零中频射频接收机技术
零中频架构在接收机中的应用分析
零中频架构在接收机中的应用分析零中频架构(zero intermediate frequency architecture,ZIF)是无线电通信中一种新的接收机结构,具有较高的精度和灵敏度。
该架构通过将本振信号与接收信号直接混频,从而消除了传统接收机中的中频电路,极大地降低了对射频前端的要求。
本文将对零中频架构在接收机中的应用进行分析。
首先,相较于传统接收机,零中频架构使得接收机不再需要进行中频变换,从而消除了中频放大器、滤波器等中频电路。
这不仅简化了接收机结构,也大大降低了接收机功耗和成本。
此外,零中频架构还能够改善接收机的线性度和动态范围,从而提高接收机灵敏度和抗干扰能力。
其次,零中频架构在数字信号处理方面也具有优势。
具体来说,传统接收机在进行中频变换后需要将信号进行抽样和量化,这会引入噪声和失真。
而零中频架构则将信号直接混频到基带,避免了中频变换带来的误差,从而减小了数字信号处理中的噪声和失真。
此外,零中频架构也使得数字信号处理的算法更易于实现和优化。
最后,零中频架构还能够应用于多种无线通信标准。
由于零中频架构能够消除中频电路的局限,因此它可以应用于多种频段和带宽,以及多种调制方式和调制速率。
同时,由于零中频架构的低功耗和高精度特点,它也能够应用于低功耗无线通信标准,如物联网、蓝牙等。
综上所述,零中频架构在接收机中的应用具有众多优势。
该架构消除了传统接收机的中频电路,从而简化了接收机结构,降低了功耗和成本,同时也提高了接收机的灵敏度和抗干扰能力。
此外,零中频架构在数字信号处理方面也具有优势,能够减小数字信号处理中的噪声和失真,同时也更易于实现和优化。
最后,由于其适用于多种通信标准,零中频架构有着广泛的应用前景。
零中频
零中频无线电信号RF(射频)进入天线,转换为IF (中频),再转换为基带(I,Q信号),但仍然是较低的频率。
接收:射频-> 中频-> 基带发射:基带-> 中频-> 射频传统接收在射频信号和基带之间的转换分为多步(一下变,二下变)进行,首先:射频和中频之间转换,然后中频和基带间转换。
(中间要转就得有滤波,SAW )接收机的射频和中频链路都有声表滤波器。
零中频技术只是取消中频滤波器,而且目前只有在某些对抗干扰要求不高的应用(手机也算)才选用零中频技术,零中频技术仍然有许多技术问题需要解决。
有了零中频技术的应用将使得GSM系统对中频滤波器的需求才得以减少,体积才得以下来。
随着移动电话向多频段、多模化方向发展,手机内声表滤波器的个数会不断增加。
根据结构的不同,一个双频手机有多达七个声表滤波器,其中只有两个是中频滤波器。
采用"零中频技术"可省略无线通信系统中的中频滤波级,达到削减整机成本的目的。
虽然零中频技术已发展多年,并且某些类型的寻呼和GSM手机也已采用,但是目前的零中频技术无法满足电路对高性能的要求。
零中频接收技术,即RF信号不需要变换到中频,而是一次直接变换到模拟基带I /Q信号,然后再解调.中频接收机,分为高中频,低中频,还有零中频(也就是直接变频),其中,零中频接收机指的是本振源提供的频率和射频输入信号的频点相同,混频下来直接变到基带信号。
在过去几个月中,我们已经见到来自许多领先供应商的零参数值模拟器件,包括零漂移仪器放大器(TI)、自动调零比较器(飞兆)、零偏移运放(Mirchip)和零中频下变频器(ADI)。
即使这些器件没有达到完美的“零”,它们也已非常非常接近零。
即使难以描述的零功率IC对一些基本模拟器件来说也渐行渐近。
那么究竟发生了什么事呢?首先,争取完美是自然的工程技术趋势。
对于许多模拟参数,如漂移、漏电流、偏置电流或偏移,零是我们追求的理想规范。
零中频架构在接收机中的应用分析
零中频架构在接收机中的应用分析零中频架构是一种在通信领域中广泛应用的技术,在接收机中有着重要的应用。
零中频架构的核心思想是将接收机的中频部分移动到零频率附近,从而减少中频滤波、中频放大和混频等环节的复杂性,减小系统的功耗和成本。
本文将对零中频架构在接收机中的应用进行深入分析。
一、零中频架构的基本原理1. 零中频架构在通信系统中的应用零中频架构在通信系统中有着广泛的应用,尤其是在无线通信系统中。
采用零中频架构可以减少射频前端的复杂性,降低功耗和成本,同时提高系统的性能和可靠性。
零中频架构在移动通信系统、卫星通信系统和雷达系统中有着重要的应用,能够满足不同通信系统对于复杂性、功耗和性能的需求。
三、零中频架构在接收机中的优势1. 减小系统的功耗和成本采用零中频架构可以减少中频滤波、中频放大和混频等环节,从而降低系统的功耗和成本。
零中频架构能够利用低成本的元件,同时降低了系统的设计和制造成本。
2. 提高系统的性能和可靠性零中频架构可以提高系统的抗干扰能力和接收灵敏度,提高接收机的性能和可靠性。
零中频架构还能够提高系统对于多径干扰的抑制能力,提高接收机在复杂环境下的性能表现。
3. 简化射频前端的设计和优化采用零中频架构可以大大简化射频前端的设计和优化,降低系统的复杂性。
零中频架构还能够减少系统对于外部环境的依赖,提高系统的鲁棒性和稳定性。
四、结语零中频架构在接收机中有着广泛的应用,能够大大简化系统的设计和优化,降低系统的功耗和成本,同时提高系统的性能和可靠性。
随着通信技术的不断发展,零中频架构将会在接收机中发挥越来越重要的作用,促进整个通信系统的进一步发展和完善。
希望本文对于零中频架构在接收机中的应用能够起到一定的指导作用,为相关领域的研究和实践提供一定的参考和借鉴。
差频接收机、零中频接收机和低中频接收机的特点
差频接收机、零中频接收机和低中频接收机的特点现代通信系统中,无线电通信经常采用超外差接收机。
超外差接收机又分为差频接收机、零中频接收机和低中频接收机。
这些接收机都具有各自特点和适用范围。
本篇文章将介绍这三种常见的接收机的特点和优劣。
差频接收机差频接收机又叫中频放大器接收机,它是将收到的信号变换到固定的中频附近进行放大、滤波和检波的一种接收机。
差频接收机广泛应用于广播、电视、短波和卫星通信等各个领域。
差频接收机的特点如下:特点1.差频接收机主要采用变频器将高频信号变频到中频,中频通常在几百千赫范围内,然后再经过放大、检波、滤波等处理,使得中频附近的信号能够被更好地处理并转换成基带信号。
2.差频接收机对中频的抑制能力强,因此可以减少本地环境中中频信号的干扰,提高接收的信噪比。
3.差频接收机采用中频变换的方式,使得信号的处理更加方便,可以采用先进的数字信号处理技术。
4.差频接收机的灵敏度高,一般可以接收到较低功率的信号。
缺点1.差频接收机对频率的稳定性要求高,要保证中频与声频的稳定性,需要采用较好的频率稳定度的元器件。
2.差频接收机需要设计多级放大器,不利于解决干扰和放大器之间的交叉调制等问题。
3.差频接收机的欠采样带宽存在,使采样频率必须要大于两倍的中频。
零中频接收机零中频接收机也叫直接变频接收机,它的特点是直接把接收到的信号变换成基带信号进行处理,而不像差频接收机一样进行中频变换。
零中频接收机广泛应用于卫星通信、雷达、导航等领域。
零中频接收机的特点如下:特点1.零中频接收机的本地振荡器可以直接调制信号的频率,所以可以避免中频变换及其稳定性和干扰等问题。
2.由于无中频频率的限制,零中频接收机可以节省中频滤波器和放大器部分的复杂度和量。
3.零中频接收机可以直接处理宽带信号,使其更适用于大数据传输和快速采样。
4.零中频接收机的频率选择性较IV阶,利于滤波器设计,抗混频干扰能力较强。
缺点1.零中频接收机需要解决镜像干扰、频率合成相位以及漂移等问题。
什么是零中频技术
什么是零中频技术什么是零中频技术首先明确,零中频可以说是一种技术,引申出来零中频电路,再引零中频电路出来的信号(零中频信号I,Q)1. 零中频技术的发展大约经历了10年历史;(非正题,少说)无线电信号RF(射频)进入天线,转换为IF (中频),再转换为基带(I,Q信号),但仍然是较低的频率。
接收:射频 -> 中频 -> 基带发射:基带 -> 中频 -> 射频传统接收在射频信号和基带之间的转换分为多步(一下变,二下变)进行,首先:射频和中频之间转换,然后中频和基带间转换。
(中间要转就得有滤波,SAW )接收机的射频和中频链路都有声表滤波器。
零中频技术只是取消中频滤波器,而且目前只有在某些对抗干扰要求不高的应用(手机也算)才选用零中频技术,零中频技术仍然有许多技术问题需要解决。
有了零中频技术的应用将使得GSM系统对中频滤波器的需求才得以减少,体积才得以下来。
随着移动电话向多频段、多模化方向发展,手机内声表滤波器的个数会不断增加。
根据结构的不同,一个双频手机有多达七个声表滤波器,其中只有两个是中频滤波器。
采用"零中频技术"可省略无线通信系统中的中频滤波级,达到削减整机成本的目的。
虽然零中频技术已发展多年,并且某些类型的寻呼和GSM手机也已采用,但是目前的零中频技术无法满足电路对高性能的要求。
零中频接收技术,即RF信号不需要变换到中频,而是一次直接变换到模拟基带I/Q信号,然后再解调2. 零中频信号I,Q如何而来?"中频变频模块"(确切的说"零中频变频模块")包括第二本振信号、混频器、低通滤波器和放大器。
输入的中频信号首先被移相90°成为两路正交信号,再与从频率合成器来的第二本振信号及其90°移相信号(在其内部,注意经过"小数"分频,让你觉得13-13等于0了吧)进行混频输出以得到发端的语音信号(与一般的混频器不同,在正交直接混频处理之后的信号即为模拟基带I/Q信号。
CDMA零中频接收机之剖析与探讨
CDMA零中频接收机之剖析与探讨CDMA(Code Division Multiple Access)是一种无线通信技术,常用于手机通信系统中。
在CDMA系统中,零中频接收机是其中一种重要的组成部分。
零中频接收机是将接收的射频信号转换为零中频信号处理的设备。
在本文中,我们将对CDMA零中频接收机的原理进行分析和讨论。
CDMA零中频接收机的工作原理是基于扩频技术。
在CDMA系统中,不同用户的信号通过不同的扩频码进行扩频处理,以实现用户之间的分离。
在接收端,零中频接收机首先进行射频信号的放大和滤波处理,以增强信号的强度和减小噪声的影响。
然后,接收机通过扩频码和本地扩频码进行相关处理,将信号从射频频率转换到中频频率。
零中频接收机的核心部件是相关器。
相关器通过将接收信号与本地扩频码进行相关运算,提取出感兴趣的用户信号。
这个过程中,相关器会将其他用户的信号抑制掉,实现用户信号的分离。
相关器的伪噪声功率和动态范围是衡量零中频接收机性能的重要指标。
较高的伪噪声功率可以减小噪声的影响,提高接收机的灵敏度;而较大的动态范围可以容纳更多用户的信号,提高系统的容量。
除了相关器,零中频接收机还包括其他一些组成部分,如频率转换器、滤波器、放大器等。
频率转换器可以将接收信号的频率转换到中频频率范围内,方便后续处理。
滤波器可以选择出特定的信号频带,减小干扰信号的影响。
放大器可以增强信号的强度,提高接收机的灵敏度。
在CDMA系统中,零中频接收机的性能对系统的性能有着重要的影响。
良好的接收机设计可以提高系统的容量和覆盖范围。
因此,研究和优化零中频接收机的性能是CDMA系统设计中的重要任务之一总之,CDMA零中频接收机是CDMA系统中的重要组成部分,主要负责将接收信号转换到中频频率范围内,并通过相关器进行信号的分离。
零中频接收机的性能直接影响着系统的容量和覆盖范围。
在未来的研究中,我们可以进一步探讨零中频接收机的优化方法和技术,以提高系统的性能和可靠性。
零中频架构在接收机中的应用分析
零中频架构在接收机中的应用分析1. 引言1.1 零中频架构概述零中频架构是一种在接收机中广泛使用的技术,它可以将高频信号转换为零中频信号,从而方便后续的信号处理。
在传统的超外差接收机中,高频信号需要通过多级混频器和滤波器才能转换到中频进行处理,而零中频架构则能直接将高频信号转换到零中频进行处理,减少了电路复杂度和功耗。
零中频架构还可以有效抑制高频混频器的非线性失真和相位噪声,提高了接收机的性能和灵敏度。
零中频架构在现代通信系统中扮演着重要的角色,被广泛应用于无线通信、雷达、卫星通信等领域。
它不仅可以提高接收机的性能,还能降低系统成本和功耗,是一种具有广阔发展前景的技术。
零中频架构的出现极大地推动了接收机技术的进步,为通信行业带来了新的机遇和挑战。
1.2 零中频架构在接收机中的重要性零中频架构在接收机中的重要性体现在其在数字通信领域中的关键作用。
零中频架构可以实现信号的处理和调制解调过程,使得信号能够在各个频段之间进行转换和传递。
通过零中频架构,可以有效提高信号的接收质量和传输效率,从而提升通信系统的整体性能。
在现代通信系统中,零中频架构被广泛应用于各种数字通信设备中,如手机、卫星通信、无线电等。
其稳定可靠的工作原理和高效的信号处理能力,使得接收机能够快速、准确地接收、解码和处理各种信号,保证通信数据的完整性和可靠性。
零中频架构在接收机性能中的重要性还体现在其对信号处理的灵活性和扩展性。
通过零中频架构的应用,可以根据不同的通信标准和要求,灵活调整接收机的参数和频率范围,实现多种信号的同时接收和处理。
这种灵活性不仅提高了接收机的适用性和性能,还为通信系统的升级和扩展提供了更多可能性。
零中频架构在接收机中的重要性不可忽视。
它不仅影响着接收机的性能和稳定性,还直接影响着整个通信系统的运行效率和可靠性。
随着通信技术的不断发展和应用范围的扩大,零中频架构在接收机中的地位和作用将会越发突出,对通信行业的发展将起到举足轻重的作用。
《零中频接收机》课件
零中频接收机是一种创新的接收机技术,具有广泛的应用前景。本课件将介 绍零中频接收机的概念、工作原理、优点、应用以及未来发展趋势。
什么是零中频接收机
零中频接收机是一种新型的接收机技术,相对于传统中频接收机具有很多优点。让我们来了解一下这种创新的 技术。
零中频接收机的工作原理
2 雷达系统
3 空间探测器
利用零中频接收机的技术, 在雷达系统中可以实现更 精确的目标探测和跟踪, 提高系统的性能。
对于空间探测器,零中频 接收机能够提供更高灵敏 度的信号接收,帮助科学 家更好地探索宙。
零中频接收机的发展趋势
1
高速数字信号处理技术的发展
随着高速数字信号处理技术的发展,零中频接收机的性能将不断提升,进一步拓 宽其应用范围。
2
高精度时钟技术的发展
高精度时钟技术的发展将使得零中频接收机的频率测量更加精确,提高系统的稳 定性和性能。
3
高速数字转换技术的发展
高速数字转换技术的发展将进一步提高零中频接收机的信号采样速率和分辨率, 满足更高要求的应用场景。
结论
零中频接收机是一种新型的接收机技术,广泛应用于通信、雷达和空间探测器等领域。随着相关技术的发展, 这种创新的接收机技术将有着广阔的应用前景。
了解零中频接收机的工作原理,需要了解它的组成部分和零中频技术的原理。 让我们深入探讨一下这个技术的内部机制。
零中频接收机的优点
降低噪声系数
通过零中频技术,零中频接收机可以降低混频 器的噪声系数,提高接收信号的质量。
节约成本和空间
由于零中频接收机的设计,可以减少多个滤波 器的成本和占用的空间,提高系统的效率。
减少失真和干扰
相比于传统中频接收机,零中频接收机能够减 少信号失真和干扰,提供更清晰、更可靠的信 号。
零中频架构在接收机中的应用分析
零中频架构在接收机中的应用分析零中频(IF)架构是一种数字化无线通信系统的基础架构,广泛应用于现代通信接收机中。
该架构的核心优势是能够实现高灵敏度、高带宽、低功耗和小体积。
本文将对零中频架构在接收机中的应用进行分析。
1. 零中频架构简介零中频架构是一种数字化无线通信系统的接收机架构,其工作流程如下:接收到的射频信号经过低噪声放大器(LNA)放大后,被混频器和本振信号相乘,产生频率与射频信号和本振信号之差相等的中频信号(IF信号)。
此信号经过滤波器后,再进行数字化处理,由数字信号处理器(DSP) 进行后续处理。
因此,零中频架构将射频信号的处理转移到了数字领域,从而实现了接收机的高灵敏度、高带宽、低功耗和小体积等优势。
2.1 高灵敏度零中频架构通过数字化处理实现了高斯噪声的抑制和信噪比的提高,从而实现了高灵敏度。
此外,采用零中频架构可以将射频信号的处理转移到数字领域,从而避免了模拟部分引入的杂散和干扰对系统性能带来的影响,在强信号干扰下也能保持较好的性能表现。
2.2 高带宽零中频架构中的数字化处理技术可以支持超宽带信号的接收和处理,处理速度快,灵活性强。
同时,数字信号处理器能实现相位、幅度和频率的精确控制,提高信号的分辨能力,从而实现高带宽。
2.3 低功耗采用零中频架构可以将模拟处理转移到数字领域,从而减少了模拟电路中的功耗,实现了低功耗设计。
此外,数字信号处理器可以进行有效的功率管理,减少不必要的功耗,提高系统的能效。
2.4 小体积传统的超外差接收机需要使用较多的电路板和组件来实现信号处理,而采用零中频架构可以将射频信号处理转移到数字领域,从而减少了电路板和组件的数量,实现了小型化设计。
3. 零中频架构的优势和不足3.1 优势(1)高灵敏度:数字化无线通信系统采用零中频架构实现数字化处理,避免了传统超外差接收机带来的噪声和干扰,从而提高了灵敏度。
(2)高带宽:数字处理器可以支持超宽带信号的接收和处理,处理速度快,灵活性强。
《零中频接收机》课件
研究零中频接收机的线性化技术,降低非线性失真和噪声,提高信 号质量。
高效实现方法
研究零中频接收机的低复杂度实现方法,降低功耗和成本,提高其实 用性。
THANKS
感谢观看
高线性度
由于没有中频滤波器,零中频 接收机能够提供更好的线性度 ,提高了信号的保真度。
低噪声
由于减少了中频电路,零中频 接收机的噪声系数也相应降低 ,提高了信号的信噪比。
易于集成
由于结构简单,零中频接收机 更容易实现小型化和集成化。
挑战
镜像抑制问题
零中频接收机在接收信号时 ,会同时接收到目标信号和 镜像信号,需要采取措施抑 制镜像信号。
特点
结构简单、低功耗、低成本、易 于集成。
工作原理
01
02
03
信号输入
射频信号通过天线接收, 经过低噪放增益放大后进 入混频器。
混频
射频信号与本振信号混频 ,直接下变频到基带信号 。
信号处理
基带信号经过滤波、放大 、解调等处理,最终输出 原始信息。
历史与发展
起源
20世纪90年代,随着微电 子技术的进步,零中频接 收机概念被提出。
解决方案
采用数字滤波器进行镜像抑制
通过数字滤波器对接收到的信号进行处理,抑制镜像信号的影响。
优化本振电路设计
通过优化本振电路的设计,降低本振信号的泄露。
采用开关电源进行电源管理
通过采用开关电源技术,实现高效、稳定的电源管理。
采用校准技术解决通道一致性问题
通过校准技术对接收机的各个通道进行校准,确保通道间的一致性。
05
零中频接收机的未来展望
技术发展趋势
集成化
随着微电子技术的发展,零中频接收机将更加集成化,体积更小 ,功耗更低。
零中频架构在接收机中的应用分析
零中频架构在接收机中的应用分析【摘要】本文从零中频架构在接收机中的应用进行了深入分析和探讨。
首先介绍了零中频架构的基本原理,然后重点探讨了其在射频前端和数字信号处理方面的应用。
接着对零中频架构的优势和劣势进行了评述,同时展望了其未来发展趋势。
结论部分分析了零中频架构在接收机中的应用前景,总结了现有研究成果并展望了未来发展方向。
最后强调了零中频架构在接收机中的应用价值,为其在通信领域的进一步发展提供了有益启示。
通过本文的研究,读者可以更加深入地了解零中频架构在接收机中的应用现状和前景。
【关键词】零中频架构、接收机、应用分析、基本原理、射频前端、数字信号处理、优势、劣势、发展趋势、应用前景、总结、展望、应用价值。
1. 引言1.1 零中频架构在接收机中的应用分析随着通信技术的不断发展,零中频架构在接收机中的应用也日益重要。
零中频架构是一种新型的信号处理架构,它将射频前端和数字信号处理部分分离开来,通过零中频点将频率转换到零中频处进行处理。
在接收机中,零中频架构可以有效地降低系统的复杂度和功耗,提高系统的灵活性和性能。
在本文中,我们将对零中频架构在接收机中的应用进行深入分析。
我们将介绍零中频架构的基本原理,包括其工作原理和实现方式。
然后,我们将详细探讨零中频架构在射频前端和数字信号处理中的具体应用,分析其优势和劣势。
接着,我们将对零中频架构未来发展趋势进行展望,探讨其在接收机中的应用前景。
在我们将总结本文的内容,展望零中频架构在接收机中的应用价值,并指出未来的研究方向和发展趋势。
通过本文的分析,读者可以深入了解零中频架构在接收机中的应用,并对其未来发展趋势有更清晰的认识。
零中频架构的出现为接收机的设计带来了新的思路和技术,将在未来的通信领域发挥重要作用。
2. 正文2.1 零中频架构的基本原理零中频架构是一种在接收机中常用的信号处理架构,其基本原理是通过将射频信号转换为中频信号进行处理,然后再转换为基带信号。
零中频架构在接收机中的应用分析
零中频架构在接收机中的应用分析零中频架构(Zero Intermediate Frequency, ZIF)是一种在接收机中广泛应用的架构。
它采用数字信号处理技术,将射频信号直接转换成基带信号,避免了传统中频处理步骤,从而简化了接收机结构、提高了系统灵敏度和动态范围,降低了成本。
本文将从零中频架构的基本原理、在接收机中的应用以及其优缺点等方面进行分析。
一、零中频架构的基本原理传统接收机结构中,射频信号首先经过射频前端放大和滤波处理,然后转换成中频信号,再经过中频放大和滤波处理,最后才转换成基带信号进行数字处理。
这种结构存在诸多问题,如中频放大器要求稳定的工作状态、对抗干扰能力不足、成本高等。
而零中频架构通过直接将射频信号转换成数字基带信号,避免了中频处理步骤,简化了系统结构,提高了系统性能。
零中频架构的实现需要采用混频器和数字信号处理器。
混频器是将射频信号与本地振荡信号进行非线性混合,得到中频信号的器件。
在零中频架构中,混频器的本地振荡信号频率与射频信号频率相近,以实现零中频的效果。
利用数字信号处理器对混频器输出的中频信号进行采样、滤波、解调和解码等处理,最终得到数字基带信号。
二、零中频架构在接收机中的应用1. 通信系统在通信系统中,零中频架构可以应用于各种无线通信标准,如LTE、5G等。
采用零中频架构的接收机可以提高系统的动态范围和频谱效率,同时降低系统成本和功耗。
零中频架构还能够实现宽带通信和多模式通信的支持,提升系统的灵活性和适用性。
2. 民用雷达系统在民用雷达系统中,零中频架构可以应用于大气观测雷达、气象雷达、航空雷达等领域。
采用零中频架构的雷达系统可以提高系统的灵敏度和目标分辨率,同时降低了系统的体积和功耗。
零中频架构还能够实现雷达系统的数字波形产生和相干处理,提升系统的性能和灵活性。
三、零中频架构的优缺点1. 优点(1)系统结构简单:零中频架构避免了中频处理步骤,简化了接收机结构,减少了系统的体积和重量。
零中频技术浅析
2012年1月(上)零中频技术浅析郭日峰黄振(中国电子科技集团第20研究所,陕西西安710068)[摘要]本文简要介绍了零中频技术的发展过程,并分析了零中频技术与超外差技术各自的优缺点。
重点介绍了零中频技术在工程实践中的应用与实现,给出了零中频技术架构典型问题分析。
[关键词]零中频;超外差;直流偏移;本振泄露;偶次失真1零中频接收机应用零中频结构接收机接收通道包括片外单转双巴伦,差分低噪声放大器,IQ两路双平衡混频器,自动增益控制放大器,低通滤波器和驱动放大器;该接收机需要外部提供小功率的两倍LO频率的本征输入信号,经过本征驱动放大器及除2正交相移器后,提供正交的LO信号给接收通道的IQ两路混频器。
采用两倍LO频率的本征输入信号可以避免通过键合金线耦合的途径泄漏LO频率信号到射频输入端,并减少接收机受直流偏移的影响。
接收机前端采用低差损的片外单转双巴伦,将输入的单端信号转为差分信号,提供给后面的全差分电路。
巴伦后面采用一个差分低噪声放大器,用于抑制系统总体的噪声系数;差分结构可以抑制由于电路非线性产生的偶次失真项,提高电路的反向隔离能力。
之后的混频器采用全差分双平衡结构,有效地保证各端口间的隔离度,包括控制LO泄漏到射频端的功率;为了进一步抑制由于电路非线性产生的偶次失真项,可以在射频单元每级之间加入隔直电容,滤除低频率的偶次失真项;混频器采用折叠式结构(用隔直电容将跨导部分和变频部分隔开)能够进一步抑制偶次失真项,并提高电路增益,前提是需要跟噪声系数的指标做折中考虑;为了减少闪烁噪声,设计时混频器应该尽量采用低闪烁噪声的双极性晶体管。
射频部分的差分低噪声放大器采用可变增益的结构,在大输入信号时能自动降低增益,提高输入线性度。
经过混频器变频后,有用信号频谱被搬移到基带,进行进一步的滤波和放大处理。
系统的模拟基带处理部分包括自动增益控制放大器,低通滤波器和输出端驱动放大器。
为了满足大的动态范围,系统需要一个较高的增益变化范围,在射频部分可以调节差分低噪声放大器。
零中频接收机的研究和硬件设计
零中频接收机的研究和硬件设计零中频接收机是一种重要的通信设备,它在无线通信系统中扮演着至关重要的角色。
零中频接收机的主要作用是将接收到的射频信号转换为基带信号,以便后续的信号处理。
随着通信技术的不断发展,零中频接收机的研究和应用也越来越广泛。
本文旨在研究和设计一种高性能的零中频接收机,并对其性能进行实验验证。
零中频接收机的工作原理是将接收到的射频信号通过天线或传输线转换为交流电信号,然后经过低噪声放大器进行放大,最后经过解调器解调为基带信号。
其中,信号的解调是零中频接收机的核心环节。
常见的解调方法包括平方律解调、平方律检波、同步解调等。
本文所设计的零中频接收机将采用同步解调的方法进行解调。
零中频接收机的硬件设计包括多个组成部分,如天线、滤波器、放大器、混频器、检测器等。
其中,天线的作用是接收射频信号;滤波器的作用是滤除噪声和干扰信号;放大器的作用是对信号进行放大,以便后续处理;混频器的作用是将信号从射频频段搬移到基带频段;检测器的作用是检测信号的幅度和相位。
在硬件设计过程中,我们需要根据具体的系统要求,对各个组成部分进行详细的设计和选型。
例如,对于放大器,我们需要考虑其噪声性能、线性度和增益;对于混频器,我们需要考虑其变频损耗、噪声系数、端口隔离度等参数。
零中频接收机的软件设计主要是对硬件进行控制和配置,同时对信号进行数字处理。
软件设计的主要流程包括初始化、参数配置、数据采集、信号处理等。
在软件设计中,我们需要使用相关的编程语言和开发工具进行开发和调试。
同时,我们还需要考虑软件的可扩展性和可维护性。
为了验证本文所设计的零中频接收机的性能和可靠性,我们进行了一系列实验测试。
实验结果表明,该零中频接收机在低信噪比条件下仍能保持良好的性能,同时具有较低的相位噪声和较高的频率稳定度。
我们还对该零中频接收机的功耗和体积进行了测量和评估,结果表明该设计具有较高的集成度和较低的功耗。
在实验结果分析中,我们发现该零中频接收机的性能主要受到放大器噪声、混频器变频损耗等因素的影响。
零中频接收机的优缺点对比
零中频接收机的优缺点对比零中频接收机,是直接将射频变频到基带,即中频为0。
一、优点首先,由于零中频接收机的中频为0,因此不需要昂贵的SAW滤波器或者晶体滤波器;取而代替的,可以是简单的低通滤波器,在成本方面也更便宜。
其次,零中频接收机不需要进行频率规划,这可是超外差接收机设计过程中相当复杂的一项任务。
另外,零中频接收机没有镜像频率。
二、缺点任何事物都有两面性,零中频接收机既有优点,当然也有缺点。
只有解决了这些缺点,才能把零中频接收机切切实实地用起来。
缺点1:DC offsets(直流偏移)直流偏移,是指因为各种原因,会有杂散或噪声落在DC频率处。
因为零中频接收机的中频是零中频,在DC频率处有噪声,直接就影响了SNR,所以零中频架构对直流偏移非常敏感。
那么,DC offsets是怎么产生的呢?•工艺问题在集成电路中,由于工艺的不完美,会导致基带电路中本身就存在直流偏移。
比如说实际运放的失调电压。
•自混频混频器RF端口和LO端口间的隔离度是有限的,所以,本振信号会有一部分漏到射频端口,然后再被反射回来,和本振混频,进而产生直流偏移。
还有其它的一些原因,有同样的信号,同时泄露到混频器的RF和LO端,进而混频至DC频率,从而产生直流偏移。
所以,想要减小自混频产生的直流偏移,则需要尽量提高混频器端口之间的隔离度,同时也要提高其它路径的隔离度。
直流偏移需要去除或者抵消,不然接收机就没法工作。
假设基带电路中的增益为70~80dB,那么很小很小的直流偏移,比如200uV,就会使得基带放大器饱和。
在基带电路中,使用AC耦合或者高通滤波,是去除时变直流偏移的有效手段之一。
一般来说,为了保证不恶化调制信号的SNR,高通滤波器的3dB截止频率应该低于符号率的0.1%。
也可以用一些手段来抵消直流偏移,比如说,对于时不变直流偏移,可以预先测量,储存起来,在系统工作时,存储的直流偏移值,通过DAC输入到模拟基带电路中的减法器,以补偿固有直流偏移。
零中频接收机原理
零中频接收机原理
本文对《ADI射频与微波技术使用手册》中提到的零中频接收机的原理进行了推导,希望抛砖引玉。
零中频数字接收机原理框图如上所示,相比超外差架构,这种架构可以省去混频器。
本文主要对其中的数学原理进行推导。
首先上图所示结构可以分解为两个相同的部分如下所示,
基于此开展数学推导,剩下部分原理相同,可举一反三。
设输入信号为
,那么输入信号经过相移后得到的信号相当于其希尔伯特变换后信号的虚部,即。
因此整个信号处理流程输出的信号为,。
其频域为,
因此整个信号处理流程完成信号频谱的搬移。
同时无需滤波器滤除镜像信号。
WCDMA之零中频接收机原理剖析大全
WCDMA之零中频接收机原理剖析大全在WCDMA系统中,零中频接收机的主要功能是将接收到的射频信号转化为基带信号,以便进行解调和处理。
零中频接收机由射频前端和中频部分组成。
射频前端负责将接收到的射频信号进行放大、滤波和频率转换,以方便后续的处理。
射频前端通常由低噪声放大器、混频器和滤波器等组成。
低噪声放大器负责将射频信号放大到合适的水平,以提高系统的灵敏度和抗干扰能力。
混频器则负责将射频信号的频率转换到中频,并通过滤波器对不需要的频率进行滤波。
中频部分负责将转换后的中频信号进行进一步处理,以提取出所需的基带信号。
中频部分通常由中频放大器、低通滤波器和解调器等组成。
中频放大器负责将中频信号放大到适当的水平,以提高系统的灵敏度和动态范围。
低通滤波器则负责将不需要的高频成分滤除,以达到提取基带信号的目的。
解调器则负责对经过滤波的信号进行解调,以提取出所需的基带信号。
WCDMA零中频接收机的核心原理是基于码分多址技术。
在WCDMA系统中,每个用户具有唯一的扩频码或信道码,不同用户之间的扩频码是正交的。
当多个用户同时传输信号时,接收机可以通过将收到的信号与相应的扩频码进行相关运算,实现对特定用户的信号的提取。
具体而言,接收机首先将接收到的射频信号与自身的扩频码进行相关处理,以提取出所需用户的信号。
然后,经过滤波和放大处理后的信号通过解调器进行解调,并通过数字信号处理器进行进一步的处理和解码,最终得到原始的基带信号。
总结起来,WCDMA零中频接收机的原理是将接收到的射频信号通过射频前端的放大、滤波和频率转换,将其转化为中频信号。
然后,通过中频部分的放大、滤波和解调,实现对所需用户信号的提取和解调。
这样,我们就可以得到原始的基带信号,以进行后续的处理和解码。
这就是WCDMA零中频接收机原理的详细剖析。
通过对WCDMA零中频接收机原理的深入了解,可以更好地理解WCDMA系统的工作原理,并为相关技术的设计和优化提供指导。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成,而受到广泛的重视。图 2为零中 频率相同,如果混频器的本振口与 端产生严重的失真。
频接收机结构框图。其结构较超外 射频口之间的隔离性能不好,本振
偶次失真的解决方法是在低噪
差接收机简单许多。接收到的射频 信号就很容易从混频器的射频口输 放和混频器中使用全差分结构以抵
信号经滤波器和低噪声放大器放大 出,再通过低噪声放大器泄漏到天 消偶次失真。
为高Q值带通滤波器,它们只能在片 略。这样一方面取消了外部元件,有
偶次失真的另一种表现形式是,
外实现,从而增大了接收机的成本 利于系统的单片集成,降低成本。另 射频信号的二次谐波与本振输出的
和尺寸。目前,要利用集成电路制造 一方面系统所需的电路模块及外部 二次谐波混频后,被下变频到基带
工艺将这两个滤波器与其它射频电 节点数减少,降低了接收机所需的 上,与基带信号重叠,造成干扰,变
片上的低通滤
典型的射频接收机仅对奇次互
图3 零中频本振泄漏示意图
波器和可变增 调的影响较为敏感。在零中频结构 益 放 大 器 完 中,偶次互调失真同样会给接收机
成。
带来问题。如图 4 所示,假设在所需
零中频接 信道的附近存在两个很强的干扰信
收机最吸引人 号,LNA 存在偶次失真,其特性为
图4 强干扰信号在偶次失真下产生的干扰
图2 零中频接收机结构框图
2004.7
69
C
通信与计算机
Communication& Computer
基带信号,而 差很大,一般本振频率都落在前级
信道选择和增 滤波器的频带以外。
益调整在基带
偶次失真( E v e n - O r d e r
上进行,由芯 Distortion)
普及,成为当今人类信息社会发展 固定频率的中频(IF)信号。然后,中 号。
的重要组成部分。射频接收机位于 频信号经过中频带通滤波器( I F
超外差体系结构被认为是最可
无线通信系统的最前端,其结构和 BPF)将邻近的频道信号去除,再进 靠的接收机拓扑结构,因为通过适
性能直接影响着整个通信系统。优 行第二次下变频得到所需的基带信 当地选择中频和滤波器可以获得极
之处在于下变 频过程中不需 经过中频,且 镜像频率即是
y ( t ) = α1x ( t ) + α2x 2 ( t ) 。若 x(t)=A1cosω1t+A2cosω2t,则y(t)中包 含α2A1A2cos(ω1-ω2)t项,这表明两个 高频干扰经过含有偶次失真的 LNA
射 频 信 号 本 将产生一个低频干扰信号。若混频
的各级放大器饱和,无法放大有用 欲发射的基带
信号。
信号进行适当
经过上述分析,我们可以来估 的编码并选择
算自混频引起的直流偏差。假设在 合 适 的 调 制 方 图 6(a)中,由天线至 X 点的总增益 式,以减少基带
图7 谐波混频器工作原理
约为 100 dB,本振信号的峰峰值为 信号在直流附近的能量。此时可以用 的二次谐波电流,实现谐波混频。
天线接收,通过低噪放进入混频器, C M O S 晶体管固有的平方律特性得 应尽量减小混频器的噪声。
经混频产生的直流偏差将是时变的。 到。晶体管 M3 和 M4 组成的电路将
图 8 所示的谐波混频器中晶体
由上述讨论可知,如何消除直 差分本振电压Vlo+和Vlo-转换为具 管 M1 和 M2 由射频差分信号 Vrf+ 和
70
2004.7
C 通 信 与 计 算 机
Communication& Computer
以分别从低噪放的输出端、滤波器的
将下变频
输出端及天线端反射回来,或泄漏的 后 的 基 带 信 号
信号由天线接收下来,进入混频器的 用 电 容 隔 直 流
射频口。它和本振口进入的本振信号 的 方 法 耦 合 到
直流偏差问题将变得十分复杂。这 号,但不产生直流分量,从而有效地 因此有用信号经下变频后的幅度仅
种情况可在下面的条件下发生:当 抑制了直流偏差。
为几十微伏,噪声的影响十分严重。
泄漏到天线的本振信号经天线发射
图 8 给出一个 C M O S 谐波混频 因此,零中频结构中的混频器不仅
出去后又从运动的物体反射回来被 器,本振信号的二次谐波可通过 设计成有一定的增益,而且设计时
dB,则混频器输出端将产生大约 7
谐波混频(Harmonic Mixing)
加,主要集中在低频段。与双极性晶
mV 的直流偏差。而在这一点上的有
谐波混频器的工作原理如图 7 体管相比,场效应晶体管的噪声要
用信号电平可以小到30 μVrms。因 所示。本振信号频率选为射频信号 大得多。闪烁噪声对搬移到零中频
路一起集成在一块芯片上存在很大 功耗并减少射频信号受外部干扰的 换过程如图 5 所示。
的困难。因此,超外差接收机的单片 机会。
这里我们仅考虑了 LNA 的偶次
集成因受到工艺技术方面的限制而
不过零中频结构存在着直流偏 失真。在实际中,混频器 RF 端口会
难以实现。
差、本振泄漏和闪烁噪声等问题。因 遇到同样问题,应引起足够的重视。
此,如果直流偏差被剩余的70 dB增 频率的一半,混频器使用本振信号 的基带信号产生干扰,降低信噪比。
益直接放大,放大器将进入饱和状 的二次谐波与输入射频信号进行混 通常零中频接收机的大部分增益放
态,失去对有用信号的放大功能。 频。由本振泄漏引起的自混频将产 在基带级,射频前端部分的低噪放
当自混频随时间发生变化时, 生一个与本振信号同频率的交流信 与混频器的典型增益大约为30 dB。
2004.7
71
C
通信与计算机
Communication& Computer
基带 I/Q 信号的变化,即 产生 I/Q 失配问题。以前 I/Q失配问题是数字设计 时的主要障碍,随着集 成度的提高,I/Q 失配虽 已得到相应改善,但设 计时仍应引起足够的重 视。
图 8 CMOS 谐波混频器
参考文献: 1. Behzad Razavi,“Design Considerations for Direct-Conversion Receivers’, IEEE Transactions on Circuits and Systems-II: Analog and Digital Signal Processing, Vol. 44, No. 6, June 1997. 2. Asad A. Abidi,‘Direct- Conversion Radio Transceivers for Digital Communications’, IEEE Journal of Solid-State Circuits, Vol. 30, No. 12, Dec. 1995. 3. Zhaofeng Zhang, Zhiheng Chen, Jack Lau,‘ A 900MHz CMOS Balanced Harmonic Mixer for Direct Conversion Receivers’, IEEE 2000.
流偏差是设计零中频接收机时要重 有二次谐波的时变电流,本振信号的 Vrf- 驱动,M1 和 M2 是噪声的主要
点考虑的内容。
基频和奇次谐波在漏极连接处被抵 来源,注入电流 Io 的作用是减少晶
交流耦合(AC Coupling)
消,产生谐波混频器所需的本振信号 体管 M1 和 M2 中的电流,从而减小
后,与互为正交的两路本振信号混 线,辐射到空间,形成对邻道的干
直流偏差(DC Offset)
频,分别产生同相和正交两路基带 扰,图 3给出了本振泄漏示意图。本
直流偏差是零中频方案特有的
信号。由于本振信号频率与射频信 振泄漏在超外差式接收机中不容易 一种干扰,它是由自混频( S e l f -
号频率相同,因此混频后直接产生 发生,因为本振频率和信号频率相 Mixing)引起的。泄漏的本振信号可
C 通 信 与 计 算 机
Communication& Computer
零中频射频接收机技术
东南大学射频与光电集成电路研究所 李智群 王志功
摘 要: 零中频(Zero IF)或直接变换(Direct-Conversion)接收机具有体积小、成本低和易于单片集成的 特点,正成为射频接收机中极具竞争力的一种结构。本文在介绍超外差(Super Heterodyne)结 构与零中频结构性能和特点的基础上,重点分析零中频结构存在的本振泄漏(LO Leakage)、偶 次失真(Even-Order Distortion)、直流偏差(DC Offset)、闪烁噪声(Flicker Noise)等问题,并 给出零中频接收机的设计方法和相关技术。
片集成的特点,已成为射频接收机 将其衰减到可
中极具竞争力的一种结构,在无线 接受的水平。
通信领域中受到广泛的关注。本文 使用可调的本
在介绍超外差结构和零中频结构性 地 振 荡 器
能和特点的基础上,分析零中频结 (LO1),全部 构可能存在的问题,并给出零中频 频谱被下变频
图1 超外差接收机结构框图
接收机的设计方法和相关技术。
身,不存在镜 器是理想的,此信号与本振信号
像 频 率 干 扰 , cosωLOt混频后,将被搬移到高频,对 原超外差结构 接收机没有影响。然而实际的混频
中的镜像抑制 器并非理想, RF口与IF口的隔离有
图5 射频信号在偶次失真下产生的干扰
滤波器及中频 限,干扰信号将由混频器的 RF 口直 滤波器均可省 通进入IF口,对基带信号造成干扰。
此有效地解决这些问题是保证零中 因为加在混频器RF端口上的信号是
零中频接收机
频结构正确实现的前提。
经 LNA 放大后的射频信号,该端口
由于零中频接收机不需要片外
本振泄漏(LO Leakage)