系。
核膜将细胞分为细胞核和细胞质两部分,细胞核贮存遗传信息,进行基因复制、转录和转录后的加工;
葡萄糖-6-磷酸对糖原合成酶的激活作用属于正前馈调节。
(N4-)琥酶珀的酰共-5价-氨修基饰咪与唑连-4续-酰激胺活核(苷参酸见酶的供加修饰和细胞信号的传导)
(2) 激素和递质受体的信号转导系统
(2)关键的调控步 骤决定代谢的方向
底物循环
3.酶活性的调节
(1)酶促反应 的前馈和反馈
《核苷酸代谢 》课件
要点二
脱氧核糖一磷酸与脱氧核糖一磷 酸一腺苷的相互转化
在细胞内,脱氧核糖一磷酸可被转化为脱氧核糖一磷酸一 腺苷,反之亦然。这种转化对于DNA的合成和修复同样具 有重要意义。
04 嘌呤核苷酸代谢
嘌呤核苷酸的合成
总结词
描述嘌呤核苷酸合成的起始物质、关键酶、合成途径 和调节机制。
详细描述
嘌呤核苷酸的合成是从磷酸戊糖开始,经过一系列酶 促反应,最终生成腺嘌呤核苷酸和鸟嘌呤核苷酸。合 成过程中需要磷酸戊糖、谷氨酰胺等物质作为起始物 质,同时需要多种酶的参与,如氨基甲酰磷酸合成酶 、天冬氨酸氨基转移酶等。合成途径分为两条,一是 从头合成,二是补救合成。合成过程受到多种因素的 调节,如磷酸戊糖的浓度、谷氨酰胺的供应等。
核糖核苷酸的分解是核苷酸代谢的重要环节,涉及到多种酶的参与和能量的释放。
详细描述
核糖核苷酸的分解首先从特定的核糖核苷酸开始,经过水解、氧化、磷酸化等反应,最终形成磷酸、 糖类、氨基酸等物质。这个过程中需要特定的酶来催化每一步反应,同时伴随着能量的释放。分解产 生的物质可以用于合成其他重要的生物分子。
详细描述
核苷酸的合成主要通过磷酸戊糖途径、糖酵解途径和三羧酸循环等途径,从简单的原料合成核苷一磷酸,再合成 核苷二磷酸和核苷三磷酸。核苷酸的降解主要通过核苷酶和核苷酸酶的作用,将核苷一磷酸、核苷二磷酸和核苷 三磷酸分别降解为相应的单磷酸、二磷酸和三磷酸核苷。
02 核糖核苷酸代谢
核糖核苷酸的合成
总结词
核苷酸代谢的重要性
总结词
核苷酸代谢对于维持生物体的正常生理功能至关重要。
详细描述
核苷酸是细胞内重要的生物分子,参与DNA和RNA的合成与修复,影响基因的 表达和遗传信息的传递。核苷酸代谢的异常会导致一系列疾病,如代谢性疾病 、癌症等。
核苷酸的代谢ppt医学课件
APRT
HGPRT
HGPRT
腺嘌呤核苷 AMP
腺苷激酶
ATP ADP
次黄嘌呤鸟嘌呤 磷酸核糖转移酶
腺嘌呤磷酸 核糖转移酶
碱基水平起点
主要
核苷水平起点
(4)嘌呤核苷酸的补救合成意义
补救合成节省能量和一些氨基酸的消耗。 自毁容貌综合症(Lesch-Nyhan)是由于缺乏HGPRT而产生的嘌呤核苷酸代谢病。HGPRT广泛存在于人类各组织的胞浆中,以脑组织中含量最多 缺乏补救途径会引起嘌呤 核苷酸合成速度降低,结果大 量积累尿酸,并导致肾结石和 痛风。
排出很少利用
二、核酸的解聚作用
核酸的解聚作用
核酸酶:水解连接核苷酸之间的磷酸二酯键。磷酸二酯酶 只作用于RNA:核糖核酸酶 只作用于DNA:脱氧核糖核酸酶 碱基分解的特点
人体内嘌呤分解代谢特点 1、氧化降解,环不打破; 2、最终产物:尿酸; 3、嘌呤代谢障碍: 痛风症
(二)嘧啶核苷酸合成途径
1、嘧啶核苷酸从头合成途径
(1)定义 嘧啶核苷酸的从头合成是指利用磷酸核糖、氨基酸、二氧化碳及一碳单位等简单物质为原料,经过一系列酶促反应,合成嘧啶核苷酸的途径。 (2)合成部位 主要是肝细胞胞液 (3)从头合成原料: 天冬氨酸、谷氨酰胺、 CO2
尿酸
黄嘌呤氧化酶
别嘌呤醇
痛风症的治疗机制
腺嘌呤
别嘌呤醇 核苷酸
嘌呤核苷酸 从头合成减少
减少
抑制
抑制
抑制
黄嘌呤溶解度更低 ?
外排
痛 风 症
痛风是尿酸过量产生或尿酸排泄不充分引起的尿酸堆积造成的,尿酸结晶堆积在软骨,软组织,肾脏以及关节处.在关节处的沉积会造成剧烈的疼痛.饮食以肉食为主的人,与饮食以米饭为主的人相比,哪种人发生痛风的可能性大 为什么 解析: 以肉食为主的人发生痛风的可能性大.由于痛风是尿酸产生过多引起的,而尿酸是人体内嘌呤分解代谢的终产物,由于氨基酸是嘌呤和嘧啶合成的前体物质,因此以富含蛋白质的肉食为主的人更易患痛风,同时也易患尿结石.
HGPRT
HGPRT
腺嘌呤核苷 AMP
腺苷激酶
ATP ADP
次黄嘌呤鸟嘌呤 磷酸核糖转移酶
腺嘌呤磷酸 核糖转移酶
碱基水平起点
主要
核苷水平起点
(4)嘌呤核苷酸的补救合成意义
补救合成节省能量和一些氨基酸的消耗。 自毁容貌综合症(Lesch-Nyhan)是由于缺乏HGPRT而产生的嘌呤核苷酸代谢病。HGPRT广泛存在于人类各组织的胞浆中,以脑组织中含量最多 缺乏补救途径会引起嘌呤 核苷酸合成速度降低,结果大 量积累尿酸,并导致肾结石和 痛风。
排出很少利用
二、核酸的解聚作用
核酸的解聚作用
核酸酶:水解连接核苷酸之间的磷酸二酯键。磷酸二酯酶 只作用于RNA:核糖核酸酶 只作用于DNA:脱氧核糖核酸酶 碱基分解的特点
人体内嘌呤分解代谢特点 1、氧化降解,环不打破; 2、最终产物:尿酸; 3、嘌呤代谢障碍: 痛风症
(二)嘧啶核苷酸合成途径
1、嘧啶核苷酸从头合成途径
(1)定义 嘧啶核苷酸的从头合成是指利用磷酸核糖、氨基酸、二氧化碳及一碳单位等简单物质为原料,经过一系列酶促反应,合成嘧啶核苷酸的途径。 (2)合成部位 主要是肝细胞胞液 (3)从头合成原料: 天冬氨酸、谷氨酰胺、 CO2
尿酸
黄嘌呤氧化酶
别嘌呤醇
痛风症的治疗机制
腺嘌呤
别嘌呤醇 核苷酸
嘌呤核苷酸 从头合成减少
减少
抑制
抑制
抑制
黄嘌呤溶解度更低 ?
外排
痛 风 症
痛风是尿酸过量产生或尿酸排泄不充分引起的尿酸堆积造成的,尿酸结晶堆积在软骨,软组织,肾脏以及关节处.在关节处的沉积会造成剧烈的疼痛.饮食以肉食为主的人,与饮食以米饭为主的人相比,哪种人发生痛风的可能性大 为什么 解析: 以肉食为主的人发生痛风的可能性大.由于痛风是尿酸产生过多引起的,而尿酸是人体内嘌呤分解代谢的终产物,由于氨基酸是嘌呤和嘧啶合成的前体物质,因此以富含蛋白质的肉食为主的人更易患痛风,同时也易患尿结石.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
核苷单磷酸激酶对碱基有特异性
腺苷酸激酶 AMP + ATP 2ADP
鸟苷酸激酶 GMP + ATP GDP + ADP
脱氧核苷酸的合成
HOCH2 O 碱基 OH 5´ H H 1´ 4´ H 3´ HO
2´
HOCH2 O 碱基 OH 5´ H 1´ 4´ H
H 3´ 2´ H 核苷酸还原酶 HO OH H
嘌呤核苷酸的降解
序列反应 灵长类的终产物是尿酸
其他物种还会进一步代谢
从尿里排出
黄嘌呤 氧化酶
嘌呤核苷酸的分解代谢
尿酸的进一步分解
嘧啶核苷酸的分解
常见的几种与核苷酸代谢相关的疾病
痛风——尿酸产生过多引起 严重联合免疫缺陷病(SCID)——腺苷脱氨酶 (ADA)单个基因突变引起 Lesch-Nyhan综合征 乳清酸尿症
第三十二章 核苷酸代谢
杨荣武 生物化 学原理 第二版
提纲
一、核苷酸的合成
1. 2. 3. 4. 5. 核苷酸的从头合成 核苷酸的补救合成 核苷二磷酸和核苷三磷酸的合成 脱氧核苷酸的合成 胸苷酸的合成
二、核苷酸合成的调节 三、核苷酸的分解 四、几种与核苷酸代谢相关的疾病 五、常见的抗核酸代谢药物
合成途径
类似于嘌呤核苷酸的补救合成,由嘧啶 磷酸核糖转移酶催化。 核苷激酶
UTP/CTP的合成(容易解决)
O C N H
HN O C
C C
CH3 H
ATP
ATP
核苷二磷酸激酶
ATP + Gln
NH2 C H N C C C N H H
O
胞苷酸的合成
特殊的激酶催化NMP转变成NDP
核苷单磷酸激酶
谷氨酰胺的类似物
嘌呤类似物
嘧啶类似物
核苷类似物
H
脱氧核苷酸
核苷酸
如何除去2´-位的氧?
核苷酸还原酶
催化脱氧核苷酸的形成
受到高度调节
调节细胞内dNTP的水平 在DNA复制之前被激活 受反馈抑制
脱氧核苷酸的合成
NDP还原酶的作用机理
大肠杆菌核苷酸还原酶
核苷酸还原酶的自由基作用机制
NDP的还原
TTP的合成(难题)
HN O C
– – – – – Asp Gly Gln CO2 N10-甲酰-四氢叶酸
还需要消耗
– 4 ATP’s
嘌呤环上各原子的来源
嘌呤核苷酸从头合成的前两步反应
IMP的从头合成
嘌呤核苷酸的从头合成
多步反应(不必记)
ATP
反馈抑制
GTP
从IMP合成AMP和GMP
嘌呤核苷酸的补救合成
次黄嘌呤 或 鸟嘌呤
HGPRT
+ PRPP
IMP or GMP &
AMP + PPi
嘧啶核苷酸的从头合成
合成前体:
– – – – Gln CO2 Asp 需要 ATP
嘧啶环先独立合成,然后转移到PRPP (类似于补救途径) 先合成UMP
UMP的从头合成
嘧啶核苷酸合成的补救途径
嘌呤核苷酸合成的调节
嘧啶核苷酸合成的调节
细菌 细菌嘧啶核苷酸合成的限速酶为天冬氨酸转氨甲酰基 酶,其中CTP和UTP为它的反馈抑制剂,ATP为别构激 活剂。 哺乳动物 哺乳动物嘧啶核苷酸合成的限速酶是CPS-II。UDP或 UTP抑制它的活性,PRPP则激活它的活性。EGF能够 诱导CPS-II的磷酸化,使其降低对UTP抑制的敏感性, 但增强了对PRPP激活的敏感性。 此外,乳清苷酸脱羧酶也是一个调节位点,其活性受 到UMP的抑制
O C N H
C C
CH3 H
胸苷酸合酶
HN O C
O C N H
C C
CH3 H
CH3
甲基供体为N5,N10-亚甲基四氢叶酸。 N5,N10-亚甲基四氢叶酸供出亚甲基以后而转变为二氢叶 酸,二氢叶酸被NADPH还原成四氢叶酸,四氢叶酸则在 丝氨酸转羟甲基酶的催化下,与丝氨酸反应重新转变为 N5,N10-亚甲基四氢叶酸。
胸苷酸的合成
脱氧嘧啶核苷酸的形成
嘌呤核苷酸合成的调节
嘌呤核苷酸的从头合成途径之中受到调节的 酶有:PRPP合成酶、谷氨酰胺:PRPP氨基转 移酶、腺苷酸琥珀酸合成酶和次黄苷酸脱氢 酶,其中谷氨酰胺:PRPP氨基转移酶为限速 酶。 IMP、AMP和GMP既能反馈抑制PRPP合成 酶的活性,还能抑制谷氨酰胺:PRPP氨基转 移酶的活性。而作为底物的PRPP激活谷氨 酰胺:PRPP氨基转移酶的活性,从而直接启 动了嘌呤核苷酸的从头合成途径。
1. 从头合成——从最简单的小分子,如CO2和氨基酸 等开始,经过多步反应,消耗更多的能量,最后生 成核苷酸的过程 。 2. 补救途径——指核苷酸降解的中间产物(包括核苷 和碱基)被循环利用,重新转变成核苷酸的过程。
从头合成
补救途径
嘌呤核苷酸的从头合成
嘌呤是在核糖环上合成的 先合成IMP 嘌呤环原子来自:
核苷酸还原酶的调节
别构调节
– – 总活性: + ATP, -dATP 底物特异性:
① ② ③ ④ ATP刺激CDP,UDP还原 (d)TTP刺激GDP还原 (d)TTP抑制CDP,UDP还原 dGTP刺激ADP还原, 抑制GDP, CDP, UDP还原
大肠杆菌的核苷酸还原酶的结构模型
核苷酸还原酶活性的调节机制
别嘌呤醇治疗痛风的机理
Lesch-Nyhan综合征
是一种隐性的性连锁遗传性 疾病,因此患者几乎都是男 性,女性仅为携带者。该病 的病因是由于HGPRT有缺 陷造成的。 主要症状包括:高尿酸血症、 肌强直、智力迟钝和自残等。
ADA 的缺陷对DNA 复制的影响
抗核酸代谢类药物
除了可用于治疗癌症以外,还经常用作抗病毒 的药物。 (1)叶酸类似物 (2)谷氨酰胺类似物 (3)碱基类似物 (4)核苷类似物