最新空间几何体知识点
高中数学必修空间几何体知识点精选全文完整版
可编辑修改精选全文完整版第1讲空间几何体一、空间几何体1、空间几何体在我们周围存在着各种各样的物体,它们都占据着空间的一部分。
如果我们只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些物体抽象出来的空间图形就叫做空间几何体。
2、多面体和旋转体多面体:由若干个平面多边形围成的几何体叫做多面体。
围成多面体的各个多边形叫做多面体的面;相邻两个面的公共边叫做多面体的棱;棱及棱的公共点叫做多面体的顶点。
旋转体:由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体,叫做旋转几何体。
这条定直线叫做旋转体的轴。
多面体旋转体圆台圆柱-圆锥圆柱+圆锥圆台+大圆锥-小圆锥二、柱、锥、台、球的结构特征1.棱柱定义图形表示分类性质有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
两个互相平行的平面叫做棱柱的底面,其余各面叫做棱柱的侧面。
用平行的两底面多边形的字母表示棱柱,如:棱柱ABCDEF-A1B1C1D1E1F1。
棱柱的分类一(底面):棱柱的底面可以是三角形、四边形、五边形、……我们把这样的棱柱分别叫做三棱柱、四棱柱、五棱柱、……棱柱的分类二(根据侧棱及底面的关系):斜棱柱: 侧棱不垂直于底面的棱柱.直棱柱: 侧棱垂直于底面的棱柱叫做直棱柱(1)上下底面平行,且是全等的多边形。
(2)侧棱相等且相互平行。
(3) 侧面是平行四边形。
正棱柱: 底面是正多边形的直棱柱叫做正棱柱三棱柱四棱柱五棱柱斜棱柱直棱柱正棱柱2.棱锥定义图形表示性质分类有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
用顶点及底面各顶点字母表示棱锥,如:棱锥S-ABC侧面是三角形,底面是多边形。
按底面多边形的边数分类可分为三棱锥、四棱锥、五棱锥等等,其中三棱锥又叫四面体。
特殊的棱锥-正棱锥定义:如果一个棱锥的底面是正多边形,并且顶点在底面的射影是底面中心三棱锥四棱锥五棱锥直棱锥2.棱台定义图形表示分类性质用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的部分叫做棱台。
2024年高考数学立体几何知识点总结(2篇)
2024年高考数学立体几何知识点总结立体几何是数学中的一个重要分支,也是高考数学中的重要内容之一。
在高考中,立体几何的知识点主要包括空间几何、立体图形的面积与体积等方面。
下面是对2024年高考数学立体几何知识点的总结,供考生参考。
一、空间几何1. 空间几何中的点、线、面的概念和性质。
点是没有长度、宽度和高度的,只有位置的大小,用字母表示。
线是由一组无限多个点构成的集合,用两个点的字母表示。
面是由无限多条线构成的,这些线共面且没有相交或平行关系。
2. 空间几何中的垂直、平行等概念和性质。
两条线在同一平面内,如果相交角为90°,则称两线垂直。
两条线没有相交关系,称两线平行。
3. 点到直线的距离的计算。
点到直线的距离等于该点在直线上的正交投影点的距离。
二、立体图形的面积与体积1. 立体图形的分类和性质。
立体图形包括球体、圆柱体、圆锥体、棱柱体、棱锥体等。
各种立体图形具有不同的性质,如球体表面上每一点到球心的距离都相等。
2. 立体图形的面积计算。
(1)球体的表面积计算公式:S = 4πr²,其中r为球的半径。
(2)圆柱体的侧面积计算公式:S = 2πrh。
(3)圆柱体的全面积计算公式:S = 2πrh + 2πr²。
(4)圆锥体的侧面积计算公式:S = πrl,其中r为圆锥底面半径,l为斜高。
(5)棱柱体的侧面积计算公式:S = ph,其中p为棱柱底面周长,h为高。
3. 立体图形的体积计算。
(1)球体的体积计算公式:V = 4/3πr³,其中r为球的半径。
(2)圆柱体的体积计算公式:V = πr²h。
(3)圆锥体的体积计算公式:V = 1/3πr²h。
(4)棱柱体的体积计算公式:V = ph。
(5)棱锥体的体积计算公式:V = 1/3Bh,其中B为底面积,h 为高。
三、立体几何的一般理论1. 点、线、面的位置关系。
在空间中,点、线、面可以相互相交、平行、垂直等。
最新高中几何知识点总结
高中几何知识点总结一、空间几何体(一)棱柱、棱锥、棱台1、棱柱:一般地,由一个沿某一方向形成的空间几何体叫做棱柱。
(1)棱柱的底面、侧面、侧棱、表示方法、分类以及侧棱的性质(2)直棱柱、正棱柱、平行六面体的概念2、棱锥:叫做棱锥。
(1)棱锥的底面、侧面、侧棱、表示方法、分类以及侧棱的性质(2)正三棱锥与正四面体的概念3、棱台:叫做棱台。
(1)棱台的上下底面、侧面、侧棱、表示方法、分类以及侧棱的性质(2)正棱台的概念(3)棱台的检验方法(侧棱延长交于一点,上下底面相似且平行)(二)圆柱、圆锥、圆台、球1、旋转面:一般地,一条绕旋转所形成的2、旋转体:叫做旋转体。
3、圆柱、圆锥、圆台:将、、分别绕它的、、、所在的直线旋转一周,形成的几何体分别叫做圆柱、圆锥、圆台。
(1)圆柱、圆锥、圆台的轴、底面、侧面、母线(2)利用“平移”、“缩”、“截”的方法定义棱柱、棱锥、棱台4、球面:叫做球面。
球体:叫做球体,简称球。
5、圆柱、圆锥、圆台、球的轴截面与旋转面的关系(三)直观图画法1、消点:2、直观图画法步骤:二、点、线、面之间的位置关系1、平面基本性质公理1 如果一条直线上的公理2 如果两个平面有一个公共点,那么他们还有其它公共点,这些公共点的集合是经过这个公共点的一条直线。
公理3 经过的三点,有且只有一个平面。
(2) 线面垂直:如果一条直线与一个平面内的任意一条直线都垂直,称为线面垂直,记作,垂线、垂面、垂足。
(3) 面面平行:如果两个平面没有公共点,那么就说这两个平面平行。
面面垂直:一般地,如果两个平面所成的二面角是直二面角,3、线线关系位置关系相交直线平行直线异面直线共面关系公共点个数4、线面关系位置关系公共点符号表示图形表示直线在平面内直线与平面相交直线与平面平行5、面面关系图形表示6、各类“平行”之间的转化条件线线平行结论如果∥b,b∥c,那么∥c如果∥b,,b,那么∥如果,b,面面平行∩b=P,cβ,如果,如果∥β,如果⊥ ,⊥β,如果∥ ,β,β∩=b,那么∥b 线面平行面面平行如果∥β,垂直关系线线平行∩γ=,β∩γ=b,那么∥b 如果∥β,,那么∥β 如果⊥ ,b⊥ ,那么∥b 线面平行———— b ,∩b=P,∥β,b∥β,那么∥β β∥γ,那么∥γ 那么∥βd β,c∩d=Q,∥c,b∥d,那么∥β7、各类“垂直”之间的转化条件线线垂直结论如果⊥ ,b,那么⊥b 如果三个平面两两垂直,那么它们交线两两垂直如果⊥β——那么⊥β如果⊥ ,β,那么β⊥ ——,如果∥b,⊥c,那么b⊥c 线面垂直面面垂直平行关系线线垂直——线面垂直如果⊥b,⊥c,b,c,b∩c=P,那么⊥ 定义(二面角等于90) 0α∩β=b,,⊥b,如果⊥ ,b∥ ,那么b⊥ 面面垂直——8、立体几何中的“角”(1) 异面直线所成的角:将两异面直线平移得到两相交直线,这两条香蕉直线所成的锐角或直角就是这两条异面直线所成的角。
空间几何体的结构特征例题和知识点总结
空间几何体的结构特征例题和知识点总结在我们的日常生活中,各种各样的物体形状各异,而在数学的世界里,我们把这些物体抽象成空间几何体来进行研究。
接下来,让我们一起深入探讨空间几何体的结构特征,并通过一些例题来加深理解。
一、空间几何体的分类空间几何体主要分为多面体和旋转体两大类。
多面体是由若干个平面多边形围成的几何体。
常见的多面体有棱柱、棱锥、棱台等。
棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行。
棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形。
棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分。
旋转体是由一个平面图形绕着一条直线旋转所形成的几何体。
常见的旋转体有圆柱、圆锥、圆台、球等。
圆柱:以矩形的一边所在直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。
圆锥:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。
圆台:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分。
球:以半圆的直径所在直线为轴,半圆面旋转一周形成的几何体。
二、空间几何体的结构特征1、棱柱的结构特征侧棱都平行且相等。
两个底面与平行于底面的截面是全等的多边形。
2、棱锥的结构特征侧面都是三角形。
只有一个顶点。
3、棱台的结构特征上下底面是相似多边形。
各侧棱延长后交于一点。
4、圆柱的结构特征母线平行且相等,都垂直于底面。
两个底面是全等的圆。
5、圆锥的结构特征母线交于顶点。
轴截面是等腰三角形。
6、圆台的结构特征母线延长后交于一点。
上下底面是两个半径不同的圆。
7、球的结构特征球面上任意一点到球心的距离都相等。
三、例题解析例 1:判断下列几何体是否为棱柱。
(1)一个长方体;(2)一个有两个面互相平行,其余各面都是平行四边形的几何体。
解:(1)长方体符合棱柱的定义,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,所以是棱柱。
(2)不一定是棱柱。
高中数学空间几何体知识点总结
高中数学空间几何体知识点总结一、空间几何体的基本概念1、空间几何体的定义:在空间中,由一些平面和曲面所围成的封闭图形称为空间几何体。
2、空间几何体的分类:空间几何体可分为多面体和旋转体两大类。
多面体是由平面多边形围成的立体图形,而旋转体则是由平面图形绕其中一边旋转形成的。
二、空间几何体的表面积和体积1、空间几何体的表面积:表面积是指空间几何体的所有外露平面的面积之和。
对于一些规则的空间几何体,如长方体、圆柱体、球体等,表面积的计算公式相对简单。
对于不规则的空间几何体,一般需要通过拆分和组合的方法,将它们分解成简单的几何体来计算表面积。
2、空间几何体的体积:体积是指空间几何体所占空间的大小。
对于一些规则的空间几何体,如长方体、圆柱体、球体等,体积的计算公式相对简单。
对于不规则的空间几何体,一般需要通过拆分和组合的方法,将它们分解成简单的几何体来计算体积。
三、空间几何体的视图和直观图1、空间几何体的视图:视图是指从空间几何体的某一个方向看过去所得到的图形。
常见的视图包括主视图、俯视图、左视图等。
在求解空间几何体的体积或表面积时,通过视图可以帮助我们更好地理解空间几何体的形状和结构。
2、空间几何体的直观图:直观图是指用平行投影的方法将空间几何体投影到一个平面上所得到的图形。
直观图可以反映空间几何体的整体结构和相互关系,是求解空间几何问题的重要工具。
四、空间几何体的常见问题1、空间几何体的形状识别:在解决空间几何问题时,首先需要识别空间几何体的形状。
这可以通过观察空间几何体的特征、测量其边长和角度等方法来实现。
2、空间几何体的表面积和体积计算:表面积和体积是空间几何体的两个重要属性。
对于一些规则的空间几何体,其表面积和体积的计算公式相对简单。
对于不规则的空间几何体,需要采用拆分和组合的方法,将它们分解成简单的几何体来计算表面积和体积。
3、空间几何体的相交问题:当两个或多个空间几何体相交时,会产生交线或交面的问题。
高考立体几何知识点与题型精讲
高考立体几何知识点与题型精讲在高考数学中,立体几何是一个重要的板块,它不仅考查学生的空间想象能力,还对逻辑推理和数学运算能力有较高要求。
接下来,咱们就一起深入探讨一下高考立体几何的知识点和常见题型。
一、知识点梳理1、空间几何体的结构特征(1)棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行。
(2)棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形。
(3)棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分。
2、空间几何体的表面积和体积(1)圆柱的表面积:S =2πr² +2πrl (r 为底面半径,l 为母线长)。
体积:V =πr²h (h 为高)。
(2)圆锥的表面积:S =πr² +πrl 。
体积:V =1/3πr²h 。
(3)球的表面积:S =4πR² 。
体积:V =4/3πR³ 。
3、空间点、直线、平面之间的位置关系(1)公理 1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。
(2)公理 2:过不在一条直线上的三点,有且只有一个平面。
(3)公理 3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
4、直线与平面平行的判定与性质(1)判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
(2)性质定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
5、平面与平面平行的判定与性质(1)判定定理:一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。
(2)性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行。
6、直线与平面垂直的判定与性质(1)判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。
(2)性质定理:垂直于同一个平面的两条直线平行。
7、平面与平面垂直的判定与性质(1)判定定理:一个平面过另一个平面的垂线,则这两个平面垂直。
空间几何体知识点
空间几何体知识点1. 点、线、面的基本性质- 点:空间中的一个位置,没有大小,用大写字母表示,如A、B、C。
- 线:由无数个点组成的一维对象,有长度,分为直线、射线和线段。
直线无始无终,用小写字母表示,如l;线段有两个端点,表示为线段AB;射线有一个端点和一个方向,表示为射线AP。
- 面:由无数条线组成的二维对象,有面积,分为平面和曲面。
平面无厚度,用大写字母加下标表示,如平面ABC;曲面有曲率,如球面。
2. 空间几何体的分类- 多面体:由若干个平面多边形围成的立体,如立方体、棱锥、棱柱。
- 旋转体:由一个平面图形绕一条直线旋转而形成的立体,如圆柱、圆锥、球体。
3. 多面体的性质- 面数、顶点数、棱数的关系:对于简单多面体,有公式 V - E + F = 2,其中V是顶点数,E是棱数,F是面数。
- 欧拉定理:对于任何简单连通多面体,顶点数、面数和棱数之间存在关系 V - E + F = 2。
- 凸多面体:每个面都是凸的,即任意两点间的线段都完全在面上。
- 正多面体:所有面都是相同的正多边形,且每个顶点处的角相等。
4. 旋转体的性质- 圆柱:由一个圆绕一条直线旋转而成,直线是圆柱的轴,圆是圆柱的底面。
- 圆锥:由一个圆绕其直径旋转而成,圆心是圆锥的顶点,直径是圆锥的底面。
- 球体:由一个圆绕其直径的中点旋转而成,圆心是球体的中心,圆是球体的表面。
5. 空间几何体的计算- 体积计算:使用公式V = (1/3)πr³计算球体体积,V = Sh 计算圆柱体积,V = (1/3)πh(R+r+Rr) 计算圆锥体积,其中S是底面积,h是高。
- 表面积计算:使用公式A = 4πr²计算球体表面积,A =2πr(h+r) 计算圆柱表面积,A = πr(r+l+r) 计算圆锥表面积,其中r是底面半径,l是侧面斜高。
6. 空间几何体的应用- 建筑设计:利用多面体和旋转体的性质设计建筑物的结构。
《空间几何体》基础的知识点
《空间几何体》知识点总结一、 空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体旋转体一一把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。
其 中,这条定直线称为旋转体的轴。
(2 )柱,锥,台,球的结构特征1.1棱柱一一有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都 互相平行,由这些面所围成的几何体叫做棱柱。
1.2圆柱一一以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何 体叫圆柱.2.1棱锥一一有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的 几何体叫做棱锥。
2.2圆锥一一以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所 围成的几何体叫圆锥。
3.1棱台——用一个平行于底面的平面去截棱锥,我们把截面与底面之间的部分称为棱台 3.2圆台一一用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台4.1球一一以半圆的直径所在直线为旋转轴,半圆旋转一周形成的旋转体叫做球体,简称球二、 空间几何体的三视图与直观图1. 投影:区分中心投影与平行投影。
平行投影分为正投影和斜投影。
2. 三视图一一正视图;侧视图;俯视图;是观察者从三个不同位置观察同一个空间几何体而 画出的图形;画三视图的原则: 长对齐、高对齐、宽相等3. 直观图:直观图通常是在平行投影下画出的空间图形。
4. 斜二测法:在坐标系 x'o'y'中画直观图时,已知图形中平行于坐标轴的线段保持平行性 不变,平行于x 轴(或在x 轴上)的线段保持长度不变,平行于y 轴(或在y 轴上)的线 段长度减半。
三、空间几何体的表面积与体积1、空间几何体的表面积① 棱柱、棱锥的表面积: 各个面面积之和2② 圆柱的表面积S = 2二「I • 2二r 2 ③圆锥的表面积 S =理「I •二r 2、空间几何体的体积 ④圆台的表面积S 二rl + Tt r 2 2 2 R ⑤球的表面积S = 4二R ⑥扇形的面积公式s 扇形 360^1|r (其中I 表示弧长,r 表示半径) ①柱体的体积 v = s 底②锥体的体积 1 VjS 底 h③台体的体积 v =丄(S 上S 上 S 下 • S 下)h ④球体的体积v3 知识赠送以下资料英语万能作文(模板型)Along with the adva nee of the society more and more problems arebrought to our atte nti on, one of which is that....随着社会的不断发展,出现了越来越多的问题,其中之一便是As to whether it is a blessing or a curse, however, people take differe nt attitudes.然而,对于此类问题,人们持不同的看法。
空间几何体知识点总结
空间几何体知识点总结一、点、线和面的概念在空间几何中,点、线和面是最基本的几何对象。
点是没有长度、宽度和高度的,只有位置的概念;线是由无穷多个点组成的,具有长度但没有宽度和高度;面是由无穷多条线组成的,具有长度和宽度但没有高度。
二、立体几何体的分类立体几何体是由面围成的空间几何体,根据其表面的性质和特点,可以分为以下几类:1. 平面图形的立体几何体:由平面图形在空间中沿着一定方向运动而形成。
例如,正方形拉伸成长方体,圆形拉伸成圆柱体等。
2. 柱体:具有两个平行的底面和一个连接两个底面的侧面。
根据底面的形状,柱体可以分为圆柱体、矩形柱体等。
3. 锥体:具有一个底面和一个连接底面和顶点的侧面。
根据底面的形状,锥体可以分为圆锥体、三角锥体等。
4. 球体:表面上的所有点到球心的距离都相等。
球体没有棱和面,只有一个面。
5. 圆环体:由两个或多个同心圆所构成的空间几何体。
圆环体没有顶面和底面,只有侧面。
6. 多面体:具有多个面、棱和顶点的立体几何体。
根据面的形状和数量,多面体可以分为正多面体和非正多面体。
正多面体的面都是相等的正多边形,例如正方体、正六面体等;非正多面体的面可以是不相等的多边形,例如四面体、五面体等。
三、立体几何体的特性和性质立体几何体具有以下几个重要的特性和性质:1. 体积:立体几何体的体积是指该几何体所占的空间大小。
不同几何体的体积计算公式各不相同,例如长方体的体积是底面积乘以高度,球体的体积是4/3乘以π乘以半径的立方。
2. 表面积:立体几何体的表面积是指该几何体所有面的总面积。
不同几何体的表面积计算公式各不相同,例如长方体的表面积是各个面的面积之和,球体的表面积是4乘以π乘以半径的平方。
3. 对称性:立体几何体可能具有不同类型的对称性,例如平面对称、轴对称等。
对称性可以帮助我们判断几何体的性质和解决一些几何问题。
4. 刚体性:立体几何体是刚体,即形状和大小固定不变。
在空间中进行平移、旋转和翻转等操作时,立体几何体的性质不变。
空间几何体知识点总结
空间几何体知识点总结空间几何体知识点总结空间几何体是研究三维空间中各种几何形体的数学学科。
它包括了点、线、面和立体等概念,以及它们之间的关系与性质。
在学习空间几何体时,我们通常会接触到以下几个重要的知识点。
1. 点、线、面的定义:点是空间中的一个位置,用来表示长度为零的物体;线是两个点之间最短的路径,没有宽度和厚度;面是由多条线围成的平坦平面,有宽度和厚度。
2. 点、线、面的关系:点和点之间可以连成线,线和线之间可以相交、平行或垂直,面与面之间可以相交、平行或垂直。
3. 空间几何体的表示方法:点可以用坐标表示,线可以用两个点的坐标表示,面可以用三个点的坐标表示。
在三维空间中,我们通常使用笛卡尔坐标系来表示几何体。
4. 长度、面积与体积:长度是线段的大小,可以用距离公式计算;面积是平面内图形的大小,可以用计算面积的公式计算;体积是立体图形的大小,可以用计算体积的公式计算。
5. 点、线、面的投影:点的投影是指将点在投影面上的投影点,线的投影是指将线在投影面上的投影线段,面的投影是指将面在投影面上的投影区域。
6. 点、线、面与平面的位置关系:点可以在平面上、平面内或平面外;线可以与平面相交、平面内或平面外;面可以与平面相交、平面内或平面外。
7. 点、线、面的旋转、平移与对称:旋转是指在空间中围绕某个轴旋转;平移是指将一个物体在空间中沿着某个方向平行移动;对称是指将一个物体绕着某个中心轴翻转。
8. 直线、平面的方程:直线可以用点斜式、两点式、截距式等方程表示;平面可以用一般式、点法式等方程表示。
9. 空间几何体的投影性质:投影性质是指一个物体在投影面上的形状与原来物体的关系。
例如,平行于投影面的物体的投影在投影面上的尺寸与原来物体的尺寸相等。
10. 空间几何体的立体视图:立体视图是指将一个三维物体在不同方向上投影到二维平面上,用于表示物体的三维形状。
除了以上的知识点,还有许多更深入、更复杂的空间几何体的理论与性质,如立体的表面积与体积计算、立体的相似性与全等性、等距变换等。
空间几何体知识点
空间几何体知识点一、知识概述《空间几何体知识点》①基本定义:空间几何体呢,说白了就是在空间里由一些面啊或者线啊啥的围成的形状。
像我们常见的正方体、球体、圆柱体之类的都是空间几何体。
正方体有六个正方形的面,每个顶点都连接着三条棱;球体就像个超级圆的球,表面上每一点到球心的距离都相等;圆柱体有两个底面是一样大的圆,侧面是个长方形卷起来的样子。
②重要程度:在几何这个学科里,空间几何体可是基础中的基础。
往后学的好多几何知识都是建立在对空间几何体的认识和理解之上的。
就好比建房子,空间几何体就是那些一块块的砖头,要是砖头都不认识,房子可就没法好好建了。
③前置知识:那在学空间几何体之前呢,得先对平面图形有点基础了解,像长方形、三角形、圆这些。
你想啊,如果连平面的图形都搞不清楚,又怎么能明白由这些平面图形组合或者变形变成的空间几何体呢。
④应用价值:实际应用可不少呢。
在建筑领域,很多建筑的设计形状都是空间几何体的变形或者组合。
像鸟巢体育场,就有点像个扭曲的正方体;还有水立方,有点像个很规则的长方体和一些特殊几何体的组合。
在工业制造上,一些容器的设计也和空间几何体有关,比如装油的圆柱罐子。
二、知识体系①知识图谱:空间几何体在几何学科里就像树根一样,其他很多知识像解析几何、立体几何计算之类的都是从这儿长出去的枝叶。
它往上能和立体几何证明、计算联系起来,往下与平面几何的一些知识也有千丝万缕的关系。
②关联知识:它和角度的知识有关系啊。
比如说正方体的各个面之间的夹角,还有棱之间的夹角等。
跟面积体积计算也联系紧密,要计算空间几何体的体积和表面积就得知道它的形状特点。
和投影知识也有关,从不同方向投影一个空间几何体就会得到不同的平面图形。
③重难点分析:- 掌握难度:说实话,空间想象能力是个难点。
很多同学刚学的时候,在脑海里很难构造出那些几何体的样子。
像那种斜着切正方体得到的截面形状,就很难想象。
- 关键点:得抓住各个几何体的特征,就是那些区别于其他几何体的地方。
空间立体几何知识点
空间立体几何知识点1. 空间几何基础- 点、线、面在空间中的关系- 空间直角坐标系- 向量的概念与运算- 向量的加法、数乘、向量积(叉乘)、点积(内积) - 向量的模、方向余弦、单位向量- 向量方程及其应用2. 平面与直线- 平面的方程- 点法式方程- 一般式方程- 截距式方程- 直线的方程- 点向式方程- 两点式方程- 一般式方程- 投影与斜线- 平面与直线的关系- 平面内直线的方程- 平面与直线的交点- 平面与直线的夹角- 直线与直线的关系- 异面直线- 相交直线- 平行直线3. 多面体- 多面体的定义与分类- 棱柱、棱锥的结构与性质- 多面体的表面积与体积计算- 正多面体- 正四面体- 正六面体- 正十二面体、正二十面体4. 旋转体- 旋转体的定义与分类- 圆柱、圆锥、圆台的结构与性质 - 球的结构与性质- 旋转体的表面积与体积计算5. 空间曲线- 空间曲线的方程- 空间曲线的参数方程- 空间曲线的切线与法线- 螺旋线的性质与方程6. 坐标系变换与二次曲面- 坐标变换- 旋转变换- 平移变换- 二次曲面的一般方程- 常见二次曲面- 椭球面- 抛物面- 双曲面- 椭圆锥面7. 空间几何的度量- 空间中的距离公式- 点到直线、点到平面的距离- 直线与直线、直线与平面、平面与平面之间的距离- 空间角的计算- 两条直线间的夹角- 直线与平面的夹角- 两个平面间的夹角8. 空间几何的应用- 空间几何在建筑学中的应用- 空间几何在工程学中的应用- 空间几何在物理学中的应用- 空间几何在计算机图形学中的应用以上是空间立体几何的主要知识点概述。
在实际应用中,这些知识点需要通过具体的数学公式和图形来深入理解和掌握。
教学时,通常会结合图形演示、实际测量和计算练习来加深学生对空间立体几何概念的理解。
在解决具体问题时,还需要运用逻辑推理和空间想象能力,以及熟练掌握相关的数学工具和计算方法。
空间几何的知识点总结
空间几何的知识点总结空间几何是数学的一个分支,研究物体在三维空间中的几何形状、位置关系以及运动变化。
在我们日常生活和工作中,空间几何的知识有着广泛的应用,例如建筑设计、工程施工、地图制作、航天航空、计算机图形学等领域。
本文将对空间几何的基本概念、常见定理、计算方法等知识点进行总结。
一、基本概念1. 点、直线、平面空间几何的基本元素是点、直线、平面。
点是空间中没有大小的几何图形,直线是由无数个点组成的无限延伸的几何图形,平面是由无数条直线组成的没有厚度的几何图形。
2. 线段、射线、向量线段是由两个端点确定的有限长的直线,射线是由一个端点和一个方向确定的无限长的直线,向量是具有大小和方向的几何量。
3. 角、面角是由两条射线共同端点组成的几何图形,面是由平面内的点组成的几何图形。
4. 几何图形的投影在三维空间中,几何图形的投影包括平行投影和透视投影。
平行投影是指图形在方向平行的投影面上的投影,透视投影是指图形在非平行的投影面上的投影。
二、常见定理1. 空间角的性质空间中的角可以分为对顶角、内错角、同位角等。
对顶角相等、内错角互补、同位角相等等性质在空间几何中也成立。
2. 空间中的直线和平面的关系空间中的直线可以与平面相交、平行或者重合。
直线和平面相交时,可以形成锐角、直角或者钝角,其关系遵循垂直平分定理、垂足定理等几何定理。
3. 空间中的圆柱、圆锥圆柱是一个固定的圆绕着其直径的直线滚动而成的曲面,圆锥是一个固定的圆绕着其直径的直线滚动而成的曲面。
这两种几何图形在空间几何中也具有一系列性质和定理。
4. 空间中的多面体多面体是由多个多边形围成的几何体,如正方体、正四面体、正六面体等。
在空间几何中,多面体有着丰富的性质和定理,如欧拉公式、多面体的分类等。
5. 空间中的投影定理投影定理是空间几何中的重要定理,它是描述两个几何体之间的投影关系。
在空间几何中,可以利用投影定理求解各种几何问题,如计算两个几何体的表面积、体积等。
空间几何体知识点总结
空间几何体知识点总结一、点、线、面1. 点:点是空间的基本要素,没有长、宽、高,只有位置,用字母表示,如A、B、C等。
2. 线:由无限多个点组成的集合,是一种没有宽度只有方向的图形,分为直线和曲线两种。
- 直线:不含任何弯曲的线段,用两个点表示。
- 曲线:含有至少一段弯曲的线段。
3. 面:是由无限多个线组成的集合,是一种有长和宽但没有高度的图形,可以分为平面和曲面两种。
- 平面:没有限定的表面,如白纸的一面。
- 曲面:有曲度且没有边界的平面,常见的如球面、圆柱面等。
二、多面体1. 三棱锥和四棱锥:三棱锥和四棱锥是由底面和三个(四个)三角形面组成的几何体,具有尖顶和底部的多面体,如金字塔就是一种三棱锥。
2. 正多面体:正多面体是每个面都是正多边形的多面体,常见的有正立体角、正方体和正十二面体等。
3. 钝角多面体:钝角多面体是有一些面是钝角形的多面体,常见的有十二面体和二十面体等。
三、棱柱和棱台1. 棱柱:棱柱是以一个多边形为底面,侧面为平行四边形的几何体,根据底面形状的不同,可以分为三棱柱、四棱柱等。
2. 棱台:棱台是以一个多边形为底面,上下底面平行且相等的多面体,也根据底面形状的不同可以分为三棱台、四棱台等。
四、球面1. 球:球是一种特殊的曲面,就是一个没有边界、厚度的曲面,是由所有到一个给定点(球心)距离不大于给定半径的点的集合组成。
2. 球面积和体积:球面积和体积的计算公式分别是4πr^2和(4/3)πr^3,其中r为球的半径。
五、坐标系1. 直角坐标系:直角坐标系是用坐标轴构成的平面直角坐标系,通常用x、y轴表示,原点为坐标轴的交点,可以表示二维平面上的点。
2. 三维坐标系:三维坐标系是在直角坐标系的基础上加上z轴,表示三维空间内的点。
六、平行线、平行面、垂直线1. 平行线:平行线是两条直线在同一个平面内,且没有交点的直线。
2. 平行面:平行面是在三维空间内没有交点的两个平面。
3. 垂直线:垂直线是两条直线的夹角为90°,表示两条线在空间的相互关系。
空间立体几何知识点归纳(最新整理)
、面面位置关系:平行、相交。
、线面平行:(即直线与平面无任何公共点)④平行线的传递性:,a b A ααβγ=⎭⑥垂直于同一平面的两直线平行;a a a ⊂ A 性质Ⅰ:如果一个平面与两平行平面都相交,那么它们的交线平行;ααβ性质Ⅱ:平行于同一平面的两平面平行;性质Ⅳ:两平面平行,一平面上的任一条直线与另一个平面平行;11、线面垂直:⑵判定:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。
⑴定义:两个平面相交,如果它们所成的二面角是直二面角,就说这两ααll空间角及空间距离的计算1.异面直线所成角:使异面直线平移后相交形成的夹角,通常在两异面直线中的一条上取一点,过该点作另一条直线平行线,2. 斜线与平面成成的角:斜线与它在平面上的射影成的角。
如图:PA 是平面的一α条斜线,A 为斜足,O 为垂足,OA 叫斜线PA 在平面上射影,为线αPAO ∠面角。
3.二面角:从一条直线出发的两个半平面形成的图形,如图为二面角,二面l αβ--角的大小指的是二面角的平面角的大小。
二面角的平面角分别在两个半平面内且角的两边与二面角的棱垂直用二面角的平面角的定义求二面角的大小的关键点是:①确构成二面角两个半平面和棱;②明确二面角的平面角是哪个?而要想明确二面角的平面角,关键是看该角的两边是否都和棱垂直。
(求空间角的三个步骤是“一找”、“二证”、“三计算”)5.点到平面的距离:指该点与它在平面上的射影的连线段的长度。
如图:O 为P 在平面上的射影,α线段OP 的长度为点P 到平面的距离求法通常有:定义法和等体积法α等体积法:就是将点到平面的距离看成是三棱锥的一个高。
如图在三棱锥V ABC-中有:S ABCA SBCB SAC C SABV V V V ----===----,,l OA OB l OA l OB l AOB αβαβαβ⊂⊂⊥⊥∠如图:在二面角中,O 棱上一点,,,的平面角。
且则为二面角a b ''︒︒如图:直线a 与b 异面,b//b ,直线a 与直线b 的夹角为两异面直线与所成的角,异面直线所成角取值范围是(0,90]。
高一数学中的空间几何体知识点有哪些
高一数学中的空间几何体知识点有哪些在高一数学的学习中,空间几何体是一个重要的板块,它为我们理解和解决与空间形状和结构相关的问题提供了基础。
接下来,咱们就一起来梳理一下这部分的知识点。
首先,我们要明白什么是空间几何体。
简单来说,空间几何体就是占据空间的物体的形状。
它包括了常见的棱柱、棱锥、棱台、圆柱、圆锥、圆台和球等。
棱柱是由两个平行且全等的多边形底面和若干个平行四边形侧面围成的几何体。
棱柱根据侧棱与底面是否垂直,可以分为直棱柱和斜棱柱。
直棱柱的侧面都是矩形,而斜棱柱的侧面则是平行四边形。
棱锥是由一个多边形底面和若干个有公共顶点的三角形侧面围成的几何体。
棱锥的顶点到底面的距离叫做棱锥的高。
棱台则是用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。
圆柱是以矩形的一边所在直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。
圆柱的轴截面是一个矩形。
圆锥是以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。
圆锥的轴截面是一个等腰三角形。
圆台可以看作是用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分。
球是以半圆的直径所在直线为轴,将半圆旋转一周所成的曲面所围成的几何体。
了解了这些基本的几何体之后,我们还要掌握它们的表面积和体积的计算方法。
对于棱柱和圆柱,它们的侧面积公式都可以通过侧面展开图来推导。
棱柱的侧面积等于底面周长乘以高;圆柱的侧面积则是底面圆的周长乘以高。
它们的表面积就是侧面积加上两个底面的面积。
棱锥和圆锥的侧面积计算稍微复杂一些。
棱锥的侧面积是各个侧面三角形面积的总和;圆锥的侧面积是扇形的面积,扇形的半径是圆锥的母线长,扇形的弧长是底面圆的周长。
棱台和圆台的侧面积可以通过大锥体或大圆锥减去小锥体或小圆锥的侧面积得到。
在体积方面,棱柱和圆柱的体积都等于底面积乘以高。
棱锥的体积是三分之一乘以底面积乘以高;圆锥的体积也是三分之一乘以底面积乘以高。
棱台的体积可以通过大棱锥体积减去小棱锥体积得到;圆台的体积也有相应的计算公式。
数学必修二第一章知识点总结
数学必修二第一章知识点总结一、知识概述1. 《空间几何体》①基本定义:空间几何体就是在空间中,由若干个面围成的立体形状。
比如说正方体,就是由六个正方形的面围成的。
像咱们生活中的房子、盒子很多都能看成是空间几何体呢。
②重要程度:在数学必修二的第一章,这是最基础的部分。
是理解后面很多知识如点、线、面位置关系等的基石。
如果空间几何体都理解不好,后面的内容学起来就像在云里雾里。
③前置知识:需要有一些基本的平面图形知识,像三角形、四边形等的面积计算之类的。
我记得我初中刚学完平面图形,刚开始接触空间几何体时还挺迷糊的,总是不自觉地当成平面的来看。
④应用价值:在建筑设计上,工程师要设计房子,就是在构建空间几何体。
还有在制作包装盒时,也得考虑空间几何体的形状和尺寸等。
2. 《棱柱、棱锥、棱台》①基本定义:棱柱就是两个底面平行且全等,侧面都是平行四边形的几何体。
棱锥就像金字塔一样,底面是多边形,其他面是有一个公共顶点的三角形。
棱台就是用平行于棱锥底面的平面去截棱锥得到的。
我自己理解棱台就好像是棱锥被削掉了脑袋。
②重要程度:它们是空间几何体中的重要类型,对于学习立体几何里的计算、证明有很大的帮助。
③前置知识:要掌握空间几何体的基本概念,还有直线、平面平行的相关知识。
④应用价值:在修建一些棱锥形的塔呀,还有设计棱柱形的柱子的时候就要用到这些知识。
3. 《圆柱、圆锥、圆台、球》①基本定义:圆柱就是以矩形的一边所在直线为轴,其余三边旋转形成的面所围成的旋转体。
圆锥就是以直角三角形的一条直角边为旋转轴,旋转一周得到的。
圆台是用平行于圆锥底面的平面去截圆锥得到的。
球就简单啦,就是空间中到一个定点的距离等于定长的点的集合形成的几何体。
②重要程度:在生活和生产中到处都有它们的身影,比如工厂里的圆柱形的烟囱,圆锥形状的漏斗,球类运动中的球。
在数学里它们也是很重要的立体图形对象。
③前置知识:需要了解平面图形旋转形成几何体的概念等基础知识。
第46讲、空间几何体的结构特征、表面积(教师版)2025高考数学一轮复习讲义
第46讲空间几何体的结构特征、表面积与体积知识梳理知识点一:构成空间几何体的基本元素—点、线、面(1)空间中,点动成线,线动成面,面动成体.(2)空间中,不重合的两点确定一条直线,不共线的三点确定一个平面,不共面的四点确定一个空间图形或几何体(空间四边形、四面体或三棱锥).知识点二:简单凸多面体—棱柱、棱锥、棱台1、棱柱:两个面互相平面,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱.(1)斜棱柱:侧棱不垂直于底面的棱柱;(2)直棱柱:侧棱垂直于底面的棱柱;(3)正棱柱:底面是正多边形的直棱柱;(4)平行六面体:底面是平行四边形的棱柱;(5)直平行六面体:侧棱垂直于底面的平行六面体;(6)长方体:底面是矩形的直平行六面体;(7)正方体:棱长都相等的长方体.2、棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥.(1)正棱锥:底面是正多边形,且顶点在底面的射影是底面的中心;(2)正四面体:所有棱长都相等的三棱锥.3、棱台:用一个平行于棱锥底面的平面去截棱锥,底面和截面之间的部分叫做棱台,由正棱锥截得的棱台叫做正棱台.简单凸多面体的分类及其之间的关系如图所示.知识点三:简单旋转体—圆柱、圆锥、圆台、球1、圆柱:以矩形的一边所在的直线为旋转轴,其余三边旋转形成的面所围成的几何体叫做圆柱.2、圆柱:以直角三角形的一条直角边所在的直线为旋转轴,将其旋转一周形成的面所围成的几何体叫做圆锥.3、圆台:用平行于圆锥底面的平面去截圆锥,底面和截面之间的部分叫做圆台.4、球:以半圆的直径所在的直线为旋转轴,半圆面旋转一周形成的旋转体叫做球体,简称为球(球面距离:经过两点的大圆在这两点间的劣弧长度).知识点四:组合体由柱体、锥体、台体、球等几何体组成的复杂的几何体叫做组合体.知识点五:表面积与体积计算公式表面积公式表面积柱体2直棱柱底=+S ch S 2(斜棱柱底''=+S c l S c 为直截面周长)2222()圆锥=+=+S r rl r r l πππ锥体12正棱锥底'=+S nah S 2()圆锥=+=+S r rl r r l πππ台体1()2正棱台上下'=+++S n a a h S S 22)圆台(''=+++S r r r l rl π球24=S R π体积公式知识点六:空间几何体的直观图1、斜二测画法斜二测画法的主要步骤如下:(1)建立直角坐标系.在已知水平放置的平面图形中取互相垂直的Ox ,Oy ,建立直角坐标系.(2)画出斜坐标系.在画直观图的纸上(平面上)画出对应图形.在已知图形平行于x 轴的线段,在直观图中画成平行于''O x ,''O y ,使45'''∠= x O y (或135 ),它们确定的平面表示水平平面.(3)画出对应图形.在已知图形平行于x 轴的线段,在直观图中画成平行于'x 轴的线段,且长度保持不变;在已知图形平行于y 轴的线段,在直观图中画成平行于'y 轴,且长度变为原来的一般.可简化为“横不变,纵减半”.(4)擦去辅助线.图画好后,要擦去'x 轴、'y 轴及为画图添加的辅助线(虚线).被挡住的棱画虚线.注:4.2、平行投影与中心投影平行投影的投影线是互相平行的,中心投影的投影线相交于一点.必考题型全归纳题型一:空间几何体的结构特征例1.(2024·安徽·高三校联考阶段练习)已知几何体,“有两个面平行,其余各面都是平行四边形”是“几何体为棱柱”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【解析】由棱柱定义知棱柱有两个面平行,其余各面都是平行四边形,故满足必要性;但有两个面平行,其余各面都是平行四边形的几何体不一定是棱柱,例如两个底面全等的斜棱柱拼接的几何体不是棱柱,如图所示:,故不满足充分性,故选:B例2.(2024·全国·高三对口高考)设有三个命题;甲:底面是平行四边形的四棱柱是平行六面体;乙:底面是矩形的平行六面体是长方体;丙:直四棱柱是平行六面体.以上命题中真命题的个数为()A.0个B.1个C.2个D.3个【答案】B【解析】由平行六面体的定义可得底面是平行四边形的四棱柱是平行六面体;命题甲正确;底面是矩形的平行六面体的侧棱不一定垂直于底面,故该几何体不一定为长方体,命题乙错误;直四棱柱的底面不一定为平行四边形,故直四棱柱不一定是平行六面体,命题丙错误;正确的命题只有一个.故选:B例3.(2024·全国·高三专题练习)下列命题:①有两个面平行,其他各面都是平行四边形的几何体叫做棱柱;②有两侧面与底面垂直的棱柱是直棱柱;③过斜棱柱的侧棱作棱柱的截面,所得图形不可能是矩形;④所有侧面都是全等的矩形的四棱柱一定是正四棱柱.其中正确命题的个数为()A.0B.1C.2D.3【答案】A【解析】①如图1,满足有两个面平行,其他各面都是平行四边形,显然不是棱柱,故①错误;ABB A与底面垂直,但不是直棱柱,②错误;②如图2,满足两侧面11ACC A为矩形,③如图3,四边形11即过斜棱柱的侧棱作棱柱的截面,所得图形可能是矩形,③错误;④所有侧面都是全等的矩形的四棱柱不一定是正四棱柱,因为两底面不一定是正方形,④错误.故选:A变式1.(2024·新疆·统考模拟预测)下列命题中正确的是()A.有两个平面平行,其余各面都是平行四边形的几何体是棱柱.B.各个面都是三角形的几何体是三棱锥.C.夹在圆柱的两个平行截面间的几何体还是一个旋转体.D.圆锥的顶点与底面圆周上任意一点的连线都是母线.【答案】D【解析】如图所示的几何体满足两个平面平行,其余各面都是平行四边形,但它不是棱柱,A错;正八面体的各面都是三角形,不是三棱锥,B错;如果两个平行截面与圆柱的底面平行,则是旋转体,如果这两个平行截面与圆柱的底面不平行,则不是旋转体.C错;根据圆锥的定义,D正确.故选:D.变式2.(2024·全国·高三专题练习)下列说法正确的是()A.三角形的直观图是三角形B.直四棱柱是长方体C.平行六面体不是棱柱D.两个平面平行,其余各面是梯形的多面体是棱台【答案】A【解析】对A,根据直观图的定义,三角形的直观图是三角形,故A对;对B,底面是长方形的直四棱柱是长方体,故B错;对C,平行六面体一定是棱柱,故C错;两个平面平行,其余各面是梯形的多面体,当侧棱延长后不交于同一点时,不是棱台,故D 错;故选:A变式3.(2024·全国·高三专题练习)给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②直角三角形绕其任一边所在直线旋转一周所形成的几何体都是圆锥;③棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是()A.0B.1C.2D.3【答案】A【解析】①不一定,只有当这两点的连线平行于轴时才是母线;②不一定,当以斜边所在直线为旋转轴时,其余两边旋转形成的面所围成的几何体不是圆锥,如图所示,它是由两个同底圆锥组成的几何体;③错误,棱台的上、下底面相似且是对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.故选:A.变式4.(2024·全国·高三专题练习)如图所示,观察四个几何体,其中判断正确的是()A.是棱台B.是圆台C.不是棱柱D.是棱锥【答案】D【解析】对A,侧棱延长线不交于一点,不符合棱台的定义,所以A错误;对B,上下两个面不平行,不符合圆台的定义,所以B错误;对C,将几何体竖直起来看,符合棱柱的定义,所以C错误;对D ,符合棱锥的定义,正确.故选:D .【解题方法总结】空间几何体结构特征的判断技巧(1)紧扣结构特征是判断的关键,依据条件构建几何模型,在条件不变的情况下,变换模型中的线面关系或增加线、面等基本元素,然后再依据题意判定.(2)说明一个命题是错误的,只要举出一个反例即可.题型二:空间几何体的表面积例4.(2024·湖北武汉·统考模拟预测)已知某圆锥的母线长、底面圆的直径都等于球的半径,则球与圆锥的表面积之比为()A .8B .163C .316D .18【答案】B【解析】设圆锥的母线长为l ,底面圆的半径为r ,球的半径为R ,则2l r R ==,即2R r =,2l r =,球的表面积2214π16πS R r ==,圆锥的表面积22222ππ2ππ3πS rl r r r r =+=+=,则212216π163π3S r S r ==.故选:B.例5.(2024·河南郑州·统考模拟预测)在一个正六棱柱中挖去一个圆柱后,剩余部分几何体如图所示.已知正六棱柱的底面正六边形边长为3cm ,高为4cm ,内孔半径为1cm ,则此几何体的表面积是()2cm.A.726πB.728π+C.726π+D.606π+【答案】C【解析】所求几何体的侧面积为()234672cm ⨯⨯=,上下底面面积为()()22136π22πcm 22⎛⎫⨯-⨯= ⎪ ⎪⎝⎭,挖去圆柱的侧面积为()22π48πcm⨯=,则所求几何体的表面积为()()2726πcm +.故选:C .例6.(2024·安徽安庆·安庆一中校考三模)陀螺起源于我国,最早出土的石制陀螺是在山西夏县发现的新石器时代遗址.如图所示的是一个陀螺立体结构图.已知,底面圆的直径12cm AB =,圆柱体部分的高6cm BC =,圆锥体部分的高4cm CD =,则这个陀螺的表面积(单位:2cm )是()A .(144π+B .(144π+C .(108π+D .(108π+【答案】C【解析】由题意可得圆锥体的母线长为l ==所以圆锥体的侧面积为112π2⋅⋅=,圆柱体的侧面积为12π672π⨯=,圆柱的底面面积为2π636π⨯=,所以此陀螺的表面积为()()272π36π108cm ++=+,故选:C.变式5.(2024·西藏拉萨·统考一模)位于徐州园博园中心位置的国际馆(一云落雨),使用现代科技雾化“造云”,打造温室客厅,如图,这个国际馆中3个展馆的顶部均采用正四棱锥这种经典几何形式,表达了理性主义与浪漫主义的对立与统一.其中最大的是3号展馆,其顶部所对应的正四棱锥底面边长为19.2m ,高为9m ,则该正四棱锥的侧面面积与底面面积之比约为()13.16≈)A .2B .1.71C .1.37D .1【答案】C【解析】如图,设H 为底面正方形ABCD 的中心,G 为BC 的中点,连接PH ,HG ,PG ,则PH HG ⊥,PG BC ⊥,所以13.16PG ===≈,则144226.322 1.3719.2PBCABCDBC PGS PG S AB BC AB ⨯⨯⨯==≈≈⨯正方形△,故选:C.变式6.(2024·湖南长沙·高三校联考阶段练习)为了给热爱朗读的师生提供一个安静独立的环境,某学校修建了若干“朗读亭”.如图所示,该朗读亭的外形是一个正六棱柱和正六棱锥的组合体,正六棱柱两条相对侧棱所在的轴截面为正方形,若正六棱锥的高与底面边长的比为2:3,则正六棱锥与正六棱柱的侧面积的比值为()A.8B.24C .19D .127【答案】B【解析】设正六边形的边长为a,由题意正六棱柱的高为2a,因为正六棱锥的高与底面边长的比为2:3,所以正六棱锥的高为2 3 a,正六棱锥的母线长为,正六棱锥的侧面积21162S=⨯;正六棱柱的侧面积226212S a a a=⋅⋅=,所以12SS=.故选:B.变式7.(2024·河北·统考模拟预测)《九章算术》是我国古代的数学名著.其“商功”中记载:“正四面形棱台(即正四棱台)建筑物为方亭.”现有如图所示的烽火台,其主体部分为一方亭,将它的主体部分抽象成1111ABCD A B C D-的正四棱台(如图所示),其中上底面与下底面的面积之比为1:16,方亭的高为棱台上底面边长的3倍.已知方亭的体积为3567m,则该方亭的表面积约为()2.2≈1.7≈1.4≈)A.2380m B.2400m C.2450m D.2480m【答案】C【解析】设方亭相应的正四棱台的上底面边长11A B a=,则4AB a=,棱台的高3h a=,所以(2213165673V a a a=⨯+=,解得3a=,所以正四棱台的上底面边长为3m,下底面边长为12m,棱台的高为9m,2=,由于各侧面均为相等的等腰梯形,所以()1142ABB Aa aS+=所以方亭的表面积22222216417450m 4S a a a a =++⨯=+≈.故选:C变式8.(2024·甘肃张掖·高台县第一中学校考模拟预测)仿钧玫瑰紫釉盘是收藏于北京故宫博物院的一件明代宣德年间产的瓷器.该盘盘口微撇,弧腹,圈足.足底切削整齐.通体施玫瑰紫釉,釉面棕眼密集,美不胜收.仿钧玫瑰紫釉盘的形状可近似看成是圆台和圆柱的组合体,其口径为15.5cm ,足径为9.2cm ,顶部到底部的高为4.1cm ,底部圆柱高为0.7cm ,则该仿钧玫瑰紫釉盘圆台部分的侧面积约为()(参考数据:π的值取3 4.6≈)A .2143.1cm B .2151.53cm C .2155.42cm D .2170.43cm 【答案】D【解析】方法1:设该圆台的母线长为l ,高为h ,两底面圆的半径分别为R ,r (其中R r >),则215.5cm R =,29.2cm r =,()4.10.7 3.4cm h =-=,所以()46m .c l ==≈,故圆台部分的侧面积为()()21π3(7.75 4.6) 4.6170.43cm S R r l =+≈⨯+⨯=.故选:D方法2(估算法):若按底面直径为15.5cm ,高为3.4cm 的圆柱估算圆台部分的侧面积得()2315.5 3.4158.1cm S '≈⨯⨯=,易知圆台的侧面积应大于所估算的圆柱的侧面积,故此仿钧玫瑰紫釉盘圆台部分的侧面积大于2158.1cm ,对照各选项可知只有D 符合.故选:D【解题方法总结】(1)多面体的表面积是各个面的面积之和.(2)旋转体的表面积是将其展开后,展开图的面积与底面面积之和.(3)组合体的表面积求解时注意对衔接部分的处理.题型三:空间几何体的体积例7.(2024·广东梅州·统考三模)在马致远的《汉宫秋》楔子中写道:“毡帐秋风迷宿草,穹庐夜月听悲笳.”毡帐是古代北方游牧民族以为居室、毡制帷幔.如图所示,某毡帐可视作一个圆锥与圆柱的组合体,圆锥的高为4,侧面积为15π,圆柱的侧面积为18π,则该毡帐的体积为()A .39πB .18πC .38πD .45π【答案】A【解析】设圆柱的底面半径为r ,高为h ,圆锥的母线长为l ,因为圆锥的侧面积为15π,所以15πrl π=,即15rl =.因为2224l r =+,所以联立解得3r =(负舍).因为圆柱的侧面积为18π,所以218πrh π=,即2318πh π⨯=,解得3h =,所以该毡帐的体积为221π4π39π3r r h ⨯+=.故选:A.例8.(2024·重庆沙坪坝·高三重庆一中校考阶段练习)若某圆锥的侧面展开图是一个半径为2)A B .8C .27D .27【答案】C【解析】设圆锥底面半径为r ,因为母线长为2l =,则半圆弧长π2πl ===底面周长2πr =,所以1r =,圆锥的高为PO =如图,设O B x '=,则EB =,设OO h '=,则PO h '=-,因为PO O BPO OA''=,∴11x =所以)13h x -=,∴23x =,)2429V h ==⨯,故选:C .例9.(2024·山东青岛·高三统考期中)已知正四棱锥的各顶点都在同一个球面上,球的体积为36π,则该正四棱锥的体积最大值为()A .18B .643C .814D .27【答案】B【解析】如图,设正四棱锥的底面边长2AB a =,高PO h =,外接球的球心为M ,则OD =,因为球的体积为34π36π3R =,所以球的半径为3R =,在Rt MOD △中,222MD OD OM =+,即22232(3)a h =+-,所以正四棱锥的体积为2211249(3)333V Sh a h h h ⎡⎤==⨯=--⎣⎦整理得3224(0)3V h h h =-+>,则2282(4)V h h h h '=-+=--,当04h <<时,0V '>,当4h >时,0V '<,所以3224(0)3V h h h =-+>在(0,4)上递增,在(4,)+∞上递减,所以当4h =时,函数取得最大值3226444433-⨯+⨯=,故选:B变式9.(2024·湖北武汉·高三统考开学考试)攒尖是我国古代建筑中屋顶的一种结构形式,宋代称为最尖,清代称攒尖,通常有圆形攒尖、三角攒尖、四角攒尖、八角攒尖,也有单檐和重檐之分,多见于亭阁式建筑、园林建筑.下面以四角攒尖为例,如图,它的屋顶部分的轮廓可近似看作一个正四棱锥.已知正四棱锥的底面边长为5米,则其体积为()立方米.A .B .24C .D .72【答案】B【解析】如图所示,在正四棱锥P ABCD -中,连接,AC BD 于O ,则O 为正方形ABCD 的中心,连接OP ,则底面边长AB =6BD ==,132==BO BD .又5BP =,故高4OP ==.故该正四棱锥体积为(214243V =⨯⨯=.故选:B变式10.(2024·广东河源·高三校联考开学考试)最早的测雨器记载见于南宋数学家秦九韶所著的《数书九章》(1247年).该书第二章为“天时类”,收录了有关降水量计算的四个例子,分别是“天池测雨”、“圆罂测雨”、“峻积验雪”和“竹器验雪”.如图“竹器验雪”法是下雪时用一个圆台形的器皿收集雪量(平地降雪厚度=器皿中积雪体积除以器皿口面积),已知数据如图(注意:单位cm ),则平地降雪厚度的近似值为()A .91cm 12B .31cm 4C .95cm 12D .97cm 12【答案】C【解析】如图所示,可求得器皿中雪表面的半径为204015cm 4+=,所以平地降雪厚度的近似值为()2221π2010151015953cmπ2012⨯⨯++⨯=⨯.故选:C变式11.(2024·浙江·校联考模拟预测)如图是我国古代量粮食的器具“升”,其形状是正四棱台,上、下底面边长分别为20cm 和10cm,侧棱长为.“升”装满后用手指或筷子沿升口刮平,这叫“平升”.则该“升”的“平升”约可装()31000cm 1L =()A .1.5LB .1.7LC .2.3LD .2.7L【答案】C【解析】根据题意画出正四棱台的直观图,其中底面ABCD 是边长为20的正方形,底面1111D C B A 是边长为10的正方形,侧棱1C C =记底面ABCD 和底面1111D C B A 的中心分别为O 和1O ,则1O O 是正四棱台的高.过1C 作平面ABCD 的垂线,垂足为E ,则E AC ∈且11C E O O ,11C E O O =,所以1111111022OE O C A C ====,112022OC AC ===,故CE OC OE =-=所以棱台的高110h C E ==,由棱台的体积公式得3311((400100200)10 2.310cm 2.3L 33V S S h '=+=++⨯≈⨯=.故选:C .【解题方法总结】求空间几何体的体积的常用方法公式法规则几何体的体积,直接利用公式割补法把不规则的几何体分割成规则的几何体,或者把不规则的几何体补成规则的几何体等体积法通过选择合适的底面来求几何体体积的一种方法,特别是三棱锥的体积题型四:直观图例10.(2024·辽宁锦州·渤海大学附属高级中学校考模拟预测)已知用斜二测画法画梯形OABC 的直观图O A B C ''''如图所示,3O A C B ''''=,C E O A ''''⊥,8OABC S =,//C D y '''轴,C E ''=,D ¢为O A ''的三等分点,则四边形OABC 绕y 轴旋转一周形成的空间几何体的体积为.【答案】48π【解析】在直观图中,1C D E ''''=,所以在还原图中,2CD =,如图,在直观图中,3O A C B ''''=,D ¢为O A ''的三等分点,所以在还原图中,3OA CB =,D 为OA 的三等分点,又在直观图中,//C D y '''轴,所以在还原图中,//CD y 轴,则CD OA ⊥,所以()11244822OABC S CD OA CB CB CB =⨯+=⨯⨯==,则2CB =,故6OA =,123OD OA ==,所以四边形OABC 是等腰梯形,所以四边形OABC 绕y 轴旋转一周所形成的空间几何体的体积等于一个圆台的体积减去一个圆锥的体积,即()22211152π8ππ44662π2248π3333V =⨯+⨯+⨯-⨯⨯=-=.故答案为:48π.例11.(2024·全国·高三对口高考)若正ABC 用斜二测画法画出的水平放置图形的直观图为A B C ''' ,当A B C '''ABC 的面积为.【答案】【解析】A B C ''' 是正ABC 的斜二测画法的水平放置图形的直观图,如图所示,设B C a ''=,则A B C ''' 的面积为1sin 452a O A ⋅⋅⋅'︒='O A a ∴='',ABC ∴ 的面积为11222S a OA a O A a ''=⋅=⋅⋅==故答案为:例12.(2024·四川成都·高三统考阶段练习)用斜二测画法画出的某平面图形的直观图如图所示,边A B ''与C D ''平行于x '轴.已知四边形A B C D ''''的面积为21cm ,则原平面图形的面积为2cm .【答案】【解析】根据题意得45B A D '''∠= ,原四边形为一个直角梯形,且CD C D ''=,AB A B ''=,2AD A D ''=,())()21sin 45124A B C D S A B C D A D A B C D A D cm ''''=+⋅=''''''''''''+⋅= 梯形,则()A B C D A D ''''''+⋅=所以,()()())211222ABCD S AB CD AD A B C D A D A B C D A D cm '''''''''''=+⋅=+⋅=+⋅='梯形.故答案为:变式12.(2024·全国·高三专题练习)如图,A O B ''' 是用斜二测画法得到的△AOB 的直观图,其中23O A O B ''''==,,则AB 的长度为.【答案】【解析】把直观图A O B '''V 还原为AOB ,如图所示:根据直观图画法规则知,2,2236OA O A OB O B ''''====⨯=,所以AB 的长度为AB ==故答案为:.变式13.(2024·上海浦东新·高三上海市川沙中学校考期末)有一块多边形的菜地,它的水平放置的平面图形的斜二测直观图是直角梯形(如图所示).45,1,ABC AB AD DC BC ∠===⊥ ,则这块菜地的面积为【答案】22+【解析】过A 作AE BC ⊥于E ,在直观图中, 45ABC ∠= ,1AB AD ==,DC BC ⊥,所以1,2EC BE ==,12BC ∴=+,故原平面图形的上底为1,下底12+,高为2,所以这块菜地的面积为1(11222S =⨯+⨯=故答案为:22+.变式14.(2024·上海宝山·高三上海交大附中校考开学考试)我们知道一条线段在“斜二测”画法中它的长度可能会发生变化的,现直角坐标系平面上一条长为4cm 线段AB 按“斜二测”画法在水平放置的平面上画出为A B '',则A B ''最短长度为cm (结果用精确值表示)【解析】如图1所示,可以将平面内所有长为4的线段平移至图中O 点为起点,则它们的终点形成以O 为圆心,半径为4的圆周.以两条互相垂直的直径为坐标轴,建立平面直角坐标系.然后在斜二测画法下画出该圆的直观图,如图2,形成一个椭圆,由斜二测的性质可知,在图2,该椭圆长半轴为4,且经过点A ',易知122OA OA '==且45xO y '︒∠=,所以A ',设椭圆的方程为:222116x y b +=,将A '代入得:222116b +=,解得b ==由椭圆的性质可知,椭圆上的点中,短轴端点到原点的距离b 最小,即7即为所求.故答案为:7.变式15.(2024·陕西延安·校考一模)如图,梯形ABCD 是水平放置的一个平面图形的直观图,其中=45∠ ABC ,1AB AD ==,DC BC ⊥,则原图形的面积为.【答案】22+【解析】因为1AB AD ==,=45∠ ABC ,DC BC ⊥,所以12BC =+,12A D A B ''=''=,,12B C =+''所以()112222222S A D B C A B '''⎛⎫=+⋅=⨯+⨯=+ ⎪ ⎪⎝⎭'''.故答案为:22+.变式16.(2024·全国·高三专题练习)如图,用斜二测画法画一个水平放置的平面图形的直观图为一个正方形,则原来图形的面积是.【答案】【解析】由直观图可知,在直观图中,,由斜二测画法的特点,知该平面图形的直观图的原图形如图所示所以原图图形为平行四边形,底面边长为1,位于y 轴的对角线长为,所以原来图形的面积为1S =⨯=.故答案为:【解题方法总结】斜二测法下的直观图与原图面积之间存在固定的比值关系:2S =4S 直原.题型五:展开图例13.(2024·山东青岛·统考三模)已知圆锥的底面半径为1,侧面展开图为半圆,则该圆锥内半径最大的球的表面积为.【答案】43π/43π【解析】设圆锥母线长为l ,由题意2π1πl ⨯=,2l =,圆锥内半径最大的球与圆锥相切,作出圆锥的轴截面PAB ,截球得大圆为圆锥轴截面三角形的内切圆O ,,D E 是切点,如图,易知PD 是圆锥的高,O 在PD 上,由2,1PA BD ==得π6BPD ∠=,因此π3ABP ∠=,所以1π26OBD DBP ∠=∠=,πtan 63OD BD =,所以圆锥内半径最大的球的表面积为24π4π(33S =⨯=,故答案为:4π3.例14.(2024·全国·高三专题练习)如图,在直三棱柱111ABC A B C -的侧面展开图中,B ,C 是线段AD 的三等分点,且AD =.若该三棱柱的外接球O 的表面积为12π,则1AA =.【答案】【解析】由该三棱柱的外接球O 的表面积为12π,设外接球得半径为r ,则24π12πr =,解得r =,由题意,取上下底面三角形得中心,分别为,E F ,EF 得中点即为外接圆圆心O ,作图如下:则OC r ==,EF ⊥平面ABC ,12EF AA OF ==,CF ⊂Q 平面ABC ,OF CF ∴⊥,在等边ABC 中,2sin 6013CF BC =⋅⋅= ,在Rt OFC △中,OF ,12AA OF ==故答案为:例15.(2024·上海普陀·高三统考期中)2022年4月16日,神舟十三号载人飞船返回舱在东风着陆场预定区域成果着陆.如图,在返回过程中使用的主降落伞外表面积达到1200平方米,若主降落伞完全展开后可以近似看着一个半球,则完全展开后伞口的直径约为米(精确到整数)【答案】28【解析】设主降落伞展开后所在球体的半径为R ,由题可得221200R π=,解得14R ≈,故完全展开后伞口的直径约为28米.故答案为:28.变式17.(2024·山东淄博·统考一模)已知圆锥的底面半径为1,其侧面展开图为一个半圆,则该圆锥的体积为.【解析】∵圆锥的底面半径为1,∴侧面展开图的弧长为2π,又∵侧面展开图是半圆,∴侧面展开图的半径为2,即圆锥的母线长为2,故圆锥的高为=2113V π=⋅变式18.(2024·安徽·蚌埠二中校联考模拟预测)如图,在三棱锥P -ABC 的平面展开图中,CD AB ∥,AB AC ⊥,22AB AC ==,CD =,cos BCF ∠65=,则三棱锥-P ABC 外接球表面积为.【答案】14π【解析】由题意可知,DC AC ⊥,CD CF =AD AE ==,BC =在 BCF 中,2222cos 10BF CF BC CF BC BCF =+-⋅∠=,则BE BF ==因为222AB BE AE +=,所以AB BE ⊥,在三棱锥P -ABC 外接球的球心为O ,PC AC ⊥,PB AB ⊥,记PA 中点为O ,OC OB OA OP ===,即三棱锥P -ABC 外接球的球心为点O ,半径222PA AD R ===,所以外接球表面积为14π.故答案为:14π变式19.(2024·全国·高三专题练习)已知三棱锥P -ABC 的底面ABC 为等边三角形.如图,在三棱锥P -ABC 的平面展开图中,P ,F ,E 三点共线,B ,C ,E三点共线,cos 26PCF ∠=,PC =PB =.【答案】【解析】由题意可知,△CEF 为等边三角形,所以60CEF EFC ∠=∠= ,则120PFC ∠= ,由cos 26PCF ∠=可知sin 26PCF ∠=,在△PCF中,由正弦定理得:sin 3sin1202PC PCF PF ∠===.在△PCE 中,由余弦定理得:()()221333EF EF EF EF =++-+⋅,解得1EF =或4EF =-(舍去),所以1AB BC CE ===,则4PE =,2BE =,在△PBE 中,由余弦定理得21642412PB =+-⨯=,所以PB =.故答案为:变式20.(2024·安徽黄山·统考一模)如图,在四棱锥P -ABCD 的平面展开图中,正方形ABCD 的边长为4,ADE V 是以AD 为斜边的等腰直角三角形,90HDC FAB ∠=∠=︒,则该四棱锥外接球被平面PBC 所截的圆面的面积为.【答案】365π【解析】该几何体的直观图如下图所示分别取,AD BC 的中点,O M ,连接,OMPM2,4,PO OM PM ==== 222,OP OM PM OP OM∴+=∴⊥又PO AD ⊥ ,所以由线面垂直的判定定理得出PO ⊥平面ABCD 以点O为坐标原点,建立空间直角坐标系(2,0,0),(2,4,0),(2,4,0)A B C -,(2,0,0),(0,0,2)D P -设四棱锥P ABCD -外接球的球心()0,2,N a PN NA = ,()224244a a ∴+-=++,解得0a =设平面PBC 的法向量为(,,)n x y z = (2,4,2),(2,4,2),(0,2,2)PB PC NP =-=--=- 20.020.0x y z PB n x y z PC n ⎧+-=⎧=⇒⎨⎨-+-==⎩⎩ ,取2z =,则(0,1,2)n = 四棱锥P ABCD -外接球的球心到面PBC的距离为cos ,5n NP d NP n NP NP n NP⋅=⋅=⋅==又NP PBC 所截的圆的半径r =所以平面PBC 所截的圆面的面积为2365r ππ=.故答案为:365π变式21.(2024·山西大同·高三统考阶段练习)如图,在三棱锥-P ABC 的平面展开图中,1AC =,AB AD ==AB AC ⊥,AB AD ⊥,30CAE ∠=︒,则三棱锥-P ABC 的外接球的表面积为.【答案】7π【解析】还原出如图所示的三棱锥B PAC -,AB AC ⊥ ,AB AD ⊥,AB ∴⊥平面PAC ,设平面PAC 的截面圆心为O ',半径为r ,球心为O ,球半径为R ,在PAC △中,由余弦定理可得2222cos3013211PC AC AP AC AP =+-⋅⋅=+-⨯⨯ ,则1PC =,这由正弦定理得22sin 30PC r ==,1r =,122OO AB '== ,2R ∴==,∴外接球的表面积2472S ππ⎫==⎪⎪⎝⎭.故答案为:7π.【解题方法总结】多面体表面展开图可以有不同的形状,应多实践,观察并大胆想象立体图形与表面展开图的关系,一定先观察立体图形的每一个面的形状.题型六:最短路径问题例16.(2024·福建福州·高一福建省福州屏东中学校考期末)如图,一竖立在地面上的圆锥形物体的母线长为4,一只小虫从圆锥的底面圆上的点P 出发,绕圆锥爬行一周后回到点P 处,若该小虫爬行的最短路程为).A .3B .27C .81D .3【答案】C 【解析】作出该圆锥的侧面展开图,如图所示:该小虫爬行的最短路程为1PP ,。
高中数学空间几何体知识点总结
高中数学空间几何体知识点总结一、空间几何体的结构。
1. 棱柱。
- 定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。
- 分类:- 按底面多边形的边数可分为三棱柱、四棱柱、五棱柱等。
- 直棱柱:侧棱垂直于底面的棱柱。
- 斜棱柱:侧棱不垂直于底面的棱柱。
- 正棱柱:底面是正多边形的直棱柱。
- 性质:- 棱柱的侧棱都相等,侧面都是平行四边形。
- 直棱柱的侧面都是矩形,正棱柱的侧面都是全等的矩形。
- 棱柱的两个底面与平行于底面的截面是全等的多边形。
2. 棱锥。
- 定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥。
- 分类:- 按底面多边形的边数可分为三棱锥、四棱锥、五棱锥等。
- 正棱锥:底面是正多边形,且顶点在底面的射影是底面中心的棱锥。
- 棱锥的侧棱交于一点(顶点)。
- 正棱锥的各侧棱相等,各侧面都是全等的等腰三角形,等腰三角形底边上的高叫做正棱锥的斜高。
3. 棱台。
- 定义:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台。
- 分类:- 按底面多边形的边数可分为三棱台、四棱台、五棱台等。
- 性质:- 棱台的各侧棱延长后交于一点。
- 棱台的上下底面是相似多边形,侧面是梯形。
4. 圆柱。
- 定义:以矩形的一边所在直线为旋转轴,其余三边旋转形成的面所围成的旋转体叫做圆柱。
- 性质:- 圆柱的轴截面是全等的矩形。
- 圆柱的侧面展开图是矩形,矩形的长等于底面圆的周长,宽等于圆柱的高。
5. 圆锥。
- 定义:以直角三角形的一条直角边所在直线为旋转轴,其余两边旋转形成的面所围成的旋转体叫做圆锥。
- 圆锥的轴截面是等腰三角形。
- 圆锥的侧面展开图是扇形,扇形的弧长等于底面圆的周长,半径等于圆锥的母线长。
6. 圆台。
- 定义:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台。
- 性质:- 圆台的轴截面是等腰梯形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
空间几何体多面体棱柱棱柱的定义:有两个面互相平行,其余各面都是四边形,并且每两个四边形的公共边都互相平行,这些面围成的几何体叫做棱柱。
棱柱的性质(1)侧棱都相等,侧面是平行四边形(2)两个底面与平行于底面的截面是全等的多边形(3)过不相邻的两条侧棱的截面(对角面)是平行四边形棱锥棱锥的定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,这些面围成的几何体叫做棱锥棱锥的性质:(1)侧棱交于一点。
侧面都是三角形(2)平行于底面的截面与底面是相似的多边形。
且其面积比等于截得的棱锥的高与远棱锥高的比的平方正棱锥正棱锥的定义:如果一个棱锥底面是正多边形,并且顶点在底面内的射影是底面的中心,这样的棱锥叫做正棱锥。
正棱锥的性质:(1)各侧棱交于一点且相等,各侧面都是全等的等腰三角形。
各等腰三角形底边上的高相等,它叫做正棱锥的斜高。
(3)多个特殊的直角三角形esp:a、相邻两侧棱互相垂直的正三棱锥,由三垂线定理可得顶点在底面的射影为底面三角形的垂心。
b、四面体中有三对异面直线,若有两对互相垂直,则可得第三对也互相垂直。
且顶点在底面的射影为底面三角形的垂心。
基本概念公理1:如果一条直线上的两点在一个平面内,那么这条直线上的所有的点都在这个平面内。
公理2:如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。
公理3:过不在同一条直线上的三个点,有且只有一个平面。
推论1: 经过一条直线和这条直线外一点,有且只有一个平面。
推论2:经过两条相交直线,有且只有一个平面。
推论3:经过两条平行直线,有且只有一个平面。
公理4 :平行于同一条直线的两条直线互相平行。
等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等。
空间两直线的位置关系:空间两条直线只有三种位置关系:平行、相交、异面1、按是否共面可分为两类:(1)共面:平行、相交(2)异面:异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。
异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。
两异面直线所成的角:范围为( 0°,90° ) esp.空间向量法两异面直线间距离: 公垂线段(有且只有一条) esp.空间向量法2、若从有无公共点的角度看可分为两类:(1)有且仅有一个公共点——相交直线;(2)没有公共点——平行或异面直线和平面的位置关系:直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行①直线在平面内——有无数个公共点②直线和平面相交——有且只有一个公共点直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。
esp.空间向量法(找平面的法向量)规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角由此得直线和平面所成角的取值范围为[0°,90°]最小角定理: 斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角三垂线定理及逆定理: 如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直esp.直线和平面垂直直线和平面垂直的定义:如果一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面互相垂直.直线a叫做平面的垂线,平面叫做直线a的垂面。
直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。
直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。
③直线和平面平行——没有公共点直线和平面平行的定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。
直线和平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。
直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
两个平面的位置关系:(1)两个平面互相平行的定义:空间两平面没有公共点(2)两个平面的位置关系:两个平面平行-----没有公共点;两个平面相交-----有一条公共直线。
a、平行两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行。
两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么交线平行。
b、相交二面角(1)半平面:平面内的一条直线把这个平面分成两个部分,其中每一个部分叫做半平面。
(2)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角。
二面角的取值范围为[0°,180°](3)二面角的棱:这一条直线叫做二面角的棱。
(4)二面角的面:这两个半平面叫做二面角的面。
(5)二面角的平面角:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角。
(6)直二面角:平面角是直角的二面角叫做直二面角。
esp. 两平面垂直两平面垂直的定义:两平面相交,如果所成的角是直二面角,就说这两个平面互相垂直。
记为⊥两平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直两个平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于交线的直线垂直于另一个平面。
Attention:二面角求法:直接法(作出平面角)、三垂线定理及逆定理、面积射影定理、空间向量之法向量法(注意求出的角与所需要求的角之间的等补关系)空间几何练习题1.1 空间几何体的结构一、选择题1、下列各组几何体中是多面体的一组是()A 三棱柱四棱台球圆锥B 三棱柱四棱台正方体圆台C 三棱柱四棱台正方体六棱锥D 圆锥圆台球半球2、下列说法正确的是()A 有一个面是多边形,其余各面是三角形的多面体是棱锥B 有两个面互相平行,其余各面均为梯形的多面体是棱台C 有两个面互相平行,其余各面均为平行四边形的多面体是棱柱D 棱柱的两个底面互相平行,侧面均为平行四边形3、下面多面体是五面体的是()A 三棱锥B 三棱柱C 四棱柱D 五棱锥4、下列说法错误的是()A 一个三棱锥可以由一个三棱锥和一个四棱锥拼合而成B 一个圆台可以由两个圆台拼合而成C 一个圆锥可以由两个圆锥拼合而成D 一个四棱台可以由两个四棱台拼合而成5、下面多面体中有12条棱的是()A 四棱柱B 四棱锥C 五棱锥D 五棱柱6、在三棱锥的四个面中,直角三角形最多可有几个( )A 1 个B 2 个C 3个D 4个二、填空题7、一个棱柱至少有————————个面,面数最少的棱柱有————————个顶点,有—————————个棱。
8、一个棱柱有10个顶点,所有侧棱长的和为60,则每条侧棱长为————————————9、把等腰三角形绕底边上的高旋转1800,所得的几何体是——————10、水平放置的正方体分别用“前面、后面、上面、下面、左面、右面”表示。
图中是一个正方体的平面展开图,若图中的“似”表示正方体的前面,“锦”表示右面,“程”表示下面。
则“祝”“你”“前”分别表示正 方体的—————三、解答题:11、长方体ABCD —A1B1C1D1中,AB =3,BC =2,BB1=1,由A 到C1在长方体表面上的最短距离为多少?12、说出下列几何体的主要结构特征祝你 前 程 似 锦A A 1B 1 BCC 1D 1D(1) (2) (3)1.2空间几何体的三视图和直观图一、选择题1、两条相交直线的平行投影是( )A 两条相交直线B 一条直线C 一条折线D 两条相交直线或一条直线2、如图中甲、乙、丙所示,下面是三个几何体的三视图,相应的标号是( )① 长方体 ② 圆锥 ③ 三棱锥 ④ 圆柱A ②①③B ①②③C ③②④D ④③②正视图侧视图俯视图正视图 侧视图 俯视图 正视图侧视图 俯视图甲乙 丙3、如果一个几何体的正视图和侧视图都是长方形,则这个几何体可能是( )A 长方体或圆柱B 正方体或圆柱C 长方体或圆台D 正方体或四棱锥4、下列说法正确的是( )A 水平放置的正方形的直观图可能是梯形B 两条相交直线的直观图可能是平行直线C 平行四边形的直观图仍然是平行四边形D 互相垂直的两条直线的直观图仍然互相垂直5、若一个三角形,采用斜二测画法作出其直观图,其直观图面积是原三角形面积的( )A 21倍 B 42倍 C 2倍 D 2倍6、如图(1)所示的一个几何体,,在图中是该几何体的俯视图的是( )(1)二、选择题7、当圆锥的三视图中的正视图是一个圆时,侧视图与俯视图是两个全等的______________三角形。
8、三视图和用斜二测画法画出的直观图都是在__________________投影下画出来的。
9、有下列结论:①角的水平放置的直观图一定是角②相等的角在直观图中仍然相等③相等的线段在直观。
A BCD图中仍然相等④若两条线段平行,则在直观图中对应的两条线段仍然平行其中正确的是_____________________________10、①如果一个几何体的三视图是完全相同的,则这个几何体一定是正方体。
②如果一个几何体的正视图和俯视图都是矩形,则这个几何体一定长方体。
③如果一个几何体的三视图都是矩形,则这个几何体是长方体④如果一个几何体的正视图和俯视图都是等腰梯形,则这个几何体一定圆台。
其中说法正确的是____________________________三、解答题11、根据图中物体的三视图,画出物体的形状正视图侧视图俯视图12、室内有一面积为3平方米的玻璃窗,一个人站在离窗子4米的地方向外看,他能看到窗前面一幢楼的面积有多大?(楼间距为20米)1.3空间几何体的表面积和体积(1)一、选择题1、一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是( )A ππ221+B ππ441+C ππ21+D ππ241+2、已知圆锥的母线长为8,底面圆周长为π6,则它的体积是( )A π559B 955C π553D 5533、若圆台的上下底面半径分别是1和3,它的侧面积是两底面面积的2倍,则圆台的母线长是( )A 2B 2.5C 5D 104、若圆锥的侧面展开图是圆心角为1200,半径为l 的扇形,则这个圆锥的表面积与侧面积的比是( )A 3:2B 2:1C 4:3D 5:35、如图,在棱长为4的正方体 ABCD-A1B1C1D1中,P 是A1B1上一点, 且PB1=41A1B1,则多面体P-BCC1B1的体积为( )A 38B 316C 4D 166、两个平行于圆锥底面的平面将圆锥的高分成相等的三部分,则圆锥被分成的三部分的体积的比是( )A 1:2:3B 1:7:19C 3:4:5D 1:9:27二、填空题7、一个棱长为4的正方体,若在它的各个面的中心位置上,各打一个直径为2,深为1的圆柱形的孔,则打孔后几何体的表面积为_______________________8、半径为15cm ,圆心角为2160的扇形围成圆锥的侧面,则圆锥的高是____________________9、在三棱锥A-BCD 中,P 、Q 分别在棱AC 、BD 上,连接AQ 、CQ 、BP 、PQ ,若三棱锥A-BPQ 、B-CPQ 、C-DPQ 的体积分别为6、2、8,则三棱锥A-BCD 的体积为_____________________--10、棱长为a ,各面均为等边三角形的四面体(正四面体)的表面积为________________________体积为______________________三、解答题11、直角梯形的一个底角为450,下底长为上底长的1.5倍,这个梯形绕下底所在的直线旋转一周所成的旋转体的表面积是,)25(π+求这个旋转体的体积。