TI 德州仪器小尺寸逻辑器件产品选型与价格
TI(德州仪器)公司产品导购手册
TI(德州仪器)德州仪器,简称TI,全球约 30,300人,总部位于美国得克萨斯州的达拉斯,2008年营业额为185亿美元, 是全球领先的半导体公司,为现实世界的信号处理提供创新的数字信号处理(DSP)及模拟技术, 应用领域涵盖无线通讯、宽带、网络家电、数字马达控制与消费类市场。
TI(德州仪器)目录更多关于产品•MSP430系列单片机•TMS370系列单片机•TMS470系列单片机•Stellaris系列单片机•32位C2000单片机•C2000 DSP•C5000 DSP•C6000 DSP•达芬奇 DSP•A/D转换器•D/A转换器•电池管理•PWM控制器•DC/DC控制器MSP430系列单片机MSP430 系列是一个 16 位的、具有精简指令集的、超低功耗的混合型单片机,在 1996 年问世,由于它具有极低的功耗、丰富的片内外设和方便灵活的开发手段,已成为众多单片机系列中一颗耀眼的新星。
MSP430 系列单片机的迅速发展和应用范围的不断扩大,主要取决于以下的特点。
强大的处理能力 MSP430 系列单片机是一个 16 位的单片机,采用了精简指令集( RISC )结构,具有丰富的寻址方式( 7 种源操作数寻址、 4 种目的操作数寻址)、简洁的 27 条内核指令以及大量的模拟指令;大量的寄存器以及片内数据存储器都可参加多种运算;还有高效的查表处理指令;有较高的处理速度,在 8MHz 晶体驱动下指令周期为 125 ns 。
这些特点保证了可编制出高效率的源程序。
在运算速度方面, MSP430 系列单片机能在 8MHz 晶体的驱动下,实现 125ns 的指令周期。
16 位的数据宽度、 125ns 的指令周期以及多功能的硬件乘法器(能实现乘加)相配合,能实现数字信号处理的某些算法(如 FFT 等)。
MSP430 系列单片机的中断源较多,并且可以任意嵌套,使用时灵活方便。
当系统处于省电的备用状态时,用中断请求将它唤醒只用 6us 。
ADC选型与基本原理(TI)
模拟多路转换开关由8路模
拟开关和3位地址锁存器与译 码器组成,地址锁存器允许信 号ALE将三位地址信号A 、 B、 C和D进行锁存,然 后由译码电路选通其中一路摸 信号加到A/D转换部分进行转
换。A/D转换部分包括比较器、 逐次逼近寄存器SAR、256R 电阻网络、树状电子开关、控 制与时序电路等,另外具有三 态输出锁存缓冲器,其输出数 据线可直接连CPU的数据总线。
B
20
B
21
ADS5483
ADC 拥有同类竞争解决方案难以企及的高信噪比 (SNR) 与无杂散动态范围 (SFDR),可通过第二奈 奎斯特区 (Nyquist zone) 接收来自 DC 的输入频 率。采样速率为 135 MSPS 的 ADC 在输入频率 (IF) 为 70 MHz 时可实现 78.6 dBFS 的 SNR 以及 95 dBc 的 SFDR,与同类 ADC 相比,SNR 高出 3.5 dB,SFDR 高出 8 dB。更高性能 ADS 5483
B
6
2. coding: The quantized signal with the corresponding quantization level of a binary code to represent the process called encoding.
Quantify the voltage difference between the two is called quantization interval S, the median quantitative voltage more finer quantization level, S values will become.
B
7
Eg: To 0 1V analog voltage for the three binary encoding.
德州仪器AM64x 嵌入式工控控制终端 SK-AM64 评估套件说明书
一块高端工业控制终端好选择 —— SK-AM64评估套件测评近几年嵌入式最火的领域,各种工控网关终端绝对算得上一个。
智能家电和工控设备更新换代,对控制终端提出了越来越多的要求,各老牌大厂都不断在更新自己的方案。
目前对这个领域的方案主要需求是更高的安全性、更高的集成度、更高的稳定性、更强的性能,但是开发者如何选择一款合适的方案并非易事。
德州仪器(TI)新推出的AM64X系列方案绝对是目前此领域非常不错的的代表,这次就由我带大家了解一下基于AM64x处理器的评估套件SK-AM64。
开箱视频一、开箱SK-AM64评估套件使用纸质外盒包装,包装盒正面印着产品型号,背面是评估板板载资源的列表和简单的使用说明。
打开盒子可以看到由防静电袋装着开发板。
AM64x 入门套件是一个完整测试和开发平台,适合用于加速原型设计。
套件包括:有线和无线连接、三个扩展头、多个引导选项和灵活的调试功能。
配有TI 的AM64x 处理器和优化的功能集,允许用户使用基于以太网的接口、USB 接口、有线串行接口以及2.4GHz 和5GHz 无线通信来创建商业和工业解决方案。
两个板载1Gbps 以太网端口用于有线连接,此外还有三个扩展头用于扩展板功能。
此套件采用标准串行协议(如UART、I²C 和SPI),可用作通信网关与多个其他器件进行连接。
该入门套件可通过在A53 内核上运行Linux 进行评估,从而可作为远程工业通信网络中的中央引擎,也适合用作可编程逻辑控制器或运动控制器。
额外的嵌入式仿真逻辑允许使用标准开发工具(例如TI 的Code Composer Studio™)进行仿真和调试。
特性•软件:TI Processor SDK Linux/RT Linux/RTOS内核、Yocto文件系统、包含Wi-Fi® 的开箱即用例程•处理:AM64x,含2 个Arm Cortex-A53、4 个Arm Cortex-R5F、1个可以做安全功能使用的M4F,2 个PRU_ICSSG•通过 WiLink™8 WL1837MOD 模块实现双频带Wi-Fi®、Bluetooth®/低功耗蓝牙 5.1;2 个1000/100Mbps RJ-45 以太网接口•连接:可通过micro-USB 连接1 个Type A USB 3.1 gen1(超高速)、板载XDS110 JTAG 仿真器和 3 个UART•扩展和原型设计:40 引脚Raspberry Pi (RPI4) HAT、PRU-ICSSG 实时I/O 和TI-MCU 头•存储: 2GB LPDDR4;SK 上的可引导接口:可移除uSD、USB、16MB OSPI、以太网、UART开发需要自配的硬件•USB-C 5V 3A 电源•USB SD 卡写入器•Micro-SD 卡(16GB 或更大)•用于UART 串行通信的USB Micro-B 电缆•以太网电缆(可选)二、硬件描述此评估板集成了丰富的扩展接口,并且都是目前最流行的扩展接口,比如集成了兼容Raspberry Pi的扩展接口,这将能适配目前Raspberry Pi种类丰富的第三方外设模块,这将简化原型设计的难度而且更具可玩性,让开发者快速验证自己的创意。
天微产品选型表
固定花样三色灯驱动IC 6路LED恒流驱动IC LED照明及装饰驱动IC 9路LED恒流驱动IC LED照明及装饰驱动IC LED照明及装饰驱动IC LED照明及装饰驱动IC LED照明及装饰驱动IC LED照明及装饰驱动IC LED照明及装饰驱动IC LED照明及装饰驱动IC LED照明及装饰驱动IC
产品型号 TC1011 TC1006 TC1005 TC1003 TM1108 TM1107 TM1106 TM1105 TM1102 TM1103 TM1101 TM-SX670 TC1002
产品类型 电机控制专用IC 电机控制专用IC 电机控制专用IC 电机控制专用IC 仪器仪表专用IC 仪器仪表专用IC 仪器仪表专用IC 仪器仪表专用IC 仪器仪表专用IC 仪器仪表专用IC 仪器仪表专用IC 系统控制专用IC 电机控制专用IC
电力电子专用控制IC 电源管理IC
场效应管(MOSFET)
M1N60A M1N60B M1N60C M1N65 M1N65A M1N65B M2N60 M2N60B M2N65 M3N60 M3N65 M4N60 M4N65 M5N60 M5N65 M6N65 M7N65 M8N60 M8N65 M9N60
产品型号 TM1621 721 TM1722 TM1723 TM1726 TM1727 TM1728 TM1729 TM1730 TM75823
产品类型 LCD面板显示驱动IC LCD面板显示驱动IC LCD面板显示驱动IC LCD面板显示驱动IC LCD面板显示驱动IC LCD面板显示驱动IC LCD面板显示驱动IC LCD面板显示驱动IC LCD面板显示驱动IC LCD面板显示驱动IC
LED照明及装饰驱动IC
特性描述 1路恒流驱动,15~45mA电流,端口耐压24V 输入电压1.5V,升压驱动,80~200mA电流 3路恒流驱动,单线级联,灰度256级可调 3路恒流驱动,单线级联,灰度2568级可调,工作电压6~24V
TI公司DSP选型指南
正交编码器
USB⑦
ROM DMA
软件库
I2S
⑧ 数字 EPI 比较器
S100系列
2
(支持最大主频为20 MHz的ARM Cortex-M3内核,8 KByte FLASH,2 KByte SRAM,少管脚SOIC-28封装。集成模拟比较器、UART、SSI、通用定时器,I C、CCP等外设。)
LM3S101 28
与ARM7TDMI-S相比,比Thumb指令每兆赫的效率提高 了70%,比ARM指令效率提高了35%。
Drystone相关测试的性能值
优化指令系统
由于Thumb-2指令是Thumb指令的扩展,16位和32位 指令共存于同一模式,复杂性大幅下降,代码密度和性能均 得到了提高。
具有位操作能力,在汽车应用中表现出色,在DFT等 DSP运算法则的应用中非常有用。
硬件除法器
无
2-12个时钟周期
Dhrystone 0.95DMIPS/MHz(ARM模式) 1.25DMIPS/MHz
功耗
0.28mW/MHz
0.19mW/MHz
面积
0.62mm2(仅内核)
0.86mm2(内核+外设)
*不包含可选系统外设(MPU和ETM)或者集成的部件。
存储器保护(MPU)
MPU加强了优先权和访问规则,在多任务操作系统中通 过分离代码、数据和堆栈来实现安全的优先级,同时通过控 制存储地址的读、写和执行来实现访问的限制。
以 下 是 采 用 外 设 驱 动 库 配 置 UART的 例 子 , 我 们 可 以 看 出,利用驱动库开发应用程序不仅编写起来简单快速,而且代 码简洁、可读性性强。对编写大型程序而言,采用驱动库更能 够增强可靠性和安全性,同时显著降低维护成本。
数字逻辑器件指南_TI
5V
VCC
5V
VCC
4..4 2.0 1.5 VOH VIH Vt 1.5 VIL 2.5 Vt 2.4 2.0 1.5
VCC VOH VIH Vt 1.2 Vt VIL VOL GND 2.5 V 2.3 1.7 VCC VOH VIH 1.8 V VCC
Logic Guide 逻辑器件指南
Introduction 引言
Introduction and Contents 引言和目录
Today’s applications are evolving with 计人员轻松找到他们所需要的理想逻辑 greater functionality and smaller size. / 器件技术或功能元件 。通过在每个价格 TI’s goal is to help designers easily find 性能节点上提供逻辑器件系列, 再加上 the ideal logic technology or function 堪称业界标杆的交货、 可靠性及全球性 they need. Logic families are offered at 支持 即: 凭借 , , TI 信守了所做的承诺 every price/performance node along 最先进和成熟的逻辑产品线来继续保持 with benchmark delivery, reliability, and 自身的市场地位 。 TI maintains a firm worldwide support. commitment to remain in the market with both leading-edge and mature , 逻 从历史上看 , 在产品系列改进方面 logic lines. 辑器件供应商一直着重优先考虑速度和 Logic suppliers have , historically focused 低功耗 诸如 AUC 。如下图所示 (1.8 V) on speed and low power as the priori和 ALVC (3.3 V) 等许多新型 TI 产品技术 ties for product family, improvement. As 均提供了改进的性能 所采用的工艺技 shown below, improved performance is 术取决于工作电压要求。 其他技术( 比 offered by many new TI product tech如 AUP)则专注于提供“同类最佳”的 nologies such as AUC (1.8 V) and ALVC 低功耗性能。 (3.3 V) depending on operating voltage requirements. Other technologies such 数据表可以登录 TI 网站 () as AUP focus on delivering “best-in下载 或者通过您当地的销售办事处或 class” performance. ,low-power 的授权分销商 见封底 )订购。 TI Data sheets can ( be downloaded from the TI Web site at or ordered through your local sales office or TI authorized distributor. (See back cover.) 目录 of Contents Table 逻辑器件指南 Logic Guide 2014 年 2 2 3 3 4 4 5 5 6 6 6 6 7 7 7 7 7 7 8 8 8 8 9 9 9 9 10 10 10 10 10 10 11 11 11 11 12 12 12 12 13 13 13 13 13 13 14 14 14 14 14 14 15 15 15 15 15 15 16 16 16 16 16 16 引言和目录 and Contents Introduction TI 的逻辑产品世界 World of TI Logic 基础知识 IC ICBasics 技术功能矩阵 Technology Functions Matrix AUC AUC AUP1G AUP1G ALVC ALVC AUP1T AUP1T AVC AVC LSF LSF LV1T/LV4T LV1T/LV4T LVC/LVC1G LVC/LVC1G TVC TVC AC/ACT AC/ACT AHC/AHCT AHC/AHCT HC/HCT HC/HCT GTL GTL CBTLV CBTLV CB3Q CB3Q CB3T CB3T LV-A/LV-AT LV-A/LV-AT ALB ALB ALVT ALVT LVT LVT ABT/ABTE ABT/ABTE ALS/AS/S/LS ALS/AS/S/LS BCT BCT CBT/CBT-C CBT/CBT-C F F CD4000 CD4000 TTL TTL FCT FCT 逻辑器件概要 Logic Overview
德州仪器,LM3S9B90-I系列, 规格书,Datasheet 资料
Texas Instruments •108 Wild Basin, Suite 350•Austin, TX 78746/stellarisCopyright © 2009–2011 Texas Instruments, Inc. All rights reserved. Stellaris andStellarisWare are registered trademarks of Texas Instruments. ARM and Thumb areregistered trademarks, and Cortex is a trademark of ARM Limited. Other names andbrands may be claimed as the property of others.PB-LM3S9B90EK-05June 29, 2011The Stellaris® LM3S9B90 Ethernet+USB-OTG Evaluation Kit provides a low-cost evaluation platform for the LM3S9B90 ARM® Cortex™-M3-based microcontroller. The kit includes two boards: the EK-LM3S9B90 evaluation board, and the BD-ICDI In-Circuit Debug Interface board.The evaluation board design highlights the LM3S9B90 microcontroller’s10/100 Mbit Ethernet port, full-speed USB-OTG port, In-Circuit Debug Interface (ICDI) board, and easy connection to the GPIO ports.Features The evaluation board uses the LM3S9B90 microcontroller which features a Hibernation module toefficiently power down the device to a low-power state during extended periods of inactivity.The LM3S9B90 microcontroller also features an external 16MHz crystal that provides the main oscillator clock which can directly drive the ARM core clock or an internalPLL to increase the core clock up to 80MHz. A 25MHz crystal is used for the Ethernet clock and a 4.194304MHz crystal is used for the real-time clock. The LM3S9B90 microcontroller also has an internal LDO voltage regulator that supplies power for internal use.The Stellaris LM3S9B90 evaluation board includes the following features: Stellaris LM3S9B90 high-performance microcontroller with large memory –32-bit ARM® Cortex™-M3 core –256KB main Flash memory, 96KB SRAM Ethernet 10/100 port with two LED indicators USB 2.0 Full-Speed OTG port Virtual serial communications port capability Oversized board pads for GPIO access Reset pushbutton and power LED User pushbutton and LEDDetachable In-Circuit Debug Interface (ICDI) board can be used for programming and debugging other Stellaris® boardsKit ContentsThe EK-LM3S9B90 evaluation kit comes with the following:EK-LM3S9B90 Evaluation Board (EVB)BD-ICDI In-Circuit Debug Interface BoardCables–USB cable–10-pin ribbon cable for JTAG–8-pin ribbon cable for power/UART connectionEvaluation Kit CD containing:–Complete documentation–StellarisWare® Peripheral Driver Library andexample source code– A supported evaluation version of one of thefollowing:–Keil™ RealView® MicrocontrollerDevelopment Kit (MDK-ARM)–IAR Embedded Workbench® developmenttools–Sourcery CodeBench development tools –Code Red Technologies Red Suite –Texas Instruments’ Code Composer Studio™ IDEOrdering InformationProductNumber Description EKK-LM3S9B90Stellaris® LM3S9B90 Low-Cost Evaluation Kit for Keil™ RealView® MDK-ARM (32 KB code-size limited)EKI-LM3S9B90Stellaris® LM3S9B90 Low-Cost Evaluation Kit for IAR Systems Embedded Workbench® (32 KB code-size limited)EKC-LM3S9B90Stellaris® LM3S9B90 Low-Cost Evaluation Kit for Sourcery CodeBench(30-day limited)EKT-LM3S9B90Stellaris® LM3S9B90 Low-Cost Evaluation Kit for Code Red Technologies Red Suite (90-day limited)EKS-LM3S9B90Stellaris® LM3S9B90 Low-Cost Evaluation Kit for Code ComposerStudio™ IDE (board-locked)Stellaris®LM3S9B90Ethernet+USB-OTG Evaluation Kit 芯天下--/IMPORTANT NOTICETexas Instruments Incorporated and its subsidiaries(TI)reserve the right to make corrections,modifications,enhancements,improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty.Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty.Except where mandated by government requirements,testing of all parameters of each product is not necessarily performed.TI assumes no liability for applications assistance or customer product design.Customers are responsible for their products and applications using TI components.To minimize the risks associated with customer products and applications,customers should provide adequate design and operating safeguards.TI does not warrant or represent that any license,either express or implied,is granted under any TI patent right,copyright,mask work right, or other TI intellectual property right relating to any combination,machine,or process in which TI products or services are rmation published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement e of such information may require a license from a third party under the patents or other intellectual property of the third party,or a license from TI under the patents or other intellectual property of TI.Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties,conditions,limitations,and notices.Reproduction of this information with alteration is an unfair and deceptive business practice.TI is not responsible or liable for such altered rmation of third parties may be subject to additional restrictions.Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice.TI is not responsible or liable for any such statements.TI products are not authorized for use in safety-critical applications(such as life support)where a failure of the TI product would reasonably be expected to cause severe personal injury or death,unless officers of the parties have executed an agreement specifically governing such use.Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications,and acknowledge and agree that they are solely responsible for all legal,regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications,notwithstanding any applications-related information or support that may be provided by TI.Further,Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or"enhanced plastic."Only products designated by TI as military-grade meet military specifications.Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk,and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS16949requirements.Buyers acknowledge and agree that,if they use any non-designated products in automotive applications,TI will not be responsible for any failure to meet such requirements.Following are URLs where you can obtain information on other Texas Instruments products and application solutions:Products ApplicationsAudio /audio Communications and Telecom /communicationsAmplifiers Computers and Peripherals /computersData Converters Consumer Electronics /consumer-appsDLP®Products Energy and Lighting /energyDSP Industrial /industrialClocks and Timers /clocks Medical /medicalInterface Security /securityLogic Space,Avionics and Defense /space-avionics-defense Power Mgmt Transportation and /automotiveAutomotiveMicrocontrollers Video and Imaging /videoRFID Wireless /wireless-appsRF/IF and ZigBee®Solutions /lprfTI E2E Community Home Page Mailing Address:Texas Instruments,Post Office Box655303,Dallas,Texas75265Copyright©2011,Texas Instruments Incorporated芯天下--/。
4000系列逻辑芯片
4000系列逻辑芯片4000系列逻辑芯片是由德州仪器(Texas Instruments)于1971年推出的一系列逻辑集成电路产品。
该系列芯片使用CMOS (互补型金属氧化物半导体)技术制造,可提供高速和低功耗的逻辑功能。
这些芯片广泛应用于电子设备的控制和数字逻辑电路设计中。
4000系列逻辑芯片采用14引脚DIP封装,方便与其他器件进行连接和布线。
该系列芯片的命名规则为CD4XXX,其中XXX代表具体的逻辑功能。
4000系列逻辑芯片主要包括以下几种类型的芯片:1. 4001:四位双输入的2输入与非门(NOR)芯片。
该芯片可用于实现逻辑与(AND)门、逻辑非(NOT)门等功能。
2. 4011:四位双输入的2输入与门(AND)芯片。
该芯片可用于实现逻辑或(OR)门、逻辑异或(XOR)门等功能。
3. 4013:双位双触发边沿触发器芯片。
该芯片可用于实现存储功能,用于时序逻辑电路设计。
4. 4026:双位5位数字计数器芯片。
该芯片可用于实现数字计数功能,在数字显示电路中被广泛应用。
5. 4060:十二位异步二进制计数器芯片。
该芯片可用于实现长时间计数功能,可应用于定时器设计等领域。
6. 4093:四位双输入的2输入门(NAND)芯片。
该芯片可用于实现逻辑与非(NAND)门、逻辑或非(NOR)门等功能。
4000系列逻辑芯片具有以下优点:1. 高集成度:4000系列芯片具有高度集成的特点,能够实现多种逻辑功能,并且可与其他芯片进行组合,实现更复杂的电路设计。
2. 低功耗:由于采用CMOS技术制造,4000系列芯片具有低功耗的特点。
在电池供电或需要节能的设备中,这种低功耗特性非常有价值。
3. 高可靠性:4000系列芯片具有高抗干扰性和稳定性,能够在各种复杂的工作环境下正常工作,具有较高的可靠性。
综上所述,4000系列逻辑芯片是一类具有高集成度、低功耗和高可靠性的逻辑集成电路产品。
其广泛应用于各种电子设备中,为数字电路设计和控制提供了有效的解决方案。
TI公司提供的元件
TI公司提供的元器件清单目录元器件序号型号芯片上丝印器件封装说明1 CSD17505Q5A Q5A封装,管脚间距1.27毫米N MOS管2 INA128 DIP8 仪表放大器3 INA282AIDR SOIC8管脚间距1.27毫米差分运放4 LP2950-33LPRE3 直插LP封装参考电源5 OPA2134PA和OPA2132 DIP封装运放6 OPA2227PA DIP封装运放7 TLV2372 DIP封装轨到轨运放,低功耗550uA8 TLV5638 SOIC8贴片1.27毫米间距12bit DAC 1M采样率SPI 接口9 TPS5430DDA SOIC8贴片1.27毫米间距开关电源10 TPS54331DR SOIC8贴片1.27毫米间距开关电源11 TPS60400DBVT PFK DBV SOT23-5封装管脚间距0.95毫米5管脚负压产生12 TPS61070DDCR AUH DDC SOT23-5封装管脚间距0.95毫米5管脚升压开关电源13 TPS40210 40210 MSOP10管脚间距0.5毫米boost 型开关电源大功率MOS管外置14 UCC38C43 DIP封装升压开关电源大功率,mos管外置15 UCC27324p DIP封装mos管驱动,适用于电机控制。
4A电流16 ADS7886 BNL DCK封装0.65毫米间距,6管脚12bit 1M采样ADC17 VCA810 SOIC8贴片1.27毫米间距+-40db范围压控增益放大器18 TPS7A4001 DNG封装0.65毫米间距8pins。
7到100V输入的线性稳压器输出电流50mA19 TLC372 DIP封装比较器20 TPS61040 PHOI或者PHPI DBV SOT23-5封装0.95毫米间距5管脚低功耗boost型升压开关电源21 ADS8361 DBQ封装24管脚,0.635毫米间距16bit 500K采样率2加2通道ADC。
德州仪器DC-DC选型手册
k™ 封装的 高效 30-A
ACTIVE
同步降压
转换器
汽车类
4.5V 至
TPS54225 -Q1
18V 输入 、2A 同步
ACTIVE
降压
DCAP2 模
汽车类
4.5V 至
TPS54325 -Q1
18V 输入 、3A 同步
ACTIVE
降压
DCAP2 模
降压稳压 器
降压稳压 器
降压稳压 器
降压稳压 器
降压稳压 器
TPS62231 6
封装的 3MHz、 2.7V 超小
ACTIVE
型降压转
换器 采用
1x1.5 SON
TPS62231 7
封装的 3MHz、 2.9V 超小
降压稳压 器
1
4
17
0.9
降压稳压 器
1
4
17
0.9
降压稳压 器
1
2.3
4.35
2.5
2.5
降压稳压 器
降压稳压 器
降压稳压 器
降压稳压 器
1
3.3
5
2.9
6
2
4.5
18
0.5
0.6 0.76
降压稳压 器
降压稳压 器
降压稳压 器
降压稳压 器
降压稳压 器
1
4.5
18
0.76
1
3
17
3.3
3.3
1
3
17
新 ACTIVE
转换器
采用 2x2
TPS62172
QFN 封装 的 3-17V 0.5A 降压
新 ACTIVE
转换器
德州仪器(TI)产品命名规则(20210523221724)
产品分类及描述:该公司半导体产品分类较多,包括:存储器产品组、数字信号处理器(DSP)、电源管理IC、放大器和线性器件、微控制器、数据转换器、温度传感器和控制IC、标准线性器件等。
就我们日常所接到的询价情况来看,我将先主要介绍数字信号处理器(DSP)、微控制器、电源管理IC这三种。
◆数字信号处理器(DSP):DSP(digital singnal processor) 芯片,也称数字信号处理器,是一种具有特殊结构的微处理器。
DSP芯片的内部采用程序和数据分开的哈佛结构,具有专门的硬件乘法器,广泛采用流水线操作,提供特殊的DSP 指令,可以用来快速地实现各种数字信号处理算法。
根据数字信号处理的要求,DSP芯片一般具有如下的一些主要特点:(1)在一个指令周期内可完成一次乘法和一次加法。
(2)程序和数据空间分开,可以同时访问指令和数据。
(3)片内具有快速RAM,通常可通过独立的数据总线在两块中同时访问。
(4)具有低开销或无开销循环及跳转的硬件支持。
(5)快速的中断处理和硬件I/O支持。
(6)具有在单周期内操作的多个硬件地址产生器。
(7)可以并行执行多个操作。
(8)支持流水线操作,使取指、译码和执行等操作可以重叠执行。
与通用微处理器相比,DSP芯片的其他通用功能相对较弱些。
3、 TI品牌电子芯片命名规则:SN54LS×××/HC/HCT/或SNJ54LS/HC/HCT中的后缀说明:SN或SNJ表示TI品牌SN军标,带N表示DIP封装,带J表示DIP(双列直插),带D表示表贴,带W表示宽体SNJ军级,后面代尾缀F或/883表示已检验过的军级.CD54LS×××/HC/HCT:◆无后缀表示普军级◆后缀带J或883表示军品级CD4000/CD45××:后缀带BCP或BE属军品后缀带BF属普军级后缀带BF3A或883属军品级TL×××:后缀CP普通级IP工业级后缀带D是表贴后缀带MJB,MJG或带/883的为军品级TLC表示普通电压TLV低功耗电压TMS320系列归属DSP器件, MSP430F微处理器BB产品命名规则:前缀ADS模拟器件后缀U表贴P是DIP封装带B表示工业级前缀INA,XTR,PGA等表示高精度运放后缀U表贴P代表DIP PA表示高精度TI产品命名规则:SN54LS×××/HC/HCT/或SNJ54LS/HC/HCT中的后缀说明:1、SN或SNJ表示TI品牌2、SN军标,带N表示DIP封装,带J表示DIP(双列直插),带D表示表贴,带W表示宽体3、SNJ军级,后面代尾缀F或/883表示已检验过的军级。
德州仪器 TLV6703-Q1 具有 400 mV 基准电压的 18 V 汽车微功率比较器 数据表
TLV6703-Q1 Automotive Micropower, 18-V Comparator With 400-mV Reference1 Features•Qualified for automotive applications•AEC-Q100 qualified with the following results:–Device temperature grade 1: -40°C to +125°C ambient operating temperature range –Device HBM ESD classification level H2–Device CDM ESD classification level C6•Wide supply voltage range: 1.8 V to 18 V •Adjustable threshold: down to 400 mV•High threshold accuracy:–0.5% Max at 25°C– 1.0% Max over temperature•Low quiescent current: 5.5 µA (Typ)•Open-drain output•Internal hysteresis: 5.5 mV (Typ)•Temperature range: –40°C to +125°C •Package: leadless WSON-62 Applications•Emergency call (eCall)•Automotive head unit•Instrument cluster•On-board (OBC) & wireless charger 3 DescriptionThe TLV6703-Q1 high voltage comparator operates over a 1.8-V to 18-V range. The TLV6703-Q1 has a high-accuracy comparator with an internal 400-mV reference and an open-drain output rated to 18 V for precision voltage detection. The monitored voltage can be set with the use of external resistors.The OUT pin is driven low when the voltage at the SENSE pin drops below (V IT–), and goes high when the voltage returns above the respective threshold (V IT+). The comparator in the TLV6703-Q1 includes built-in hysteresis for filtering to reject brief glitches, thereby ensuring stable output operation without false triggering.The TLV6703-Q1 is available in a leadless WSON-6 package and is specified over the junction temperature range of –40°C to +125°C.(1)(1)For all available packages, see the package optionaddendum at the end of the datasheet.V MONRising Input Threshold Voltage (V IT+) vsTemperatureTable of Contents1 Features (1)2 Applications (1)3 Description (1)4 Revision History (2)5 Device Comparison Table (3)6 Pin Configuration and Functions (4)7 Specifications (5)7.1 Absolute Maximum Ratings (5)7.2 ESD Ratings (5)7.3 Recommended Operating Conditions (5)7.4 Thermal Information (5)7.5 Electrical Characteristics (6)7.6 Timing Requirements (7)7.7 Switching Characteristics (7)7.8 Timing Diagrams (7)7.9 Typical Characteristics (8)8 Detailed Description (10)8.1 Overview (10)8.2 Functional Block Diagram (10)8.3 Feature Description (11)8.4 Device Functional Modes (11)9 Application and Implementation (12)9.1 Application Information (12)9.2 Typical Application (14)9.3 Dos and Don'ts (15)10 Power-Supply Recommendations (16)11 Layout (17)11.1 Layout Guidelines (17)11.2 Layout Example (17)12 Device and Documentation Support (18)12.1 Device Support (18)12.2 Receiving Notification of Documentation Updates..18 12.3 Support Resources (18)12.4 Trademarks (18)12.5 Electrostatic Discharge Caution (18)12.6 Glossary (18)13 Mechanical, Packaging, and Orderable Information (18)4 Revision HistorySNOSDA1 – NOVEMBER 20205 Device Comparison Table6 Pin Configuration and FunctionsOUT GND SENSEFigure 6-1. DSE Package, 6-Pin WSON, Top ViewSNOSDA1 – NOVEMBER 20207 Specifications7.1 Absolute Maximum Ratings(1)(1)Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratingsonly, which do not imply functional operation of the device at these or any other conditions beyond those indicated underRecommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.(2)All voltages are with respect to network ground pin.7.2 ESD Ratings(1)AEC Q100-002 indicates that HBM stressing shal be in accordance with ANSI/ESDA/JEDEC JS-001 specification.7.3 Recommended Operating Conditions7.4 Thermal Information(1)For more information about traditional and new thermal metrics, see the Semiconductor an IC Package Thermal Metrics applicationreport.SNOSDA1 – NOVEMBER 20207.5 Electrical CharacteristicsOver the operating temperature range of T J = –40°C to +125°C, and 1.8 V < V DD < 18 V (unless otherwise noted).(1)The lowest supply voltage (V DD) at which output is active; t r(VDD) > 15 µs/V. Below V(POR), the output cannot be determined.(2)When V DD falls below UVLO, OUT is driven low. The output cannot be determined below V(POR).7.6 Timing Requirements(1)High-to-low and low-to-high refers to the transition at the input pin (SENSE).(2)During power on, V DD must exceed 1.8 V for at least 150 µs before the output is in a correct state.7.7 Switching Characteristics7.8 Timing DiagramsSENSEFigure 7-1. Timing DiagramSNOSDA1 – NOVEMBER 20207.9 Typical Characteristics7.9 Typical Characteristics (continued)8 Detailed Description8.1 OverviewThe TLV6703-Q1 provides precision voltage detection. The TLV6703-Q1 is a wide-supply voltage range (1.8 V to 18 V) comparator with a high-accuracy rising input threshold of 400 mV (1% over temperature) and built-in hysteresis. The output is also rated to 18 V, independant of supply voltage, and can sink up to 40 mA.The TLV6703-Q1 asserts the output signal, as shown in Table 8-1. To monitor any voltage above 0.4 V, set the input using an external resistor divider network. Each input pin has very low input leakage current, allowing the use of large resistor dividers without sacrificing system accuracy. Broad voltage thresholds are supported that enable the device for use in a wide array of applications.8.2 Functional Block DiagramSENSEGNDVDDOUTSNOSDA1 – NOVEMBER 20208.3 Feature Description8.3.1 Input Pin (SENSE)The TLV6703-Q1 comparator has two inputs: one external input, and one input internally connected to the internal 400mV reference. The comparator rising threshold is trimmed to be equal to the reference voltage (400 mV). The comparator also has a built-in falling hysteresis that makes the device less sensitive to supply-rail noise and provides stable operation.The comparator input (SENSE) is able to swing from ground to 6.5 V, regardless of the device supply voltage. Although not required in most cases, to reduce sensitivity to transients and layout parasitics for extremely noisy applications, place a 1-nF to 10-nF bypass capacitor at the comparator input.OUT is driven to logic low when the input SENSE voltage drops below (V IT-). When the voltage exceeds V IT+, the output (OUT) goes to a high-impedance state; see Figure 7-1 .8.3.2 Output Pin (OUT)In a typical TLV6703-Q1 application, the output is connected to a GPIO input of the processor (such as a digital signal processor [DSP], central processing unit [CPU], field-programmable gate array [FPGA], or application-specific integrated circuit [ASIC]).The TLV6703-Q1 device provides an open-drain output (OUT). Use a pullup resistor to hold this line high when the output goes to high impedance (not asserted). To connect the output to another device at the correct interface-voltage level, connect a pullup resistor to the proper voltage rail. The TLV6703-Q1 output can be pulled up to 18 V, independent of the device supply voltage.Table 8-1 and the Section 8.3.1 section describe how the output is asserted or deasserted. See for a Figure 7-1 timing diagram that describes the relationship between threshold voltage and the respective output.8.3.3 Immunity to Input-Pin Voltage TransientsThe TLV6703-Q1 is relatively immune to short voltage transient spikes on the sense pin. Sensitivity to transients depends on both transient duration and amplitude; see Figure 7-7, Minimum Pulse Width vs Threshold Overdrive Voltage.8.4 Device Functional Modes8.4.1 Normal Operation (V DD > UVLO)When the voltage on V DD is greater than 1.8 V for at least 150 µs, the OUT signal correspond to the voltage on SENSE as listed in Table 8-1.8.4.2 Undervoltage Lockout (V(POR) < V DD < UVLO)When the voltage on V DD is less than the device UVLO voltage, and greater than the power-on reset voltage, V (POR), the OUT signal is asserted regardless of the voltage on SENSE.8.4.3 Power-On Reset (V DD < V(POR))When the voltage on V DD is lower than the required voltage to internally pull the asserted output to GND (V(POR)), SENSE is in a high-impedance state.TLV6703-Q1 SNOSDA1 – NOVEMBER 20209 Application and ImplementationNoteInformation in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.9.1 Application InformationThe TLV6703-Q1 device is a wide-supply voltage comparator that operates over a V DD range of 1.8 V to18 V. The device has a high-accuracy comparator with an internal 400-mV reference and an open-drain output rated to 18 V for precision voltage detection. The device can be used as a voltage monitor. The monitored voltage are set with the use of external resistors.9.1.1 V PULLUP to a Voltage Other Than V DDThe output is often tied to V DD through a resistor. However, some applications may require the output to be pulled up to a higher or lower voltage than V DD to correctly interface with the reset and enable pins of other devices.V MONFigure 9-1. Interfacing to a Voltage Other Than V DDTLV6703-Q1SNOSDA1 – NOVEMBER 20209.1.2 Monitoring V DDMany applications monitor the same rail that is powering V DD . In these applications the resistor divider is simply connected to the V DD rail.To a reset or enable input of the system.Figure 9-2. Monitoring the Same Voltage as V DD9.1.3 Monitoring a Voltage Other Than V DDSome applications monitor rails other than the one that is powering V DD . In these types of applications the resistor divider used to set the desired threshold is connected to the rail that is being monitored.V MONDD Figure 9-3. Monitoring a Voltage Other Than V DDTLV6703-Q1SNOSDA1 – NOVEMBER 20209.2 Typical ApplicationThe TLV6703-Q1 device is a wide-supply voltage comparator that operates over a V DD range of 1.8 to 18 V. The monitored voltage is set with the use of external resistors, so the device can be used either as a precision voltage monitor.2.21 M 83.5 kV MONTo a reset or enable input of the system.Figure 9-4. Wide VIN Voltage Monitor9.2.1 Design RequirementsFor this design example, use the values summarized in Table 9-1 as the input parameters.9.2.2 Detailed Design Procedure 9.2.2.1 Resistor Divider SelectionThe resistor divider values and target threshold voltage can be calculated by using Equation 1 to determine V MON(UV).MON(UV)IT R1V = 1 + × V R2§·¨¸©¹(1)where •R1 and R2 are the resistor values for the resistor divider on the SENSEx pins •V MON(UV) is the target voltage at which an undervoltage condition is detectedChoose R TOTAL ( = R1 + R2) so that the current through the divider is approximately 100 times higher than the input current at the SENSE pin. The resistors can have high values to minimize current consumption as a result of low input bias current without adding significant error to the resistive divider. For details on sizing input resistors, refer to application report SLVA450, Optimizing Resistor Dividers at a Comparator Input , available for download from .TLV6703-Q1SNOSDA1 – NOVEMBER 20209.2.2.2 Pullup Resistor SelectionTo ensure the proper voltage level, the pullup resistor value is selected by ensuring that the pullup voltage divided by the resistor does not exceed the sink-current capability of the device. This confirmation is calculated by verifying that the pullup voltage minus the output-leakage current (I lkg(OD)) multiplied by the resistor is greater than the desired logic-high voltage. These values are specified in the Section e Equation 2 to calculate the value of the pullup resistor.V I PU O (V V )HI PU -I lkg(OD)³³R PU (3)9.2.2.3 Input Supply CapacitorAlthough an input capacitor is not required for stability, for good analog design practice, connect a 0.1-μF lowequivalent series resistance (ESR) capacitor across the VDD and GND pins. A higher-value capacitor may be necessary if large, fast rise-time load transients are anticipated, or if the device is not located close to the power source.9.2.2.4 Sense CapacitorAlthough not required in most cases, for extremely noisy applications, place a 1-nF to 10-nF bypass capacitor from the comparator input (SENSE) to the GND pin for good analog design practice. This capacitor placement reduces device sensitivity to transients.9.2.3 Application CurvesFigure 9-5. Rising Input Threshold Voltage (V IT+) vs Temperature9.3 Dos and Don'tsDo connect a 0.1-µF decoupling capacitor from V DD to GND for best system performance.If the monitored rail is noisy, do connect a decoupling capacitor from the comparator input (sense) to GND.Don't use resistors for the voltage divider that cause the current through them to be less than 100 times the input current of the comparator without also accounting for the effect to the accuracy.Don't use a pullup resistor that is too small, because the larger current sunk by the output then exceeds the desired low-level output voltage (V OL ).TLV6703-Q1SNOSDA1 – NOVEMBER 2020TLV6703-Q1SNOSDA1 – NOVEMBER 10 Power-Supply RecommendationsThese devices operate from an input voltage supply range between 1.8 V and 18 V.11 Layout11.1 Layout GuidelinesPlacing a 0.1-µF capacitor close to the VDD pin to reduce the input impedance to the device is good analog design practice.11.2 Layout ExampleMonitored VoltageFigure 11-1. Layout ExampleTLV6703-Q1SNOSDA1 – NOVEMBER 202012 Device and Documentation Support12.1 Device Support12.1.1 Development SupportThe DIP Adapter Evaluation Module allows conversion of the SOT-23-6 package to a standard DIP-6 pinout for ease of prototyping and bench evaluation.12.2 Receiving Notification of Documentation UpdatesTo receive notification of documentation updates, navigate to the device product folder on . In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document.12.3 Support ResourcesTI E2E ™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need.Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use .12.4 TrademarksTI E2E ™ is a trademark of Texas Instruments.All trademarks are the property of their respective owners.12.5 Electrostatic Discharge CautionThis integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.12.6 GlossaryTI GlossaryThis glossary lists and explains terms, acronyms, and definitions.13 Mechanical, Packaging, and Orderable InformationThe following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.TLV6703-Q1SNOSDA1 – NOVEMBER 2020PACKAGING INFORMATION(1) The marketing status values are defined as follows:ACTIVE: Product device recommended for new designs.LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.PREVIEW: Device has been announced but is not in production. Samples may or may not be available.OBSOLETE: TI has discontinued the production of the device.(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.(3) MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.(4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.OTHER QUALIFIED VERSIONS OF TLV6703-Q1 :Addendum-Page 1•Catalog: TLV6703NOTE: Qualified Version Definitions:•Catalog - TI's standard catalog productAddendum-Page 2TAPE AND REEL INFORMATION*All dimensions are nominalDevicePackage Type Package Drawing Pins SPQReel Diameter (mm)Reel Width W1(mm)A0(mm)B0(mm)K0(mm)P1(mm)W (mm)Pin1Quadrant TLV6703QDSERQ1WSONDSE63000180.08.41.81.81.04.08.0Q2*All dimensions are nominalDevice Package Type Package Drawing Pins SPQ Length(mm)Width(mm)Height(mm)TLV6703QDSERQ1WSON DSE63000213.0191.035.0PACKAGE OUTLINEWSON - 0.8 mm max heightDSE0006APLASTIC SMALL OUTLINE - NO LEADNOTES:1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.2. This drawing is subject to change without notice.EXAMPLE BOARD LAYOUTWSON - 0.8 mm max heightDSE0006APLASTIC SMALL OUTLINE - NO LEADNOTES: (continued)3. For more information, see Texas Instruments literature number SLUA271 (/lit/slua271).EXAMPLE STENCIL DESIGNWSON - 0.8 mm max heightDSE0006APLASTIC SMALL OUTLINE - NO LEADNOTES: (continued)4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.IMPORTANT NOTICE AND DISCLAIMERTI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products.TI objects to and rejects any additional or different terms you may have proposed.Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265Copyright © 2024, Texas Instruments Incorporated。
电赛用的TI元件对照表
元器件型号对照表备注用于温度传感器的16位ADCDual, 2MSPS, 12-Bit16-BIT, 1-MSPS, PSEUDO-BIPOLAR,全差分输入,微抽样并行接口16位ADCDual, 12-Bit,serial input12位DA12位DA16位DA16位DA16位并行DAC双电源仪表放大器音频差动线路接收器,0dB (G=1)宽共模范围、双向、高准确度电流并联监控器单电源仪表放大器11MHz、低噪声、轨至轨输出、36V JFET 精密运算放大器2.2nV/rtHz、18MHz、36V RRO 精密运算放大器低功耗、精密单电源运算放大器1.8V、35µA、微功耗、精密、零漂移CMOS 运算放大器2.2V、50MHz 低噪声单电源轨至轨运算放大器电子微调20MHz 高精度CMOS 运算放大器宽带低失真单位增益稳定的电压反馈运算放大器同上具有禁用功能的双路宽带电压反馈运算放大器具有禁用功能的双路宽带电流反馈运算放大器低失真高速轨至轨输出运算放大器2.5V 200MHz 的GBW CMOS 双路运算放大器超快超低失真高速放大器高速全差动放大器极低功耗轨至轨输出全差动放大器双路高压低失真电流反馈运算放大器具有dB 线性可变增益控制放大器的150MHz BW同上250mA 高速缓冲器具有可选并行CMOS 或LVDS 输出的低功耗12 位65MSPS ADC 12 位165MSPS SpeedPlus(TM) DAC,可伸缩电流输出在2mA 与20mA 之间12 位20 MSPS ADC,具有内部/外部参考、2 至5Vpp 之间的灵活I/P、超出范围指示信号和引脚兼容8 引脚高性能谐振模式控制器120-V Boot, 3-A Peak, High Frequency, High-Side/Low-Side Driver双4A 峰值高速低侧电源MOSFET 驱动器8 引脚持续传导模式(CCM) PFC 控制器UCC28600 准谐振反向控制器BiCMOS低功耗电流模式PWM 控制器具有电流感应的数字控制兼容单输出低侧+/- 4A MOSFET 驱动器单路输出LDO、100mA、固定电压(3.3V) 宽输入电压范围具有输出使能端的1A 简易步降电压可调节开关稳压器宽输入范围电流模式升压控制器5.5V 至36V 输入,3A 降压转换器具有Eco-mode 的3.5V 至28V 输入、3A、570kHz 降压转换器具有强制PWM 模式的18.5V、2A、650kHz/1.2MHz 升压DC-DC 转换器采用QFN-10 封装的可调节、1.8A 开关、96% 高效升压转换器,具有降压模式采用2mm x 2mm QFN 封装的白光LED 驱动器采用3x3 QFN 封装、具有1.3A 开关和“降压模式”的0.3V 输入电压升压转换器。
DAC芯片选型
8 位、10us DAC 串行输入四路 DAC 可编程 1x 或 2x 输出,同步更新
TLV5621
8 位、10us 四路 DAC,串行输入、简单 2 线接口、可编程 1x 或 2x 输出、断电功能
TLV5623
8 位 3us DAC,具有串行输入、可编程稳定时间/功耗、超低功耗
TLV5624
TLV5636
12 位 1us DAC,具有串行输入、可编程内部参考和稳定时间
TLV5638
12 位、1 或 3.5us DAC,具有串行输入、双路 DAC、可编程内部参考和稳定时间、功耗
TLV5639
12 位,DAC,并行,电压输出,可编程内部 参考,建立时间、功耗、1 通道
DAC2904
14 位 125MSPS 双路通信 DAC
DAC7664
数模转换器;四路、16 位、12uS 稳定时间、+/- 1 LSB DNL
DAC7731
具有内部 +10V 参考和串行 I/F 的 16 位单通道数模转换器
DAC7734
16 位四路电压输出串行输入数模转换器
DAC7741
具有内部 +10V 参考和并行 I/F 的 16 位单通道数模转换器
TLC5602
8 位,30MSPS 单 DAC
TLC5620
8 位、10us 四路 DAC,串行输入、1x 或 2x 输出可编程、同步更新、低功耗
TLC5628
8 位,10us 八路 DAC,串行输入,1x 或 2x 输出可编程,同步更新,低功耗
TLC7225
8 位 5us 四路 DAC 并行输入同步更新二进制输入编码
DAC7573
具有 I2C 数字接口的四路 12 位 10us 数模转换器
MSP430单片机选型指南
MSP430单片机选型指南MSP430是德州仪器(TI)公司推出的一系列超低功耗、高性能的16位RISC单片机。
它广泛应用于各种电子设备中,如智能传感器、电表、医疗设备等。
MSP430系列单片机具有低功耗、高性能、丰富的外设和易用性等特点。
本文将为大家介绍如何选择合适的MSP430单片机。
首先,要考虑所需的性能。
MSP430单片机系列提供了多个不同性能级别的芯片,如MSP430F5xx系列、MSP430F6xx系列等。
性能水平的选择主要根据应用的需求来定。
如果应用需要高性能的计算和通信能力,则可以选择性能较高的芯片。
如果应用对功耗要求较高,则可以选择性能较低的芯片。
其次,要考虑所需的外设。
MSP430单片机提供了丰富的外设,如UART、SPI、I2C、ADC等。
根据应用的需求,选择具备相应外设的芯片。
如果应用需要进行串行通信,则需要选择具有UART、SPI、I2C等外设的芯片。
如果应用需要进行模数转换,则需要选择具有ADC外设的芯片。
此外,还需要考虑所需的存储器容量。
MSP430单片机提供了不同容量的Flash存储器和RAM存储器。
Flash存储器用于存储程序代码,RAM 存储器用于存储数据。
根据应用需要的代码和数据存储容量,选择具有相应容量的芯片。
另外,还需要考虑片上外设的数量和功能。
MSP430单片机提供了多个GPIO引脚,可以用于连接外部器件。
根据应用需要的外部器件数量,选择具有足够引脚数量的芯片。
此外,MSP430单片机还提供了一些特殊功能外设,如计时器、看门狗定时器等。
根据应用的需求,选择具有相应特殊功能外设的芯片。
总之,选择合适的MSP430单片机需要考虑性能、外设、存储器、片上外设、开发工具和技术支持等多个方面。
根据应用的需求,选择具备相应特性的芯片。
通过合适的选择,可以帮助开发者提高开发效率,降低成本,设计出更加优秀的产品。
TI 德州仪器AC DC 和 DC DC 电源产品选型
TI 德州仪器AC-DC 和DC-DC 电源产品选型Sub Family Pin/Package Description 驱动器 8PDIP, 8SO, 8SOIC 双路 MOSFET 驱动器 驱动器16PDIP, 16SOIC四路 MOSFET 驱动器 驱动器 8PDIP, 8SOIC, 8TSSOP 具有内部稳压器的反向双路高速 MOSFET 驱动器 驱动器 8PDIP, 8SOIC, 8TSSOP 具有内部稳压器的同向双路高速 MOSFET 驱动器 驱动器 8PDIP, 8SOIC, 8TSSOP 具有内部稳压器的补偿双路高速 MOSFET 驱动器 驱动器 8PDIP, 8SOIC, 8TSSOP 1 反向 1 同向与双路高速MOSFET 驱动器 驱动器 8PDIP, 8SOIC, 8TSSOP 2 输入与非门,二路高速MOSFET 驱动器 驱动器 5SOT-23 具有源上拉和内部稳压器的反向高速 MOSFET 驱动器 驱动器 5SOT-23 具有源上拉和内部稳压器的同向高速 MOSFET 驱动器 驱动器 5SOT-23 具有内部稳压器的反向高速MOSFET 驱动器 驱动器 5SOT-23 具有内部稳压器的同向高速MOSFET 驱动器 驱动器 8SOIC, 8SON 8 引脚高频 4A 吸入电流同步MOSFET 驱动器 驱动器 8SOIC, 8SON 8 引脚高频 4A 吸入电流同步MOSFET 驱动器 驱动器 5SOT-23 反向高速 MOSFET 驱动器 驱动器5SOT-23 同向高速 MOSFET 驱动器 驱动器 5SOT-23 汽车类单通道高速 MOSFET驱动器 驱动器 14HTSSOP, 14SOIC 具有使能端的非反向快速同步降压 MOSFET 驱动器 驱动器 14HTSSOP, 14SOIC具有使能端的反向快速同步降压 MOSFET 驱动器 驱动器 8SOIC 同向快速同步降压 MOSFET驱动器 驱动器 8SOIC 反向快速同步降压 MOSFET驱动器和使能端 驱动器14HTSSOP, 14SOIC具有 TTL 输入和使能端的同向快速同步降压 MOSFET 驱动器驱动器14HTSSOP, 14SOIC 具有TTL 输入和启用的反向快速同步降压MOSFET 驱动器驱动器8SOIC 具有TTL 输入的同向快速同步降压MOSFET 驱动器驱动器8SOIC 具有TTL 输入的反向快速同步降压MOSFET 驱动器驱动器16HTSSOP 具有内部可调节稳压器的同向快速同步降压MOSFET 驱动器驱动器16HTSSOP 具有内部可调节稳压器的反向快速同步降压MOSFET 驱动器驱动器14HTSSOP 具有8V 驱动稳压器的快速同步降压MOSFET 驱动器驱动器14HTSSOP 具有8V 驱动稳压器的快速同步降压MOSFET 驱动器驱动器8PDIP, 8SOIC 辅助高速功率驱动器驱动器5TO-220, 8PDIP 辅助大电流MOSFET 驱动器驱动器8PDIP, 8SOIC 辅助开关FET 驱动器驱动器16SOIC, 8PDIP, 8SOIC 具有辅助输出的辅助开关FET驱动器驱动器5TO-220半桥双极性开关驱动器5TO-220, 8PDIP, 8SOIC 辅助高速功率驱动器驱动器16SOIC, 5TO-220, 8PDIP 辅助大电流MOSFET 驱动器驱动器16SOIC, 8PDIP, 8SOIC 辅助开关FET 驱动器驱动器16SOIC, 8PDIP, 8SOIC 具有辅助输出的辅助开关FET驱动器驱动器8SO PowerPAD, 8SOIC,8VSON120-V Boot, 3-A Peak, HighFrequency, High-Side/Low-SideDriver驱动器8SO PowerPAD 汽车类120V 升压3A 峰值电流的高频高端/低端驱动器驱动器8SO PowerPAD, 8SOIC,8VSON120-V Boot, 3-A Peak, HighFrequency, High-Side/Low-SideDriver驱动器8SO PowerPAD 汽车类120V 升压3A 峰值电流的高频高端/低端驱动器驱动器14HTSSOP高效预测同步降压驱动器驱动器14HTSSOP高效预测同步降压驱动器驱动器14HTSSOP高效预测同步降压驱动器驱动器8MSOP-PowerPAD, 8PDIP,8SOIC具有使能端的单9A 高速低侧MOSFET 驱动器驱动器8SOIC 具有使能端的汽车类单路9A 高速低侧MOSFET 驱动器驱动器8MSOP-PowerPAD, 8PDIP,8SOIC具有使能端的单路9A 高速低侧MOSFET 驱动器驱动器8SOIC 具有使能端的汽车类单路9A 高速低侧MOSFET 驱动器驱动器8MSOP-PowerPAD, 8PDIP,8SOIC双4A 峰值高速低侧电源MOSFET 驱动器驱动器8MSOP-PowerPAD, 8PDIP,8SOIC双4A 峰值高速低侧电源MOSFET 驱动器驱动器8MSOP-PowerPAD, 8PDIP,8SOIC双4A 峰值高速低侧电源MOSFET 驱动器驱动器8MSOP-PowerPAD, 8PDIP,8SOIC具有启动的双路4A MOSFET驱动器驱动器8SOIC 具有使能端的汽车类双路4A 高速低侧MOSFET 驱动器驱动器8MSOP-PowerPAD, 8PDIP,8SOIC双路4A MOSFET 驱动器驱动器8SOIC 具有使能端的汽车类双路4A 高速低侧MOSFET 驱动器驱动器8MSOP-PowerPAD, 8PDIP,8SOIC具有使能端的双路4AMOSFET 驱动器驱动器8SOIC 具有使能端的汽车类双路4A MOSFET 驱动器驱动器8SOIC 具有死区时间控制的初级侧推挽振荡器驱动器8MSOP-PowerPAD, 8PDIP,8SOIC具有使能端的单9A 高速低侧MOSFET 驱动器驱动器8MSOP-PowerPAD, 8PDIP,8SOIC启用型单9A 高速低侧MOSFET 驱动器驱动器8MSOP-PowerPAD, 8PDIP,8SOIC双4A 峰值高速低侧电源MOSFET 驱动器驱动器8MSOP-PowerPAD, 8PDIP,8SOIC双4A 峰值高速低侧电源MOSFET 驱动器驱动器8MSOP-PowerPAD, 8PDIP,8SOIC双4A 峰值高速低侧电源MOSFET 驱动器PMOS 开关8SOIC, 8TSSOP 单路P 通道增强-模式MOSFETPMOS 开关16TSSOP, 8SOIC 单路P 信道增强-模式MOSFETPMOS 开关8SOIC 双路P 通道增强模式MOSFETPWM 电源控制器16PDIP, 16SOIC 稳压脉宽调制器PWM 电源控制器16PDIP, 16SO, 16SOIC 稳压脉宽调制器PWM 电源控制器14SOIC, 8PDIP, 8SOIC 电流模式PWM 控制器PWM 电源控制器14SOIC, 8PDIP, 8SOIC TL284xB, TL384xB PWM 电源控制器14SOIC, 8PDIP, 8SOIC 电流模式PWM 控制器PWM 电源控制器14SOIC, 8PDIP, 8SOIC TL284xB, TL384xB PWM 电源控制器14SOIC, 8PDIP, 8SOIC 电流模式PWM 控制器PWM 电源控制器14SOIC, 8PDIP, 8SOIC TL284xB, TL384xB PWM 电源控制器14SOIC, 8PDIP, 8SOIC 电流模式PWM 控制器PWM 电源控制器14SOIC, 8PDIP, 8SOIC TL284xB, TL384xB PWM 电源控制器14SOIC, 8PDIP, 8SOIC 电流模式PWM 控制器PWM 电源控制器14SOIC, 8PDIP, 8SOIC TL284xB, TL384xB PWM 电源控制器14SOIC, 8PDIP, 8SOIC 电流模式PWM 控制器PWM 电源控制器14SOIC, 8PDIP, 8SOIC TL284xB, TL384xB PWM 电源控制器14SOIC, 8PDIP, 8SOIC 电流模式PWM 控制器PWM 电源控制器14SOIC, 8PDIP, 8SOIC TL284xB, TL384xB PWM 电源控制器14SOIC, 8PDIP, 8SOIC 电流模式PWM 控制器PWM 电源控制器14SOIC, 8PDIP, 8SOIC TL284xB, TL384xBPWM 电源控制器16PDIP, 16SO, 16SOIC, 16SSOP, 16TSSOP脉冲宽度调制(Pwm) 控制电路PWM 电源控制器16PDIP, 16SO, 16SOIC, 16TSSOP脉宽调制(PWM) 控制电路PWM 电源控制器16PDIP, 16SOIC 脉宽调制(Pwm) 控制电路PWM 电源控制器8MSOP, 8SOIC具有10V 启动阈值的通用LED 照明PWM 控制器PWM 电源控制器8MSOP, 8SOIC具有15V 启动阈值的通用LED 照明PWM 控制器PWM 电源控制器8SOIC高效率离线式LED 照明驱动器控制器PWM 电源控制器8SOIC自然交错PFC LED 照明驱动器控制器PWM 电源控制器16CDIP, 20LCCC 电流模式PWM 控制器PWM 电源控制器16PDIP, 16SOIC 高级稳压脉宽调制器PWM 电源控制器16PDIP, 16SOIC 高级稳压脉宽调制器PWM 电源控制器16PDIP, 16SOIC 稳压脉宽调制器PWM 电源控制器16SOIC稳压脉宽调制器PWM 电源控制器18PDIP稳压脉宽调制器PWM 电源控制器18PDIP, 18SOIC, 20PLCC 稳压脉宽调制器PWM 电源控制器16PDIP稳压脉宽调制器PWM 电源控制器16PDIP, 16SOIC 经济型高速PWM 控制器PWM 电源控制器16PDIP, 16SOIC 经济型高速PWM 控制器PWM 电源控制器16PDIP, 16SOIC, 20PLCC 高速PWM 控制器PWM 电源控制器16PDIP, 16SOIC, 20PLCC 高速PWM 控制器PWM 电源控制器16PDIP, 16SOIC 高速PWM 控制器PWM 电源控制器16PDIP, 16SOIC 高速PWM 控制器PWM 电源控制16PDIP, 16SOIC, 20PLCC 高速PWM 控制器器PWM 电源控制器16PDIP, 16SOIC, 20PLCC 高速PWM 控制器PWM 电源控制器16SOIC汽车类高速PWM 控制器PWM 电源控制器16PDIP, 16SOIC 高速PWM 控制器PWM 电源控制器24PDIP, 24SOIC降电流/电压馈送推挽PWM控制器PWM 电源控制器24SOIC降电流/电压馈送推挽PWM控制器PWM 电源控制器18PDIP, 18SOIC 可编程脱机PWM 控制器PWM 电源控制器14SOIC, 8PDIP, 8SOIC 电流模式PWM 控制器PWM 电源控制器14SOIC, 16SOIC, 8PDIP, 8SOIC电流模式PWM 控制器PWM 电源控制器14SOIC, 8SOIC 汽车类电流模式PWM 控制器PWM 电源控制器14SOIC, 8PDIP, 8SOIC 电流模式PWM 控制器PWM 电源控制器14SOIC, 20PLCC, 8PDIP, 8SOIC电流模式PWM 控制器PWM 电源控制器8SOIC汽车类电流模式PWM 控制器PWM 电源控制器14SOIC, 8SOIC 汽车类电流模式PWM 控制器PWM 电源控制器14SOIC, 8PDIP, 8SOIC 电流模式PWM 控制器PWM 电源控制器14SOIC, 8PDIP, 8SOIC 电流模式PWM 控制器PWM 电源控制器14SOIC, 8PDIP, 8SOIC 电流模式PWM 控制器PWM 电源控制器14SOIC, 16SOIC, 8PDIP, 8SOIC电流模式PWM 控制器PWM 电源控制器14SOIC, 8SOIC 汽车类电流模式PWM 控制器PWM 电源控制器16PDIP, 16SOIC, 20PLCC 电流模式PWM 控制器PWM 电源控制器16PDIP, 16SOIC 电流模式PWM 控制器PWM 电源控制器16SOIC平均电流模式PWM 控制器PWM 电源控制器24PDIP, 24SOIC 二次侧平均电流模式控制器PWM 电源控制器18PDIP, 18SOIC 可编程脱机PWM 控制器PWM 电源控制器16PDIP, 16SOIC 改进的电流模式PWM 控制器PWM 电源控制器16SOIC汽车类改进的电流模式PWM控制器PWM 电源控制器16SOIC改进的电流模式PWM 控制器PWM 电源控制器16SOIC, 20PLCC 谐振模式电源控制器PWM 电源控制器16PDIP, 16SOIC 谐振模式电源控制器PWM 电源控制器16SOIC谐振模式电源控制器PWM 电源控制器16PDIP谐振模式电源控制器PWM 电源控制器16PDIP谐振模式电源控制器PWM 电源控制器16SOIC平均电流模式PWM 控制器ICPWM 电源控制器16PDIP, 16SOIC 高级稳压脉宽调制器PWM 电源控制器16PDIP, 16SOIC 高级稳压脉宽调制器PWM 电源控制器16PDIP, 16SOIC, 20PLCC 稳压脉宽调制器PWM 电源控制器16PDIP, 16SOIC 稳压脉宽调制器PWM 电源控制器18PDIP, 18SOIC 稳压脉宽调制器PWM 电源控制器18PDIP, 18SOIC, 20PLCC 稳压脉宽调制器PWM 电源控制器16PDIP稳压脉宽调制器PWM 电源控制器16PDIP稳压脉宽调制器PWM 电源控制器16PDIP, 16SOIC, 20PLCC 高速PWM 控制器PWM 电源控制器16PDIP, 16SOIC 高速PWM 控制器PWM 电源控制器16PDIP, 16SOIC 高速PWM 控制器PWM 电源控制器16PDIP, 16SOIC 高速PWM 控制器PWM 电源控制器16PDIP, 16SOIC, 20PLCC 高速PWM 控制器PWM 电源控制器16PDIP, 16SOIC, 20PLCC 高速PWM 控制器PWM 电源控制器16PDIP, 16SOIC 高速PWM 控制器PWM 电源控制器24PDIP, 24SOIC降电流/电压馈送推挽PWM控制器PWM 电源控制器24PDIP, 24SOIC降电流/电压馈送推拉PWM控制器PWM 电源控制器18PDIP, 18SOIC 可编程脱机PWM 控制器PWM 电源控制器14SOIC, 8PDIP, 8SOIC 电流模式PWM 控制器PWM 电源控制器14SOIC, 16SOIC, 8PDIP, 8SOIC电流模式PWM 控制器PWM 电源控制器14SOIC, 8PDIP, 8SOIC 电流模式PWM 控制器PWM 电源控制器14SOIC, 8PDIP, 8SOIC 电流模式PWM 控制器PWM 电源控制器14SOIC, 8PDIP, 8SOIC 电流模式PWM 控制器PWM 电源控制器14SOIC, 8PDIP, 8SOIC 电流模式PWM 控制器PWM 电源控制器14SOIC, 8PDIP, 8SOIC 电流模式PWM 控制器PWM 电源控制器14SOIC, 8PDIP, 8SOIC 电流模式PWM 控制器PWM 电源控制器16PDIP, 16SOIC, 20PLCC 电流模式PWM 控制器PWM 电源控制器16PDIP, 16SOIC 电流模式PWM 控制器PWM 电源控制器16PDIP, 16SOIC 平均电流模式PWM 控制器PWM 电源控制器24SOIC二次侧平均电流模式控制器PWM 电源控制器18PDIP, 18SOIC 可编程脱机PWM 控制器PWM 电源控制器16PDIP, 16SOIC, 20PLCC 改进的电流模式PWM 控制器PWM 电源控制器16PDIP, 16SOIC 谐振模式电源控制器PWM 电源控制器16PDIP谐振模式电源控制器PWM 电源控制器16PDIP, 16SOIC 谐振模式电源控制器PWM 电源控制器16PDIP谐振模式电源控制器PWM 电源控制器16PDIP, 16SOIC, 20PLCC 谐振模式电源控制器PWM 电源控制器16PDIP, 16SOIC 谐振模式电源控制器PWM 电源控制器16PDIP谐振模式电源控制器PWM 电源控制器20PDIP相移谐振控制器PWM 电源控制器16PDIP, 16SOIC平均电流模式PWM 控制器ICPWM 电源控制器8SOIC8 引脚高性能谐振模式控制器PWM 电源控制器14PDIP, 14SOIC, 14TSSOP 高级电压模式脉宽调制器PWM 电源控制器14PDIP, 14SOIC, 14TSSOP 高级电压模式脉宽调制器PWM 电源控制器8MSOP, 8PDIP, 8SOIC 高速电压模式脉宽调制器PWM 电源控制器8MSOP, 8PDIP, 8SOIC 高速电压模式脉宽调制器PWM 电源控制器14SOIC微功耗电压模式PWM PWM 电源控制器14PDIP, 14SOIC, 20PLCC 开关模式二次侧后稳压器PWM 电源控制器8PDIP, 8SOIC, 8TSSOP低功耗BiCMOS 电流模式PWMPWM 电源控制器8SOIC汽车类低功率BiCMOS 电流模式PWMPWM 电源控制器8PDIP, 8SOIC, 8TSSOP低功耗BiCMOS 电流模式PWMPWM 电源控制器8SOIC汽车类低功耗BiCMOS 电流模式PWMPWM 电源控制器8PDIP, 8SOIC, 8TSSOP低功耗BiCMOS 电流模式PWMPWM 电源控制器8SOIC汽车类低功耗BiCMOS 电流模式PWMPWM 电源控制器8PDIP, 8SOIC, 8TSSOP低功耗BiCMOS 电流模式PWMPWM 电源控制器8SOIC汽车类低功耗BiCMOS 电流模式PWMPWM 电源控制器8PDIP, 8SOIC, 8TSSOP低功耗BiCMOS 电流模式PWMPWM 电源控制器8SOIC汽车类低功率BiCMOS 电流模式PWMPWM 电源控制器8PDIP, 8SOIC, 8TSSOP低功耗BiCMOS 电流模式PWMPWM 电源控制器8SOIC汽车类低功耗BiCMOS 电流模式PWMPWM 电源控制器16PDIP, 16SOIC, 16SSOP/QSOP, 16TSSOP, 20PLCC低功耗、双路输出、电流模式PWM 控制器PWM 电源控制器8PDIP, 8SOIC可编程最大占空比PWM 控制器PWM 电源控制器8PDIP, 8SOIC可编程最大占空比PWM 控制器PWM 电源控制器8SOIC可编程最大占空比PWM 控制器PWM 电源控制器8PDIP, 8SOIC 低功耗电流模式推拉PWM PWM 电源控制器8PDIP, 8SOIC 低功耗电流模式推拉PWMPWM 电源控制器8PDIP, 8SOIC, 8TSSOP具有可编程斜率补偿的电流模式推挽PWMPWM 电源控制器8PDIP, 8SOIC, 8TSSOP具有可编程斜率补偿的电流模式推挽PWMPWM 电源控制器8PDIP, 8SOIC, 8TSSOP具有可编程斜率补偿的电流模式推挽PWMPWM 电源控制器8PDIP, 8SOIC, 8TSSOP具有可编程斜率补偿的电流模式推挽PWMPWM 电源控制器8PDIP, 8SOIC, 8TSSOP 低功耗电流模式推挽PWMPWM 电源控制器8SOIC汽车类低功率电流模式推拉PWMPWM 电源控制器8PDIP, 8SOIC, 8TSSOP 低功耗电流模式推挽PWMPWM 电源控制器8SOIC汽车类低功耗电流模式推挽PWMPWM 电源控制器8MSOP, 8SOIC, 8TSSOP 经济型初级侧控制器PWM 电源控制器8MSOP, 8SOIC, 8TSSOP 经济型初级侧控制器PWM 电源控制器16PDIP, 16SOIC 双路通道同步电流模式PWMPWM 电源控制器8PDIP, 8SOIC, 8TSSOP低功耗经济型BiCMOS 电流模式PWMPWM 电源控制器8SOIC汽车类低功率BiCMOS 电流模式PWMPWM 电源控制器8PDIP, 8SOIC, 8TSSOP低功耗经济型BiCMOS 电流模式PWMPWM 电源控制器8SOIC汽车类低功率BiCMOS 电流模式PWMPWM 电源控制器8PDIP, 8SOIC, 8TSSOP低功耗经济型BiCMOS 电流模式PWMPWM 电源控制器8SOIC汽车类低功率BiCMOS 电流模式PWMPWM 电源控制器8SOIC, 8TSSOP低功耗经济型BiCMOS 电流模式PWMPWM 电源控制器8SOIC, 8TSSOP汽车类低功率BiCMOS 电流模式PWMPWM 电源控制器8PDIP, 8SOIC, 8TSSOP低功耗经济型BiCMOS 电流模式PWMPWM 电源控制器8SOIC汽车类低功率BiCMOS 电流模式PWMPWM 电源控制器8PDIP, 8SOIC, 8TSSOP低功耗经济型BiCMOS 电流模式PWMPWM 电源控制器8SOIC汽车类低功率BiCMOS 电流模式PWMPWM 电源控制器16SOIC, 16TSSOP具有可编程最大占空比的双路交错PWM 控制器PWM 电源控制器16SOIC, 16TSSOP具有可编程的最大占空比的汽车类双路交错PWM 控制器PWM 电源控制器16SOIC, 20TSSOP具有可编程最大占空比的双路交错PWM 控制器PWM 电源控制器12USON, 14TSSOP适用于总线转换器的高级PWM 控制器,具有5V 精密电压基准PWM 电源控制器12USON, 14TSSOP适用于总线转换器的高级PWM 控制器,具有3.3V 精密电压基准PWM 电源控制器20QFN, 20TSSOP具有预偏置操作的高级PWM控制器PWM 电源控制器8SOIC UCC28600 准谐振反向控制器PWM 电源控制器8PDIP, 8SOIC25-90W Cascoded FlybackPower Supply ControllerPWM 电源控制器8SOIC LED 照明电源控制器PWM 电源控制器8SOIC LED 照明电源控制器PWM 电源控制器8SOIC脱机电源控制器PWM 电源控制器8PDIP, 8SOIC 脱机电源控制器PWM 电源控制器16SOIC, 16TSSOP电流模式有源钳位PWM 控制器PWM 电源控制器16SOIC, 16TSSOPUCC289x 电流模式有源钳位PWM 控制器PWM 电源控制器16SOIC, 16TSSOP电流模式有源钳位PWM 控制器PWM 电源控制器16SOIC, 16TSSOP电流模式有源钳位PWM 控制器PWM 电源控制器20PDIP, 20PLCC, 20SOIC,20TSSOPBiCMOS 高级相移谐振控制器PWM 电源控制器20SOIC汽车类BiCMOS 高级相移PWM 控制器PWM 电源控制器24TSSOP具有同步整流的绿色环保相移全桥控制器PWM 电源控制器20QFN, 20TSSOP高级电流模式有源钳位PWM控制器PWM 电源控制器8MSOP, 8PDIP, 8SOICBiCMOS 低功耗电流模式PWM 控制器PWM 电源控制器8MSOP, 8PDIP, 8SOICBiCMOS 低功耗电流模式PWM 控制器PWM 电源控制器8SOIC汽车类BiCMOS 低功耗电流模式PWM 控制器PWM 电源控制器8MSOP, 8PDIP, 8SOICBiCMOS 低电流8 引脚PWM 电流模式控制器PWM 电源控制器8MSOP, 8PDIP, 8SOICBiCMOS 低功率电流模式PWM 控制器PWM 电源控制器8MSOP, 8PDIP, 8SOICBiCMOS 低功耗电流模式PWM 控制器PWM 电源控制器8MSOP, 8PDIP, 8SOICBiCMOS 低功耗电流模式PWM 控制器PWM 电源控制器8PDIP, 8SOIC 初级侧启动控制器PWM 电源控制器14SOIC高级初级侧启动控制器PWM 电源控制器14TSSOP完整周期控制器PWM 电源控制器14PDIP, 14SOIC, 14TSSOP 高级电压模式脉宽调制器PWM 电源控制器14PDIP, 14SOIC, 14TSSOP 高级电压模式脉宽调制器PWM 电源控制器8MSOP, 8PDIP, 8SOIC 高速电压模式脉宽调制器PWM 电源控制器8MSOP, 8PDIP, 8SOIC 高速电压模式脉宽调制器PWM 电源控制器14PDIP, 14SOIC 微功耗电压模式PWM PWM 电源控制器14PDIP, 14SOIC 开关模式二次侧后稳压器PWM 电源控制器8PDIP, 8SOIC, 8TSSOP低功耗BiCMOS 电流模式PWMPWM 电源控制器8PDIP, 8SOIC, 8TSSOP低功耗BiCMOS 电流模式PWMPWM 电源控制器8PDIP, 8SOIC, 8TSSOP低功耗BiCMOS 电流模式PWMPWM 电源控制器8PDIP, 8SOIC, 8TSSOP低功耗BiCMOS 电流模式PWMPWM 电源控制器8PDIP, 8SOIC, 8TSSOP低功耗BiCMOS 电流模式PWMPWM 电源控制器8PDIP, 8SOIC, 8TSSOP低功耗BiCMOS 电流模式PWMPWM 电源控制器16PDIP, 16SOIC, 16TSSOP, 20PLCC低功耗、双路输出、电流模式PWM 控制器PWM 电源控制器8PDIP, 8SOIC可编程最大占空比PWM 控制器PWM 电源控制器8PDIP, 8SOIC可编程最大占空比PWM 控制器PWM 电源控制器8PDIP, 8SOIC可编程最大占空比PWM 控制器PWM 电源控制器8PDIP, 8SOIC 低功耗电流模式推拉PWM PWM 电源控制器8PDIP, 8SOIC 低功耗电流模式推拉PWMPWM 电源控制器8PDIP, 8SOIC, 8TSSOP具有可编程斜率补偿的电流模式推挽PWMPWM 电源控制器8PDIP, 8SOIC, 8TSSOP具有可编程斜率补偿的电流模式推挽PWMPWM 电源控制器8PDIP, 8SOIC, 8TSSOP具有可编程斜率补偿的电流模式推挽PWMPWM 电源控制器8PDIP, 8SOIC, 8TSSOP具有可编程斜率补偿的电流模式推挽PWMPWM 电源控制器8PDIP, 8SOIC, 8TSSOP 低功耗电流模式推挽PWM PWM 电源控制器8PDIP, 8SOIC, 8TSSOP 低功耗电流模式推挽PWMPWM 电源控制器8MSOP, 8PDIP, 8SOIC, 8TSSOP经济型初级侧控制器PWM 电源控制器8MSOP, 8PDIP, 8SOIC, 8TSSOP经济型初级侧控制器PWM 电源控制器16PDIP, 16SOIC 双通道同步电流模式PWMPWM 电源控制器8PDIP, 8SOIC, 8TSSOP低功耗经济型BiCMOS 电流模式PWMPWM 电源控制器8PDIP, 8SOIC, 8TSSOP低功耗经济型BiCMOS 电流模式PWMPWM 电源控制器8PDIP, 8SOIC, 8TSSOP低功耗经济型BiCMOS 电流模式PWMPWM 电源控制器8PDIP, 8SOIC, 8TSSOP低功耗经济型BiCMOS 电流模式PWMPWM 电源控制器8PDIP, 8SOIC, 8TSSOP低功耗经济型BiCMOS 电流模式PWMPWM 电源控制器8PDIP, 8SOIC, 8TSSOP低功耗经济型BiCMOS 电流模式PWMPWM 电源控制器16PDIP, 16SOIC频率折回电流模式PWM 控制器PWM 电源控制器8PDIP, 8SOIC 脱机电源控制器PWM 电源控制器8PDIP, 8SOIC 脱机电源控制器PWM 电源控制器20PDIP, 20PLCC, 20SOIC,20TSSOPBiCMOS 高级相移PWM 控制器PWM 电源控制器8MSOP, 8PDIP, 8SOICBiCMOS 低功耗电流模式PWM 控制器PWM 电源控制器8MSOP, 8PDIP, 8SOICBiCMOS 低功耗电流模式PWM 控制器PWM 电源控制器8MSOP, 8PDIP, 8SOICBiCMOS 低功耗电流模式PWM 控制器PWM 电源控制8MSOP, 8PDIP, 8SOIC BiCMOS 低功耗电流模式器PWM 控制器PWM 电源控制器8MSOP, 8PDIP, 8SOICBiCMOS 低功耗电流模式PWM 控制器PWM 电源控制器8MSOP, 8PDIP, 8SOICBiCMOS 低功耗电流模式PWM 控制器PWM 电源控制器8PDIP, 8SOIC 初级侧启动控制器PWM 电源控制器14PDIP, 14SOIC 高级初级侧启动控制器IC 8PDIP, 8SOIC 高功率因数前置稳压器IC 8PDIP, 8SOIC 高功率因数前置稳压器IC 8PDIP, 8SOIC 高功率因数前置稳压器IC 16PDIP, 16SOIC 高功率因素前置稳压器IC 16PDIP, 16SOIC 增强型高功率因子前置稳压器IC 16PDIP, 16SOIC, 20PLCC 增强型高功率因子前置稳压器IC 20PDIP, 20SOIC 高性能功率因素前置稳压器IC 20PDIP, 20SOIC 高性能功率因子前置稳压器IC 8PDIP, 8SOIC 高功率因数前置稳压器IC 8PDIP, 8SOIC 高功率因数前置稳压器IC 16PDIP, 16SOIC, 20PLCC 高功率因子前置稳压器IC 16PDIP, 16SOIC 增强型高功率因数前置稳压器IC 16PDIP, 16SOIC 增强型高功率因子前置稳压器IC 20PDIP, 20SOIC 高性能功率因子前置稳压器IC 20PDIP, 20SOIC 高性能功率因子前置稳压器IC 8PDIP, 8SOIC 8 引脚持续传导模式(CCM)PFC 控制器IC 8PDIP, 8SOIC 8 引脚持续传导模式(CCM)PFC 控制器IC 8PDIP, 8SOIC 转换模式PFC 控制器IC 8PDIP, 8SOICPFC 控制器,用于要求符合IEC 1000-3-2 的低至中功率应用领域IC 16SOIC 双相自然交错转换模式PFC控制器IC 16SOIC具有改善的抗噪性能的Natural Interleaving(TM) 转换模式PFC 控制器IC 20SOIC, 20TSSOP 二相交错CCM PFC 控制器IC 16PDIP, 16SOIC, 16TSSOP BiCMOS 功率因子前置稳压器IC 16PDIP, 16SOIC, 16TSSOP BiCMOS 功率因子前置稳压器IC 16PDIP, 16SOIC, 16TSSOP BiCMOS 功率因子前置稳压器IC 16PDIP, 16SOIC, 16TSSOP BiCMOS 功率因子前置稳压器IC 16SOIC 汽车类BiCMOS 功率因数前置稳压器IC 16PDIP, 16SOIC BiCMOS 功率因素前置稳压器IC 16PDIP, 16SOIC, 16TSSOP BiCMOS 功率因子前置稳压器IC 20PDIP, 20SOIC BiCMOS PFC/PWM 组合控制器IC 20SOIC BiCMOS PFC/PWM 组合控制器IC 20SOIC BiCMOS PFC/PWM 组合控制器IC 20SOIC BiCMOS PFC/PWM 组合控制器IC 20PDIP, 20SOIC 高级PFC/PWM 组合控制器IC 20PDIP, 20SOIC 高级PFC/PWM 组合控制器IC 20PDIP, 20SOIC 高级PFC/PWM 组合控制器IC 20PDIP, 20SOIC 高级PFC/PWM 组合控制器IC 20PDIP, 20SOIC 高级PFC/PWM 组合控制器IC 20PDIP, 20SOIC 高级PFC/PWM 组合控制器IC 20PDIP, 20SOIC 高级PFC/PWM 组合控制器IC 20PDIP, 20SOIC 高级PFC/PWM 组合控制器IC 20SOIC 具有TEM/TEM 调制的高级PWM/PFC 组合控制器IC 20SOIC 具有TEM/TEM 调制的高级PWM/PFC 组合控制器IC 8PDIP, 8SOIC 转换模式PFC 控制器IC 8PDIP, 8SOICPFC 控制器,用于要求符合IEC 1000-3-2 的低至中功率应用领域IC 16PDIP, 16SOIC BiCMOS 功率因子前置稳压器IC 16PDIP, 16SOIC, 16TSSOP BiCMOS 功率因子前置稳压器IC 16PDIP, 16SOIC, 16TSSOP BiCMOS 功率因子前置稳压器IC 16PDIP, 16SOIC, 16TSSOP BiCMOS 功率因子前置稳压器IC 16PDIP BiCMOS 功率因素前置稳压器IC 16PDIP, 16SOIC, 16TSSOP BiCMOS 功率因子前置稳压器IC 20PDIP, 20SOIC BiCMOS PFC/PWM 组合控制器IC 20PDIP, 20SOIC BiCMOS PFC/PWM 组合控制器IC 20PDIP, 20SOIC BiCMOS PFC/PWM 组合控制器IC 20PDIP, 20SOIC BiCMOS PFC/PWM 组合控制器反馈信号发生器14CDIP, 14PDIP, 14SOIC,20PLCC隔离反馈生成器反馈信号发生器8SOIC精度可调节的并联稳压器反馈信号发生器8PDIP, 8SOIC 精密模拟控制器反馈信号发生器14PDIP, 14SOIC, 16SOIC,20PLCC隔离反馈生成器反馈信号发生器8PDIP, 8SOIC 精确可调节的并联稳压器反馈信号发生器8PDIP, 8SOIC 精密模拟控制器反馈信号发生器8SOIC精度可调节的并联稳压器负载共享16PDIP, 16SOIC 负载均分控制器负载共享16PDIP, 16SOIC 负载均分控制器负载共享8MSOP, 8PDIP, 8SOIC 高级8 引脚负载共享控制器负载共享8MSOP, 8PDIP, 8SOIC 高级8 引脚负载共享控制器。
德州仪器(TI)LM3S1960系列 规格书,Datasheet 资料
S T E L L A R I S E R R A T AStellaris ®LM3S1960RevA2ErrataThis document contains known errata at the time of publication for the Stellaris LM3S1960microcontroller.The table below summarizes the errata and lists the affected revisions.See the data sheet for more details.See also the ARM®Cortex™-M3errata,ARM publication number PR326-PRDC-009450v2.0.Table 1.Revision HistoryDescription Revision Date ■Added issue “Standard R-C network cannot be used on RST to extend POR timing”on page 5.■Clarified issue “General-purpose timer 16-bit Edge Count or Edge Time mode does not load reload value”on page 8to include Edge-Time mode.3.0August 2011■Added issue “Hibernation module does not operate correctly”on page 6,replacing previous Hibernation module errata items.■Minor edits and clarifications.2.10September 2010■Added issue “The RTRIS bit in the UARTRIS register is only set when the interrupt is enabled”on page 9.2.9July 2010■Added issue “External reset does not reset the XTAL to PLL Translation (PLLCFG)register”on page 5.2.8June 2010■Removed issue "Hibernation Module 4.194304-MHz oscillator supports a limited range of crystal load capacitance values"as it does not apply to this part.■Minor edits and clarifications.2.7May 2010■Removed issue "Writes to Hibernation module registers sometimes fail"as it does not apply to this part.■Added issue "Hibernation Module 4.194304-MHz oscillator supports a limited range of crystal load capacitance values."■Minor edits and clarifications.2.6April 2010■Removed issue "Setting Bit 7in I2C Master Timer Period (I2CMTPR)register may have unexpected results".The data sheet description has changed such that this is no longer necessary.■Minor edits and clarifications.2.5April 2010■Added issue “The General-Purpose Timer match register does not function correctly in 32-bit mode”on page 8.■Added issue "Setting Bit 7in I2C Master Timer Period (I2CMTPR)register may have unexpected results".2.4February 2010■"Hard Fault possible when waking from Sleep or Deep-Sleep modes and Cortex-M3Debug Access Port (DAP)is enabled"has been removed and the content added to the LM3S1960data sheet.2.3Jan 2010Started tracking revision history.2.2Dec 2009Stellaris LM3S1960A2Errata Table2.List of ErrataStellaris LM3S1960A2Errata1JTAG and Serial Wire Debug1.1JTAG pins do not have internal pull-ups enabled at power-on resetDescription:Following a power-on reset,the JTAG pins TRST,TCK,TMS,TDI,and TDO(PB7and PC[3:0])donot have internal pull-ups enabled.Consequently,if these pins are not driven from the board,twothings may happen:■The JTAG port may be held in reset and communication with a four-pin JTAG-based debugger may be intermittent or impossible.■The receivers may draw excess current.Workaround:There are a number of workarounds for this problem,varying in complexity and impact:1.Add external pull-up resistors to all of the affected pins.This workaround solves both issues ofJTAG connectivity and current consumption.2.Add an external pull-up resistor to TRST.Firmware should enable the internal pull-ups on theaffected pins by setting the appropriate PUE bits of the appropriate GPIO Pull-Up Select(GPIOPUR)registers as early in the reset handler as possible.This workaround addresses theissue of JTAG connectivity,but does not address the current consumption other than to limitthe affected period(from power-on reset to code execution).3.Pull-ups on the JTAG pins are unnecessary for code loaded via the SWD interface or via theserial boot loader.Loaded firmware should enable the internal pull-ups on the affected pins bysetting the appropriate PUE bits of the appropriate GPIOPUR registers as early in the resethandler as possible.This method does not address the current consumption other than to limitthe affected period(from power-on reset to code execution).Silicon Revision Affected:A21.2JTAG INTEST instruction does not workDescription:The JTAG INTEST(Boundary Scan)instruction does not properly capture data.Workaround:None.Silicon Revision Affected:A2Stellaris LM3S1960A2Errata2System Control2.1Clock source incorrect when waking up from Deep-Sleep mode insome configurationsDescription:In some clocking configurations,the core prematurely starts executing code before the main oscillator(MOSC)has stabilized after waking up from Deep-Sleep mode.This situation can cause undesirablebehavior for operations that are frequency dependent,such as UART communication.This issue occurs if the system is configured to run off the main oscillator,with the PLL bypassedand the DSOSCSRC field of the Deep-Sleep Clock Configuration(DSLPCLKCFG)register set touse the internal12-MHz oscillator,30-KHz internal oscillator,or32-KHz external oscillator.Whenthe system is triggered to wake up,the core should wait for the main oscillator to stabilize beforestarting to execute code.Instead,the core starts executing code while being clocked from thedeep-sleep clock source set in the DSLPCLKCFG register.When the main oscillator stabilizes,theclock to the core is properly switched to run from the main oscillator.Workaround:Run the system off of the main oscillator(MOSC)with the PLL enabled.In this mode,the clocksare switched at the proper time.If the main oscillator must be used to clock the system without the PLL,a simple wait loop at thebeginning of the interrupt handler for the wake-up event should be used to stall thefrequency-dependent operation until the main oscillator has stabilized.Silicon Revision Affected:A22.2PLL may not function properly at default LDO settingDescription:In designs that enable and use the PLL module,unstable device behavior may occur with the LDOset at its default of2.5volts or below(minimum of2.25volts).Designs that do not use the PLLmodule are not affected.Workaround:Prior to enabling the PLL module,it is recommended that the default LDO voltage setting of2.5Vbe adjusted to2.75V using the LDO Power Control(LDOPCTL)register.Silicon Revision Affected:A22.3I/O buffer5-V tolerance issueDescription:GPIO buffers are not5-V tolerant when used in open-drain mode.Pulling up the open-drain pinabove4V results in high current draw.Stellaris LM3S1960A2ErrataWorkaround:When configuring a pin as open drain,limit any pull-up resistor connections to the3.3-V power rail.Silicon Revision Affected:A22.4PLL Runs Fast When Using a3.6864-MHz CrystalDescription:If the PLL is enabled,and a3.6864-MHz crystal is used,the PLL runs4%fast.Workaround:Use a different crystal whose frequency is one of the other allowed crystal frequencies(see thevalues shown for the XTAL bit in the RCC register).Silicon Revision Affected:A22.5External reset does not reset the XTAL to PLL Translation(PLLCFG)registerDescription:Performing an external reset(anything but power-on reset)reconfigures the XTAL field in theRun-Mode Clock Configuration(RCC)register to the6MHz setting,but does not reset the XTALto PLL Translation(PLLCFG)register to the6MHz setting.Consider the following sequence:1.Performing a power-on reset results in XTAL=6MHz and PLLCFG=6MHz2.Write an8MHz value to the XTAL field results in XTAL=8MHz and PLLCFG=8MHz3.RST asserted results in XTAL=6MHz and PLLCFG=8MHzIn the last step,PLLCFG was not reset to its6MHz setting.If this step is followed by enabling thePLL to run from an attached6-MHz crystal,the PLL then operates at300MHz instead of400MHz.Subsequently configuring the XTAL field with the8MHz setting does not change the setting ofPLLCFG.Workaround:Set XTAL in PLLCFG to an incorrect value,and then to the desired value.The second changeupdates the register correctly.Do not enable the PLL until after the second change.Silicon Revision Affected:A22.6Standard R-C network cannot be used on RST to extend POR timingDescription:The standard R-C network on RST does not work to extend POR timing beyond the10ms on-chipPOR.Instead of following the standard capacitor charging curve,RST jumps straight to3V at powerStellaris LM3S1960A2Errataon.The capacitor is fully charged by current out of the RST pin and does not extend or filter thepower-on condition.As a result,the reset input is not extended beyond the POR.Workaround:Add a diode to block the output current from RST.This helps to extend the RST pulse,but alsomeans that the R-C is not as effective as a noise filter.Silicon Revision Affected:A23Hibernation Module3.1Hibernation module does not operate correctlyDescription:The Hibernation module on this microcontroller does not operate correctly.Workaround:This errata item does not apply to many Stellaris devices,including the LM3S1166,LM3S1636,LM3S1969,and LM3S2919.Refer to the Stellaris Product Selector Guide(/stellaris_search)and Errata documents to find an alternative microcontroller that meetsthe design requirements for your application.Silicon Revision Affected:A24Flash Controller4.1MERASE bit of the FMC register does not erase the entire FlasharrayDescription:The MERASE bit of the Flash Memory Control(FMC)register does not erase the entire Flash array.If the contents of the Flash Memory Address(FMA)register contain a value less than0x20000,only the first128KB of the Flash array are erased.If bit17(value of0x20000)is set,then only theupper address range of Flash(greater than128KB)is erased.Workaround:If the entire array must be erased,the following sequence is recommended:1.Write a value of0x00000000to the FMA register.2.Write a value of0xA4420004to the FMC register,and poll bit2until it is cleared.3.Write a value of0x00020000to the FMA register.4.Write a value of0xA4420004to the FMC register,and poll bit2until it is cleared.The entire array can also be erased by individually erasing all of the pages in the array.Stellaris LM3S1960A2ErrataSilicon Revision Affected:A25GPIO5.1GPIO input pin latches in the Low state if pad type is open drainDescription:GPIO pins function normally if configured as inputs and the open-drain configuration is disabled.Ifopen drain is enabled while the pin is configured as an input using the GPIO Alternate FunctionSelect(GPIOAFSEL),GPIO Open Drain Select(GPIOODR),and GPIO Direction(GPIODIR)registers,then the pin latches Low and excessive current(into pin)results if an attempt is made todrive the pin High.The open-drain device is not controllable.A GPIO pin is not normally configured as open drain and as an input at the same time.A user maywant to do this when driving a signal out of a GPIO open-drain pad while configuring the pad as aninput to read data on the same pin being driven by an external device.Bit-banging a bidirectional,open-drain bus(for example,I2C)is an example.Workaround:If a user wants to read the state of a GPIO pin on a bidirectional bus that is configured as anopen-drain output,the user must first disable the open-drain configuration and then change thedirection of the pin to an input.This precaution ensures that the pin is never configured as an inputand open drain at the same time.A second workaround is to use two GPIO pins connected to the same bus signal.The first GPIOpin is configured as an open-drain output,and the second is configured as a standard input.Thisway the open-drain output can control the state of the signal and the input pin allows the user toread the state of the signal without causing the latch-up condition.Silicon Revision Affected:A25.2GPIO pins may glitch during power supply ramp upDescription:Upon completing a POR(power on reset)sequence,the GPIO pins default to a tri-stated inputcondition.However,during the initial ramp up of the external V DD supply from0.0V to3.3V,theGPIO pins are momentarily configured as output drivers during the time the internal LDO circuit isalso ramping up.As a result,a signal glitch may occur on GPIO pins before both the external V DDsupply and internal LDO voltages reach their normal operating conditions.This situation can occurwhen the V DD and LDO voltages ramp up at significantly different rates.The LDO voltage ramp-uptime is affected by the load capacitance on the LDO pin,therefore,it is important to keep this loadat a nominal1µF value as recommended in the data sheet.Adding significant more capacitanceloading beyond the specification causes the time delay between the two supply ramp-up times togrow,which possibly increases the severity of the glitching behavior.Workaround:Ensuring that the V DD power supply ramp up is a fast as possible helps minimize the potential forGPIO glitches.Follow guidelines for LDO pin capacitive loading documented in the electrical sectionStellaris LM3S1960A2Errataof the data sheet.System designers must ensure that,during the V DD supply ramp-up time,possibleGPIO pin glitches can cause no adverse effects to their systems.Silicon Revision Affected:A26General-Purpose Timers6.1General-purpose timer Edge Count mode count error when timeris disabledDescription:When a general-purpose timer is configured for16-Bit Input Edge Count Mode,the timer(A or B)erroneously decrements by one when the Timer Enable(TnEN)bit in the GPTM Control(GPTMCTL)register is cleared(the timer is disabled).Workaround:When the general-purpose timer is configured for Edge Count mode and software needs to“stop”the timer,the timer should be reloaded with the current count+1and restarted.Silicon Revision Affected:A26.2General-purpose timer16-bit Edge Count or Edge Time mode doesnot load reload valueDescription:In Edge Count or Edge Time mode,the input events on the CCP pin decrement the counter until thecount matches what is in the GPTM Timern Match(GPTMTnMATCHR)register.At that point,aninterrupt is asserted and then the counter should be reloaded with the original value and countingbegins again.However,the reload value is not reloaded into the timer.Workaround:Rewrite the GPTM Timern Interval Load(GPTMTnILR)register before restarting.Silicon Revision Affected:A26.3The General-Purpose Timer match register does not functioncorrectly in32-bit modeDescription:The GPTM Timer A Match(GPTMTAMATCHR)register triggers a match interrupt when the lower16bits match,regardless of the value of the upper16bits.Workaround:None.Stellaris LM3S1960A2ErrataSilicon Revision Affected:A27UART7.1The RTRIS bit in the UARTRIS register is only set when the interruptis enabledDescription:The RTRIS(UART Receive Time-Out Raw Interrupt Status)bit in the UART Raw Interrupt Status(UARTRIS)register should be set when a receive time-out occurs,regardless of the state of theenable RTIM bit in the UART Interrupt Mask(UARTIM)register.However,currently the RTIM bitmust be set in order for the RTRIS bit to be set when a receive time-out occurs.Workaround:For applications that require polled operation,the RTIM bit can be set while the UART interrupt isdisabled in the NVIC using the IntDisable(n)function in the StellarisWare Peripheral Driver Library,where n is21,22,or49depending whether UART0,UART1or UART2is used.With thisconfiguration,software can poll the RTRIS bit,but the interrupt is not reported to the NVIC.Silicon Revision Affected:A28PWM8.1PWM pulses cannot be smaller than dead-band timeDescription:The dead-band generator in the PWM module has undesirable effects when receiving input pulsesfrom the PWM generator that are shorter than the dead-band time.For example,providing a4-clock-wide pulse into the dead-band generator with dead-band times of20clocks(for both risingand falling edges)produces a signal on the primary(non-inverted)output that is High except for40clocks(the combined rising and falling dead-band times),and the secondary(inverted)output isalways Low.Workaround:User software must ensure that the input pulse width to the dead-band generator is greater thanthe dead-band delays.Silicon Revision Affected:A28.2PWM interrupt clear misses in some instancesDescription:It is not possible to clear a PWM generator interrupt in the same cycle when another interrupt fromthe same PWM generator is being asserted.PWM generator interrupts are cleared by writing a1to the corresponding bit in the PWM Interrupt Status and Clear(PWMnISC)register.If a write toclear the interrupt is missed because another interrupt in that PWM generator is being asserted,Stellaris LM3S1960A2Erratathe interrupt condition still exists,and the PWM interrupt routine is called again.System problemscould result if an interrupt condition was already properly handled the first time,and the softwaretries to handle it again.Note that even if an interrupt event has not been enabled in the PWMInterrupt and Trigger Enable(PWMnINTEN)register,the interrupt is still asserted in the PWMRaw Interrupt Status(PWMnRIS)register.Workaround:In most instances,performing a double-write to clear the interrupt greatly decreases the chancethat the write to clear the interrupt occurs on the same cycle as another interrupt.Because eachgenerator has six possible interrupt events,writing the PWMnISC register six times in a rowguarantees that the interrupt is cleared.If the period of the PWM is small enough,however,thismethod may not be practical for the application.Silicon Revision Affected:A28.3PWM generation is incorrect with extreme duty cyclesDescription:If a PWM generator is configured for Count-Up/Down mode,and the PWM Load(PWMnLOAD)register is set to a value N,setting the compare to a value of1or N-1results in steady state signalsinstead of a PWM signal.For example,if the user configures PWM0as follows:■PWMENABLE=0x00000001–PWM0Enabled■PWM0CTL=0x00000007–Debug mode enabled–Count-Up/Down mode–Generator enabled■PWM0LOAD=0x00000063–Load is99(decimal),so in Count-Up/Down mode the counter counts from zero to99and back down to zero(200clocks per period)■PWM0GENA=0x000000b0–Output High when the counter matches comparator A while counting up–Output Low when the counter matches comparator A while counting down■PWM0DBCTL=0x00000000–Dead-band generator is disabledIf the PWM0Compare A(PWM0CMPA)value is set to0x00000062(N-1),PWM0should output a2-clock-cycle long High pulse.Instead,the PWM0output is a constant High value.If the PWM0CMPA value is set to0x00000001,PWM0should output a2-clock-cycle long negative(Low)pulse.Instead,the PWM0output is a constant Low value.Stellaris LM3S1960A2ErrataWorkaround:User software must ensure that when using the PWM Count-Up/Down mode,the compare valuesmust never be1or the PWMnLOAD value minus one(N-1).Silicon Revision Affected:A28.4PWMINTEN register bit does not function correctlyDescription:In the PWM Interrupt Enable(PWMINTEN)register,the IntPWM0(bit0)bit does not functioncorrectly and has no effect on the interrupt status to the ARM Cortex-M3processor.This bit shouldnot be used.Workaround:PWM interrupts to the processor should be controlled with the use of the PWM0-PWM2Interruptand Trigger Enable(PWMnINTEN)registers.Silicon Revision Affected:A28.5Sync of PWM does not trigger"zero"actionDescription:If the PWM Generator Control(PWM0GENA)register has the ActZero field set to0x2,then theoutput is set to0when the counter reaches0,as expected.However,if the counter is cleared bysetting the appropriate bit in the PWM Time Base Sync(PWMSYNC)register,then the"zero"actionis not triggered,and the output is not set to0.Workaround:None.Silicon Revision Affected:A28.6PWM"zero"action occurs when the PWM module is disabledDescription:The zero pulse may be asserted when the PWM module is disabled.Workaround:None.Silicon Revision Affected:A2August04,2011/Rev.3.011Texas Instruments9QEI 9.1QEI index resets position when index is disabledDescription:When the QEI module is configured to not reset the position on detection of the index signal (thatis,the ResMode bit in the QEI Control (QEICTL)register is 0),the module resets the position whenthe index pulse occurs.The position counter should only be reset when it reaches the maximumvalue set in the QEI Maximum Position (QEIMAXPOS)register.Workaround:Do not rely on software to disable the index pulse.Do not connect the index pulse if it is not needed.Silicon Revision Affected:A29.2QEI hardware position can be wrong under certain conditionsDescription:The QEI Position (QEIPOS)register can be incorrect if the QEI is configured for quadrature phasemode (SigMode bit in QEICTL register =0)and to update the position counter of every edge ofboth PhA and PhB (CapMode bit in QEICTL register =1).This error can occur if the encoder isstepped in the reverse direction,stepped forward once,and then continues in the reverse direction.The following sequence of transitions on the PhA and PhB pins causes the error:PhBAssuming the starting position prior to the above PhA and PhB sequence is 0,the position after thefalling edge on PhB should be -3,however the QEIPOS register will show the position to be -1.Workaround:Configure the QEI to update the position counter on every edge on PhA only (CapMode bit in QEICTLregister =0).The effective resolution is reduced by 50%.If full resolution position detection is requiredby updating the position counter on every edge of both PhA and PhB ,no workaround is available.Hardware and software must take this into account.Silicon Revision Affected:A2August 04,2011/Rev.3.0Texas Instruments12Stellaris LM3S1960A2ErrataCopyright©2007-2011Texas Instruments Incorporated All rights reserved.Stellaris and StellarisWare are registered trademarks of Texas Instruments Incorporated.ARM and Thumb are registered trademarks and Cortex is a trademark of ARM Limited.Other names and brands may be claimed as the property of others.Texas Instruments Incorporated108Wild Basin,Suite350Austin,TX78746/stellaris/sc/technical-support/product-information-centers.htmAugust04,2011/Rev.3.0Texas Instruments13IMPORTANT NOTICETexas Instruments Incorporated and its subsidiaries(TI)reserve the right to make corrections,modifications,enhancements,improvements, and other changes to its products and services at any time and to discontinue any product or service without notice.Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty.Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty.Except where mandated by government requirements,testing of all parameters of each product is not necessarily performed.TI assumes no liability for applications assistance or customer product design.Customers are responsible for their products and applications using TI components.To minimize the risks associated with customer products and applications,customers should provide adequate design and operating safeguards.TI does not warrant or represent that any license,either express or implied,is granted under any TI patent right,copyright,mask work right, or other TI intellectual property right relating to any combination,machine,or process in which TI products or services are rmation published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement e of such information may require a license from a third party under the patents or other intellectual property of the third party,or a license from TI under the patents or other intellectual property of TI.Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties,conditions,limitations,and notices.Reproduction of this information with alteration is an unfair and deceptive business practice.TI is not responsible or liable for such altered rmation of third parties may be subject to additional restrictions.Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice.TI is not responsible or liable for any such statements.TI products are not authorized for use in safety-critical applications(such as life support)where a failure of the TI product would reasonably be expected to cause severe personal injury or death,unless officers of the parties have executed an agreement specifically governing such use.Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications,and acknowledge and agree that they are solely responsible for all legal,regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications,notwithstanding any applications-related information or support that may be provided by TI.Further,Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or"enhanced plastic."Only products designated by TI as military-grade meet military specifications.Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk,and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS16949requirements.Buyers acknowledge and agree that,if they use any non-designated products in automotive applications,TI will not be responsible for any failure to meet such requirements.Following are URLs where you can obtain information on other Texas Instruments products and application solutions:Products ApplicationsAudio /audio Communications and Telecom /communicationsAmplifiers Computers and Peripherals /computersData Converters Consumer Electronics /consumer-appsDLP®Products Energy and Lighting /energyDSP Industrial /industrialClocks and Timers /clocks Medical /medicalInterface Security /securityLogic Space,Avionics and Defense /space-avionics-defense Power Mgmt Transportation and Automotive /automotiveMicrocontrollers Video and Imaging /videoRFID OMAP Mobile Processors /omapWireless Connctivity /wirelessconnectivityTI E2E Community Home Page Mailing Address:Texas Instruments,Post Office Box655303,Dallas,Texas75265Copyright©2011,Texas Instruments Incorporated。
小尺寸逻辑器件指南
16 16
同类竞争器件前缀..................................................................................... 22
Competitor Part Prefixes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Translation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Signal-Switch Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Packaging 封装 77 Advanced Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 ................................................................................................... 先进封装 7
信号开关................................................................................................... 5 Configurables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 可配置器件............................................................................................... 6 AUP1T 转换器................................................................................................................................................................. 13 Configurable Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 可配置功能................................................................................................ 14 转换功能................................................................................................... 14
TI杯电子设计主要仪器,元器件以及TI公司的芯片
1.根本仪器清单50Mhz(以上双通道数字示波器双路可调直流稳压电源函数信号发生器〔 0.1Hz —20Mhz ,具有外调制功能〕通用双踪示波器秒表10米卷尺1米卷尺4位半〔以上〕数字多用表2.在竞赛中使用〔或选用〕的主要元器件清单单片机最小系统板〔仅含单片机芯片 . 键盘与显示装置。
存储器, A/D,D/A 〕Lauchpad (MSP430单片机开发板为核心的最小系统〔请为lauchpad 开发显示,和键盘模块〕坐标纸〔 500mm*350mm〕小型直流电机波长 600-1000nm 的 LED 及相应光电接收元件光敏元件高亮度 LED 元件无线通信模块〔如CC11xx,CC24xx,CC25xx 系列〕 10pF 以下小容量电容器激光笔摄像头128*64 以上分辨率的显示屏2 欧姆到 10 欧姆的 20W 以上的功率电阻3 TI 公司提供的供选用元器件清单序号型号芯片上字符1 INA2134PAINA2134PA 2 OPA2134PA OPA2134PA 3 OPA2227PA OPA2227PA 4 OPA2340PA OPA2340PA 5 TLV2460IP TLV2460IP 6 ADS1115IDGSR 12BOGI 7CSD17505Q5A CSD17505 8 INA282AIDR 1282A9 INA333AIDGKR I33310 LP2950-33LPRE3 23MCYHE 11 TLV 5616IDR 5616I12 TPS5430DDA 5430P13 TPS5433IDR 5433I14 TPS60400DBVT PFK15 TPS61070DDCR AUH。
德州仪器(TI)_芯片的命名规则
说明:(A)指产品线代码产品线代码用于区分不同的产品类型,因TI产品线非常广,故同一代码有可能包含一个或多个产品线又或多种代码表示同一种产品线,如例图所示TLV包含电源管理器、运算放大器、数据转换器、比较器、音频转换器等系列产品;SN74LVC为74系列逻辑电路,因工作电平、电压、速度、功耗不同又分为74HC、74LS、74LV、74AHC、74ABT、74AS等系列。
(B)指基本型号基本型号(也称为基础型号)用于区分不同的产品类型,与封装、温度及其它参数无关。
(C)指为产品等级产品等级表示产品工作温度,为可选项。
C=商业级,工作温度范围为0°C至+70°CI或Q=工业级,因产品不同其所表示的工作温度范围也不同,一般为-40°C至+85°C、-40°C至+125°C未标识等级代码,因产品不同其所表示的工作温度范围也不同,一般为-40°C~+85°C,-55°C~+100°C等。
(D)指产品封装产品封装代码以1-3位数的英文代码表示(BB产品线中存在超过3位数的代码符号),详细封装信息请对照“封装代码对照表”。
(E)指产品包装方式产品包装代码为可选项,TI通用器件中包装方式代码标识为R表示以塑料卷装方式包装,未标识则表示为塑料管装方式包装。
(F)指绿色标记转换:G4绿色标记的转换:从2004 年6 月 1 日开始,当TI 器件/封装组合转换成“环保”复合成型材料时,TI 将把无铅(Pb) 涂层类别中的"e" 更改为"G"。
例如,在实施环保复合成型材料之前,TI 采用NiPdAu 涂层所制造器件的无铅(Pb) 涂层类别为"e4"。
实施后,该无铅(Pb) 涂层类别将更改为"G4"。
(在无铅(Pb) 涂层类别中将"e" 替换成"G" 目前还不属于JEDE C 标准的一部分,但会对TI 产品实施这一步。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
网站主页系统产品电子电路设计开发电子元器件站内搜索设为主页BDTIC产品服务代理品牌实物图片方案应用技术支持联系我们Share首页 > TI 德州仪器 > 逻辑小尺寸逻辑器件TI 德州仪器小尺寸逻辑器件产品选型与价格 . xls型号概述SN74LVC1G0832单路 3 输入正与或门SN74LVC1G3208单路 3 输入正或与门SN74LVC1G3208-Q1汽车类单路 3 输入正或与门SN74AHC1G08一路 2 输入正与门SN74AHC1G08-Q1汽车类单路 2 输入正与门SN74AHCT1G08单路 2 输入正与门SN74AUC1G08单路 2 输入正与门SN74AUC2G08双路 2 输入正与门SN74AUP1G08低功耗单路 2 输入正与门SN74AUP2G08低功耗双路 2 输入正与门SN74LVC1G08单路 2 输入正与门SN74LVC1G08-EP增强型产品二路 2 输入正与门SN74LVC1G08-Q1汽车类单路 2 输入正与门SN74LVC1G11单路 3 输入正与门SN74LVC1G11-EP增强型产品单路 3 输入正与门SN74LVC2G08双路 2 输入正与门SN74LVC2G08-EP增强型产品双路 2 输入正与门SN74LVC2G08-Q1汽车类双路 2 输入正与门SN74AHC1G00单路 2 输入正与非门SN74AHC1G00-Q1汽车类单路 2 输入正与非门SN74AHCT1G00单路 2 输入正与非门SN74AUC1G00单路 2 输入正与非门SN74AUC2G00双路 2 输入正与非门SN74AUP1G00低功耗单路 2 输入正与非门SN74AUP2G00低功耗双路 2 输入正与非门SN74AUP2G00-Q1汽车类低功耗双路 2 输入正与非门SN74LVC1G00单路 2 输入正与非门SN74LVC1G00-EP增强型产品二路 2 输入正与非门SN74LVC1G10单路 3 输入正与非门SN74LVC1G132具有施密特触发器输入的单路 2 输入与非门SN74LVC1G38使用漏极开路输出的单路 2 输入与非门SN74LVC2G00双路 2 输入正与非门SN74LVC2G00W-EP增强型产品双路 2 输入正与非门SN74LVC2G132具有施密特触发器输入的双路 2 输入与非门SN74LVC2G38使用漏极开路输出的双路 2 输入与非门SN74CBT1G125单路 FET 总线开关SN74CBT1G384单路 FET 总线开关SN74CBTLV1G125低电压单路 FET 总线开关SN74CBTLV1G125-Q1汽车类低电压单路 FET 总线开关SN74AHC1G04单路反向器闸SN74AHC1G04-Q1汽车类单路反向器闸SN74AHC1G14单路施密特触发反向器闸SN74AHC1GU04一路反向器SN74AHCT1G04单路反向器闸SN74AHCT1G04-Q1汽车类单反向器闸SN74AHCT1G14一路施密特触发器反向器闸SN74AUC1G04单路反向器闸SN74AUC1G14单路施密特触发反向器SN74AUC1G14-EP增强型产品单路施密特触发反向器SN74AUC2G04双路反向器闸SN74AUC2GU04双路反向器闸SN74AUP1G04低功耗单路反向器闸SN74AUP1G14低功耗单路施密特触发反向器SN74AUP2G04低功耗双路反向器闸SN74AUP2G14低功耗双路施密特触发反向器SN74AUP3G04低功耗三路反向器闸SN74AUP3G14低功耗三路施密特触发反向器SN74LVC1G04单路反向器SN74LVC1G04-EP增强型产品单路反向器闸SN74LVC1G04-Q1汽车类单路反向器SN74LVC1G14单路施密特触发反向器SN74LVC1G14-EP增强型产品单路施密特触发反向器SN74LVC1GU04单路反向器闸SN74LVC2G04双反向器SN74LVC2G04-EP增强型产品双路反向器门SN74LVC2G14双路施密特触发反向器SN74LVC2G14-Q1汽车类双路施密特触发反向器SN74LVC2GU04双反向器SN74LVC3G04三路反向器闸SN74LVC3G14三路施密特触发器反向器SN74LVC3GU04三路反向器闸SN74AUC1G06具有漏极开路输出的单路反向器缓冲器/驱动器SN74AUC2G06具有漏极开路输出的双路反向缓冲器/驱动器SN74AUP1G06具有漏极开路的低功耗单路反向缓冲器/驱动器SN74AUP2G06具有漏极开路的低功耗双路反向缓冲器/驱动器SN74LVC1G06具有漏极开路输出的单路反向器缓冲器/驱动器SN74LVC1G06-EP具有漏极开路输出的增强型产品单路反向器缓冲器/驱动器SN74LVC2G06具有漏极开路输出的双路反向器缓冲器/驱动器SN74LVC2G06-EP具有漏极开路输出的增强型产品双路反向器缓冲器/驱动器SN74LVC2G06-Q1具有漏极开路的汽车类双路反向缓冲器/驱动器SN74LVC3G06具有漏极开路输出的三路反向器缓冲器/驱动器SN74AUP1G57低功耗可配置多功能门SN74AUP1G58低功耗可配置多功能门SN74AUP1G97低功耗可配置多功能门SN74AUP1G98低功耗可配置多功能门SN74AUP1G99具有三态输出的低功耗超级可配置多功能门SN74LVC1G57可配置多功能门SN74LVC1G58可配置多功能门SN74LVC1G97可配置多功能门SN74LVC1G97-EP增强型产品可配置多功能门SN74LVC1G97-Q1汽车类可配置多功能门SN74LVC1G98可配置多功能门SN74LVC1G98-EP增强型产品可配置多功能门SN74LVC1G98-Q1汽车类可配置多功能门SN74LVC1G99具有三态输出的超级可配置多功能闸SN74AHC1G86单路 2 输入异或门SN74AHC1G86-EP增强型塑料单路 2 输入异或门SN74AHCT1G86单路 2 输入异或门SN74AHCT1G86-Q1汽车类单路 2 输入异或门SN74AUC1G86单路 2 输入异或门SN74AUC2G86双路 2 输入异或门SN74LVC1G386单路 3 输入正异或门SN74LVC1G86单路 2 输入异或门SN74LVC1G86-EP增强型塑料单路 2 输入异或门SN74LVC2G86双路 2 输入异或门SN74AHC1G32单路 2 输入正或门SN74AHC1G32-Q1汽车类单路 2 输入正或门SN74AHCT1G32-Q1汽车类单路 2 输入正或门SN74AUC1G32单路 2 输入正或门SN74AUC2G32双路 2 输入正或门SN74AUP1G32低功耗单路 2 输入正或门SN74AUP2G32低功耗双路 2 输入正或门SN74LVC1G32单路 2 输入正或门SN74LVC1G32-EP增强型产品二路 2 输入正或门SN74LVC1G32-Q1汽车类单路 2 输入正或门SN74LVC1G332单路 3 输入正或门SN74LVC2G32双路 2 输入正或门SN74LVC2G32-EP增强型产品双路 2 输入正或门SN74AHC1G02单路 2 输入正或非门SN74AHC1G02-EP增强型产品二路 2 输入正或非门SN74AHCT1G02单路 2 输入正或非门SN74AUC1G02单路 2 输入正或非门SN74AUC2G02双路 2 输入正或非门SN74AUP1G02低功耗单路 2 输入正或非门SN74AUP2G02低功耗双路 2 输入正或非门SN74LVC1G02单路 2 输入正或非门SN74LVC1G02-EP增强型产品二路 2 输入正或非门SN74LVC1G27单路 3 输入正或非门SN74LVC2G02双路 2 输入正或非门SN74LVC2G02-EP增强型产品双路 2 输入正或非门SN74AUC1G17单路施密特触发缓冲器SN74AUP1G17低功耗单路施密特触发缓冲器SN74AUP1G17-EP增强型产品低功耗单路施密特触发缓冲器SN74AUP2G17低功耗双路施密特触发器缓冲器SN74AUP3G17低功耗三路施密特触发缓冲器SN74LVC1G17单路施密特触发缓冲器SN74LVC1G17-EP增强型产品单路施密特触发缓冲器SN74LVC1G17-Q1汽车类单路施密特触发缓冲器SN74LVC2G17双路施密特触发缓冲器SN74LVC2G17-EP增强型产品双路施密特触发缓冲器SN74LVC2G17-Q1汽车类二路施密特触发缓冲器SN74LVC3G17三路施密特触发缓冲器SN74LVC1GX04晶体振荡器驱动器SN74LVC1GX04-EP增强型产品晶振驱动器SN74AUP1T00低功耗、1.8/2.5/3.3V 输入、3.3V CMOS 输出、单路 2 输入正与非门SN74AUP1T02低功耗、1.8/2.5/3.3V 输入、3.3V CMOS 输出、单路 2 输入正或非门SN74AUP1T04低功耗、1.8/2.5/3.3V 输入、3.3V CMOS 输出、单路反向器闸SN74AUP1T08低功耗、1.8/2.5/3.3V 输入、3.3V CMOS 输出、2 输入正与门SN74AUP1T14低功耗、1.8/2.5/3.3V 输入、3.3V CMOS 输出、单路施密特触发反向器闸SN74AUP1T157低功耗、1.8/2.5/3.3V 输入、3.3V CMOS 输出、缓冲多路复用器(同向)SN74AUP1T158低功耗、1.8/2.5/3.3V 输入、3.3V CMOS 输出、缓冲多路复用器(反向)SN74AUP1T17低功耗、1.8/2.5/3.3V 输入、3.3V CMOS 输出、单路施密特触发缓冲器闸SN74AUP1T32低功耗、1.8/2.5/3.3V 输入、3.3V CMOS 输出、2 输入正或门SN74AUP1T86低功耗、1.8/2.5/3.3V 输入、3.3V CMOS 输出、2 输入异或门SN74AUP1T87低功耗、1.8/2.5/3.3V 输入、3.3V CMOS 输出、2 输入正异或非门SN74AUC2G34双路缓冲器闸SN74AUP1G34低功耗单缓冲器闸SN74AUP2G34低功耗双路缓冲器闸SN74AUP3G34低功耗三路缓冲器闸SN74LVC1G34单缓冲器闸SN74LVC2G34双路缓冲器闸SN74LVC2G34-EP增强型产品双路缓冲器门SN74LVC3G34三路缓冲器SN74AUC1G19 2 选 1 解码器/多路解复用器SN74LVC1G18具有三态淘汰输出的二选一同向多路解复用器SN74LVC1G19 2 选 1 解码器/多路解复用器SN74LVC1G29 3 选 2 解码器/多路解复用器SN74LVC2G157单路 2 线路至 1 线路数据选择器/多路复用器SN74AUC1G74具有清零和预设功能的单路上升沿 D 类触发器SN74AUC1G79单路上升沿 D 类触发器SN74AUC1G80单路上升沿 D 类触发器SN74AUC2G79双路上升沿 D 类触发器SN74AUC2G80双路上升沿 D 类触发器SN74AUP1G74低功耗单路上升沿 D 类触发器SN74AUP1G79低功耗单路上升沿 D 类触发器SN74AUP1G80低功耗单路上升沿 D 类触发器SN74AUP2G79低功耗双路上升沿 D 类触发器SN74AUP2G80低功耗双路上升沿 D 类触发器SN74LVC1G175具有异步清零功能的单路 D 类触发器SN74LVC1G175-EP具有异步清零功能的增强型产品单路 D 类触发器SN74LVC1G374具有三态输出的单路 D 类触发器SN74LVC1G374-Q1具有三态输出的汽车类单路 D 类触发器SN74LVC1G74具有清零和预设功能的单路上升沿 D 类触发器SN74LVC1G79单路上升沿 D 类触发器SN74LVC1G79-EP增强型产品单路上升沿 D 类触发器SN74LVC1G80一路上升沿 D 类触发器SN74LVC2G74具有清零和预设功能的单路上升沿 D 类触发器SN74LVC2G74-EP具有清零和预设功能的增强型产品单路上升沿 D 类触发器SN74LVC2G74-Q1汽车类具有清零和预设功能的单路上升沿 D 类触发器SN74LVC2G79双路上升沿 D 类触发器SN74LVC2G80双路上升沿 D 类触发器SN74LVC1G123具有施密特触发器输入的单路可再触发单稳多频振荡器SN74LVC1G373具有三态输出的单路 D 类锁存器SN74AUC1G240具有三态输出的单路缓冲器/驱动器SN74AUC2G240具有三态输出的双路缓冲器/驱动器SN74AUC2G241具有三态输出的双路缓冲器/驱动器SN74AUP1G240具有三态输出的低功耗单路缓冲器/驱动器SN74AUP2G240具有三态输出的低功耗双路缓冲器/驱动器SN74AUP2G241具有三态输出的低功耗双路缓冲器/驱动器SN74LVC1G240具有三态输出的单路缓冲器/驱动器SN74LVC2G240具有三态输出的双路缓冲器/驱动器SN74LVC2G241具有三态输出的双路缓冲器/驱动器SN74AHC1G125具有三态输出的单路总线缓冲器闸SN74AHC1G126具有三态输出的单路总线缓冲器闸SN74AHCT1G125具有三态输出的单路总线缓冲器闸SN74AHCT1G125-Q1汽车类具有三态输出的单路总线缓冲器闸SN74AHCT1G126具有三态输出的单路总线缓冲器闸SN74AHCT1G126-Q1汽车类具有三态输出的单路总线缓冲器闸SN74AUC1G125具有三态输出的单路总线缓冲器闸SN74AUC1G125-EP具有三态输出的增强型产品单路总线缓冲器门SN74AUC1G126具有三态输出的单路总线缓冲器闸SN74AUC2G125具有三态输出的双总线缓冲器闸SN74AUC2G126具有三态输出的双总线缓冲器闸SN74AUP1G125具有三态输出的低功耗单路总线缓冲器门SN74AUP1G126具有三态输出的低功耗单路总线缓冲器闸SN74AUP2G125具有三态输出的低功耗双路总线缓冲器闸SN74AUP2G126具有三态输出的低功耗双路总线缓冲器闸SN74LVC1G125具有三态输出的单路总线缓冲器闸SN74LVC1G125-EP具有三态输出的增强型产品单路总线缓冲器闸SN74LVC1G125-Q1汽车类具有三态输出的单路总线缓冲器门SN74LVC1G126具有三态输出的单路总线缓冲器闸SN74LVC1G126-EP具有三态输出的增强型产品单路总线缓冲器闸SN74LVC1G126-Q1汽车类具有三态输出的单路总线缓冲器闸SN74LVC2G125具有三态输出的双总线缓冲器闸SN74LVC2G125-Q1汽车类具有三态输出的双路总线缓冲器闸SN74LVC2G126具有三态输出的双路总线缓冲器闸SN74AUC1G07具有漏极开路输出的单路缓冲器/驱动器SN74AUC2G07具有漏极开路输出的双路缓冲器/驱动器SN74AUP1G07具有漏极开路的低功耗单路缓冲器/驱动器SN74AUP2G07具有漏极开路的低功耗双路缓冲器/驱动器SN74AUP3G06具有漏极开路的低功耗三路反向缓冲器/驱动器SN74AUP3G07具有漏极开路的低功耗三路反向缓冲器/驱动器SN74LVC1G07具有漏极开路输出的单路缓冲器/驱动器SN74LVC1G07-EP具有漏极开路输出的增强型产品单路缓冲器/驱动器SN74LVC2G07具有漏极开路输出的双路缓冲器/驱动器SN74LVC2G07-EP具有漏极开路输出的增强型产品双路缓冲器/驱动器SN74LVC3G07具有漏极开路输出的三路缓冲器/驱动器SN74LVC3G07-EP具有漏极开路输出的增强型产品三路缓冲器/驱动器SN74LVC3G07-Q1具有漏极开路的汽车类三路缓冲器/驱动器开发工具数据手册资料下载合作中心特价优势©1993 - 2011 版权所有网站导航关于我们人才招聘友情链接。