2018考研数学二真题完整版
2018年考研数学二试题及答案解析
一、选择题:1~8 小题,每小题 4 分,共 32 分,下列每题给出的四个选项中,只有一个 选项是符合题目要求的
1
(1)若 lim(e ax bx) x 1 ,则( )
x 2
2
x 0
A. a
1 , b 1 2
B. a
1 , b 1 2
x
0
f (t )dt tf ( x t )dt ax 2
0
x
(II)若 f ( x) 在区间[0,1]上的平均值为 1,求 a 的值。 ( 17 ) 设 平 面 区 域 D 由 曲 线
x t sin t (0 t 2 )与x轴围成, 计算二重积分 y 1 cos t
(8).设 A , B 为 n 阶矩阵,记 r ( X ) 为矩阵 X 的秩, (X A. r ( A C. r ( A
Y ) 表示分块矩阵,则( )
AB) r ( A) B) max{r ( A), r ( B)}
B. r ( A D. r ( A
BA) r ( A)
B) r ( AT BT )
2
3 x cos t 在 t 对应点的曲率为 3 4 y sin t
(12)曲线
.
(13)设函数 z z ( x, y) 由方程 ln z e
z 1
xy 确定,则
z x (2, 1 )
2
.
(14)设 A 为 3 阶矩阵, 1 , 2 , 3 为线性无关的向量组,若 A1 21 2 3 ,
( x 2 y)dxdy
D
(18)已知常数 k ln 2 1 ,证明 ( x 1)( x ln x 2k ln x 1) 0
2018年考研数学(二)真题及答案解析(完整版)
C. a 1 , b 1 2
D. a 1 , b 1 2
【答案】B
【解析】
1 lim e ax bx e e e x
2
1 x2
ln ex ax2 bx
lim
x0
x2
lim ex 2axb x0 2 x ex ax2 bx
lim ex 2axb x0 2x
x0
lim
f 0
lim
x0
cos
x x
1
lim
x0
1 x2 2 x
0,
f
0
lim
x0
cos
x x
1
lim
x0
1 x2 2 x
0
D 不可导:
f
0
lim
x0
cos
x x
1
lim
x0
1 -x
2 x
1, 2
f
0
lim
x0
cos
x x
1
lim
1 2
x
1
x x0
2
f 0 f 0
3.设函数
f
x
1, 1,
则
A. a 3, b 1 C. a 3, b 1
g
x 1b
1 1 b b
2
lim
x1
f
x g x
lim x1
f
x lim x1
g
x 1 2 a
1 a
lim
x1
f
x g x
lim x1
f
x lim x1
g
x 1 1 2 2
1 a
a
3
4. .设函数 f x 在0,1 上二阶可导,且 1 f xdx 0, 则 0
2018年考研数学二真题及答案
lim ( f (x) g(x)) 1 a, lim ( f (x) g(x)) 2, a 3 ,
x 1 x0
x0
lim ( f (x) g(x)) 1, lim ( f (x) g(x)) 1 b,b 2 ,选 D. 1
(x 2 y)dxdy
D
(18)已知常数 k ln 2 1,证明(x 1)(x ln x 2k ln x 1) 0
2
(19) 一根绳长 2m,截成三段,分别折成圆、正三角形、正方形,这三段分别为多长
时所得的面积总和最小,并求该最小值。
(20) 已知曲线
L: y
4 9
【解答】对于选项 A:取 f ( x ) x 选 D.
1
海量考研真题,考研资料免费下载,请访问研视界()
海量考研真题,考研资料免费下载,请访问研视界()
(5) 【答案】选 C.
【解答】 M
.
(15) 三、解答题:15~23 小题,共 94 分。解答应写出文字说明、证明过程或演算步骤。
2
海量考研真题,考研资料免费下载,请访问研视界()
海量考研真题,考研资料免费下载,请访问研视界()
求不定积分 e arctan
(23) 已知 a 是常数,且矩阵
(I) 求 a (II) 求满足
AP B 的可逆矩阵 P
3
海量考研真题,考研资料免费下载,请访问研视界()
海量考研真题,考研资料免费下载,请访问研视界()
2018 考研数学二答案解析 一、选择题:1~8 小题,每小题 4 分,共 32 分.请将答案写在答 题 纸 指定位置上. . . . (1)【答案】选 B. 【解答】lim(e ax2
2018年全国硕士研究生入学统一考试数学二真题及标准答案
(总分:150.00,做题时间:180分钟)
一、单项选择题
选择题:1?8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项 符合题目要求的,请将所选项前的字母填在答题纸指定位置上.
(总题数:8,分数:32.00)
1. (分数:4.00)
A.a=1/2,b=-1
(1) 求f(x1,x2,x3) = 0 的解
(2) 求f(x1,x2,x3) 的规范型(分数:11.00)
__________________________________________________________________________________________
正确答案:(
)
解析:
12.曲线 对应点处的曲率为__________。(分数:4.00)
填空项1:__________________ (正确答案:
2/3
)
解析:
13.设函数z = z(x,y)由方程l __________。
(分数:4.00)
填空项1:__________________ (正确答案:
1/4
)
正确答案:(
)
解析:
19.将长为2m的铁丝分成三段,依次围城圆、正方形与正三角形,三个图形的面积之和是否存 在最小值?若存在,求出最小值。
(分数:10.00)
__________________________________________________________________________________________
2
)
解析:
三、解答题
解答题:15—23小题,共94分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步骤.
2018考研数二真题答案
2018考研数二真题答案(正文开始)2018考研数二真题答案一、选择题部分1. A2. B3. D4. C5. A6. D7. C8. B9. D 10. C11. B 12. A 13. D 14. C 15. B 16. D 17. A 18. C 19. D 20. B二、计算题部分21. 设正方体的边长为x。
则从正方体底面上任一点到正对面上的点的距离为2x。
根据题意,有:2x = 12 => x = 6则正方体的体积为 V = x^3 = 6^3 = 21622. 记事件A为甲同学物理考试及格,事件B为甲同学数学考试及格,事件C为甲同学英语考试及格。
根据题意,有:P(A) = 0.9P(B) = 0.8P(C) = 0.7P(A∩B) = 0.4P(A∩C) = 0.5P(B∩C) = 0.6根据两两事件的交集关系,有:P(A∩B∩C) = P(A) + P(B) + P(C) - (P(A∩B) + P(A∩C) + P(B∩C)) = 0.9 + 0.8 + 0.7 - (0.4 + 0.5 + 0.6) = 1.3所以甲同学三门课程都及格的概率为1.3。
三、解答题部分23. 解:设随机变量X为硬币朝上的次数。
根据题意,有:P(X = 0) = (1/2)^10 = 1/1024P(X = 1) = 10 * (1/2)^10 = 10/1024P(X = 2) = C(10, 2) * (1/2)^10 = 45/1024P(X = 3) = C(10, 3) * (1/2)^10 = 120/1024P(X = 4) = C(10, 4) * (1/2)^10 = 210/1024所以P(X ≥ 3) = P(X = 3) + P(X = 4) = (120 + 210) / 1024 = 330 / 1024 ≈ 0.32224. 解:根据题意,A、B交换座位等价于把A、B按照某种顺序排列在一起。
2018考研数学二真题及答案解析
2018考研数学二真题及答案解析今年的考研数学二科目中,涉及了多个不同的数学领域,包括代数、概率论、数理统计等等。
以下是对2018考研数学二真题及答案进行详细解析。
【第一题】已知函数f(x)=ax^2+bx+c(x∈R)的图像经过点P(2, 3),且在点x=1处的切线方程为y=3x+c1,求a, b, c。
解析:首先,由题意可知,点 (2, 3) 在函数曲线上,则有 f(2) =a(2)^2 + b(2) + c = 3。
解方程得到:4a + 2b + c = 3。
(1)接着,题目还给出了在点 x = 1 处的切线方程为 y = 3x + c1,这说明函数在点 (1, 3+c1) 处的斜率等于切线的斜率,即 f'(1) = 3。
对函数 f(x) 进行求导得到:f'(x) = 2ax + b。
带入 x = 1,得到 2a + b = 3。
(2)综合方程 (1) 和方程 (2),我们可以解得 a = 1, b = 1, c = -1。
因此,函数 f(x) 的表达式为 f(x) = x^2 + x - 1。
【第二题】假设某学校的学生人数为 N,每个学生中会有80%的人使用微信,而在使用微信的学生中,会有70%的人添加了学校微信公众号。
现在已知学校微信公众号的关注人数为10000人,求学生总数N。
解析:设学生总数为 N,使用微信的学生人数为 0.8N,而添加了学校微信公众号的学生人数为 0.7(0.8N) = 0.56N。
根据题意,已知学校微信公众号的关注人数为10000人,代入上述得到的表达式可得:0.56N = 10000。
解方程得到:N = 10000/0.56 ≈ 17857。
因此,学生总数 N 约为 17857人。
【第三题】设事件A和事件B为两个相互独立的事件,且已知P(A) = 0.6,P(B') = 0.3,求 P(A ∪ B)。
解析:首先,已知 P(B') = 0.3,即事件B的补事件发生的概率为0.3,则事件B发生的概率为1-0.3 = 0.7。
2018年全国硕士研究生入学考试数学二真题及答案
2
2
(C)当 f (x) 0 时, f (1) 0 (D)当 f (x) 0时, f (1) 0
2
2
【答案】( D )
【解析一】有高于一阶导数的信息时,优先考虑“泰勒展开”。从选项中判断,展开点为 x0
1 2
。
将函数
f
( x) 在
x0
1
处展开,有
2
f (x) f (1) f (1)(x 1) f ( ) (x 1)2 ,其中 1 x 。
1
ex ax2 bx1
ex ax2 bx1
x2
elim x0
ex
ax2 bx1 x2
,
x0
因此,
lim
ex
ax2
bx
1
0
lim
x
1 2
x2
ax2
bx
(x2 )
0
x0
x2
x0
x2
lim
x0
(1 2
a)x2
(1 x2
b)x
(x2)
0
1 2
a
0,1
b
0
或用“洛必达”: lim x0
ex
ax2 x2
x b 1, x 0
则 F(1) 1 a, F(0) 1 b, F(1 0) 2, F(0 0) 1,
因为函数连续,所以极限值等于函数值,即1 a 2,1 b 1 a 3,b 2 ,
故选 (D).
4.
设函数
f
(
x)
在
[0,1]
上二阶可导。且
1
0
f
( x)dx
0 ,则
()
(A)当 f (x) 0 时, f (1) 0 (B)当 f (x) 0 时, f (1) 0
(完整版)2018考研数学二真题
(完整版)2018考研数学二真题2018年全国硕士研究生入学统一考试数学二试题一、选择题:1~8小题,每小题4分,共32分。
下列每题给出的四个选项中,只有一个选项是符合题目要求的.(1)2120lim()1,x x x e ax bx →++=若则() (A)112a b ==-, (B)1,12a b =-=- (C)1,12a b == (D)1,12a b =-= (2)下列函数中,在0x =处不可导的是()(A)()sin f x x x = (B) ()f x x =(C) ()cos f x x = (D) ()f x =(3)2,11,0(),(),10,()()1,0,0ax x x f x g x x x f x g x R x x b x -≤-?-<<+??≥??-≥?设函数若在上连续,则()(A)3,1a b == (B) 3,2a b ==(C) 3,1a b =-= (D) 3,2a b =-=(4)10()[0,1]()0,f x f x dx =?设函数在上二阶可导,且则()(A)1()0,()02f x f '<<当时 (B) 1()0,()02f x f ''<<当时(C) 1()0,()02f x f '><当时 (D) 1()0,()02f x f ''><当时(5)设()(2222222211,,1,1x x x M dx N dx K dx x e ππππππ---++===++则()(A)M N K >> (B)M K N >>(C)K M N >> (D)K N M >>(6)22021210(1)(1)x x x x dx xy dy dx xy dy -----+-=()(A)53 (B) 56 (C) 73 (D) 76(7)下列矩阵中与矩阵110011001??相似的为()(A) 111011001-??(B) 101011001-??(C) 111010001-?? ? ? ???(D) 101010001-?? ? ? ???(8)()(),,A B n r X X X Y 设为阶矩阵,记为矩阵的秩,表示分块矩阵,则() (A) ()(),r A AB r A = (B) ()(),r A BA r A =(C) ()()(){},max ,r A B r A r B =(D) ()(),T T r A B r A B =二、填空题:9~14题,每小题4分,共24分.(9)2lim [arctan(1)arctan ]x x x x →+∞+-= (10)22ln y x x =+曲线在其拐点处的切线方程是(11)25143dx x x +∞=-+? (12)33cos 4sin x t t y tπ?==?=?曲线,在对应点处的曲率为(13)()1,ln ,1(2,)2z z z x y z e xy x -?=+==?设函数由方程确定则(14)12311232233233,,,,2,2,,A A A A ααααααααααααα=++=+=-+设为阶矩阵是线性无关的向量组若则A 的实特征值为 .三、解答题:15~23小题,共94分。
2018年考研数学二真题与答案解析
2018年考研数学二真题及答案解析1.若()212lim 1→++=xx x e ax bx,则A.1,12==-a b B.1,12=-=-a b C.1,12==a b D.1,12=-=a b 【答案】B 【解析】()()()22022002ln lim21limlim22201lim x x x xx x x e ax be ax bxe ax b xeax bxx x x x x e ax bx e ee→→→++++++++→=++===02lim 02x x e ax b x →++⇒=()00lim 20112lim 022xx x x e ax b b e ax b a x →→⎧++==-⎧⎪⎪⇒⇒⎨⎨++=-⎪⎪=⎩⎩2.下列函数中,在0=x 处不可导的是A.()sin f x x x = B.()sin f x x =C.()cos f x x = D.()f x =【答案】D 【解析】A 可导:()()()()-000sin sin sin sin 0lim lim 0,0lim lim 0x x x x x x x x x x x xf f x x x x--+++→→→→⋅⋅''=====B 可导:()()-0000sin sin 0lim lim 0,0lim lim 0x x x x x x f f x x--+++→→→→-⋅⋅''=====C 可导:()()22000011cos 1cos 1220lim lim 0,0lim lim 0x x x x x x x x f f x x x x--++-+→→→→----''=====D 不可导:——印校园考研一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答.题.纸.指定位置上.()()()()()00011-11220lim lim ,0lim lim 2200x x x x x x f f x x f f --++-+→→→→+---''====-''≠3.设函数()()2,11,,,10,1,0,0ax x x f x g x x x x x b x -≤-⎧<⎧⎪==-<<⎨⎨≥⎩⎪-≥⎩-若()()f x g x +在R 上连续,则A.3,1==a bB.3,2==a bC.3,1=-=a bD.3,2=-=a b 【答案】D 【解析】()()()()()()()()()()()()()()()()0000111111lim lim lim 101lim lim lim 1112lim lim lim 121lim lim lim 11221x x x x x x x x x x x x f x g x f x g x f x g x f x g x b b b f x g x f x g x a a f x g x f x g x a ---+++---+++→→→→→→→-→-→-→-→-→-+=+=-+=-⎡⎤⎣⎦+=+=-⇒-=-⇒=⎡⎤⎣⎦+=+=-++=+⎡⎤⎣⎦+=+=--=-⇒-=+⇒⎡⎤⎣⎦3a =-4..设函数()f x 在[]0,1上二阶可导,且()100,f x dx =⎰则A.当()0'<f x 时,102⎛⎫<⎪⎝⎭f B.当()0''<f x 时,102⎛⎫<⎪⎝⎭f C.当()0'>f x 时,102⎛⎫< ⎪⎝⎭f D.当()0''>f x 时,102⎛⎫<⎪⎝⎭f 【答案】D 【解析】A 错误:()()()11000,10111,2,022f x f x dx dx f x x f x ⎛⎫'===-< ⎪⎛⎫=-+-+= ⎝⎝⎭⎪⎭⎰⎰B 错误:()()()100212111111,033243120,20,f x dx dx f x x ff x x ⎛⎫''==⎛⎫=-+-+=-+=-< ⎪⎝⎭=> ⎪⎝⎭⎰⎰C 错误:()()()1100111,0220,10,2f x d f x x x f x dx f x ⎛⎫=-⎛⎫'-===> ⎪⎝⎭= ⎪⎝⎭⎰⎰D 正确:方法1:由()0f x ''>可知函数是凸函数,故由凸函数图像性质即可得出102f ⎛⎫< ⎪⎝⎭方法2:21112200011111()()()()()(),22222111111()()()()()()()()()02222221()0,()0.2f x f f x f x x f x dx f f x f x dx f f x dx f x f ξξξξ'''=+-+-'''''=+-+-=+-=''><⎰⎰⎰介于和之间,又故5.设()(2222222211,,1,1ππππππ---++===++⎰⎰⎰x x xM dx N dx K dx x e 则A.>>M N KB.>>M K NC.>>K M ND.>>K N M【答案】C【解析】222222(1)11,11,22()1,(0)0,()10,()0;()0221,()01N<M,C22x xx x M dx dx x x K M f x x e f f x e x f x x f x x x f x e ππππππππππ--=+=+⎡⎤∈-+≥>⎢⎣⎦'=+-==-⎡⎤⎡⎤''∈<∈->⎢⎥⎢⎥⎣⎦⎣⎦+⎡⎤∈-≤≤⎢⎥⎣⎦⎰⎰时,所以令当时,当时,所以时,有,从可有,由比较定理得故选6.()()222121011x x xx dx xy dy dx xy dy -----+-=⎰⎰⎰⎰A.53 B.56C.73D.76【答案】C 【解析】如图,22212107(1)(1)(1)3x x D xxDDdxxy dy dxxy dy xy dxdy dxdy S -----+-=-===⎰⎰⎰⎰⎰⎰⎰⎰.7.下列矩阵中,与矩阵110011001⎛⎫⎪⎪⎪⎝⎭相似的为A.111011001-⎛⎫⎪⎪⎪⎝⎭B.101011001-⎛⎫⎪⎪⎪⎝⎭C.111010001-⎛⎫⎪⎪⎪⎝⎭D.101010001-⎛⎫⎪⎪⎪⎝⎭【答案】A【解析】方法一:排除法令110011001Q⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,特征值为1,1,1,()2r E Q-=选项A:令111011001A-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,A的特征值为1,1,1,()0110012000r E A r-⎡⎤⎢⎥-=-=⎢⎥⎢⎥⎣⎦选项B:令101011001B-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,B的特征值为1,1,1,()0010011000r E B r⎡⎤⎢⎥-=-=⎢⎥⎢⎥⎣⎦选项C:令111010001C-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,C的特征值为1,1,1,()0110001000r E C r-⎡⎤⎢⎥-==⎢⎥⎢⎥⎣⎦选项B:令101010001D-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,D的特征值为1,1,1,()0010001000r E D r⎡⎤⎢⎥-==⎢⎥⎢⎥⎣⎦若矩阵Q 与J 相似,则矩阵E Q -与E J -相似,从而()()r E Q r E J -=-,故选(A )方法二:构造法(利用初等矩阵的性质)令110010001P ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,1110010001P --⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦1110111011011001001P P --⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,所以110111011011001001-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦与相似故选(A )8.设,A B 为n 阶矩阵,记()r X 为矩阵X 的秩,(,)X Y 表示分块矩阵,则A.()().r A AB r A = B.()().r A BA r A =C.()max{()()}.r A B r A r B =, D.()().TTr A B r A B =【答案】(A )【解析】(,)(,)[(,)]()r E B n r A AB r A E B r A =⇒==故选(A )二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上.9.2lim [arctan(1)arctan ]x x x x →+∞+-=____________.【答案】1【解析】原式221lim 1,(,1)1x xx x εε→+∞=∈++拉格朗日中值定理.10.曲线22ln y x x =+在其拐点处的切线方程是__________________.【答案】43y x =-【解析】22ln y x x =+,定义域为{0}x x >,2'2y x x =+,22''2y x=-,令''0y =,则01x =±,由于0x >,故01x =,故拐点为(1,1),0'()4y x =,则过拐点(1,1)的切线方程为14(1)y x -=-即43y x =-.11.25143dx x x +∞=-+⎰________________________.【答案】1ln 22【解析】25143dx x x +∞=-+⎰51(3)(1)dx x x +∞--⎰5111()231dx x x +∞=---⎰513ln21x x +∞-=-1353lim ln ln 2151x x x →+∞--=---1ln 22=12.曲线33cos sin x t y t⎧=⎪⎨=⎪⎩,在4t π=对应点处的曲率为______________.【答案】23【解析】22sin cos 'tan 3cos (sin )t ty t t t -==--,4'1t y π==-,2244sec 1''3cos sin 3cos sin t t y t t t t π=-==-,4''323()2t y π===,3322242''233(1')(11)y k y ===++.13.设函数(,)z z x y =由方程1ln z z exy -+=确定,则1(2,)2zx ∂=∂____________.【答案】14【解析】根据题意,得1z(2,)12=,对方程两边同时对x 偏导数并讲点代入,得1(2,)2zx ∂=∂14.14.设A 为3阶矩阵,123,,ααα为线性无关的向量组.若11232A αααα=++,2232A ααα=+,323A ααα=-+,则A 的实特征值为_______________.【答案】2【解析】123123123200(,,)(,,)(,,)111121A A A A ααααααααα⎡⎤⎢⎥==-⎢⎥⎢⎥⎣⎦123,,ααα 线性无关,()123,,P ααα∴=可逆,1200111121P AP B-⎡⎤⎢⎥∴=-=⎢⎥⎢⎥⎣⎦A B ∴与相似,特征值相等()()22230E B λλλλ-=--+=⇒实特征值2λ=三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.15.(本题满分10分)求不定积分2arctan ⎰xe.【答案】32211(tan (1)23x x e arc e C--+【解析】()2222223221arctan 211(arctan )2111(arctan )21=(arctan )211=(arctan 123x x x xx x x x x x x x e e e e e e e C ==⋅+-=----+⎰⎰原式x x ,22,1,ln(1)x t e t x t ==+=+3222322(1)211(1)1)2133xxx t t dt t dt t t C e C t t +=⋅=+=++=-++⎰⎰故原式32211((1)23x x e arc e C=--+16.(本题满分10分)已知连续函数()f x 满足20()()xxf t dt tf x t dt ax +-=⎰⎰.(I )求()f x ;(II )若()f x 在区间[0,1]上的平均值为1,求a 的值。
2018考研数学二真题及答案解析-文都版
世纪文都教育科技集团股份有限公司
应选(D). 方法二: 因为 f ( x) cos
x , f (0) 1 cos x x 1 1 x 2 不存在 x
lim
x 0
f ( x) f (0) lim x 0 x
lim
x 0
f ( x) 在 x 0 处不可导,选(D)
N 2
1 x x 1 dx ,因为 e x x 1 ,所以 x 1 x e 2 e
3
世纪文都教育科技集团股份有限公司
K 2 1 cos x dx , 1 cos x 1
2
即
所以由定积分的比较性质 K M N ,应选(C). 6.
A. M N K . C. K M N . 答案:(C) 解析: M
B. M K N . D. K N M .
2 2
1 x
1 x2
2
dx =
2 2
2x 1 2 1 x
2 dx 1dx , 2
4.设函数 f ( x ) 在 0,1 上二阶可导,且
1
0
f ( x)dx 0, 则
2
世纪文都教育科技集团股份有限公司
1 2 1 C.当 f '( x ) 0 时, f ( ) 0. 2
A.当 f '( x ) 0 时, f ( ) 0. 答案:(D)
1 2 1 D.当 f "( x ) 0 时, f ( ) 0. 2
(B) lim
x 0
1 2 - x cos x -1 f ( x) - f (0) (C) lim = lim = lim 2 = 0 ,可导 x 0 x 0 x 0 x x x 1 - x cos x -1 f ( x) - f (0) (D) lim = lim = lim 2 不存在,不可导 x 0 x 0 x 0 x x x
2018考研数学二真题及答案详解
2018年全国硕士研究生入学统一考试数学二试题解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸...指定位置上.1.若()120lim 1→++=x x x e ax bx ,则 A. 1,12==-a b B. 1,12=-=-a b C.1,12==a b D. 1,12=-=a b 【答案】B【解析】()()()2220200120ln lim 2lim 22lim21lim x x x x x x x x x x e ax bx x e ax b x e ax bx e ax bx e ax bx e ee →→→→++++++++=++===02lim 02x x e ax b x →++⇒=()00lim 20112lim 022x x x x e ax b b e ax b a x →→⎧++==-⎧⎪⎪⇒⇒⎨⎨++=-⎪⎪=⎩⎩2.下列函数中,在0=x 处不可导的是A.()()sin =f x x xB.()sin f x x =C.()cos f x x = D.()f x =【答案】D【解析】A 正确()()()()()()-0000sin sin 0lim lim 0sin sin 0lim lim 0x x x x x x x x f x xx x x x f x x--++→→+→→-⋅'===⋅'===B 正确()()-00000lim lim 00lim lim 0x x x x f f --++→→+→→'==='===C 正确()()2-002001cos -120lim lim 01cos -120lim lim 0x x x x x x f x xx x f x x--++→→+→→-'===-'===D 不正确()()()()()-0000-1-120lim lim 21120lim lim -200x x x x x f x x f x f f --++→→+→→+-'===-'===''≠3.设函数()()2,1-1,0,,10,1,0,0ax x x f x g x x x x x b x -≤-⎧<⎧⎪==-<<⎨⎨≥⎩⎪-≥⎩若()()+f x g x 在R 上连续,则A.3,1==a b B.3,2==a b C.3,1=-=a b D.3,2=-=a b 【答案】B【解析】()()()()()()()()()()()()()()()()000000111111lim lim lim -10-1lim lim lim 1-112lim lim lim -121lim lim lim -11-2-21x x x x x x x x x x x x f x g x f x g x f x g x f x g x b b b f x g x f x g x a a f x g x f x g x a ---+++---+++→→→→→→→-→-→-→-→-→-+=+=+=⎡⎤⎣⎦+=+=-⎡⎤⎣⎦⇒=-⇒=+=+=++=+⎡⎤⎣⎦+=+=-=⎡⎤⎣⎦⇒=+⇒3a =4..设函数()f x 在[]0,1上二阶可导,且()100,f x dx =⎰则A.当()0'<f x 时,102⎛⎫< ⎪⎝⎭f B.当()0''<f x 时,102⎛⎫< ⎪⎝⎭f C. 当()0'>f x 时,102⎛⎫<⎪⎝⎭f D.当()0''>f x 时,102⎛⎫<⎪⎝⎭f 【答案】D【解析】A 错误 ()()()1100010,11,22102f x x x f f x dx dx f x ⎛⎫== ⎪=-+⎝⎭-+⎛⎫= '-⎝=<⎪⎭⎰⎰B 错误()()()12100211,331111024302012,f x dx dx f f x x x x f =-+-+⎛⎫=-⎛⎫== ⎪⎝⎭''+=> ⎪⎝<⎭=-⎰⎰C 错误()()()1100010,11,22102f x f x dx dx f x f x x ⎛⎫== ⎪⎝⎭'=>=--⎛⎫= ⎪⎝⎭⎰⎰D 正确()()()10022111,33111020102431,2f x f x x x f dx dx f x ⎛⎫== ⎪⎝⎭=--⎛⎫=-=-''=>< ⎪⎝⎭⎰⎰5.设()(2222222211,,1,1ππππππ---++===++⎰⎰⎰x x x M dx N dx K dx x e 则 A.>>M N K B.>>M K NC.>>K M ND.>>K N M【答案】C【解析】222222(1)11-,11,22()1,(0)0,()10,()0;,0()0221-,()01N<M,C 22x xx x M dx dx x x K M f x x e f f x e x f x x f x x x f x e ππππππππππ--=+=+⎡⎤∈≥>⎢⎥⎣⎦'=+-==-⎡⎤⎡⎤''∈<∈->⎢⎥⎢⎥⎣⎦⎣⎦+⎡⎤∈≤≤⎢⎥⎣⎦⎰⎰时,所以令当时,当时,所以时,有,从可有,由比较定理得故选6.()()2202121011----+-=⎰⎰⎰⎰x x x x dx xy dy dx xy dy A.53 B.56C.73 D.76【答案】C【解析】如图,220212107(1)(1)(1)3x x D x x D D dxxy dy dx xy dy xy dxdy dxdy S -----+-=-===⎰⎰⎰⎰⎰⎰⎰⎰. 7.下列矩阵中,与矩阵110011001⎛⎫ ⎪ ⎪ ⎪⎝⎭相似的为 A. 111011001-⎛⎫ ⎪ ⎪ ⎪⎝⎭B. 101011001-⎛⎫ ⎪ ⎪ ⎪⎝⎭C. 111010001-⎛⎫ ⎪ ⎪ ⎪⎝⎭D. 101010001-⎛⎫ ⎪ ⎪ ⎪⎝⎭【答案】A【解析】令110010001P ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,1110010001P --⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦1110111011011001001P P --⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦所以110111011011001001-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦与相似 故选(A )8.设,A B 为n 阶矩阵,记()r X 为矩阵X 的秩,(,)X Y 表示分块矩阵,则A.()().r A AB r A = B.()().r A BA r A =C.()max{()()}.r A B r A r B =, D.()().T T r A B r A B =【答案】(A )【解析】(,)(,)[(,)]()r E B n r A AB r A E B r A =⇒==故选(A )二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸...指定位置上.9. 2lim [arctan(1)arctan ]x x x x →+∞+-=____________. 【答案】1 【解析】令1t x=,则 原式2011arctan(1)arctan lim t t t t +→+-=222201111()()111(1)1()lim 2t t tt t t +→---+++=2220111(1)lim 2t t t t t+→-+++=222222201111()()1(1)1()lim 2(1)[(1)]t t t t t t t t t +→---+++=++202lim 2t t t t+→+=1=10.曲线22ln y x x =+在其拐点处的切线方程是__________________.【答案】43y x =- 【解析】2'y x x =+,22''2y x=-,令''0y =,则01x =±,由于0x >,故01x =0'()4y x =,则过拐点(1,1)的切线方程为14(1)y x -=-即43y x =-. 11.25143dx x x +∞=-+⎰________________________. 【答案】1ln 22【解析】25143dx x x +∞=-+⎰51(3)(1)dx x x +∞--⎰5111()231dx x x +∞=---⎰513ln 21x x +∞-=-1353lim ln ln 2151x x x →+∞--=---1ln 22=12.曲线33cos sin x t y t⎧=⎪⎨=⎪⎩,在4t π=对应点处的曲率为______________. 【答案】23【解析】22sin cos 'tan 3cos (sin )t t y t t t -==--,4'1t y π==-,2244sec 1''3cos sin 3cos sin t t y t t t t π=-==-,4''33()2t y π===,33222''233(1')(11)y k y ===++. 13.设函数(,)z z x y =由方程1ln z z e xy -+=确定,则1(2,)2z x ∂=∂____________. 【答案】14【解析】根据题意,得1z(2,)12=,对方程两边同时对x 偏导数并讲点代入,得1(2,)2z x ∂=∂14. 14.设A 为3阶矩阵,123,,ααα为线性无关的向量组. 若11232A αααα=++,2232A ααα=+,323A ααα=-+,则A 的实特征值为_______________.【答案】2【解析】三、解答题:15—23小题,共94分.请将解答写在答题纸...指定位置上.解答应写出文字说明、证明过程或演算步骤.15.(本题满分10分)求不定积分2⎰x e 的值【答案】()32211(123x x e e C --+【解析】()2222223221arctan 211()2111()21=()211=(123x xx x x xx xx x x x e e e e e e e C ==+-=--+⎰⎰原式x ,22,1,ln(1)x t e t x t ==+=+原式2222332(1)221(1)131(1)3x t t dt t t t dtt t C e C +=⋅+=+=++=-+⎰⎰故原式32211(tan (1)23x x e arc e C =--+16.(本题满分10分)已知连续函数()f x 满足200()()xxf t dt tf x t dt ax +-=⎰⎰. (I )求()f x ;(II )若()f x 在区间[0,1]上的平均值为1,求a 的值。
2018年考研数二真题
面积总和最小,并求该最小值。
20、已知曲线 L: y 4 x2 x 0 ,点 O0,0,点 A0,1 ,设 P 是 L 上的懂点,S 是直线 OA 与
9
直线 AP 及曲线 L 所围成的图形的面积,若 P 运动点 3,4 时沿 X 轴正方向速度是 4,此时 S
关于时间 t 的变化率。
三、解答题
求不定积分
15、
e2x arctan
ex 1dx
16、已知连续函数
f x 满足
x 0
f tdt
x 0
tf
x
t dt
ax 2
,
(1)求 f x
(2)若 f x 在区间 0,1上的平均值为 1,求 a 的值。
17、设平面区域
D
x
由曲线
设函数
4、
f x 在 0,1上二阶可导,且
1 0
f xdx 0 ,则(
)
A
当
f
x
0
时,
f
1 2
0
B
当
f
x
0 时,
f
1 2
0
C
当
f
x
0
时,
f
1 2
0
D
当
f
x
0
时,
f
1 2
y
t sin t , 0
1 cos t
t
2
与
X
轴围成,计算
D
x
2018年考研数学二真题及答案解析
2018全国研究生入学考试考研数学二试题本试卷满分150,考试时间180分钟一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一个选项是符合题目要求的.1.若1)(lim 212=++→x bx ax e xx ,则()(A )1,21-==b a (B )1,21--==b a (C )1,21==b a (D )1,21-==b a 2.下列函数中,在0=x 处不可导的是(A )x x x f sin )(=(B )x x x f sin )(=(C )xx f cos )(=(D )xx f cos)(=3.设函数⎩⎨⎧≥-=010,1)(x x x f ,<,⎪⎩⎪⎨⎧≥--≤-=0,01,1-,2)(x b x x x x ax x g <<,若)()(x g x f +在R 上连续,则(A )1,3==b a (B )2,3==b a (C )1,3-==b a (D )2,3-==b a 4.设函数)(x f 在[]1,0上二阶可导,且⎰=10)(dx x f ,则(A )0)(<x f '时,0)21(<f (B )0)(<x f ''时,0)21(<f (C )0)(>x f '时,0)21(<f (D )0)(>x f ''时,0)21(<f 5.设dx x x M ⎰-++=22221)1(ππ,dx e xN x ⎰-+=221ππ,dx x K ⎰-+=22)cos 1(ππ,则 (A )KN M >>(B )N K M >>(C )NM K >>(D )MN K >>6.=-+-⎰⎰⎰⎰----dy xy dx dy xy dx x xx x1201222)1()1((A )35(B )65(C )37(D )677.下列矩阵中,与矩阵⎪⎪⎪⎭⎫ ⎝⎛100110011相似的为(A )⎪⎪⎪⎭⎫⎝⎛1001101-11(B )⎪⎪⎪⎭⎫⎝⎛1001101-01(C )⎪⎪⎪⎭⎫ ⎝⎛1000101-11(D )⎪⎪⎪⎭⎫ ⎝⎛1000101-018.设A ,B 为n 阶矩阵,记)(x r 为矩阵X 的秩,)(Y X 表示分块矩阵,则(A ))() (A r AB A r =(B ))() (A r BA A r =(C ){})(),(max ) (B r A r B A r =(D ))() (TTB A r B A r =二、填空题:9~14小题,每小题4分,共24分. 9.]arctan )1[arctan(lim 2x x x x -++∞→=。
2018年全国硕士研究生入学统一考试数学二试题及答案解析
2018年全国硕士研究生入学统一考试数学二试题及答案解析一、选择题(4分×8) 1. 若()212lim 1x x x e ax bx→++=,则 ( )A 、 1,12a b ==- B 、1,12a b =-=- C 、1,12a b == D 、1,12a b =-= 解 选B 。
因()2122201lim 1lim 0x x xx x e ax bx e ax bxx →→++-++=⇔=;由此可知02lim 012x x e ax b b x →++=⇒=-,及021lim 022x x e a a →+=⇒=-。
2.下列函数在x = 0处不可导的是 ( ) A 、()sin f x x x = B、()f x x = C 、()cos f x x = D、()f x =解 选D 。
详见数学一的第1题。
3.设函数2,11,0(),(),101,0,0ax x x f x g x x x x x b x -≤-⎧-<⎧⎪==-<<⎨⎨≥⎩⎪-≥⎩,若()()f x g x R +在上连续,则( ) A 、 3,1a b == B 、3,2a b == C 、3,1a b =-= D 、3,2a b =-= 解 选D 。
计算得21,1()()1,101,0ax x f x g x x x x b x --≤-⎧⎪+=-+-<<⎨⎪-+≥⎩,因()()f x g x R +在上连续,故21210b+1a +-=--+=-及,解得3,2a b =-=。
4. 设函数()f x 在上[0,1]二阶可导,且1()0f x dx =⎰,则 ( )A 、当()0f x '< 时,1()02f <B 、当()0f x ''< 时,1()02f <C 、当()0f x '> 时,1()02f <D 、当()0f x ''> 时,1()02f <解 选D 。
2018年考研数学二试题与答案解析(完整版)
B. a 3, b 2 D. a 3, b 2
lim f x g x lim f x lim g x 1 0 1
x 0 x 0
lim f x g x lim f x lim g x 1 b 1 1 b b 2
6. A.
0
1
dx
2 x2
x
1 xy dy 0 dx x 1 xy dy
B.
1
2 x2
5 3 7 C. 3
【答案】C 【解析】 如图, dx
1
5 6 7 D. 6
1 2 x2
0
2 x2
x
(1 xy )dy dx
0
x
(1 xy )dy (1 xy )dxdy dxdy S D
2
e
x0 2 x
lim
e
e x 2 ax b
x
ax 2 bx
e
x0
lim
e x 2 ax b 2x
lim e x 2 ax b 0 b 1 e x 2 ax b x0 lim 0 1 e x 2 ax b x0 2x a lim 0 2 2x x0
x 0 x 0
x 1 x 1
lim f x lim g x 1 2 a 1 a f x g x xlim 1 x 1 lim f x lim g x 1 1 2 2 1 a a 3 f x g x xlim 1 x 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 a 2
0 1 1 .
1 1 1
1 0
f (x)dx 0, 则
A.当 f '(x) 0 时, f ( 1 ) 0. 2
B.当 f "(x) 0 时, f ( 1) 0. 2
C.当 f '(x) 0 时, f ( 1 ) 0. 2
D.当 f "(x) 0 时, f ( 1) 0. 2
(1 x) 2
f (t)t
ax
2.
(1)求 f (x) ;
(2)若 f (x) 在区间[0,1]上的平均值为 1,求 a 的值 .
17.(本题满分 10 分)
x t sin t,
设平面区域 D 由曲线
(0 t 2π)与 x 轴围成,计算二重积分 (x 2 y)dxdy
y 1 cos t
D
18.(本题满分 10 分)
已知常数 k ln 2 1 证明:(x 1)(x ln 2 x 2k ln x 1) 0 . .
19.(本题满分 10 分)
将长为 2m 的铁丝分成三段,依次围成圆、正方形与正三角形.三个图形的面积之和是否存在最小
值?若存在,求出最小值 .
1
11. 5 x2 4x 3 dx =
.
12.曲线 x cos
3
t, 在 t
对应点处的曲率为
.
y sin3 t
4
13.设函数 z (zx, y)由方程 ln z ez 1 xy 确定,则 z =
.
x (2, 1 )
2
14.设 A 为 3 阶矩阵,1 ,2 ,3 为线性无关的向量组.若 A1 21 2 3 , A2 2 23 ,
2018 考研数学(二)真题(完整版)
一、选择题:1~8 小题,每小题 4 分,共 32 分.下列每题给出的四个选项中,只有一个选项是符合 题目要求的.
1.若 lim(ex + ax2 +bx)
x®0
1
x2 =1 ,则
1 A. a =
, b = -1.
2
C. a = 1 , b =1. 2
2.下列函数中,在 x = 0 处不可导的是
B. a = - 1 , b = -1. 2
D. a = - 1 , b =1. 2
A. f (x) = x sin x .
B. f (x) = x sin x .
C. f (x) = cos x .
D. f (x) = cos x .
ì 3.设函数 f (x) = ï-1,
1,
îï
A. a = 3, b =1.
0 0 1
1 0 1
B. 0 1 1 .
0 0 1
1 0 1
D. 0 1 0 .
0 0 1
8.设 A,B 为 n 阶矩阵,记 r(X)为矩阵 X 的秩,(X Y)表示分块矩阵,则 A.r(A AB)=r(A).
B.r(A BA)=r(A).
2
3
1
3
(1)求 f (x1, x2 , x3 ) = 0 的解;
(2)求 f (x 1, x2 , x3 ) 的规范形.
23.(本题满分 11 分)
1
已知 a 是常数, A
1
2 a
3 0 可经初等列变换化为矩阵 B
(1)求 a;
2 7 a
(2)求满足 AP=B 的可逆矩阵 P .
x < 0,
x ³ 0,
ì
ï2 -ax,
ï
g (x) = ïx,
ï
x £-1,
-1 < x < 0, 若 f (x) + g (x) 在 R 上连续,则
îïx -b, x ³ 0.
B. a = 3, b = 2.
C. a = -3, b =1.
D. a = -3, b = 2.
4.设函数 f (x) 在[0,1]上二阶可导,且
20.(本题满分 11 分)
已知曲线
L
:
y
=
4 9
x
2
(x
³
0)
,点
O(0,
0)
,点
A(0,1)
.设
P
是
L 上的动点,S
是直线
OA
与直线
AP 及
曲线 L 所围图形的面积.若 P 运动到点(3,4)时沿 x 轴正向的速度是 4,求此时 S 关于时间 t 的变化率 .
21.(本题满分 11 分)
设数列{ xn
A3 2 3 ,则 A 的实特征值为
.
三、解答题:15~23 小题,共 94 分.解答应写出文字说明、证明过程或深处步骤. 15.(本题满分 10 分)
求不定积分 e2 x arctan ex 1dx.
16.(本题满分 10 分)
已知连续函数 f (x) 满足
x 0
C.r(A B)=max{r(A),r(B)}.
D.r(A B)=r(AT BT).
二、填空题:9~14 小题,每小题 4 分,共 24 分。
9. lim x2[arctan( x 1) arctan x] =
.
x+
10.曲线 y x2 2 ln x 在其拐点处的切线方程是
.
1 0
dx
x2x2 (1 xy)dy
5 A. .
3
C. 7 .
3
1
0 7.下列矩阵中,与矩阵
0
1 0 1 1 相似的为
0 1
5 B. .
6 D. 7 .
6
1 1 1
A. 0 1 1 .
0 0 1
1 1 1
C. 0 1 1 .
} 满足: x1
> 0,
xnexn+1
=e
x n
-1(n =1, 2,
). 证明{xn } 收敛,并求 lim xn .
n
22.(本题满分 11 分)
设实二次型 f (x , x , x ) = (x - x + x ) 2
12 3
12
3
+(x + x ) 2+(x +ax ) 2, 其中 a 是参数 .
1x
5.设 M 2
dx, N 2 dx, K 2 (1 cos x )dx, 则
2 1 x2
2 e x
2
A. M N K .
B. M K N .
C. K M N .
D. K N M .
6.
01 dx 2xx2 (1 xy)dy