精品PPT课件----数学史讲义之 《数学发展简史》

合集下载

数学发展简史ppt课件

数学发展简史ppt课件
他赢得了“几何学上的哥白尼”的称号.
罗氏几何除了一个平行公理之外采用了欧氏几何的一 切公理。因此,凡是不涉及到平行公理的几何命题,在欧 氏几何中如果是正确的,在罗氏几何中也同样是正确的。 在欧氏几何中,凡涉及到平行公理的命题,在罗氏几何中 都不成立,他们都相应地含有新的意义。下面举几个例子 加以说明:
到公元前3世纪,在最伟大的古代几何学家欧几里得、 阿基米德、阿波罗尼奥斯的时代达到了顶峰,而终止于公元 6世纪.当时最光辉的著作是欧几里得的《几何原本》,尽 管这部书是两千多年以前写成的,但是它的一般内容和叙述 的特征,却与现在我们通用的几何教300年)是古代最杰出的数 学家之一,欧几里得的《几何原本》的出现是数学史上的一 个伟大的里程碑.自1482年第一个印刷本出版以后,至今已 有一千多种版本.在我国,明朝时期意大利传教士利玛窦与 我国的徐光启合译前6卷,于1607年出版.
数学中专门研究函数的领域叫做数学分析(它的主要内 13
变量数学建立的第一个决定性步骤出现在 1637年笛卡儿的著作《几何学》,这本书奠定了 解析几何的基础,从而变量进入了,运动进入了 数学.恩格斯指出:“数学中的转折点是笛卡儿 的变数,有了变数,运动进入了数学,有了变数, 辩证法进入了数学” .
笛卡儿(René·Descartes)(1596-1650) 法国科学家、哲学家, 数学家,1596年3月13日,生于法国西部的希列塔尼 半岛上的图朗城,3天后,母亲去世,从小便失去母亲的笛卡儿一直体弱多 病。1649年10月,勒内.笛卡儿应瑞典女王克里斯蒂娜的邀请来 到瑞典首都 斯德哥尔摩,为这位19岁的姑娘讲授哲学和数学,很遗憾由于笛卡儿对女王 的生活习惯不适应,加上严寒冬天的威胁,这位伟大的数学家、物理学家和 哲学家病倒了。1650年2月11日,这位科学巨人与世长辞了。

《数学发展史》课件

《数学发展史》课件
详细描述
解析几何的诞生可以追溯到17世纪,由法国数学家笛卡尔创立。笛卡尔通过引入坐标 系,将几何图形与代数方程联系起来,从而开启了用代数方法研究几何的新时代。解析 几何的诞生不仅为数学带来了新的研究工具,还为物理学、工程学等领域的发展奠定了
基础。
微积分的诞生
要点一
总结词
微积分是数学中研究连续变化和速度的分支,它的诞生标 志着数学进入了一个新的时代。
欧几里得
古希腊数学家,他撰写了《几何原 本》,系统地总结了当时的几何知 识,并建立了欧几里得几何学。
古代印度数学
印度数学家发明了阿拉伯数字 和阿拉伯数字的计数系统,为 现代数学的发展奠定了基础。
印度数学家阿叶彼海特发明了 阿拉伯数字的十进制位值记数 法,使得数字的表示和计算变 得更加简便。
印度数学家婆罗摩笈多研究了 三角形的各种恒等式,并给出 了三角函数的计算方法。
解决复杂的优化和控制问题。
量子计算与数学
量子计算原理
量子计算利用量子力学的原理进行信息处理,而数学是理解和应 用量子计算的重要工具。
线性代数与量子力学
线性代数在描述量子态和量子操作中起到关键作用,为理解量子计 算提供了数学框架。
概率论与量子测量
概率论在描述量子测量和量子随机性中也有重要应用,有助于理解 量子计算的局限性和优势。
了深远影响。
古巴比伦数学
古巴比伦数学是数学发展史上的 另一个重要阶段,其数学成就主 要表现在天文学和土地测量等方
面。
古巴比伦人使用楔形文字记录数 学问题,最早的数学文献可以追
溯到公元前18世纪左右。
古巴比伦人发展出了60进制的计 数法,以及三角形、平方根等数 学概念,这些概念对后来的数学
发展产生了重要影响。

数学史及其发展历程PPT课件

数学史及其发展历程PPT课件

数学史既属史学领域,又属数学科学领域,因此数学史
研究既要遵循史学规律,又要遵循数理科学的规律。根据
这一特点,可以将数理分析作为数学史研究的特殊的辅助
手段,在缺乏史料或史料真伪莫辨的情况下,站在现代数
学的高度,对古代数学内容与方法进行数学原理分析,以
达到正本清源、理论概括以及提出历史假说的目的。数理
分析实际上是“古”与“今”间的一种联系。
江等地做官,1261年左右被贬至梅州,(今广东梅县),不久死于任所。他与李
冶,杨辉,朱世杰并称宋元数学四大家。早年在杭州“访习于太史,又尝从隐君
子受数学”,1247年写成著名的《数书九章》。《数书九章》全书凡18卷,81
题,分为九大类。
李冶
• 李冶(1192----1279),原名李治,号敬斋,金代真定栾城人,1248年撰成《测圆 海镜》,其主要目的是说明用天元术列方程的方法。“天元术”与现代代数中的 列方程法相类似,“立天元一为某某”,相当于“设x为某某“,可以说是符号代 数的尝试。李冶还有另一步数学著作《益古演段》(1259)也是讲解天元术的。
2021/3/9
授课:XXX
4
➢ 数学的古代史与近代史
一、古代史
二、近代史
①古希腊曾有人写过《几何学 史》,未能流传下来。 ②5世纪普罗克洛斯对欧几里 得《几何原本》第一卷的注文 中还保留有一部分资料。
是从18世纪,由J.蒙蒂克拉、 C.博絮埃、A.C.克斯特纳同 时开始,而以蒙蒂克拉
1758年出版的《数学史》
出的水量解决了国王的疑问。在著名的《论浮体》一书中,
他按照各种固体的形状和比重的变化来确定其浮于水中的
位置,并且详细阐述和总结了后来闻名于世的阿基米德原
理:放在液体中的物体受到向上的浮力,其大小等于物体

中国数学发展简史李扑作品ppt

中国数学发展简史李扑作品ppt
华 罗 庚
5
几何级数方面
• 在世界数学史上对方程的原始记载有着不同的形 式,但比较起来不得不推中国天元术的简洁明了。 四元术是天元术发展的必然产物。 级数是古老的东西,二千多年前的“周髀算经” 和“九章算术”都谈到算术级数和几何级数。十 四世纪初中国元代朱世杰的级数计算应给予很高 的评价,他的有些工作欧洲在十八、九世纪的著 作内才有记录。十一世纪末的僧一行有不等间距 的内插法计算。 十四世纪以前,属于代数方面许多问题的研究, 中国是先进国家 宋朝杨辉所著的书中(公元1274年)有一个 1—300以内的因数表,例如297用“三因加 一损一”来代表,就是说297=3×11×9, (11=10十1叫加一,9=10—1叫损一)。杨 辉还用“连身加”这名词来说明201—300 以内的质数。
4
代数方面
• 从“九章算术”卷八说明方程以后,在数值代数 的领域内中国一直保持了光辉的成就。 “九章算术”方程章首先解释正负术是确切不移 的,正象我们现在学习初等代数时从正负数的四” 而求出数字解答(可惜原解法失传了),不难想象 王孝通得到这种解法时的愉快程度,他说谁能改 动他著作内的一个字可酬以千金。
2
四则运算方面
• 和其他古代国家一样,乘法表的产生在中国也很 早。乘法表中国古代叫九九,估计在2500年以前 中国已有这个表,在那个时候人们便以九九来代 表数学。现在我们还能看到汉代遗留下来的木简 (公元前一世纪)上面写有九九的乘法口诀。 夏侯 阳算经”卷上在叙述度量衡后又记着:“十乘加 一等,百乘加二等,千乘加三等,万乘加四等; 十除退一等,百除退二等,千除退三等,万除退 四等。”这种以十的方幂来表示位率无疑地也是 中国最早发现的。
中国数学发展简史
成就卓著
1
算术方面

数学发展简史PPT教学课件

数学发展简史PPT教学课件
3.希尔伯特的“公理化体系” 4.高斯、罗巴契夫斯基、波约尔、黎曼的“非欧几何” 5.伽罗瓦创立的“抽象代数” 6.黎曼开创的“现代微分几何” 7.庞加莱创立的“拓扑学” 8. 其它:数论、随机过程、数理逻辑、组合数学、
计算数学、分形与混沌 等等。
现代数学时期的结果,也成为高校数学、 力学、物理学等学科数学教学的内容,并 被科技工作者所使用。
27
“分析”、“代数”、“几何”三大分支
在18世纪,由微积分、微分方程、变分法等构 成的“分析”,已经成为与代数、几何并列的 数学的三大学科,并且在这个世纪里,其繁荣 程度远远超过了代数和几何。
第三时期(近代数学时期)的基本结 果,如解析几何、微积分、微分方程,高等代 数、概率论等,已成为高等学校数学教育的主 要内容。
Mathematical Culture
1
参加人员 活动主题 活动时间 活动方式 活动目的 活动总结
马明钰、葛思雨、王奕正、南曦、陈欣、彭思琦、龚佳敏、马芳薇
数学的发展历程
2016年2月17日
通过互联网、书籍等方式查询数学的有关历史,并共同收集整理
多方面的对数学学科的环境进行了解,提高学习素养
数学是一门伟大的科学,数学作为一门科学具有悠久的历史,与自 然科学相比,数学更是积累性科学,它是经过上千年的演化发展才 逐渐兴盛起来。同时数学也反映着每个时代的特征,美国数学史家 克莱因曾经说过:"一个时代的总的特征在很大程度上与这个时代的 数学活动密切相关。
20
刘徽
魏晋期间伟大的数学家,中国古典 数学 理论的奠基者之一。他的杰作《九章 算术注》和《海岛算经》,是中国最宝贵 的数学遗产。他也是中国最早明确主张用 逻辑推理的方式来论证数学命题的人.

数学发展史PPT

数学发展史PPT
数学发展史分析
中华民族是一个具有灿烂文化和悠久历史的民族,在 灿烂的文化瑰宝中数学在世界数学发展史中也同样具 有许多耀眼的光环。中国古代算数的许多研究成果里 面就早已孕育了后来西方数学才设计的先进思想方法, 近代也有不少世界领先的数学研究成果就是以华人数 学家命名的。
目录
1-------第一时期 2-------第二时期 3-------第三时期 4-------第四时期
第一时期:数学形成时期
第一时期:数学形成时期(远 古—公元前六世纪),这是人 类建立最基本的数学概念的时 期。人类从数数开始逐渐建立 了自然数的概念,简单的计算 法,并认识了最基本、最简单 的几何形式,算术与几何还没 有分开。
第二时期:初等数学时期、常量数学时期
第二时期:初等数学时期、常 量数学时期(公元前六世纪— 公元十七世纪初)这个时期的 基本的、最简单的成果构成中 学数学的主要内容,大约持续 了两千年。这个时期逐渐形成 了初等数学的主要分支:算数、 几何、代数。
谢谢观看
第三时期:变量数学时期
第三时期:变量数学时期(公 元十七世纪初—十九世纪末) 变量数学产生于17世纪,经历 了两个决定性的重大步骤:第 一步是解析几何的产生;第二 步是微积分(Calculus)的创பைடு நூலகம்立。
第四时期:现代数学时期
第四时期:现代数学时期(十 九世纪末开始),数学发展的 现代阶段的开端,以其所有的 基础--------代数、几何、分 析中的深刻变化为特征。

《数学发展史》课件

《数学发展史》课件
计算机的出现也促进了算法和计算复杂性理论的发展。这些理论为计算机科学和数学提供了重要的基础和工具, 为解决各种问题提供了新的思路和方法。
感谢观看
THANKS
THE FIRST LESSON OF THE SCHOOL YEAR
欧几里德
古希腊数学家,他撰写了《几何原 本》,系统地总结了当时的几何知 识,成为世界上最早的公理化数学 著作。
古印度数学
01
印度数学家阿叶彼海特发明了阿拉伯数字的雏形, 为现代数字的发展奠定了基础。
02
印度数学家婆罗摩笈多研究了三角函数和圆周率, 为三角学的发展做出了贡献。
03
印度数学家马哈维拉提出了代数方程的解法,为代 数学的发展做出了贡献。
古埃及人将数学与天文学相结合,用于计算天文现象 和制定历法。
数学著作的流传
古埃及数学著作《几何原本》是世界上最早的几何学 著作之一,对后世数学发展产生了深远影响。
古巴比伦数学
泥板上的数学
古巴比伦人使用泥板作为书写材料,留下了大量的数学泥板。
代数与几何的初步认识
古巴比伦人开始认识到代数和几何的关系,并使用代数方法解决几 何问题。
数学家。
02 03
代数的发展
在16世纪和17世纪,代数得到了迅速的发展。法国数学家韦达和英国 数学家欧几里德等人对代数的理论体系进行了完善,使得代数成为一门 独立的学科。
代数的应用
代数在各个领域都有着广泛的应用,如几何、三角学、物理学等。同时 ,代数也在计算机科学、统计学、经济学等领域发挥着重要的作用。
解析几何的诞生为微积分的发展奠定了基础。通过解析几 何的方法,数学家们可以更加深入地研究函数的性质和变 化规律,从而推动了微积分的发展。同时,解析几何也为 物理学、工程学等领域提供了重要的工具和方法。

数学史简介ppt课件

数学史简介ppt课件

最新版整理ppt
7
第一章:数学的起源与早期发展
• 史前数学主要是对数的认识 • 这种认识跨越几万年,直到18世纪
最新版整理ppt
8
最新版整理ppt
9
早在原
始人时代, 人们在生产 活动中慢慢 的就注意到 1只羊和许 多羊,一头 狼和许多狼 的差异。
最新版整理ppt
10
随着时间的推移慢慢的产生了数的概念......
最新版整理ppt
39
让我们再来看看自然数中的奇数和偶数。
奇数数列是1,3,5,7,… n ,… (n为项数)偶数数列是 2,4,6,8,… 2n ,…(n为项数)人们研究奇数,发现 如下的性质:
最新版整理ppt
40
自然数中偶数数列则有如下的性质: 2=1×2 2+4=6=2×3 2+4+6=12=3×4 2+4+6+8=20=4×5
最新版整理ppt
34
奇妙的自然数
1 , 2 , 3 , 4 , 5 ,……这些简简单单的自然数, 是我们从呀呀学语开始就认识的。它们是那样 自自然然,因而显得平淡无奇。但我们如果认 真研究一下这些数字,就会发现其中妙趣横生。 聪明的数学王子高斯在小学的时候就会巧算自 然数列之和,这正是由于他对自然数有深刻的 了解。高斯小时候在德国的一所农村小学读书。 数学老师是位从城里来的先生。他瞧不起穷人 的孩子,从不认真教他们,甚至还打骂学生。 有一天,他情绪很坏,一上课就命令学生做加 法,从1一直加到100最,新版谁整理算ppt 不到就不准回家。35
奇妙数学史1ppt课件老师眼中的数学爸妈眼中的数学2ppt课件3ppt课件4ppt课件5ppt课件?其实你了解到的数学仅限于数学Байду номын сангаас识?数学这门学科涵盖的内容是非常丰富的?下面一一道来6ppt课件数学史的分期一数学的起源与早期发展公元前66世纪二初等数学时期公元前66世纪16世纪三近代数学时期17世纪18世纪四现代数学时期1820年现在7ppt课件第一章

中国数学发展历史课堂ppt课件

中国数学发展历史课堂ppt课件
7
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
唐朝在数学教育方面有长足的发 展。656年国子监设立算学馆,设有 算学博士和助教,由太史令李淳风等 人编纂注释《算经十书》 包括《周髀算经》、《九章算术》
《海岛算经》、《孙子算经》 《张丘建算经》、《夏侯阳算经》
20
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
陈景润,中国现代数学家,世界著名解析数 论学家之一。 1966年,陈景润攻克了世界 著名数学难题“哥德巴赫猜想”中的(1+2), 创造了距摘取这颗数论皇冠上的明珠(1+ 1) 只是一步之遥的辉煌。他在哥德巴赫猜想的 研究上居世界领先地位。他研究哥德巴赫猜 想和其他数论问题的成就,至今,仍然在世 界上遥遥领先。世界级的数学大师、美国学 者阿 ·威尔(A Weil)曾这样称赞他:“陈景 润的每一项工作,都好像是在喜马拉雅山山 巅上行走。” 陈景润于1978年和1982年两 次收到国际数学家大会请他作45分钟报告的 邀请,这是中国人的自豪和骄傲
祖冲之(公元429-500 年)
2
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确
算盘
中国人发明算盘
大约六、七百年前,中国人发明 了算盘,它结合了十进制计数法和 一整套计算口诀并一直沿用至今, 被许多人看作是最早的数字计算机
18
在整堂课的教学中,刘教师总是让学 生带着 问题来 学习, 而问题 的设置 具有一 定的梯 度,由 浅入深 ,所提 出的问 题也很 明确

数学史简介ppt

数学史简介ppt
总结词
分析时代的来临
详细描述
18世纪的数学以分析学的发展为主导。数学家们开始深入研究微积分,并扩展到复数、无穷级数等领域。几何学 也取得了重大进展,如非欧几何的发现,对后来的物理学和哲学产生了深远影响。
19世纪的数学
总结词
数学的全面发展
VS
详细描述
19世纪的数学呈现出全面发展的态势。 代数、几何、分析等各个领域都取得了重 大突破。同时,数学开始与其他学科交叉 融合,如数学物理、数论等。数学的公理 化体系也开始建立,为数学的严谨性和可 靠性提供了保障。
和技能。
早期数学的发展主要集中在计数 、测量和图形等方面,这些技能 对于当时的人类来说是至关重要
的。
古代数学的发展
古代数学的发展主要集中在埃及 、巴比伦、印度、中国等文明古
国。
这些文明古国在数学方面都有重 要的贡献,如埃及的几何学、巴 比伦的代数和三角学、印度的数
字系统和中国的算术等。
古代数学的发展对于后来的科学 和技术发展起到了重要的推动作
$number {01} 汇报人:可编辑
2023-12-27
数学史简介
目录
• 数学的起源 • 中世纪数学 • 现代数学的发展 • 20世纪的数学 • 当代数学的挑战与前景
01
数学的起源
数学的起源
数学起源于人类早期的生产和生 活实践,如计数、测量、图形等

原始社会的人类通过观察和实验 ,逐渐发展出了基本的数学概念
2
中国数学家在解决实际问题方面有着卓越的成就 ,如南北朝时期的祖冲之在圆周率计算方面的贡 献。
3洲的数学
中世纪欧洲数学在文艺复兴时期得到了迅速的发展,如意大利的达芬奇、 法国的韦达等。
中世纪欧洲数学家在几何、代数、三角学等领域做出了重要的贡献,如欧 几里得的《几何原本》、阿基米德的《论球与圆柱》等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档