单片机按键地解决方法
按键消除抖动的措施

按键消除抖动的措施
按键消除抖动是指在使用电子设备中,当按下按键后可能会出
现的多次触发信号的问题。
为了解决这个问题,可以采取以下措施:
1. 软件滤波,在程序设计中,可以采用软件滤波的方法来消除
按键抖动。
软件滤波可以通过延时、状态机等方式来确保只有真正
的按键按下才会触发相应的操作,而忽略短暂的抖动信号。
2. 硬件滤波,在电路设计中,可以加入电容、电阻等元件来实
现硬件滤波,通过延长按键信号的上升沿或下降沿时间,从而消除
按键抖动带来的干扰。
3. 使用稳定的按键元件,选择质量好、稳定性高的按键元件,
可以减少按键抖动的发生。
4. 金属片设计,在按键设计中,可以添加金属片来增加按键的
稳定性,减少抖动。
5. 硬件消抖器,使用专门的硬件消抖器芯片,这些芯片可以自
动检测和消除按键抖动,提高按键的稳定性。
综上所述,消除按键抖动可以通过软件滤波、硬件滤波、选择稳定的按键元件、金属片设计以及使用硬件消抖器等多种措施来实现。
在实际应用中,可以根据具体情况选择合适的方法或者结合多种方法来解决按键抖动问题。
单片机如何防抖的设置方法

单片机如何防抖的设置方法
单片机防抖的设置方法有以下几种:
1. 硬件防抖:通过外部电路来进行防抖,常见的方式是使用RC电路或者电容滤波器来消除按键的抖动。
这种方法简单易行,但需要额外的硬件电路支持。
2. 软件防抖:通过编写软件程序来实现防抖功能。
常见的方法是使用延时函数,在按键按下后延时一段时间再进行处理,如果在延时期间按键状态没有发生变化,则认为按键有效。
这种方法相对简单,但可能会引入一定的延迟。
3. 硬件与软件结合防抖:可以同时使用硬件和软件的方式来实现防抖。
例如,使用硬件电路进行初步的滤波,然后在软件中再进行一次判断,确保按键状态的稳定。
需要注意的是,防抖的设置方法需要根据具体的单片机和应用场景来确定,不同的单片机可能有不同的实现方法。
同时,防抖的设置也需要根据实际需求来调整,过长的延时可能会导致按键响应不灵敏,而过短的延时可能会引入抖动。
因此,在设置防抖时需要进行一定的实验和调试。
单片机按键电容消抖电路

单片机按键电容消抖电路1.引言1.1 概述概述部分的内容:在许多电子设备中,按键电路常常被使用来实现用户与设备之间的交互。
然而,由于按键的物理特性,如机械弹性和触点接触的不稳定性,会导致按键的震荡现象,即按键在按下或释放时会产生多次跳变。
这种跳变会导致单片机误读按键的信号,可能引发系统错误操作或不稳定的现象。
因此,为了保证按键信号的可靠性和稳定性,需要对按键进行消抖处理。
本篇文章将详细介绍单片机按键电容消抖电路的设计和实现原理。
通过在按键电路中引入电容元件,可以达到消抖的效果。
电容元件具有快速充放电的特性,可以有效地过滤掉按键震荡带来的干扰信号,确保单片机正确读取按键状态。
文章将首先介绍单片机按键的工作原理,包括按键的接口电路和输入电平变化的检测方式。
接着,将深入探讨按键消抖的必要性,分析不进行消抖处理所带来的潜在问题。
在这之后,将详细介绍按键电容消抖电路的设计原理,包括电容的连接方式和参数的选择。
最后,将给出经过实际测试的电路实现结果和相关性能指标的评估。
通过本文的阅读,读者将能够了解单片机按键的基本原理和消抖处理的必要性,掌握按键电容消抖电路的设计和实现方法,以及了解该电路的性能表现。
这对于开发单片机应用的工程师和爱好者来说,具有一定的指导意义和实践价值。
文章结构部分的内容是对整篇文章的组织和布局进行描述。
它向读者展示了文章的章节和主题,并指导读者理解和阅读文章的内容。
在本文中,文章结构如下:1. 引言1.1 概述1.2 文章结构1.3 目的2. 正文2.1 单片机按键原理2.2 按键消抖的必要性3. 结论3.1 按键电容消抖电路的设计原理3.2 电路实现与测试结果文章的结构分为引言、正文和结论三个主要部分。
在引言部分,概述简要介绍了单片机按键电容消抖电路的背景和重要性;文章结构部分指出了本文的章节组成和布局,为读者提供了阅读指南;目的阐明了文章的目标和意图。
正文部分主要包括单片机按键原理和按键消抖的必要性。
单片机按键实验实训报告

一、实验目的1. 理解单片机按键的工作原理和电路连接方法;2. 掌握按键消抖原理及其实现方法;3. 学会使用单片机编程控制按键功能,实现简单的输入控制;4. 提高单片机实验操作能力和编程能力。
二、实验仪器及设备1. 单片机开发板(如STC89C52);2. 按键;3. 万用表;4. 电脑;5. Keil C编译器。
三、实验原理1. 按键原理:按键是一种电子开关,按下时导通,松开时断开。
在单片机应用中,按键常用于输入控制信号。
2. 按键消抖原理:由于按键机械弹性,闭合和断开时会有一连串的抖动。
若直接读取按键状态,容易导致误操作。
因此,需要进行消抖处理。
3. 消抖方法:主要有软件消抖和硬件消抖两种方法。
本实验采用软件消抖方法,即在读取按键状态后,延时一段时间再读取,若两次读取结果一致,则认为按键状态稳定。
四、实验步骤1. 硬件连接:将按键一端接地,另一端与单片机的某个I/O口相连。
2. 编写程序:使用Keil C编译器编写程序,实现以下功能:(1)初始化I/O口,将按键连接的I/O口设置为输入模式;(2)读取按键状态,判断按键是否被按下;(3)进行消抖处理,若按键状态稳定,则执行相应的功能。
3. 编译程序:将编写好的程序编译成HEX文件。
4. 烧录程序:将编译好的HEX文件烧录到单片机中。
5. 实验验证:观察实验现象,验证按键功能是否实现。
五、实验结果与分析1. 硬件连接正确,程序编译无误。
2. 实验现象:当按下按键时,单片机执行相应的功能;松开按键后,按键功能停止。
3. 分析:通过软件消抖处理,有效避免了按键抖动导致的误操作。
六、实验总结1. 本实验成功实现了单片机按键控制功能,掌握了按键消抖原理及实现方法。
2. 通过实验,提高了单片机编程和实验操作能力。
3. 在后续的单片机应用中,可以灵活运用按键控制功能,实现各种输入控制需求。
4. 本次实验为单片机应用奠定了基础,为进一步学习单片机技术打下了良好基础。
单片机按键消抖的方法,硬件软件都可以实现

单片机按键消抖的方法,硬件软件都可以实现
不管设计一个什么作品,按键总是少不了的,对于按键你知道那些呢?
通常的按键所用开关为机械弹性开关,当机械触点断开、闭合时,由于机械触点的弹性作用,一个按键开关在闭合时不会马上稳定地接通,在断开时也不会一下子断开。
因而在闭合及断开的瞬间均伴随有一连串的抖动,为了不产生这种现象而作的措施就是按键消抖。
图1
抖动时间
抖动时间的长短由按键的机械特性决定,一般为5ms~10ms。
这是一个很重要的时间参数,在很多场合都要用到。
按键稳定闭合时间的长短则是由操作人员的按键动作决定的,一般为零点几秒至数秒,大家可以用示波器测试一下。
键抖动会引起一次按键被误读多次。
为确保CPU对键的一次闭合仅作一次处理,必须去除键抖动。
在键闭合稳定时读取键的状态,并且必须判别到键释放稳定后再作处理。
下面是两种消抖方法:
一、硬件消抖:
按键防抖电路控制电路
所示利用RC 积分电路来达成杂波的滤除与波形修整的电路(如图1 )。
在S1 ON 的瞬间由于接触弹跳的关系,会使A 点电压呈现高速的断续现象,再S1 OFF 时亦然,详(如图2所示),然而由于电容两端电压需由电压经电阻慢慢充电才会上升,使得B 点电位缓步上升情形:S1 OFF 时亦然,电容电压经R 放电,使B 点电压缓缓下降。
此一变化,经史密特反相修整后,可得一标准负脉波输出,如波形图C 点所示。
用其他的各类触发器,锁存器亦可达到消抖效果。
二、软件消抖:。
51单片机矩阵键盘控制数码管显示过程中出现的问题及解决方法

51单片机矩阵键盘控制数码管显示过程中出现的问题及解决方法在使用51单片机控制矩阵键盘同时驱动数码管显示的过程中,可能会遇到一些常见的问题。
以下是一些可能的问题及相应的解决方法:按键无法正常响应:* 问题可能原因:接线错误、按键损坏、软件扫描不到按键信号。
* 解决方法:检查按键连接是否正确,确保按键没有损坏。
在软件中进行适当的按键扫描,确保能够正确检测到按键的状态。
数码管显示异常或不亮:* 问题可能原因:数码管接线问题、数码管损坏、数码管驱动程序错误。
* 解决方法:仔细检查数码管的接线是否正确,确保数码管没有损坏。
检查数码管的驱动程序,确保它按照正确的顺序和时序进行驱动。
按键重复响应或漏按现象:* 问题可能原因:按键抖动、软件扫描速度过快。
* 解决方法:在软件中增加适当的按键抖动延时,确保在按键按下或抬起时只响应一次。
调整软件扫描速度,避免扫描间隔过短导致的重复响应。
矩阵键盘的多个按键同时按下导致混乱:* 问题可能原因:矩阵键盘硬件连接错误、软件扫描算法问题。
* 解决方法:检查矩阵键盘的硬件连接,确保矩阵行和列没有短路或断路。
调整软件扫描算法,确保同时按下多个按键时能够正确识别。
数码管显示不正常的数字或乱码:* 问题可能原因:程序错误、数码管接线错误。
* 解决方法:仔细检查程序,确保数码管段选和位选的控制逻辑正确。
检查数码管的接线,确保每个数码管的连接都正确。
在解决问题时,建议逐步排除可能的原因,通过调试工具、逻辑分析仪或输出调试信息的方式来定位问题。
另外,仔细查阅51单片机的数据手册和相关文档,以确保硬件连接和软件设计都符合标准。
单片机按键单击双击长按功能实现

单片机按键单击双击长按功能实现在很多嵌入式系统中,都需要对按键进行检测和处理,以实现不同的功能。
常见的按键功能包括单击、双击和长按。
在这篇文章中,我们将介绍如何使用单片机实现这些按键功能。
首先,我们需要连接一个按键到单片机的I/O口。
按键通常是一个开关,有两个接触点。
当按键按下时,两个接触点会闭合,导致I/O口的电平发生变化。
我们可以利用这个变化来检测按键的状态。
为了实现按键功能,我们需要编写一段程序来监测按键的状态。
以下是一个简单的流程:1.初始化I/O口:将按键连接到I/O口上,并将I/O口设置为输入模式。
2.监测按键状态:定时读取I/O口的电平状态,以检测按键是否按下。
如果I/O口电平发生变化,则按键被按下或松开。
3.单击功能:当按键被按下时,记录当前时间,并等待一段时间,如果超过这段时间,说明按键已松开,则触发单击功能。
4.双击功能:如果在两次按键之间的时间间隔内再次检测到按键按下,则触发双击功能。
5.长按功能:当按键被按下一段较长的时间后,触发长按功能。
下面我们来具体介绍如何实现这些功能。
首先,我们需要初始化单片机的I/O口。
这个过程可以通过配置相应的寄存器实现。
具体的方法和步骤依赖于你使用的单片机型号和开发环境。
在这里,我们不具体展开,而是假设我们已经成功初始化了I/O口。
接下来,我们需要设置一个计时器用于定时检测按键的状态。
计时器的定时周期决定了我们可以检测的最短按键时间间隔。
通常,我们使用一个定时器来实现单击和双击功能,使用另一个定时器来检测长按功能。
一旦我们完成了计时器的配置,我们就可以开启定时器中断,并启动计时器。
每当定时器溢出时,中断函数会被触发,我们可以在这个函数中检测按键的状态。
在中断函数中,我们读取I/O口的电平状态,并根据当前的按键状态做出相应的处理。
首先,我们需要检测按键是否按下。
为了防止按键的抖动和误触发,我们使用一个状态机来确定按键的状态。
状态机的状态可以分为按下和松开两种。
单片机按键原理

单片机按键原理在单片机系统中,按键是一种常见的输入设备,用于向单片机输入外部信号。
按键原理是单片机系统中的基础知识之一,下面我们来详细了解一下单片机按键原理。
1. 按键的基本原理。
按键是一种开关设备,通过按下或释放按钮来改变其导通状态。
在单片机系统中,按键通常由两个金属片组成,当按下按键时,两个金属片接触,形成通路,使得电流可以流通;释放按键时,两个金属片分开,断开通路,电流无法通过。
单片机通过检测按键的状态来判断用户的操作,从而实现相应的功能。
2. 按键的连接方式。
在单片机系统中,按键可以采用两种连接方式,串联和并联。
串联连接是将多个按键连接在一起,形成一个按键组,将按键组的两端分别连接到单片机的两个引脚上,通过检测引脚的电平变化来判断用户的操作。
并联连接是将多个按键分别连接到单片机的不同引脚上,每个按键对应一个引脚,通过检测不同引脚的电平变化来判断用户的操作。
3. 按键的检测原理。
单片机通过检测按键引脚的电平变化来判断按键的状态。
在按键释放时,引脚上的电平为高电平;在按键按下时,引脚上的电平为低电平。
单片机通过定时检测按键引脚的电平变化,来实时监测按键的状态,从而判断用户的操作。
4. 按键消抖原理。
在实际应用中,按键可能会出现抖动现象,即在按键按下或释放的过程中,由于机械结构的原因,按键可能会产生多次开关动作,导致单片机检测到多次按键触发。
为了解决这个问题,通常会在软件中加入按键消抖算法,通过软件延时或状态判断来滤除按键抖动,确保单片机能够正确识别用户的操作。
5. 按键的应用。
按键广泛应用于各种单片机系统中,如嵌入式系统、电子设备、工业控制等领域。
通过按键,用户可以向单片机输入各种指令或数据,实现对系统的控制和操作。
在实际应用中,按键的设计和布局需要根据具体的系统需求来进行合理规划,以确保按键操作的准确性和可靠性。
总结。
单片机按键原理是单片机系统中的基础知识,了解按键的基本原理、连接方式、检测原理和消抖原理,对于设计和开发单片机系统具有重要意义。
单片机按键去抖原理

单片机按键去抖原理在单片机系统中,按键的应用非常广泛,无论是控制还是交互,经常需要使用按键来进行操作。
然而,由于按键的特性,往往会带来按键抖动的现象,这就需要对按键进行去抖处理。
本文将详细介绍单片机按键去抖的原理和方法。
1.按键抖动的原因及影响因素按键抖动是指按下或释放按键时,按键触点会产生不稳定的接触,导致按键信号在短时间内多次切换,造成系统误判。
按键抖动的原因主要有以下几点:(1)按键机械结构问题:按键存在接触不良、触点弹簧不稳定等机械问题,会导致接触突变。
(2)外部干扰:如按键线路附近的磁场、电源干扰等,会引发按键误触。
(3)按键的弹性和灵敏度:按键材料和设计的不同,会导致按键的弹性和灵敏度不一致,进而引发抖动。
按键抖动会带来以下几个问题:(1)误判:按键抖动会使系统误判按键的按下或释放,导致错误的逻辑操作。
(2)数据错误:抖动会造成按键信号的短时间内多次切换,可能导致数据传输错误、丢失等问题。
(3)系统性能下降:由于抖动会产生大量的开关信号,会占用系统资源,影响系统的运行速度和响应时间。
2.去抖的原理去抖的原理是通过软件或硬件的方式对按键信号进行滤波,消除了按键抖动信号,从而得到稳定的按键信号。
软件去抖的原理是通过软件算法对按键信号进行处理,主要有两种方法:软件延时去抖和状态机去抖。
(1)软件延时去抖:软件延时去抖的原理是在按键按下后,通过添加延时来屏蔽抖动信号。
当检测到按键按下后,先延时一段时间,并再次检测按键的状态,如果按键仍然处于按下状态,则确认按键按下有效。
软件延时去抖的优点是简单易行,只需通过软件延时来实现,无需额外的硬件支持。
缺点是实现的延时时间需要适当,过短容易漏掉有效按键,过长则会增加系统响应时间。
(2)状态机去抖:状态机去抖的原理是通过状态变化来屏蔽抖动信号。
状态机的设计是基于按键的状态转换,当按键按下时,状态变为按下状态;当按键释放时,状态变为释放状态。
只有在状态转换时,才认定按键按下或释放为有效信号。
PIC单片机用软件产生PWM与按键实时处理PIC12C508

PIC单片机用软件产生PWM与按键实时处理.假设现在有个产品,要实现一个按键调节LED的亮度(PWM六档调光)。
要以最低成平,体积要小,抗干扰最好。
用PIC12C508A,最适合不过了。
方案实现如下:按键功能:一个普通的IO口接上拉电阻输入,通过按键拉地。
按键低电平有效,高电平无效。
每按一下占空比增加一档。
长按无效,第次增加一档。
要防止干扰。
调光功能:一个普通的IO口外接三极管驱动LED,由于单片机没有PWM模块,没有中断功能。
只能用软件产生PWM信号。
我们都知道用软件产生PMW 是占用单片机太多的时间,系统很难做其它工作。
要如何实时处理按键功能,要多下功夫才行。
编译软件为HI-PICC。
为了方面调试,先使用可擦写的PIC16F84A调试源程序,成功后再移值到PIC12C508A 单片机系统。
《按键实时处理流程》声明申请两个标志1,有效标志2,完成标志为静态私有,初始化只清零一次。
一,判断有效标志是否等于1。
是,向下执行。
否,跳到二处。
判断按键是否等于0。
是,向下执行。
否,跳到三处。
判断完成标志是否等于0。
是,向下执行。
否,按键长按,无效退出。
按键有效,增加占空比。
完成标志置为1。
退出。
二,判断按键是否等于0。
是,置有效标志为1。
否,没有按键退出。
三,按键受干扰,或按键弹开。
清所有标志,退出。
《软件产生PWM流程》一,根据占空比计算高电平延时,低电平延时。
输出高电平,软件产生高电平延时。
输出低电平,软件产生低电平延时。
二,循环执行约20毫秒,后退出。
《主程序主作流程》一,调用初始化子程序.二,调用按键处理子程序。
三,调用软件产生PWM子程序。
四,循环执行二,三。
C源程序/引入头文件********************************************************* #include <pic1684.h>//脚位定义*********************************************************** #define key RA3 //按键输入#define led RB0 //输出指示//******************************************************************* //函数名称:port_init();//输入参数:无//输出参数:无//功能描述:端口设置//建造日期:2008.06.03//***************************************************************** void PortInit(void){PORTA = 0xfd; //TRISA = 0xfd; //A 口设置PORTB = 0x00; //TRISB = 0x00; //B 口设置}//******************************************************************* //函数名称:KeyInt(*p);//输入参数:占空比地址//输出参数:无//功能描述:按键处理函数//建造日期:2008.06.03//******************************************************************* void KeyInt(unsigned char *p){static bit valid = 0; //有效标志static bit finish = 0; //完成标志if (valid == 1){if (key == 0){if (finish == 0){finish = 1; //完成置位if (*p == 251){*p = 0x01; //按键有效}else{*p += 50; //按键有效}}}else{valid = 0; //有效清零finish = 0; //完成清零}}else{if (key == 0) valid = 1; //有效置位}}//******************************************************************* //函数名称:LedPwm(Pwm);//输入参数:占空比//输出参数:无//功能描述:led 脉冲调宽输出//建造日期:2008.06.03//******************************************************************* void LedPwm(unsigned char Pwm){unsigned char PwmH;unsigned char PwmL;unsigned char i;for (i = 0; i < 20; i++){PwmH = Pwm; //脉冲高位PwmL = 255 - PwmH; //脉冲低位led = 1; //while (PwmH--); //高位输出led = 0; //while (PwmL--); //低位输出}}//******************************************************************* //函数名称:main();//输入参数:无//输出参数:无//功能描述:主要程序//建造日期:2008.06.03//******************************************************************* void main(void) //{unsigned char Pwm = 0x01; //占空初值PortInit(); //脚位设置while (1){KeyInt(&Pwm); //按键处理LedPwm(Pwm); //脉冲输出}}经过产品实测PWM频率约为1KHZ.在按键按下,弹起,长按.灯光不出现闪烁.本文来自: 高校自动化网() 详细出处参考(转载请保留本链接):/html/pic/10866.html。
单片机控制多个按键的方法

单片机控制多个按键的方法在很多嵌入式系统中,通常会用到按键进行输入。
单个按键的控制可能相对简单,但是如果需要控制多个按键,就需要用到一些特殊的控制方法。
常用的按键控制方法主要有以下几个方面:1、轮询法:采用逐个扫描的方式来检测按键状态。
2、中断法:接入外部中断口,当按键被按下时,会触发中断,系统会响应中断并执行相应的程序。
3、计时器法:通过计时器的方式来检测按键状态,利用定时器可以定时检测按键的状态。
如果需要控制多个按键,就需要采用一些特殊的控制方法:1、矩阵按键法:将多个按键以矩阵的方式进行排列,通过某种方法对行和列进行扫描,以检测按键的状态。
三、常用的按键检测程序以下是一个常用的按键检测程序,可以用于单片机控制多个按键:void key_scan(void){unsigned char read_date, key1, key2, key3, key4;// 初始化按键控制端口为输入模式P3M0 = 0x00;P3M1 = 0x00;// 所有按键端口均拉高,等待按键输入P3 = 0xff;// 等待按键输入Delay_ms(20);// 读取P3端口状态// 获得按键1状态key1 = read_date & 0x01;// 获得按键2状态key2 = read_date & 0x02;// 获得按键3状态key3 = read_date & 0x04;// 获得按键4状态key4 = read_date & 0x08;// 判断按键1是否被按下if (key1 == 0){// 按键1被按下,执行相应的操作 }// 判断按键2是否被按下if (key2 == 0){// 按键2被按下,执行相应的操作 }// 判断按键3是否被按下if (key3 == 0){// 按键3被按下,执行相应的操作 }// 判断按键4是否被按下{// 按键4被按下,执行相应的操作}}四、总结单片机控制多个按键的方法,需要采用特殊的控制方法,例如矩阵按键法和编码按键法等。
51单片机按键消抖程序原理

51单片机按键消抖程序原理一、引言按键消抖是嵌入式系统编程中常见的问题之一,尤其是在使用51单片机时。
51单片机是一款常用的微控制器,广泛应用于各种嵌入式系统中。
按键作为常见的输入设备,在51单片机应用中经常被使用。
由于按键的机械特性,当按键按下或释放时,会产生机械抖动,给系统带来误操作。
因此,了解并编写按键消抖程序对于保证系统的正常运行至关重要。
二、消抖原理按键消抖,简单来说,就是通过一定的算法,消除按键产生的机械抖动,从而准确识别按键的状态。
其原理主要基于以下两点:1.机械抖动的特点:按键的机械抖动主要表现为按键触点之间的快速开关,产生一系列微小的电信号。
这些信号通常包含真实的按键输入信号和噪声信号。
2.消抖算法:通过分析这些信号,识别出真实的按键输入信号,并忽略噪声信号,从而达到消除机械抖动的目的。
常用的消抖算法有阈值比较法、防抖延时法、防抖滤波法等。
三、消抖程序实现下面以51单片机为例,介绍一种简单的阈值比较法消抖程序实现:```cvoidkey_debounce(intkey_pin){//定义按键引脚intdebounce_time=50;//消抖时间,单位毫秒intthreshold=5;//阈值,可以根据实际情况调整intkey_state=0;//按键状态,初始化为0(未按下)intlast_key_state=0;//上一次的按键状态while(1){//读取按键状态key_state=digitalRead(key_pin);last_key_state=key_state;//判断按键是否按下if(key_state==LOW){//按键按下,开始消抖if(millis()-last_key_state>=debounce_time){//经过一定时间,确定按键状态if(key_state==digitalRead(key_pin)){//检测到真实的按键输入信号//这里可以进行相应的操作,例如点亮LED灯等}else{//检测到噪声信号或其他干扰,忽略}}else{//消抖时间不足,忽略当前状态}}else{//按键释放,忽略当前状态}}}```上述程序中,通过设置一个阈值和消抖时间,来判断按键状态是否发生变化。
单片机消除按键抖动的方法

单片机消除按键抖动的方法
单片机中,当按键被按下时,可能会出现按键抖动的现象,即按下按键后,按键会不断地重复触发,导致程序的不稳定性等问题。
为了消除按键抖动,可以采取以下方法:
1. 软件消抖法:在程序中通过延时、多次采样等方法,对按键
进行去抖处理。
但这种方法需要占用一定的CPU资源,容易影响程序的稳定性和响应速度。
2. 硬件消抖法:通过外部电路对按键进行去抖处理,如添加 RC 滤波器、加电容等组合电路,可稳定按键的电平信号,避免按键的震动和干扰。
3. 系统延时法:在按键按下后,延时一段时间再读取按键的状态,可消除按键的抖动。
但这种方法需要根据实际情况设置合适的延时时间,否则会影响系统的响应速度。
4. 确认法:在按键按下后,通过程序对按键的状态进行多次确认,只有当确认多次读取的状态一致时,才认为按键的状态是有效的。
这种方法需要设置合适的确认次数和时间,才能达到较好的去抖效果。
总之,消除按键抖动是单片机程序开发中的一个重要问题,需要根据实际情况选择合适的去抖方案,保证程序的稳定性和可靠性。
- 1 -。
单片机按键工作原理

单片机按键工作原理
单片机按键的工作原理如下:
1. 按键的接线:按键通常由两个引脚组成,一个引脚连接到单片机的某个I/O口(一般被配置为输入模式),另一个引脚与
单片机的地(GND)相连。
2. 按键的触发方式:按下按键时,按键与地(GND)短接,
形成一个低电平信号。
松开按键时,按键与地(GND)断开,形成一个高电平信号。
3. 单片机的读取:单片机通过I/O口读取按键状态。
在读取之前,需要对I/O口进行配置,以确定其作为输入模式。
4. 按键的消抖处理:由于按键的物理性质,松开按键时可能会出现抖动(也就是开关接通和断开之间多次切换),这会使单片机读取到多个状态变化。
为了避免误操作,需要对按键进行消抖处理。
有多种消抖方法,如软件消抖(通过延时)和硬件消抖(使用电容、电阻等元件)。
5. 单片机的判断:单片机读取到按键状态后,可以进行相应的判断,例如检测按键是否按下,并执行相应的操作,例如触发某个事件、修改某个参数等。
6. 可选的外部电路:根据具体需求,还可以在按键与单片机之间添加外部电路,例如上拉电阻、下拉电阻、滤波电容等,以提供更稳定的按键信号和更好的抗干扰能力。
总结起来,单片机按键的工作原理是基于按键的触发方式和单片机的输入读取能力,通过配置I/O口、消抖等操作,将按键状态转换为单片机可识别的信号,并在单片机内部进行相应的判断和处理。
单片机按键防抖动策略及实用代码

单片机按键防抖策略及实用代码笔者从事单片机类工作多年,碰到过很多问题,也成功解决过很多问题。
闲来无事想分享一些经验、心得,今天就聊一下按键防抖的问题,希望能够帮助到大家。
按键分好多种,就拿微动(非自锁) 开关举例吧,如下图1为实物,图2为原理。
大家注意,按键S1两端并没有并联104或103消抖电容,其实是出于成图1图2本考虑,因为有的行业每天生产电路板达100000个,如果每个电容按0.03元计算,那么每天因为一个电容产生的成本为3000元,那一年多出的成本呢?所以就需要软件消抖了,软件的价值就体现出来了。
为了找到按键抖动的一般规律,笔者接上示波器测量开关S1两端的波形,通过数百次按动按键,挑选了3组非常有代表性的波形,理想波形如下图3:图3可惜的是理想波形出现的概率比较低,实际的波形基本都存在不同程度的抖动,如下图4和图5:图4图5其实抖动的原因多半是按动时触点接触不实,触点有油污,氧化等等。
抖动电平的特点是持续时间较短,时间上靠近触点接触的时刻。
此按键的抖动时间不超过5ms,其他按键的抖动时间可能会更长,实际以示波器测量为准。
有了以上测量和分析,就要考虑如何过滤抖动,避免按键功能异常。
笔者整理了两个思路,使用场景有些区别,需要根据实际情况灵活选择。
第一个思路:判断按键连续低电平的时间是否超过(15ms~30ms),适合非自锁按键短按或长按,代码段示例如下:void ReadKey(void) //微动(非自锁) 开关检测,假设函数1ms运行一次{static unsigned short int key_counter=0; //统计按键按下且持续低电平的时间if(IO == 1) //IO口识别到高电平(可能是按键松开或按下时出现了高电平抖动) {key_counter=0; //持续低电平时间计数器清0,重新等待低电平}else //IO口识别到低电平{if(key_counter < 3000) //计数器限制最大值,防止溢出key_counter++; //持续低电平时间计数器累加if(key_counter == 20) //持续低电平时间达到20ms(按键短按){短按用户代码}else if(key_counter == 3000) //持续低电平时间达到3000ms(按键长按){长按用户代码}}}第二个思路:延时一段固定的时间,再判断哪个电平的持续时间长,适合自锁开关或拨动开关,代码段示例如下:unsigned char ReadKey(void)//拨动(或自锁) 开关检测,假设函数1ms运行一次{static unsigned short int high_level_counter=0; //一段时间内高电平的时间static unsigned short int low_level_counter=0; //一段时间内低电平的时间static unsigned short int judge_counter=0; //时间长度计数器static unsigned char level_value=1; //开关的返回值judge_counter++; //时间长度累计if(IO == 1) //IO口识别到高电平{if(high_level_counter < 25)high_level_counter++; //高电平时间计数累加}else //IO口识别到低电平{if(low_level_counter < 25)low_level_counter++; //低电平时间计数累加}if(judge_counter > 25) //固定延时时间(15~30ms)到,判定有效电平状态{judge_counter =0;if(high_level_counter > low_level_counter) //高电平时间>低电平时间{if(high_level_counter > 20) //高电平总时间超过固定时间的一半{level_value = 1; //此时判定IO口为高电平可以在此添加用户高电平功能代码}}else if(low_level_counter > high_level_counter) //低电平时间>高电平时间{if(low_level_counter > 20) //低电平总时间超过固定时间的一半{level_value = 0; //此时判定IO口为低电平可以在此添加用户低电平功能代码}}high_level_counter = 0;low_level_counter = 0;}return level_value; //返回开关的值}以上是笔者实际使用的两段防抖代码,测试效果很好。
单片机按键去抖原理

单片机按键去抖原理在单片机中,主要有硬件和软件两种方式来实现按键去抖。
硬件去抖的原理是通过电路来实现,常用的电路有RC滤波电路、Schmitt触发器电路和稳压二极管电路。
RC滤波电路是通过在按键信号线路上串联一个电阻和一个电容,来对信号进行滤波。
当按键按下时,电容会从低电平快速充电到高电平,此时电压上升的速度较快。
而当按键释放时,电容会通过电阻缓慢放电,使得电压下降的速度较慢。
通过RC滤波电路,可以将快速变化的按键信号转换为缓慢变化的信号,从而避免了信号抖动。
Schmitt触发器电路是通过将按键信号输入到一个Schmitt触发器中,利用触发器的滞后特性来实现去抖。
Schmitt触发器有两个阈值,即上阈值和下阈值,当输入信号高于上阈值时,输出保持高电平;当输入信号低于下阈值时,输出保持低电平。
只有输入信号在上下阈值之间切换时,输出才会发生变化。
通过使用Schmitt触发器电路,可以使得按键信号在较窄的范围内才触发,从而避免了信号抖动。
稳压二极管电路是通过将按键信号通过一个稳压二极管分流到地上来实现去抖。
稳压二极管具有一定的电流限制特性,可以通过限制按键信号的上升速度,从而达到去抖效果。
当按键按下时,相应的稳压二极管会导通,将信号分流到地上,达到去抖的效果。
除了硬件去抖外,软件去抖也是一种常见的实现方式。
软件去抖的原理是通过在程序中控制按键信号的采样和判断,从而实现去抖。
常用的软件去抖方法有延时法、状态变化法和计数法。
延时法是在按键检测的程序中加入一定的延时,在延时后再次检测按键状态,如果状态保持不变,则判断为有效按键操作。
状态变化法是通过判断按键信号的上升沿和下降沿来确定按键状态的变化,当检测到状态变化时,判断为有效按键操作。
计数法是通过在程序中设置一个计数器来统计按键状态的次数,在一定的计数范围内连续采样到相同的按键状态时,判断为有效按键操作。
软件去抖相比硬件去抖的优点在于不需要额外的硬件电路,通过编写程序即可实现去抖功能。
单片机的按键控制电路原理

单片机的按键控制电路原理
单片机的按键控制电路原理如下:
1. 按键连接:按键通过两个引脚(通常是输入引脚)与单片机相连。
一个引脚连接到单片机的输入引脚,另一个引脚连接到地。
2. 按键操作:当按键按下时,按键两个引脚之间的电阻减小,导致电流从单片机的输入引脚流向地。
而当按键未按下时,两个引脚之间的电阻变大,导致电流无法流过,单片机的输入引脚处于高电平状态。
3. 单片机输入引脚设置:单片机输入引脚一般采用上拉电阻或下拉电阻来保持输入引脚的电平状态。
在按键未按下时,上拉电阻连接到单片机的电源电压上,将输入引脚上拉至高电平;在按键按下时,通过按键连接到地,产生低电平。
4. 电平检测:单片机在程序中通过读取输入引脚的电平状态来判断按键是否按下。
一个常见的做法是使用中断,当检测到按键按下时,中断服务程序会被触发执行相关操作。
5. 消抖:由于按键被按下或弹起时可能会产生抖动,为了消除抖动影响,常在按键控制电路中加入消抖电路,例如RC电路或者软件延时等。
总结:按键通过连接到单片机输入引脚实现电平状态的检测,单片机通过对输入
引脚的电平状态进行判定来实现按键操作的控制。
单片机按键

在数字电路中,常利用触发器消除键盘抖动,但在单
片机系统中,按键可以直接接在单片机的I/O口上,常利用
键盘程序来消除键盘的抖动现象。
6.3 利用外部中断实现键盘输入
一、电路原理 在图6-3中,单片机的P0.0口接一只LED,键盘接在
P3.2端口,按键不按时,由于P3.2接有上拉电阻R3,所
以P3.2此时为高电平+5V,如果按键按下,P3.2电源地短
这里没有设置INT0是下降沿触发中断或是低电平触发
中断,原因是按键按下,不管产生不产生键抖现象,总能
使INT0引脚产生1个下降沿和低电平。如果设置只有下降 沿才触发INT0中断,需要利用设置计时器控制寄存器 TCON的IT0 = 1位,按键按下是否产生中断,可以利用程 序检测TCON的IE0位。利用外部中断触发作为按键输入很 好的解决了键盘抖动问题。
C1 30P C2 30P R1 1K
R2~9 200
AC a g d b c dot
a b c f d e f e g dot
9
RESET
SEVEN_SEG
C3 10 μ
29 30 31
PSEN ALE EA
VCC
1 2 3 4 5 6 7 8
P1.0 P1.1 P1.2 P1.3 P1.4 P1.5 P1.6 P1.7
如果需要多个键盘,把INT0口与I/O口之间用键盘连
接,I/O输出低电平扫面信号即可。在数码管动态显示电路
中,为了节省硬件资源,可以在INT0口和P2口之间接入 键盘,实现8只按键输入。
三、利用延时程序防止键盘抖动,实现键盘输入
按键按下产生的抖动现象持续的时间不会很久,因此
在按键按下后,可延时一段时间跳过抖动,再对按键的状 态检测,从而利用延时的方法也可以实现键盘输入。本案 例完通过两个键盘设计,实现对数码管显示数据的调整。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单片机按键的解决解决方案1、单片机上的按键控制一般采用两种控制方法:中断和查询。
中断必须借助中断引脚,而查询按键可用任何IO端口。
按键较少时,一个按键占用一个端口,而按键较多时,多采用矩阵形式(如:经常用4个端口作为输出,4个端口作为输入的4X4矩阵来获得16个按键);还可以用单片机的AD转换功能一个引脚接多个按键,根据电阻分压原理判断是哪个按键按下。
2、中断形式STM32可支持68个中断通道,已经固定分配给相应的外部设备,每个中断通道都具备自己的中断优先级控制字节PRI_n(8位,但是STM32中只使用4位,高4位有效),每4个通道的8位中断优先级控制字构成一个32位的优先级寄存器。
68个通道的优先级控制字至少构成17个32位的优先级寄存器.4bit的中断优先级可以分成2组,从高位看,前面定义的是抢占式优先级,后面是响应优先级。
按照这种分组,4bit一共可以分成5组第0组:所有4bit用于指定响应优先级;第1组:最高1位用于指定抢占式优先级,后面3位用于指定响应优先级;第2组:最高2位用于指定抢占式优先级,后面2位用于指定响应优先级;第3组:最高3位用于指定抢占式优先级,后面1位用于指定响应优先级;第4组:所有4位用于指定抢占式优先级。
所谓抢占式优先级和响应优先级,他们之间的关系是:具有高抢占式优先级的中断可以在具有低抢占式优先级的中断处理过程中被响应,即中断嵌套。
当两个中断源的抢占式优先级相同时,这两个中断将没有嵌套关系,当一个中断到来后,如果正在处理另一个中断,这个后到来的中断就要等到前一个中断处理完之后才能被处理。
如果这两个中断同时到达,则中断控制器根据他们的响应优先级高低来决定先处理哪一个;如果他们的抢占式优先级和响应优先级都相等,则根据他们在中断表中的排位顺序决定先处理哪一个。
每一个中断源都必须定义2个优先级。
有几点需要注意的是:1)如果指定的抢占式优先级别或响应优先级别超出了选定的优先级分组所限定的范围,将可能得到意想不到的结果;2)抢占式优先级别相同的中断源之间没有嵌套关系;3)如果某个中断源被指定为某个抢占式优先级别,又没有其它中断源处于同一个抢占式优先级别,则可以为这个中断源指定任意有效的响应优先级别。
GPIO外部中断:STM32中,每一个GPIO都可以触发一个外部中断,但是,GPIO的中断是以组为一个单位的,同组间的外部中断同一时间智能使用一个,如:PA0,PB0,PC0,PD0,PE0,PF0这些为1组,如果我们使用PA0作为外部中断源,那么别的就不能使用了,在此情况下我们使用类似于PB1,PC2这种末端序号不同的外部中断源,每一组使用一个中断标志EXTI x.EXTI0~EXTI4这5个外部中断有着自己单独的中断响应函数。
EXTI5~EXTI9共用一个中断响应函数,EXTI10~EXTI15共使用一个中断响应函数。
对于中断的控制,STM32有一个专用的管理机构NVIC.中断的使能,挂起,优先级,活动等等都是由NVIC在管理的。
编写IO口外部中断步骤及其注意事项:(1)设置中断优先级组;(2)开启时钟(IO口时钟,复用时钟);(3)设置中断线并对中断进行初始化配置(设置中断线,确定中断模式,中断触发沿设置,使用指定设置初始化外部中断);(4)设置中断管理器NVIC各参数(包括:使能产生外部中断外设的IO口所在的外部中断通道;设置外部中断的优先级---抢占优先级,响应优先级;使能外部中断通道;使用设置好的各个中断管理器上的参数来初始化中断管理器)。
外部中断服务函数完成中断操作需要最终达到的目标。
3、矩阵形式键盘矩阵原理:a*b矩阵键盘由a条行线和b条列线组成,行线接端口P3(p3表任一端口)P3.0、P3.1、P3.2……p3.(a-1);列线接p 3.a,p3.(a+1)……P3.(b-1).按键位于每条行线和列线的交叉点上。
按键的识别可采用行扫描法和线反转法,这里采用简单的线反转法,只需三步。
第一步,执行程序使X0~X3均为低电平,此时读取各列线Y0~Y3的状态即可知道是否有键按下。
当无键按下时,各行线与各列线相互断开,各列线仍保持为高电平;当有键按下时,则相应的行线与列线通过该按键相连,该列线就变为低电平,此时读取Y0Y1Y2Y3的状态,得到列码。
第二步,执行程序使Y0~Y3均为低电平,当有键按下时,X0~X3中有一条行线为低电平,其余行线为高电平,读取X0X1X2X3的状态,得到行码。
第三步,将第一步得到的列码和第二步得到的行码合并得到按键的位置码,即是Y3Y2Y1Y0X3X2X1X0(因为行线和列线各有一条电平,其余为高电平,所以位置码低四位和高四位分别只有一位低电平,其余为高电平)。
也就是说,当某个键按下时,该键两端所对应的行线和列线为低电平,其余行线和列线为高电平.比如,当0键按下时,行线X0和列线Y0为低电平,其余行列线为高电平,于是可以得到0键的位置码Y3Y2Y1Y0x3X2X1X0为11101110即是0xEE.全部按键码为:矩阵键盘在单片机上的简单应用-----显示数码管:0~F(51单片机) #include<reg51.h>#define uchar unsigned char#define uint unsigned intSbit buzzer =P1^0;Uchar code_dis[]=//0~9,A~F{0xC0,0XF9,0XA4,0xB0,0x99,0x92,0x82,0xf8,0x80,0x90,0z88,0x83,0xC6,0xA1,0x86,0x8E};Uchar code_tab[]=//矩阵键盘按键位置码{0x77,0xb7,0xd7,0xe7,0x7b,0xbb,0xdb,0xeb,0x7d,0xbd,0xdd,0xed,0x7e,0xbe,0xde,0xee};void delay(uint x)//延时函数{uchar i;while(x--)for(i=0;i<120;i++);}uchar scan()//矩阵键盘扫描函数,得到按键号,采用线反转法{uchar a,b,c,i;P3=0XF0; //P3口输出11110000a=P3; //读取列码delay(10); //防抖延时10msP3=0X0F; //P3口输出00001111b=P3; //读取行码c=a+b;//得到位置码for(i=0;i<16;i++){if(c==tab[i])return i; //查表得到按键序号并返回return -1; //无按键,则返回-1}}Void beep(void)//蜂鸣器发出声音,模拟按键声音{Uchar i;For(i=0;i<100;i++){Buzzer=~buzzer;Delay(1);}Buzzer=0;}Void main(void){uchar key;buzzer=0; //关闭蜂鸣器while(1){key=scan(); //得到按键号if(key!=-1)//有按键则显示,并且蜂鸣器发出声音{P0=dis[key];beep();delay(100);}}}扫描法:矩阵键盘工作原理:由于按键没有接地,4行 4列正好占用8个I/O 如果4行我们送P3.0到P3.3送入0 1 1 1 然后去读取 4列的值,如果P3.0的按键按下那么P3.4---P3.7的值等于 0 1 1 1,假如是第2个键按下的话那么读回来的值是 1 0 1 1 ,如果第3个键按下去读回来的值是 1 1 0 1 ,如果第4个键按下去读回来的值是 1 1 1 0 ,如果没有键按下去读回来就是1 1 1 1。
所以我们就根据读回来的值来判断按下去的是那个键。
当然这是对P3.0这一行,因为矩阵键盘是扫描的,所以下次把P3.0 给1 P3.1 给0对第2行,陆续的第3 行第4行, 0111 1011 1101 1110 而每次都去从新扫描一遍列值列有4个值,以确定是那个键按下。
无论何时任何一个时间有一个按键被按下就跳出循环。
当然不可能有2个键刚好一起按下你的手没有这么好的力度,就算有2个键一起按键,程序也有先后检测的顺序,只能检测一个后面的检测不到。
P3 = 0XFE; //第一行给0temp ;定义个变量temp = P3 ;读回来由于读需要先写1 因为P3= FE 已经把高4位给1了所以能读了temp & oxf0 如果没有按键按下结果还是0xf0 .如果有键按下结果就不是0xf0了。
num 然后我们再定义一个变量让它赋值给这个按下去的按键值。
一次类推把第一行赋值0 扫描一遍然后把第2行赋值0扫描一遍..............共扫描1 6遍。
只要有键按下就会得到一个值 num 就从1排到16. 共16个按键 4*4 的矩阵键盘。
我再总结下思路:首先低4位是行共4行分别把每行给0 低电平就4次 0 1 1 1 、1 0 1 1 、 1 1 0 1 、1 1 1 0 对吧然后去检测高4位 4列啊先不考虑极端情况,4列就4个按键只要按下一个 P3口的高4位就会有一个值。
根据这个值就能判断是那个键了。
如:P3= 1111 1110 低四位是行先把第一行给0有按键下的话 temp = P3 读回来 1101 1110 然后temp & 0xf0 与运算下就判断下还等于oxf0吗?如还等于就没有按下,如果不等于就肯定有按键按下。
定义个变量让它等于这个不是0XF0的值,做个标记。
依次类推。
然后用这个思路写个程序吧!写的不太好看的不是很清楚只是做个参考吧,只要把思路理清楚就行了。
是这样我们分别按这16个按键让它分别显示是第几个比如按下第一个数码管就显示1 第2个数码管就显示2,依次类推。
一直到 F (为了方便让所有的数码管显示同一个数0 ---F)#include#define uint unsigned int#define uchar unsigned charsbit dula = P2^6;sbit wela = P2^7;sbit key1= P3^4;uchar code table []={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71,0//加这个0就是什么都不显示};uchar num,temp,num1;void delay(uint z){uint x,y;for(x=z;x>0;x--)for(y=110;y>0;y--);}uchar keyscan();//声明一下//void display(uchar num1);//这里可以做个显示函数,但是我没做。