制冷与低温技术原理一
制冷与低温技术原理 吴业正
第一节 制冷的定义及研究内容
三、制冷与低温技术的研究内容
研究内容可以概括为以下四个方面: 研究内容可以概括为以下四个方面: 研究获得低于环境温度的方法 机理以及与此对应 方法、 (1) 研究获得低于环境温度的方法、 机理以及与此对应 循环,并对循环进行热力学的分析和计算。 的循环,并对循环进行热力学的分析和计算。 研究循环中使用的工质的性质 工质的性质, (2) 研究循环中使用的工质的性质, 从而为制冷机和低 温装置提供合适的工作介质。因工质在循环中发生状态变 化,所以工质的热物理性质是进行循环分析和计算的基础 数据。此外,为了使这些工质能实际应用,还必须掌握它 们的一般物理化学基础。 研究气体液化和分离技术。 (3) 研究气体液化和分离技术。 例如液化氧、氮、氢、 氦等气体,将空气或天然气液化、分离,均涉及一系列的 制冷和低温技术。
第二节 制冷与低温技术的应用
二、在工业及农牧业生产方面的应用
许多生产场所需要生产用空调系统,例如高温生产车 间、纺织厂、造纸厂、印刷厂、胶片厂、精密仪器车间、 精密加工车间、精密计量室、计算机房等的空调系统,为 提供恒温恒湿条件,以保证产品质量 机床、 保证产品质量或机床 各生产环境提供恒温恒湿条件 提供恒温恒湿条件 保证产品质量 机床、 仪表的精度。 仪表的精度。 机械制造中, 钢进行低温处理 钢进行低温处理,可以改变其金相组 机械制造中 , 对钢进行低温处理 织,使奥氏体变成马氏体,提高钢的硬度和强度。在机器 的装配过程中,利用低温进行零件的过盈配合 零件的过盈配合。化学工业 零件的过盈配合 中,借助于制冷,使气体液化、混合气分离 气体液化、 气体液化 混合气分离,带走化学反 应中的反应热。盐类结晶、润滑油脱脂、石油裂解、合成 橡胶、生产化肥均需要制冷。
制冷与低温技术原理
制冷与低温技术原理制冷与低温技术是一门涉及物理、化学、工程学等多个领域的学科,它的发展与人类的生产生活息息相关。
本文将深入探讨制冷与低温技术的原理,希望能为读者提供一些有益的知识。
首先,我们来了解一下制冷与低温技术的基本原理。
制冷技术是利用一种叫做制冷剂的物质,通过蒸发和凝结的循环过程,将热量从一个地方转移到另一个地方的技术。
而低温技术则是在极低温度下对物体进行处理或保存的技术。
这两者的原理都是基于热力学和热传递的基本规律,通过控制温度和热量的传递,实现对物体温度的调节和控制。
在制冷技术中,制冷剂起着至关重要的作用。
制冷剂是一种能在低温下蒸发并在高温下凝结的物质,常见的制冷剂包括氨、氟利昂、氯化甲烷等。
通过控制制冷剂的蒸发和凝结过程,可以实现对物体温度的降低。
而在低温技术中,除了制冷剂的选择外,还需要考虑绝热材料、保温材料等因素,以防止热量的传递和损失。
另一个重要的原理是热力学的运用。
热力学是研究热量和功的转化关系的学科,它对制冷与低温技术的原理和应用有着重要的指导作用。
通过热力学的分析,可以确定制冷剂的选择、循环过程的设计以及系统的效率等关键参数,从而提高制冷与低温技术的性能和效率。
此外,工程学的原理也是制冷与低温技术的重要基础。
工程学包括热力学、流体力学、传热学等多个学科,它们为制冷与低温技术的设计、制造和应用提供了理论和方法。
例如,流体力学可以用来分析制冷剂在系统中的流动特性,传热学可以用来研究热量的传递规律,这些都为制冷与低温技术的实际应用提供了理论支持。
总的来说,制冷与低温技术的原理是多方面的,涉及物理、化学、工程学等多个学科的知识。
通过对制冷剂的选择、热力学的分析和工程学的应用,可以实现对物体温度的控制和调节,从而满足不同领域的需求。
希望本文能为读者对制冷与低温技术的原理有所了解,并对相关领域的研究和应用有所帮助。
制冷与低温技术原理—第3章 蒸气压缩式制冷-制冷剂解读
第 3 章 蒸气压缩式制冷 ---制冷剂
3.3 蒸气压缩式制冷中的制冷剂
3.3.1 制冷剂概述
1. 制冷剂的发展和种类
制冷剂 乙醚 二甲基乙醚 CO2(干冰) NH3 SO2 标准沸点-10℃ 毒性大 沸点温度 标准蒸发温度34.5℃, 蒸发压力低于大气压力。 沸点-23.6℃, 蒸发压力比乙醚高的多。 特点 易燃,易爆 应用 淘汰 淘汰
氟里昂的分子通式: 符号表示:
符号表示法1:
CmHnFxClyBrz
R (m-1) (n+1) (x) B (z)
例如: R11,R12,R113
符号表示法2:
将R换成物质分子中组成元素符号
例如: CFC113,HCFC22,HFC134a
氟里昂的种类:
• 含氯氟碳的完全卤代烃CFC类 :
例如:CFC11,CFC12,CFC113
例如:• 饱和蒸气压力和温度之间的关系, • 热力状态参数之间的关系, • 状态参数与比热容,绝热指数,声速的关系等。
(1)制冷剂的饱和蒸气压力曲线 不同制冷剂的饱和蒸气压力曲线。 (书中图3-25)
标准蒸发温度(标准沸点)ts: 制冷剂在标准大气压下的沸腾温度。
说 明 1. 标准蒸发温度大体上可以反映制冷时能够达到的 低温范围。ts越低的制冷剂,能够达到的制冷温度越低。 2. 习惯上往往依据ts的高低,将制冷剂分为: 高温制冷剂,中温制冷剂,低温制冷剂。 3. 在同一温度下,标准蒸发温度高的制冷剂压力低; 标准蒸发温度低的制冷剂压力高。 4. 制冷剂的饱和蒸发压力-温度特性决定了给定工作温度下 制冷循环的压力和压力比。
(5)溶水性
• 氟利昂和烃类物质都难溶于水; • 氨易溶于水; • 制冷系统中必须严格控制含水量。
2液体相变制冷_制冷与低温技术原理
蒸气压缩式制冷
工作过程
示意图 压缩过程:1— 2 冷凝过程:2— 3 节流过程:3— 4 蒸发过程:4— 1
蒸气吸收式制冷
系统组成示意图
1. 发生器
6. 溶液节流阀
2. 冷凝器
7. 溶液热交换器
3. 制冷剂节流阀 8. 溶液泵
4. 蒸发器 5. 吸收器
9. 制冷工质对 (制冷剂和吸收剂)
蒸气吸收式制冷
吸附能力 ∝ 吸附剂温度
通过周期性地冷却与加热吸附剂, 实现交替吸附和解吸 → 制冷作用
吸附工质对 (吸附剂-制冷剂)
沸石-水; 活性碳-甲醇;
硅胶-水; 金属氢化物-氢
吸附式制冷
系统组成示意图
1-太阳集热器/吸附床 2-冷凝器 3-储液器 4-膨胀阀 5-截止阀 6-蒸发器 7-工质对 (活性碳-甲醇)
其作用是将热能转换为机械能,并通过喷射器实现逆向 循环过程中压缩制冷剂的作用。
系统循环工作过程 吸附床中的加热及解吸过程 (白天) 冷凝器中的冷凝过程(白天)
蒸发器中的蒸发过程(夜晚) 吸附床中的吸附过程(夜晚)
思考题
在蒸气压缩式制冷系统中压缩机的作用是什么? 与膨胀阀配合维持蒸发器内处于低压,并将来自蒸发器的 制冷剂蒸气提升至高压压力; 驱动制冷剂在系统中循环。
蒸气喷射式制冷循环中包含有正向循环过程和逆向循环过程 正向循环的作用是什么?
系统循环工作过程
稀溶液的加压和预热过程:1—2—3 发生器中的蒸气发生过程:3—4、5 浓溶液的冷却与节流过程:5—6—7 吸收器中的吸收过程:7、10—1 制冷剂冷凝过程:4—8 制冷剂节流过程:8—9 制冷剂蒸发过程:9—10
蒸气射式制冷
系统组成示意图
1. 喷射器 2. 冷凝器 3. 膨胀阀 4. 蒸发器 5. 泵 6. 发生器
制冷与低温技术原理-布雷顿制冷循环
第一节 物质相变制冷
蒸气吸收式制冷的机种以其所用的工质对区分。 当前普遍应用的工质对有两种:溴化锂-水(制冷剂是 水),氨-水(制冷剂是氨)。溴化锂吸收式制冷机用于制取 7~10℃的冷水;氨水吸收式制冷机能够制冷的温度可达20℃或更低。
第一节 物质相变制冷
图2-3 蒸气压缩式制冷的基本系统
第一节 物质相变制冷
蒸气压缩式制冷系统中,用压缩机抽出低压气并将其 提高压力后排出。气体压缩过程需要消耗能量,由输入压 缩机的机械能或电能提供。
第一节 物质相变制冷
三、蒸气吸收式制冷
蒸气吸收式制冷的基本系统如图2-4所示。整个系统 包括两个回路:制冷剂回路和溶液回路。
(2-1)
在 温 度 为 -20 ~ 0℃ 范 围 内 , 其 平 均 比 热 容 为 2.093
kJ/(kg·K)。
冰的导热系数也随温度改变。在-20℃以下,冰的导热
系 数 的 平 均 值 为 2.32 W/(m·K) 。 冰 在 0℃ 时 的 导 温 系 数
a=0.00419 W/h。
第一节 物质相变制冷
第一节 物质相变制冷
液体蒸发制冷以流体作制冷剂,通过一定的机器设备 构成制冷循环,可以对被冷却对象实现连续制冷。它是制 冷技术中使用的主要方法。
固体相变冷却则是以一定数量的固体物质作制冷剂, 作用于被冷却对象,实现冷却降温。一旦固体全部相变, 冷却过程即告终止。
第一节 物质相变制冷
1.固体相变冷却 常用的制冷剂有:冰、冰盐、干冰,以及其他固体物
制冷与低温技术原理
制冷与低温技术原理制冷与低温技术是一门涉及物理、化学、工程学等多个学科知识的交叉领域,它广泛应用于工业生产、生活和科学研究等各个领域。
在现代社会中,制冷与低温技术已经成为不可或缺的一部分,它为人类的生产生活提供了便利,同时也推动了科学技术的发展。
本文将从制冷与低温技术的原理入手,对其进行深入探讨。
首先,制冷技术是利用物质的热力学性质,通过能量转移的方式将热量从一个物体转移到另一个物体,以达到降低物体温度的目的。
在制冷技术中,常用的原理包括蒸发冷却原理、压缩冷却原理和热电制冷原理等。
蒸发冷却原理是利用液体蒸发时吸收热量的特性,通过蒸发器将被制冷物体的热量吸收,从而降低其温度。
压缩冷却原理是通过压缩机将制冷剂压缩成高温高压气体,然后通过冷凝器散热,使其冷凝成液体,释放热量,从而降低被制冷物体的温度。
热电制冷原理则是利用热电材料在电场作用下产生冷热效应,实现制冷的原理。
其次,低温技术是指将物体的温度降低到较低的温度范围内,通常在零下100摄氏度以下。
低温技术的应用领域非常广泛,包括超导、超流体、超低温物理、医学冷冻、食品冷藏等多个领域。
在低温技术中,常用的原理包括制冷机制冷原理、液氮制冷原理和制冷剂制冷原理等。
制冷机制冷原理是通过制冷机将低温制冷剂制冷后传递给被制冷物体,实现降温的原理。
液氮制冷原理是利用液氮的低温特性,将其用作制冷剂,实现对被制冷物体的低温冷藏。
制冷剂制冷原理则是利用特定的制冷剂对被制冷物体进行制冷,以达到降温的目的。
综上所述,制冷与低温技术的原理涉及到多个方面的知识,包括热力学、物理学、化学等多个学科。
通过对制冷与低温技术原理的深入理解,我们可以更好地应用这些技术,推动科学技术的发展,为人类的生产生活提供更多的便利。
希望本文能够对读者有所帮助,也希望制冷与低温技术能够在未来得到更广泛的应用和发展。
制冷与低温技术原理习题1
制冷与低温技术原理习题1第三章蒸气压缩式制冷(1)一、填空题1.单级蒸气压缩式制冷循环的理论循环中,制冷系统由(),(),()和()四个基本部件组成,并用管道将它们串连成一个封闭的系统。
2.单级制冷机一般可用来制取()以上的低温。
3.蒸气压缩制冷循环中,节流过程产生的蒸气是()出来的,该蒸气通常称之为(),它在蒸发器中几乎不产生()作用。
4.在制冷剂的状态图p-h图中,等温线在液体区()线,在两相区是()线,在过热区是()线。
5.在制冷剂的状态图p-h中可以看到,在过热区,蒸气的过热度越大,其等熵线的斜率越()。
6.制冷机的性能主要用(),()和()反映。
7.单级蒸气压缩式制冷循环中,制冷剂的汽化潜热越(),或节流后所形成的蒸气的干度越(),则循环的单位制冷量越大。
(填大,小,不变)8.单级蒸气压缩式制冷循环中,对某一具体的制冷剂来说,理论循环的蒸气比体积v1随蒸发温度或蒸发压力的降低而()。
若冷凝温度已经确定,则单位容积制冷量随蒸发温度的降低而()。
9.单级蒸气压缩式制冷循环的理论比功与()和()有关。
10.单级蒸气压缩制冷循环中,冷凝温度越(),蒸发温度越(),则制冷系数越小。
(填高,低,不变)11.设不同制冷剂工质在一定蒸发温度和冷凝温度下完成制冷循环。
通过()可以反映系统的压力水平,通过(),()和()可以了解压缩机的工作条件,()和()可以反映制冷机的制冷能力,通过()可以反映制冷循环的经济性。
12.高压液体过冷对制冷循环的影响表现为:可使单位制冷量(),单位容积制冷量(),循环比功(),制冷系数()。
(填增加,略增加,减小,不变,或不定)。
13.由制冷剂的热力状态图可知,节流前液体的过冷度愈大,则节流后的干度愈(),循环的单位制冷量愈()。
因此,采用液体过冷循环,对提高()和()都是有利的。
14.采用液体过冷循环,在相同过冷度下,过冷使制冷量和制冷系数提高的百分数与制冷剂的()和()有关。
制冷与低温原理_图文
(1-13) (1-14)
(1-15)
闭口系完成一循环后,循环中与外界交换的 热量等于与外界交换的净功量
(1-16)
4.2 开口系统的能量平衡
图1-2 开口系统流动过程中的能量平衡
图示开口系统,dτ 时间内,质量
的微
元工质流入截面1-1,质量
的微元工质流出
2-2,系统从外界得到热量 ,对机器设备作功 。
热力完善度
(1-34) (1-35)
(1-36) (1-37)
(1-38)
(1-39)
温度 T
3.热源温度可变时的逆向可逆循环—洛伦兹循环
图1-10 洛伦兹循环的T-s图
洛伦兹循环工作 在二个变温热源 间。
与卡诺循环不同 之处主要是蒸发 吸热和冷却放热 均为变温过程
熵S
(假设制冷过程和冷却过程传热温差均为Δ T )
作为制冷剂应符合的要求
1.热力学性质方面
(1) 工作温度范围内有合适的压力和压力比。 蒸发压力≧大气压力 冷凝压力不要过高 冷凝压力与蒸发压力之比不宜过大
(2) 单位制冷量q0和单位容积制冷量qv较大。 (3) 比功w和单位容积压缩功wv小,循环效率高。 (4) 等熵压缩终了温度t2不能太高,以免润滑条件恶化
是系统为维持工质流动所需的功 , 称为流动功
3.焓
焓
用符号H表示,单位是焦耳 (J)
H= U+pV
(1-5)
比焓
用符号h表示,单位是焦耳/千克 (J/kg
)
(1-6)
焓是一个状态参数。
焓也可以表示成另外两个独立状态参数的函数 。 如:h=f(T,v) 或 h=f(p,T); h=f(p,v) (1-9)
借传热来传递能量无需物体的宏观移动。
制冷和低温技术原理—第2章 制冷方法
高压液体流 经膨胀阀节 流,形成低 压低温的 气,液两相 混合物进入 蒸发器。
4. 应用: 蒸气压缩式制冷机是应用最广泛的制冷机。 是本课程的重点内容之一。 具有100多年的历史,相当完备,广泛应用 在空气调节,各种冰箱,食品冷藏,冷加工 方面。 制冷的温度范围为5℃ — -150℃。
2.1.5 吸附式制冷
1. 系统组成:
吸附床,冷凝器,蒸发器 用管道连成一个封闭系统。
太阳辐射 沸石 吸附床 (沸石密封盒)
2. 工作原理:
肋片 (冷凝器) 储水器
一定的固体吸附剂对某种 (蒸发器) 制冷剂气体具有吸附作用, 白天脱附 夜间吸附 而且吸附能力随吸附剂温 太阳能沸石-水吸附制冷原理 度的改变而不同。 通过周期性地冷却和加热吸附剂, 使之交替地吸附和解吸。 解吸时,释放制冷剂气体,使之凝结为液体。 吸附时,制冷剂液体蒸发,产生制冷作用。
热电制冷
气体绝热膨胀制冷
高压气体经绝热膨胀即可达到较低 温度,令低压气体复热即可制取冷量。 高压气体经涡流管膨胀后即可分离冷, 热两股气流,用冷气流的复热过程即 可制冷。
气体涡流制冷
2.1 物质相变制冷
2.1.1 相变制冷概述
液体蒸发制冷 固体相变制冷
以流体为制冷剂,通 过一定的机器设备构 成制冷循环,利用液 体汽化时的吸热效应 ,实现对被冷却对象 的连续制冷。
2.2.2 磁制冷
1. 工作原理: 是利用磁热效应的一种制冷方式。
既是固体磁性物质(磁性离子构成的系统)在受磁场 作用磁化时,系统的磁有序度加强(磁熵减小), 对外放出热量;再将其去磁,则磁有序度下降(磁熵 增大),又要从外界吸收热量。
2.2.3 声制冷
1. 工作原理: 是利用热声效应的一种制冷方式。
制冷与低温技术原理
制冷与低温技术原理制冷和低温技术是为了提供低温环境而开发出的一项技术。
制冷技术主要用于在一定的环境温度下,将热量从一个物体或空间中移除,以降低其温度。
而低温技术则是使温度进一步降低到极低的水平,通常用于实验室研究、医疗设备和工业应用等领域。
制冷技术的原理主要基于热力学和热传导的原理。
按照热力学原理,热量会从高温的物体流向低温的物体,直到两者达到热平衡。
因此,通过制冷技术,我们可以利用一些工具和材料来降低物体的温度,使其与环境温度相比更低。
通常采用的制冷原理之一是蒸发冷却。
这种原理运用液体蒸发时吸收热量的特性。
当液体(通常是制冷剂)处于较低的压力下时,其沸点也会降低,因此液体会蒸发。
在蒸发的过程中,液体吸收周围环境的热量,使得周围环境的温度降低。
这就是为什么在身体上喷洒酒精或水会感觉凉爽,因为当它们蒸发时会吸收皮肤表面的热量。
制冷技术还可以利用压缩循环来实现。
这种原理基于两种物质经历压缩和膨胀阶段时温度的变化。
在压缩阶段,制冷剂被压缩成高温高压气体,然后通过冷凝器散热,变成高温高压液体。
接下来,液体通过膨胀阀控制放松到较低的压力,以降低温度。
在膨胀的过程中,制冷剂从液体变为气体,吸收周围环境的热量,然后进入蒸发器。
在蒸发器中,制冷剂在降低周围温度的同时,释放蒸发时所吸收的热量,重复循环使用。
低温技术则需要更加复杂的工艺来实现极低的温度。
其中最常用的技术是梯级制冷。
梯级制冷依赖于多级的制冷循环,每个循环都有一个深冷剂和一个浅冷剂组成。
深冷剂的制冷剂在较低的温度下工作,将其对应的温度传递给下一个浅冷剂的制冷剂。
这样,随着级数的增加,整个系统可以实现更低的温度。
目前最低的实现的温度约为100mK,也就是0.1K。
为实现这样低的温度,需要采用超导材料和特殊的制冷手段。
另一个常用的低温技术是制冷剂的制冷。
这种方法依赖于制冷剂的相变性质。
当制冷剂压缩时,其温度会升高,然后通过冷凝器和膨胀阀实现制冷剂的降温,然后进入蒸发器。
制冷与低温技术原理
制冷与低温技术原理
制冷技术的原理是通过将热量从一个物体或空间转移到另一个物体或空间,从而降低物体或空间的温度。
主要有以下几种原理:
1. 蒸发冷却:利用液体蒸发过程中吸收热量的特性来降低温度。
例如,制冷机中的制冷剂在蒸发器中蒸发时吸收空气中的热量,使得空气变得冷。
2. 压缩膨胀循环:通过压缩和膨胀的过程来实现制冷。
制冷机中的制冷剂被压缩成高温高压气体,然后通过膨胀阀发生膨胀,降低温度。
3. 热电效应:在一些材料中,当电流通过时会发生热量的吸收或释放。
通过控制电流的大小和方向,可以实现温度的调节。
低温技术是在制冷技术的基础上进一步降低温度的技术。
常见的低温技术包括:
1. 冷冻机:使用制冷剂循环制冷的机器,能够将物体或空间的温度降低到较低的程度。
2. 液氮冷却:利用液氮的低沸点来实现低温。
液氮的沸点为-196°C,可以通过倒入液氮来使物体或空间迅速冷却。
3. 超导技术:超导材料在极低温度下具有无电阻的特性。
通过将材料冷却到超导温度,可以实现超导电流的高效传输。
这些制冷和低温技术被广泛应用于各个领域,如制冷设备、食品储存、科学实验、医疗保健等。
制冷与低温技术原理低温原理部分
环境影响
1 能源消耗
制冷设备需要大量的能源来维持低温环境, 导致能源消耗和环境污染。
2 制冷剂泄漏
制冷剂的泄漏会对大气造成破坏,加剧温室 效应,对全球气候变化做出贡献。
发展趋势
未来制冷与低温技术将更加注重能源效率和环保,采用更环保的制冷剂和高效的制冷设备来减少能源消耗和环 境影响。
总结和展望
制冷与低温技术在工业和生活中发挥着重要作用,未来的发展需要解决能源 消耗和环境污染等挑战,以创造更可持续的低温解决方案。
制冷与低温技术原理低温 原理部分
欢迎来到制冷与低温技术原理低温原理部分。本节将探讨制冷与低温技术的 定义、基本原理以及在工业和生活中的应用,以及其对环境的影响和未来发 展趋势。
定义和作用
制冷与低温技术专注于创造和维持低温环境,其作用不仅包括食品冷藏和保 鲜,还扩展到医疗、航天、化学和电子产业等各个领域。
基本原理
1 制冷剂循环
通过制冷剂在高温和低温环境中的循环流动,将热量从低温区域转移到高温区域。
2 蒸发冷却
通过将制冷剂蒸发来吸收热量,使环境变得更加凉爽。
3 压缩与膨胀
通过压缩制冷剂使其升温,然后通过膨胀使其降温,实现制冷效果。
工业应用
食品加工
低温技术用于食品冷冻、速冻、干燥和冷藏等 过程,以延长食品的保质期。
电子
低温条件下可以提高电子元件的性能和寿命。
功效。
化学工业
一些化学制程需要在低温下进行,以控制反应 速度和产率。
生活应用
1 家用冷藏冰柜
冷藏和冷冻食物,使其保持新鲜和可食用。
2 空调系统
利用制冷技术调节室内温度,提供舒适的居住环境。
3 冷饮店和冰淇淋店
制冷与低温技术原理低温原理部分
– 三个同位素 H、D、T,氕氘氚 – T在自然界不存在 – 质子数为1,中子数分别为:0、1、2 – 通常指的氢是:H2和HD的混合物 – 还有 D2,T2,DT,HT,
•2021/2/3
•28
低温工质的性质—氢的性质
• 正氢与仲氢
– 正氢Ortha- 双原子同向旋转 – 仲氢Para-双原子逆向旋转 – 正、仲比例因温度而不同,温度低仲氢多 – 正仲转化,放热反应 – 导致LH2储存困难 – 转化速度很慢
”气体氦,之后又获得了超流氦
•2021/2/3
•10
低温制冷技术的进步
• 低温的获得—低温及获得时间:
– 1911年荷兰Onnes发现了超导现象
– 1933年美国Giauque对顺磁盐绝热去磁获 得0.27K的低温
– 1963年美国Kurti用绝热退磁法获得1.2106K的低温
– 1966年Hall采用He3-He4稀释制冷获得0.1K 连 续 制 冷 , 接 着 Ford 以 同 样 的 方 法 获 得 0.025K的连续制冷
• 热能的品质与价值
– 能量转换的方向性—第二定律
• 热能与冷能
– 热量的逆向传递—有能量附加投入
– 热电,
投入?
– 热冷,
投入?
•2021/2/3
•3
热能与人工制冷
高温区
高温区
动力机 输出功
制冷机
输入功
低温区
低温区
• 非自发过程进行需要投入能量
•2021/2/3
•4
温度与能量等级
低温价值 (低 环温 境温 温度 度 1)100 %
• 低温分离
– 同时可以得到多种产品 – 连续生产 – 产品纯度高 – 设备庞大,初投资大
低温制冷技术及其应用
低温制冷技术及其应用一、低温制冷原理低温制冷技术是一种利用低温环境实现热量转移和物质冷却的工程技术。
其基本原理是通过降低系统的温度,使热量从低温物体传向高温物体,从而实现制冷效果。
二、常见的低温制冷技术1. 机械制冷:利用机械压缩/膨胀原理,通过制冷剂的循环,实现制冷。
2. 液氮制冷:利用液氮的低温特性,通过液氮的蒸发吸热实现制冷。
3. 脉管制冷:利用脉管中冷媒的相变,实现低温制冷。
4. 热电制冷:利用热电效应实现制冷。
三、低温制冷技术的应用领域1. 科研实验:低温环境下进行物理、化学、生物等实验研究。
2. 工业生产:如金属冶炼、化学反应、能源开发等。
3. 医疗领域:如冷冻治疗、血液保存、器官移植等。
4. 航天领域:如卫星温度控制、空间探测器冷却等。
四、低温制冷技术的优缺点优点:1. 可实现低温环境,满足特殊需求。
2. 适用范围广,可用于不同领域。
3. 技术成熟,可靠性高。
缺点:1. 能耗较大,成本较高。
2. 部分技术复杂,维护困难。
3. 对环境有一定影响。
五、低温制冷技术的发展趋势1. 提高能效比,降低能耗。
2. 开发新型制冷技术,降低成本。
3. 拓宽应用领域,提高实用性。
六、低温制冷技术的前景展望随着科技的不断进步和各行业对低温环境需求的增加,低温制冷技术将有更广阔的应用前景。
未来,低温制冷技术将向更高效、更环保、更经济的方向发展。
在航天、能源、医疗等领域,低温制冷技术的市场需求将不断增长。
此外,随着新技术、新材料的发展,如纳米技术、超导材料等,也将为低温制冷技术的发展提供新的机遇和挑战。
七、低温制冷技术的实际案例分析例如,在医疗领域,低温冷冻手术是常见的应用案例。
通过使用低温冷冻技术,可以将病变组织迅速冷却至低温状态,使细胞内冰晶形成,破坏细胞结构,从而达到治疗目的。
此外,在科研实验中,低温制冷技术也广泛应用于材料科学、物理学、化学等领域的研究工作中,如超导材料的研究、量子计算的研究等。
在这些实验中,低温环境可以显著改变物质的性质,提供更多可能性来进行探索和研究。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一节 制冷的定义及研究内容
产品质量有很大影响。空间和遥感遥控技术更是与制冷技
术紧密联系,等等。 综上所述,随着科学技术的发展以及人民生活水平的 不断提高,制冷和低温技术在工业、农业、国防、建设、 科学研究等国民经济各个部门中的作用和地位日益重要。
第一节 制冷的定义及研究内容
二、制冷与低温的定义
由于温度范围不同,所采用的降温方式,使用的工质、
第一节 制冷的定义及研究内容
三、制冷与低温技术的研究内容
研究内容可以概括为以下四个方面: (1)研究获得低于环境温度的方法、机理以及与此对应 的循环,并对循环进行热力学的分析和计算。 (2)研究循环中使用的工质的性质,从而为制冷机和低 温装置提供合适的工作介质。因工质在循环中发生状态变 化,所以工质的热物理性质是进行循环分析和计算的基础 数据。此外,为了使这些工质能实际应用,还必须掌握它 们的一般物理化学基础。 (3)研究气体液化和分离技术。例如液化氧、氮、氢、 氦等气体,将空气或天然气液化、分离,均涉及一系列的 制冷和低温技术。
制冷是指在一定时间和一定空间内,用人工的方法和
手段将物体冷却,使其温度降低到环境温度以下,保持并 利用这个温度。 按照所获得的温度,通常将制冷的温度范围划分为以 下几个领域:120 K以上为普冷;120 K~0.3 K为深冷,也
称为低温;0.3 K以下为极低温。
机器设备以及依据的具体原理有很大差别。
第二节 制冷与低温技术的应用
三、在建筑工程方面的应用
在挖掘矿井、隧道、建造江河堤坝时,或者在泥沼、
沙水中掘进时,采用冻土法保持工作面,避免坍塌和保证 施工安全。拌合混凝土时,以冰代替水,借冰的熔化热补 偿水泥的固化反应热,这在制作大型混凝土构件时十分必 要,可以有效地避免大型构件因散热不充分而产生内应力 和裂缝等缺陷。 英吉利海底隧道全长 52 km ,是迄今世界上最长的隧 道。列车以160 km/h的速度穿过隧道时,空气温度将上升 到(49~55) ℃,必须进行降温处理。为此采用了8套冷水机 组,分装在隧道两侧,供隧道降温,每套机组的能力达到 (6000~7000) kW。
第二节 制冷与低温技术的应用
在钢铁工业中,高炉鼓பைடு நூலகம்需要用制冷的方法先除湿,
再送入高炉,以降低焦铁比,提高铁水质量。 在农牧业中,利用低温对农作物种子进行低温处理; 保存良种牲口的精液,以便进行人工授精。 在交通运输业中,已有采用压缩天然气的汽车。因液 化天然气存储体积小,能量密度大,今后液化天然气的发 展必定更具优势。
第二节 制冷与低温技术的应用
舒适性空调为人们创造适宜的生活和工作环境。如家
庭、办公室用的局部空调装置或房间空调器;大型建筑、 公共场所、车站、机场、宾馆、商厦、影剧院、游乐厅、 办公楼等使用的集中式空调系统;各种交通工具,如轿车、 客车、飞机、火车、船舱等的空调设施;文物保藏环境的 空气调节装置等等。 体育、游乐场所除采用制冷提供空气调节外,还用于 建造人工冰场。我国人工冰场原集中在东北、华北。现在 南方城市也相继建造了新型人工冰场,如广州溜冰俱乐部, 冰场面积1000 m2,年上冰人次已达20万;上海杰美体育中 心的室内冰场,面积达1200 m2。
制冷与低温技术原理
( 一)
多媒体教学课件 李文科 制作
第一章 绪 论
第一节 制冷的定义及研究内容
第二节 制冷与低温技术的应用 第三节 制冷与低温技术的发展史
第一节 制冷的定义及研究内容
内 容 提 要
一、制冷与低温技术的重要性
二、制冷与低温的定义
三、制冷与低温技术的研究内容
第一节 制冷的定义及研究内容
二、在工业及农牧业生产方面的应用
三、在建筑工程方面的应用
四、在科学研究及医疗卫生方面的应用
五、在空间技术与低温物理方面的应用
第二节 制冷与低温技术的应用
一、在商业及人民生活方面的应用
食品冷冻冷藏和舒适性空气调节是制冷技术应用最为 量大面广的领域。 商业制冷主要用于各类食品冷加工、冷藏贮存和冷藏 运输,使之保质保鲜,满足各个季节市场销售的合理分配, 并减少生产和分配过程中的食品损耗。现代的食品工业, 从生产、贮运到销售,有一条完整的“冷链”。所使用的 制冷装置有:各种食品冷加工装置、大型冷库、冷藏汽车、 冷藏船、冷藏列车、分配性冷库,供食品零售商店、食堂、 餐厅使用的小型装配式冷库、冷藏柜、各类冷饮设备、食 品冷藏冷冻展示柜,直至家庭用的电冰箱。
第二节 制冷与低温技术的应用
二、在工业及农牧业生产方面的应用
许多生产场所需要生产用空调系统,例如高温生产车 间、纺织厂、造纸厂、印刷厂、胶片厂、精密仪器车间、 精密加工车间、精密计量室、计算机房等的空调系统,为 各生产环境提供恒温恒湿条件,以保证产品质量或机床、 仪表的精度。 机械制造中,对钢进行低温处理,可以改变其金相组 织,使奥氏体变成马氏体,提高钢的硬度和强度。在机器 的装配过程中,利用低温进行零件的过盈配合。化学工业 中,借助于制冷,使气体液化、混合气分离,带走化学反 应中的反应热。盐类结晶、润滑油脱脂、石油裂解、合成 橡胶、生产化肥均需要制冷。
第一节 制冷的定义及研究内容
性能分析、结构设计。此外还有热绝缘问题,装置的自动 化问题,等等。 上述前三个方面构成制冷与低温技术原理的基本研究 内容,第四方面涉及具体的设备和装置。
(4)研究所需的各种机械和设备,包括它们的工作原理、
第二节 制冷与低温技术的应用
内 容 提 要
一、在商业及人民生活方面的应用
一、制冷与低温技术的重要性
在长期的生产实践和日常生活中,人们发现许多现象 与温度有密切关系。 炎热条件下希望降温以提供适宜的工作和生活环境。 所有生物过程都受温度影响,低温抑制食品发酵、霉菌的 增殖,对食品保鲜起重要作用。材料的某些重要特性与温 度有关,如机械材料具有冷脆性,塑料、橡胶也有同样的 性质;又如金属的导电性随温度下降而提高,有些纯金属 或合金当温度降到某一数值时出现超导性,人为地利用这 些特性,需要人工创造低温环境。通过降温产生物态变化, 可使混合气体分离、气体液化。扩散和化学反应与温度也 有直接关系,许多生产工艺过程中温度对产品性能和