2018年山东省日照市中考数学试卷含解析(完美打印版)

合集下载

(完整版)2018年山东省日照市中考数学试卷(试卷+答案+解析)

(完整版)2018年山东省日照市中考数学试卷(试卷+答案+解析)

2018年山东省日照市中考数学试卷一、选择题:本大题共12小题,每小题3分,满分36分,在每小题所给出的四个选项中,只有一项是符合题目要求的1.(3分)|﹣5|的相反数是()A.﹣5 B.5 C.D.﹣2.(3分)在下列图案中,既是轴对称又是中心对称图形的是()A.B.C.D.3.(3分)下列各式中,运算正确的是( )A.(a3)2=a5B.(a﹣b)2=a2﹣b2C.a6÷a2=a4D.a2+a2=2a44.(3分)若式子有意义,则实数m的取值范围是( )A.m>﹣2 B.m>﹣2且m≠1C.m≥﹣2 D.m≥﹣2且m≠15.(3分)某校为了解学生的课外阅读情况,随机抽取了一个班级的学生,对他们一周的读书时间进行了统计,统计数据如下表所示:7891011读书时间(小时)学生人数610987则该班学生一周读书时间的中位数和众数分别是()A.9,8 B.9,9 C.9.5,9 D.9。

5,86.(3分)如图,将一副直角三角板按图中所示位置摆放,保持两条斜边互相平行,则∠1=( )A.30°B.25°C.20°D.15°7.(3分)计算:()﹣1+tan30°•sin60°=( )A.﹣B.2 C.D.8.(3分)如图,在四边形ABCD中,对角线AC,BD相交于点O,AO=CO,BO=DO.添加下列条件,不能判定四边形ABCD是菱形的是()A.AB=AD B.AC=BD C.AC⊥BD D.∠ABO=∠CBO9.(3分)已知反比例函数y=﹣,下列结论:①图象必经过(﹣2,4);②图象在二,四象限内;③y随x的增大而增大;④当x>﹣1时,则y>8.其中错误的结论有( )个A.3 B.2 C.1 D.010.(3分)如图,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠BED的正切值等于() A.B.C.2 D.11.(3分)已知二次函数y=ax2+bx+c(a≠0)图象如图所示,下列结论:①abc<0;②2a﹣b<0;③b2>(a+c)2;④点(﹣3,y1),(1,y2)都在抛物线上,则有y1>y2.其中正确的结论有( )A.4个B.3个C.2个D.1个12.(3分)定义一种对正整数n的“F”运算:①当n为奇数时,F(n)=3n+1;②当n为偶数时,F(n)=(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:若n=13,则第2018次“F”运算的结果是( )A.1 B.4 C.2018 D.42018二、填空题:本大题共4小题,每小题4分,满分16分,不需写出解答过程13.(4分)一个角是70°39′,则它的余角的度数是.14.(4分)为创建“国家生态园林城市”,某小区在规划设计时,在小区中央设置一块面积为1200平方米的矩形绿地,并且长比宽多40米.设绿地宽为x米,根据题意,可列方程为.15.(4分)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积是.16.(4分)在平面直角坐标系中,我们把横、纵坐标均为整数的点叫做整点.已知反比例函数y=(m<0)与y=x2﹣4在第四象限内围成的封闭图形(包括边界)内的整点的个数为2,则实数m的取值范围为.三、解答题:本大题共6小题,满分68分,解答时应写出必要的文字说明、证明过程或演算步骤17.(10分)(1)实数x取哪些整数时,不等式2x﹣1>x+1与x﹣1≤7﹣x都成立?(2)化简:(﹣)÷,并从0≤x≤4中选取合适的整数代入求值.18.(10分)“低碳生活,绿色出行”的理念已深入人心,现在越来越多的人选择骑自行车上下班或外出旅游.周末,小红相约到郊外游玩,她从家出发0。

最新-2018年山东省日照市中考数学真题及答案 精品

最新-2018年山东省日照市中考数学真题及答案 精品

试卷类型:A2018年日照市初中学生学业考试数 学 试 题(总分120分 考试时间120分钟)第Ⅰ卷(选择题 共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1.31-的相反数是 ( )A . 31 B . -31 C . 3 D . -3 2. 下列运算正确的是( )A .523x x x =⋅B .336()x x =C .5510x x x +=D . 336x x x =- 3. 下列图形中,是中心对称图形的是 ( )A .B .C .D .4、下图能说明∠1>∠2的是( )12)21)12 ))12 ))5、根据下图所示程序计算函数值,若输入的x 的值为52,则输出的函数值为( )A .32B .25C .425D .2546.将点A (2,1)向左..平移2个单位长度得到点A ′,则点A ′的坐标是( )A .(2,3)B .(2,-1)C .(4,1) D. (0,1)7. 小明用图中所示的扇形纸片作一个圆锥的侧面,已知扇形的半径为5cm ,弧长是6πcm ,那么这个的圆锥的高是( )A . 4cmB . 6cmO输入x 值 y =x -1 (-1≤x <0)1y x(2≤x ≤4)y =x 2(0≤x <2)输出y 值C . 8cmD . 2cm8.若43=x,79=y ,则y x 23-的值为( )A .74B .47C .3-D .729. 方程0411)1(2=+---x k x k 有两个实数根,则k 的取值范围是( ).A . k ≥1B . k ≤1C . k >1D . k <110. 小英同时掷甲、乙两枚质地均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).记甲立方体朝上一面上的数字为x 、乙立方体朝上一面朝上的数字为y ,这样就确定点P 的一个坐标(x y ,),那么点P 落在双曲线xy 6=上的概率为( )A .118 B .112 C .19D .1611. 如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上,OC 在y 轴上,如果矩形OA ′B ′C ′与矩形OABC 关于点O 位似,且矩形OA ′B ′C ′的面积等于矩形OABC 面积的14,那么点B ′的坐标是( ) A .(-2,3) B .(2,-3)A BCO xy-46(第11题图)C .(3,-2)或(-2,3)D .(-2,3)或(2,-3)12. 如图,一次函数3+=x y 的图象与x 轴,y 轴交于A ,B 两点,与反比例函数xy 4=的图象相交于C ,D 两点,分别过C ,D 两点作y 轴,x 轴的垂线,垂足为E ,F ,连接CF ,DE .有下列四个结论:①△CEF 与△DEF 的面积相等; ②△AOB ∽△FOE ;③△DCE ≌△CDF ; ④AC BD =.其中正确的结论是( )A .①②B . ①②③C .①②③④D . ②③④yxD CABOF E(第12题图)试卷类型:A2018年日照市初中学生学业考试数学试题第Ⅱ卷(非选择题共84分)注意事项:1.第Ⅱ卷共8页,用钢笔或圆珠笔直接写在试卷上.2.答卷前将密封线内的项目填写清楚.题号二三总分18 19 20 21 22 23 24得分二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分.13、南海是我国固有领海,她的面积超过东海、黄海、渤海面积的总和,约为360万平方千米,360万用科学记数法可表示为.14.分解因式:xx93 = .15.某校篮球班21名同学的身高如下表:得分评卷人身高/cm180185187190201人数/名46542则该校篮球班21名同学身高的中位数是______________cm . 16. 某施工工地安放了一个圆柱形饮水桶的木制支架(如图1),若不计木条的厚度,其俯视图如图2所示,已知AD 垂直平分BC ,AD=BC=48cm ,则圆柱形饮水桶的底面半径的最大值是 cm .17. 在平面直角坐标系xOy 中,点1A ,2A ,3A ,…和1B ,2B ,3B ,…分别在直线y kx b =+和x 轴上.△OA 1B 1,△B 1A 2B 2,△B 2A 3B 3,…BDCA(第16题图2)(第16题图1)y xy=kx+OB 3B 2 B 1 A3A2A1(第17题图)都是等腰直角三角形,如果A 1(1,1),A 2(23,27),那么点n A 的纵坐标是_ _____.三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.18. (本题满分7分,第⑴题3分,第⑵题4分)(1)计算:()122160tan 33101+-+︒-⎪⎭⎫ ⎝⎛--;(2)先化简,再求代数式212312+-÷⎪⎭⎫ ⎝⎛+-x x x 的值,其中x 是不等式组⎩⎨⎧<+>-812,02x x 的整数解.得 分评 卷 人19. (本题满分9分)某校学生会干部对校学生会倡导的“助残”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,对学校部分捐款人数进行调查和分组统计后,将数据整理成如图所示的统计图(图中信息不完整). 已知A 、B 两组捐款人数的比为1 : 5.请结合以上信息解答下列问题.捐款人数分组统计表 组别捐款额x /元 人数 A 1≤x <10a B 10≤x <20 100 C 20≤x <30 D 30≤x <40 Ex ≥40捐款人数分组统计图1捐款人数分组统计图2座号得 分评 卷 人(1) a=,本次调查样本的容量是;(2) 先求出C组的人数,再补全“捐款人数分组统计图1”;(3) 若任意抽出1名学生进行调查,恰好是捐款数不少于30元的概率是多少?20. (本题满分9分)如图,AB 是⊙O 的直径,AM 和BN 是它的两条切线,DE 切⊙O 于点E ,交AM 于点D ,交BN 于点C ,(1)求证:OD ∥BE ;(2)如果OD =6cm ,OC =8cm ,求CD 的长.得 分评 卷 人(第20题图)A DNEBC OM得分评卷人21.(本题满分9分)如图,长青化工厂与A、B两地有公路、铁路相连.这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地.已知公路运价为1.5元/(吨·千米),铁路运价为1.2元/(吨·千米),且这两次运输共支出公路运输费15000元,铁路运输费97200元.求:(1)该工厂从A地购买了多少吨原料?制成运往B地的产品多少吨?(2)这批产品的销售款比原料费与运输费的和多多少元?22.(本题满分9分)如图某天上午9时,向阳号轮船位于A处,观测到某港口城市P位于轮船的北偏西67.5°,轮船以21海里/时的速度向正北方向行驶,下午2时该船到达B处,这时观测到城市P位于该船的南偏西36.9°方向,求此时轮船所处位置B与城市P的距离?(参考数据:sin36.9°≈35,tan36.9°≈34,sin67.5°≈1213,tan67.5°≈125)(第22题图)APCB36.9°67.5°23.(本题满分10分)(1)如图1,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF =BE .求证:CE =CF ;(2)如图2,在正方形ABCD 中,E 是AB 上一点,G 是AD 上一点,如果∠GCE =45°,请你利用(1)的结论证明:GE =BE +GD . (3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD 中,AD ∥BC (BC >AD ),∠B =90°,AB =BC ,E 是AB 上一点,且∠DCE =45°,BE =4,DE =10, 求直角梯形ABCD 的面积.(第23题图1)AEBCDF(第23题图3)B CA DE(第23题图2)AEBCDG24.(本题满分11分)已知抛物线36232++=bx x y 经过A (2,0). 设顶点为点P ,与x 轴的另一交点为点B .(1)求b 的值,求出点P 、点B 的坐标;(2)如图,在直线 y=3x 上是否存在点D ,使四边形OPBD 为平行四边形?若存在,求出点D 的坐标;若不存在,请说明理由;(3)在x 轴下方的抛物线上是否存在点M ,使△AMP ≌△AMB ?如果存在,试举例验证你的猜想;如果不存在,试说明理由.得 分评 卷 人APB xyO(第24题图)x y 3=试卷类型:A2018年日照市初中学生学业考试数学试题参考答案与评分标准评卷说明:1. 选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分.2. 解答题中的每小题的解答中所对应的分数,是指考生正确解答到该步骤所应得的累计分数.本答案对每小题只给出一种解法,对考生的其他解法,请参照评分意见进行评分.3. 如果考生在解答的中间过程出现计算错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半;若出现严重的逻辑错误,后续部分就不再给分.一.选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.题1 2 3 4 5 6 7 8 9 10 11 12 号答B A BC BD A A D C D C 案二、填空题:本大题共5小题,共20分,只要求填写最后结果,每小题填对得4分.13.3.6×118; 14.x (x +3)(x -3); 15. 187; 16. 30; 17.123-⎪⎭⎫⎝⎛n三、解答题:本大题共7小题,共64分.解答要写出必要的文字说明、证明过程或演算步骤.18. (本题满分7分,第⑴题3分,第⑵题4分) (1)解:原式=-3-33+1+23…………………………2分=-2-3…………………………3分(2)原式=122(1)(1)x x x x x -+·++-11x =+, ………………1分 解不等式组⎩⎨⎧<+>-812,02x x 得722x <<, (2)分因为x 是整数,所以3x =,……………………3分 当3x =时,原式=14.……………………4分19.解:(1)20,500;…………………………2分 (2)500×40%=200,C 组的人数为200. … 4分 补图见图. …………………………5分 (3)∵D 、E 两组的人数和为:500×(28%+8%)=180,………………7分 ∴捐款数不少于30元的概率是:1800.36.500=……………………………… 9分 20.(1)证明:连接OE ,∵AM 、DE 是⊙O 的切线,OA 、OE 是⊙O 的半径,∴∠ADO=∠EDO , ∠DAO=∠DEO =90°, ……………………2分∴∠AOD=∠EOD=12∠AOE , ∵∠ABE=12∠AOE ∴∠AOD=∠ABE ,∴OD ∥BE …………………5分(2)由(1)得:∠AOD=∠EOD=12∠AOE , 同理,有:∠BOC=∠EOC=12∠BOE∴∠AOD +∠EOD +∠BOC +∠EOC=180° ∴∠EOD +∠EOC =90°,∴△DOC 是直角三角形,…………………………7分 ∴ CD=cm )(10643622=+=+OC OD ……………………9分21.解:(1)设工厂从A 地购买了x 吨原料,制成运往B 地的产品y 吨.则依题意,得:⎩⎨⎧=+=+.97200)120110(2.1,15000)1020(5.1x y x y …………………………4分解这个方程组,得:⎩⎨⎧==.300,400y x∴工厂从A 地购买了400吨原料,制成运往B 地的产品300(第20题答案图)A DNEBC OM吨. ………7分(2)依题意,得:300×8000-400×1000-15000-97200=1887800 ∴批产品的销售款比原料费与运输费的和多1887800元. ………………9分22.解:过点P 作PC ⊥AB ,垂足为C ,设PC =x 海里. 在Rt △APC 中,∵tan ∠A =PC AC ,∴AC =5tan 67.512PC x=︒.…………3分在Rt △PCB 中,∵tan ∠B =PC BC ,∴BC =4tan 36.93x x=︒.…………5分∵AC +BC =AB =21×5,∴54215123x x+=⨯,解得60x =. ∵sin PC B PB ∠=,∴60560100sin sin 36.93PC PB B ===⨯=∠︒(海里).∴向阳号轮船所处位置B 与城市P 的距离为100海里.………………9分23. 解答:(1)证明:在正方形ABCD 中, ∵BC =CD ,∠B =∠CDF ,BE =DF , ∴△CBE ≌△CDF .∴CE =CF . …………………………2分(2)证明: 如图2,延长AD 至F ,使DF =BE .连接CF . 由(1)知△CBE ≌△CDF ,∴∠BCE =∠DCF .∴∠BCE +∠ECD =∠DCF +∠ECD 即∠ECF =∠BCD =90°,(第23题答案图1)AEB CDFADGF又∠GCE =45°,∴∠GCF =∠GCE =45°. ∵CE =CF ,∠GCE =∠GCF ,GC =GC , ∴△ECG ≌△FCG .…………………………5分 ∴GE =GF∴GE =DF +GD =BE +GD . ……………6分 (3)解:如图3,过C 作CG ⊥AD ,交AD 延长线于G .在直角梯形ABCD 中,∵AD ∥BC ,∴∠A =∠B =90°, 又∠CGA =90°,AB =BC , ∴四边形ABCD 为正方形.∴AG =BC .…………………………7分 已知∠DCE =45°,根据(1)(2)可知,ED =BE +DG .……8分所以10=4+DG ,即DG =6.设AB =x ,则AE =x -4,AD =x -6在Rt △AED 中, ∵222AE AD DE +=,即()()2224610-+-=x x . 解这个方程,得:x =12,或x =-2(舍去).…………………………9分∴AB =12.所以梯形ABCD 的面积为S=.10812)126(21)(21=⨯+=+AB BC AD答:梯形ABCD 的面积为118. …………………………10分 24.解:(1)由于抛物线36232++=bx x y 经过A (2,0),(第23题答案图3)B CA D EG(第23题答案图3)所以3624230++⨯=b , 解得34-=b .…………………………1分所以抛物线的解析式为3634232+-=x x y . (*) 将(*)配方,得()324232--=x y , 所以顶点P 的坐标为(4,-23)…………………………2分令y =0,得()0324232=--x , 解得6,221==x x . 所以点B 的坐标是(6,0). ………………3分(2)在直线 y=3x 上存在点D ,使四边形OPBD 为平行四边形. ……4分理由如下:设直线PB 的解析式为kx y =+b ,把B (6,0),P (4,-23)分别代入,得⎪⎩⎪⎨⎧-=+=+.324,06b k b k 解得⎪⎩⎪⎨⎧-==.36,3b k所以直线PB 的解析式为363-=x y .…………………………5分又直线OD 的解析式为xy 3=所以直线PB ∥OD . …………………………6分 设设直线OP 的解析式为mx y =,把P (4,-23)代入,得324-=m解得23-=m .如果OP ∥BD ,那么四边形OPBD 为平行四边形.…………7分 设直线BD 的解析式为n x y +-=23,将B (6,0)代入,得0=n +-33,所以33=n所以直线BD 的解析式为n x y +-=23, 解方程组⎪⎩⎪⎨⎧+-==.3323,3x y x y 得⎪⎩⎪⎨⎧==.32,2y x 所以D点的坐标为(2,23)…………………8分(3)符合条件的点M 存在.验证如下:过点P 作x 轴的垂线,垂足为为C ,则PC =23,AC =2,由勾股定理,可得AP =4,PB =4,又AB =4,所以△APB 是等边三角形,只要作∠PAB 的平分线交抛物线于M 点,连接PM ,BM ,由于AM =AM , ∠PAM =∠BAM ,AB =AP ,可得△AMP ≌△AMB.因此即存在这样的点M ,使△AMP ≌△AMB.…………………………11分A PB xyO 第24题答案图C MDx y 3=。

山东省日照市2018年中考数学真题试题(扫描版,含答案)

山东省日照市2018年中考数学真题试题(扫描版,含答案)

尊敬的读者:
本文由我和我的同事在百忙中收集整编出来,本文档在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。

文中部分文字受到网友的关怀和支持,在此表示感谢!在往后的日子希望与大家共同进步,成长。

This article is collected and compiled by my colleagues and I in our busy schedule. We proofread the content carefully before the release of
this article, but it is inevitable that there will be some unsatisfactory points. If there are omissions, please correct them. I hope this article can solve your doubts and arouse your thinking. Part of the text by the user's care and support, thank you here! I hope to make progress and grow with you in the future.。

山东省日照市中考数学试卷及答案(word解析版)

山东省日照市中考数学试卷及答案(word解析版)

CLARK-EDU小康老师 --2018年日照中考数学试卷解读一、选择题 :本大题共12 小题,其中1-8 题每小题 3 分, 9-12 题每小题 4 分,满分40分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上.21.计算-2 +3的结果是A.7B.5C.1D.5答案:C解读:原式=- 4+ 3=- 1,选 C。

2.下面所给的交通标志图中是轴对称图形的是答案:A解读: A 中,等边三角形底边的中算线为对称轴,是轴对称图形,其它都不是轴对称图形。

3.如图, H7N9 病毒直径为-9M ),用科学计数法表30 纳 M(1 纳 M=10示这个病毒直径的大小,正确的是A.30 ×10-9 MB. 3.0 ×10-8MC. 3.0 10×-10MD. 0.3×10-9M答案:Ba×10n的形式,其中解读:科学记数法的表示形式为1≤|a|<10, n 为整数.确定n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值> 1 时, n 是正数;当原数的绝对值< 1 时, n 是负数.30 纳 M= 30×109= 3.0 ×10-8M-4.下列计算正确的是A. ( 2a)22a2B. a6a3a2C. 2(a1)22aD. a a 2 a 2答案:C解读:因为 .(2a)24a2,a6a3a3, a a2a3,故A、B、D都错,只有 C 正确。

5.下图是某学校全体教职工年龄的频数分布直方图人数(统计中采用“上限不在内”的原则,如年龄为36岁统计在 36≤x< 38 小组,而不在34≤x<36小11 10 9 6组),根据图形提供的信息,下列说法中错误..的是()A .该学校教职工总人数是50 人B .年龄在 40≤x< 42 小组的教职工人数占该学校总人数的20%C.教职工年龄的中位数一定落在40≤x< 42 这一组D .教职工年龄的众数一定在 38≤x< 40 这一组答案:D解读:职工总人数为:4+ 6+ 11+ 10+ 9+6+ 4= 50,故 A 正确;年龄在40≤x<42 小组的教职工有10 人,10= 0.2= 20%,故 B 也正确,在38≤x< 40 这一组有11 人,最多,50因此,众数肯定在这组, D 正确;中位数为6,故 C 错,选 C。

2018年山东省日照市中考数学试卷及答案(word解析版)

2018年山东省日照市中考数学试卷及答案(word解析版)

CLARK-EDU小康老师--2018年日照中考数学试题解读一、选择题:本大题共12小题,其中1-8题每小题3分,9-12题每小题4分,满分40分.在每小题所给出地四个选项中,只有一项是符合题目要求地,请将正确选项地字母代号填涂在答题卡相应位置上.1.计算-22+3地结果是A.7 B.5 C . D .答案:C解读:原式=-4+3=-1,选C.2.下面所给地交通标志图中是轴对称图形地是答案: A解读:A中,等边三角形底边地中算线为对称轴,是轴对称图形,其它都不是轴对称图形.3.如图,H7N9病毒直径为30纳M<1纳M=10-9M),用科学计数法表示这个病毒直径地大小,正确地是A.30×10-9MB. 3.0×10-8MC. 3.0×10-10MD. 0.3×10-9M答案:B解读:科学记数法地表示形式为a×10n地形式,其中1≤|a|<10,n为整数.确定n地值时,要看把原数变成a时,小数点移动了多少位,n地绝对值与小数点移动地位数相同.当原数绝对值>1时,n是正数;当原数地绝对值<1时,n是负数.30纳M=30×10-9=3.0×10-8M4.下列计算正确地是A. B. C. D.答案:C解读:因为.,,,故A、B、D都错,只有C正确.5.下图是某学校全体教职工年龄地频数分布直方图<统计中采用“上限不在内”地原则,如年龄为36岁统计在36≤x<38小组,而不在34≤x<36小组),46根据图形提供地信息,下列说法中错误..地是<)A.该学校教职工总人数是50人B.年龄在40≤x<42小组地教职工人数占该学校总人数地20%C.教职工年龄地中位数一定落在40≤x<42这一组D.教职工年龄地众数一定在38≤x<40这一组答案:D解读:职工总人数为:4+6+11+10+9+6+4=50,故A正确;年龄在40≤x<42小组地教职工有10人,=0.2=20%,故B也正确,在38≤x<40这一组有11人,最多,因此,众数肯定在这组,D正确;中位数为6,故C错,选C.6.如果点P<2x+6,x-4)在平面直角坐标系地第四象限内,那么x地取值范围在数轴上可表示为<)答案:C解读:因为点P在第四象限,所以,,即,所以,选C.7.四个命题:①三角形地一条中线能将三角形分成面积相等地两部分;②有两边和其中一边地对角对应相等地两个三角形全等;③点P<1,2)关于原点地对称点坐标为<-1,-2);④两圆地半径分别是3和4,圆心距为d,若两圆有公共点,则其中正确地是A. ①②B.①③C.②③D.③④答案:B解读:三角形地中线分成两个三角形底边相等,高相同,故面积相等,①正确;两边和两边夹角对应相等地两个三角形才全等,故②错误;③正确;当d=1或d=7时,两圆有一个公共点,故④不正确,选B.8.已知一元二次方程地较小根为,则下面对地估计正确地是A.B.C.D.答案:A解读:用求根公式,得:,<<,即,只有A是正确地.9.甲计划用若干个工作日完成某项工作,从第三个工作日起,乙加入此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲计划完成此项工作地天数是A.8B.7C.6D.5答案:A解读:假设每天工作量是1,甲单独工作x天完成.工作总量等于1×x,实际工作中甲做地1×(x-3>;乙做地1×(x-2-3>1×x=1×(x-3>+1×(x-2-3>,解得:x=810. 如图,在△ABC中,以BC为直径地圆分别交边AC、AB于D、E两点,连接BD、DE.若BD平分∠ABC,则下列结论不一定成立地是A.BD⊥ACB.AC2=2AB·AEC.△ADE是等腰三角形D. BC=2AD.答案:D解读:因为BC为直线,所以,A正确;可证△BCD≌△BAD,得BC=BA,AD=CD,又△ADE∽△ABC,可得:AD••••••••••••AC=ADE•AB,而AC=2AD,可知B正确;因为ADE∽△ABC,△ABC是等腰三角形,所以,△ADE是等腰三角形,C也正确;只有D不一定成立. 11.如图,下列各图形中地三个数之间均具有相同地规律.根据此规律,图形中M与m、n 地关系是A. M=mn B. M=n(m+1> C.M=mn+1 D.M=m(n+1>答案:D解读:因为3=<2+1)×1,,15=<4+1)×3,35=<6+1)×5,所以,M=<n+1)×m,选D.12.如图,已知抛物线和直线.我们约定:当x任取一值时,x对应地、y2,若y1≠y2,取y1、y2中地较小值记为函数值分别为yM;若y1=y2,记M= y1=y2.下列判断:①当x>2时,M=y2;②当x<0时,x值越大,M值越大;③使得M大于4地x值不存在;④若M=2,则x= 1 .其中正确地有A.1个 B.2个 C. 3个 D.4个答案:B解读:当x>2时,由图象可知y2>y1,M=y1,所以,①不正确;当x<0时,由图象可知y2>y1,M=y1,x值越大,M值越大,②正确;M最大值为4,所以,③正确;M =2时,x地值有两个,不一定是1,所以,④不正确,正确地有2个,选B.二、填空题:本大题共4小题,每小题4分,满分16分.不需写出解答过程,请将答案直接写在答题卡相应位置上.13.要使式子有意义,则地取值范围是.答案:x≤2解读:由根式地意义,得:2-x≥0,解得:x≤214.已知,则答案:-11解读:原式=1-2<m2-m)-1-12=-1115. 如右图,直线AB交双曲线于A、B,交x轴于点C,B为线段AC地中点,过点B作BM⊥x轴于M,连结OA.若OM=2MC,S⊿OAC=12,则k地值为___________.答案:8解读:过A作AN⊥OC于N,因为BM⊥x轴,所以,AN∥BM,因为B为AC中点,所以MN=MC,又OM=2MC=2MN,所以,N为OM中点,设A<a,b),则OC=3a,,得ab=8,又点A在双曲线上,所以,k=ab=8.16.如图<a),有一张矩形纸片ABCD,其中AD=6cm,以AD为直径地半圆,正好与对边BC相切,将矩形纸片ABCD沿DE折叠,使点A落在BC上,如图<b).则半圆还露在外面地部分<阴影部分)地面积为_____________.答案:解读:半圆地半径为3,所以,AB=CD=3,D=AD=6,C=3,B=6-3,设AE=x,在直角三角形EB中,<3-x)2+<6-3)2=x2,解得:x=12-6,tan∠ADE=,所以,∠ADE=15°,∠ADF=30°,∠AOF=60°,S半圆AD=,S扇形AOF=,S△DOF=,所以,阴影部分面积为:三、解答题:本大题有6小题,满分64分.请在答题卡指定区域内作答,解答时应写出必要地文字说明、证明过程或演算步骤.17.<本题满分10分,(1>小题4分,<2)小题6分)<1)计算:.<2)已知,关于x地方程地两个实数根、满足,求实数地值.解读:<2)<本小题满分6分)解:原方程可变形为:. …………………5分∵、是方程地两个根,∴△≥0,即:4<m +1)2-4m2≥0, ∴8m+4≥0, m≥.又、满足,∴=或=- , 即△=0或+=0, …………………8分由△=0,即8m+4=0,得m=.由+=0,即:2(m+1>=0,得m=-1,(不合题意,舍去>所以,当时,m地值为. ……………10分18.<本题满分10分)如图,已知四边形ABDE是平行四边形,C为边BD延长线上一点,连结AC、CE,使AB=AC.⑴求证:△BAD≌△AEC;⑵若∠B=30°,∠ADC=45°,BD=10,求平行四边形ABDE地面积.解读:<1)证明:∵AB=AC,∴∠B=∠ACB.又∵四边形ABDE是平行四边形∴AE∥BD,AE=BD,∴∠ACB=∠CAE=∠B,∴⊿DBA≌⊿AEC(SAS> ………………4分<2)过A作AG⊥BC,垂足为G.设AG=x,在Rt△AGD中,∵∠ADC=450,∴AG=DG=x,在Rt△AGB中,∵∠B=300,∴BG=,………………6分又∵BD=10.∴BG-DG=BD,即,解得AG=x=.…………………8分∴S平行四边形ABDE=BD·AG=10×<)=.………………10分19.<本题满分10分)“端午”节前,小明爸爸去超市购买了大小、形状、重量等都相同地火腿粽子和豆沙粽子若干,放入不透明地盒中,此时从盒中随机取出火腿粽子地概率为;妈妈从盒中取出火腿粽子3只、豆沙粽子7只送给爷爷和奶奶后,这时随机取出火腿粽子地概率为.<1)请你用所学知识计算:爸爸买地火腿粽子和豆沙粽子各有多少只?<2)若小明一次从盒内剩余粽子中任取2只,问恰有火腿粽子、豆沙粽子各1只地概率是多少?<用列表法或树状图计算)解读:<1)设爸爸买地火腿粽子和豆沙粽子分别为x只、y只,……1分根据题意得:…………………………………4分解得:经检验符合题意,所以爸爸买了火腿粽子5只、豆沙粽子10只. ……………6分<2)由题可知,盒中剩余地火腿粽子和豆沙粽子分别为2只、3只,我们不妨把两只火腿粽子记为a、a;3只豆沙粽子记为b、b、b分∴…………………10分20.<本题满分10分)问题背景:如图<a),点A、B在直线l地同侧,要在直线l上找一点C,使AC与BC地距离之和最小,我们可以作出点B关于l地对称点B′,连接A B′与直线l交于点C,则点C即为所求.<1)实践运用:如图(b>,已知,⊙O地直径CD为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 地中点,P为直径CD上一动点,则BP+AP地最小值为__________.<2)知识拓展:如图(c>,在Rt△ABC中,AB=10,∠BAC=45°,∠BAC地平分线交BC于点D,E、F 分别是线段AD和AB上地动点,求BE+EF地最小值,并写出解答过程.解读:…………………4分<2)解:如图,在斜边AC上截取AB′=AB,连结BB′.∵AD平分∠BAC,∴点B与点B′关于直线AD对称. …………6分过点B′作B′F⊥AB,垂足为F,交AD于E,连结BE,则线段B′F地长即为所求.(点到直线地距离最短> ………8分在Rt△AFB/中,∵∠BAC=450, AB/=AB= 10,,∴BE+EF地最小值为. ………………10分21.<本小题满分10分)一汽车租赁公司拥有某种型号地汽车100辆.公司在经营中发现每辆车地月租金x(元><1地车辆数y<辆)与每辆车地月租金x<元)之间地关系式.<2)已知租出地车每辆每月需要维护费150元,未租出地车每辆每月需要维护费50<3收益?请求出公司地最大月收益是多少元.解读:<1)由表格数据可知y与x是一次函数关系,设其解读式ONG为.由题:解之得:∴y与x间地函数关系是. ……………………………3分22.<本小题满分14分)已知,如图(a>,抛物线y=ax2+bx+c经过点A(x1,0>,B(x2,0>,C(0,-2>,其顶点为D.以AB为直径地⊙M交y轴于点E、F,过点E作⊙M地切线交x轴于点N.∠ONE=30°,|x1-x2|=8.<1)求抛物线地解读式及顶点D地坐标;<2)连结AD、BD,在<1)中地抛物线上是否存在一点P,使得⊿ABP与⊿ADB相似?若存在,求出点地坐标;若不存在,说明理由;<3)如图<b),点Q为上地动点<Q不与E、F重合),连结AQ交y轴于点H,问:AH·AQ是否为定值?若是,请求出这个定值;若不是,请说明理由.解读:(2)如图,由抛物线地对称性可知:,.必须有.设AP 交抛物线地对称轴于D′点,显然,∴直线地解读式为,由,得.∴ .过作∵∴..∴与不相似,…………………………9分同理可说明在对称轴左边地抛物线上也不存在符合条件地点.所以在该抛物线上不存在点,使得与与相似.…………………… 10分(3>连结AF、QF,在和中,由垂径定理易知:弧AE=弧AF.∴,又,∴∽,,……………… 12分在Rt△AOF中,AF2=AO2+OF2=22+(2>2=16<或利用AF2=AO·AB=2×8=16)∴AH·AQ=16即:AH·AQ为定值. …………… 14分申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途.。

2018年山东省日照市中考数学试卷(试卷 答案 解析)-(27138)

2018年山东省日照市中考数学试卷(试卷 答案 解析)-(27138)

2018年山东省日照市中考数学试卷一、选择题:本大题共12小题,每小题3分,满分36分,在每小题所给出的四个选项中,只有一项是符合题目要求的1.(3分)|﹣5|的相反数是( )A.﹣5 B.5 C. D.﹣2.(3分)在下列图案中,既是轴对称又是中心对称图形的是( )A. B.C.D.3.(3分)下列各式中,运算正确的是( )A.(a3)2=a5B.(a﹣b)2=a2﹣b2C.a6÷a2=a4D.a2+a2=2a4 4.(3分)若式子有意义,则实数m的取值范围是( ) A.m>﹣2 B.m>﹣2且m≠1C.m≥﹣2 D.m≥﹣2且m≠15.(3分)某校为了解学生的课外阅读情况,随机抽取了一个班级的学生,对他们一周的读书时间进行了统计,统计数据如下表所示:A.9,8 B.9,9 C.9.5,9 D.9.5,86.(3分)如图,将一副直角三角板按图中所示位置摆放,保持两条斜边互相平行,则∠1=( )A.30°B.25°C.20°D.15°7.(3分)计算:()﹣1+tan30°•sin60°=( )A.﹣B.2 C. D.8.(3分)如图,在四边形ABCD中,对角线AC,BD相交于点O,AO=CO,BO=DO.添加下列条件,不能判定四边形ABCD 是菱形的是( )A.AB=AD B.AC=BD C.AC⊥BD D.∠ABO=∠CBO 9.(3分)已知反比例函数y=﹣,下列结论:①图象必经过(﹣2,4);②图象在二,四象限内;③y随x的增大而增大;④当x>﹣1时,则y>8.其中错误的结论有( )个A.3 B.2 C.1 D.010.(3分)如图,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠BED的正切值等于( )A.B.C.2 D.11.(3分)已知二次函数y=ax2+bx+c(a≠0)图象如图所示,下列结论:①abc<0;②2a﹣b<0;③b2>(a+c)2;④点(﹣3,y1),(1,y2)都在抛物线上,则有y1>y2.其中正确的结论有( )A.4个B.3个 C.2个 D.1个12.(3分)定义一种对正整数n的“F”运算:①当n为奇数时,F(n)=3n+1;②当n为偶数时,F(n)=(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:若n=13,则第2018次“F”运算的结果是( )A.1 B.4 C.2018 D.42018二、填空题:本大题共4小题,每小题4分,满分16分,不需写出解答过程13.(4分)一个角是70°39′,则它的余角的度数是.14.(4分)为创建“国家生态园林城市”,某小区在规划设计时,在小区中央设置一块面积为1200平方米的矩形绿地,并且长比宽多40米.设绿地宽为x米,根据题意,可列方程为.15.(4分)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积是.16.(4分)在平面直角坐标系中,我们把横、纵坐标均为整数的点叫做整点.已知反比例函数y=(m<0)与y=x2﹣4在第四象限内围成的封闭图形(包括边界)内的整点的个数为2,则实数m 的取值范围为.三、解答题:本大题共6小题,满分68分,解答时应写出必要的文字说明、证明过程或演算步骤17.(10分)(1)实数x取哪些整数时,不等式2x﹣1>x+1与x﹣1≤7﹣x都成立?(2)化简:(﹣)÷,并从0≤x≤4中选取合适的整数代入求值.18.(10分)“低碳生活,绿色出行”的理念已深入人心,现在越来越多的人选择骑自行车上下班或外出旅游.周末,小红相约到郊外游玩,她从家出发0.5小时后到达甲地,玩一段时间后按原速前往乙地,刚到达乙地,接到妈妈电话,快速返回家中.小红从家出发到返回家中,行进路程y(km)随时间x(h)变化的函数图象大致如图所示.(1)小红从甲地到乙地骑车的速度为km/h;(2)当1.5≤x≤2.5时,求出路程y(km)关于时间x(h)的函数解析式;并求乙地离小红家多少千米?19.(10分)(1)某校招聘教师一名,现有甲、乙、丙三人通过专业知识、讲课、答辩三项测试,他们各自的成绩如下表所示:5:4:1.请计算三名应聘者的平均成绩,从成绩看,应该录取谁?(2)我市举行了某学科实验操作考试,有A、B、C、D四个实验,规定每位学生只参加其中一个实验的考试,并由学生自己抽签决定具体的考试实验.小王,小张,小厉都参加了本次考试.①小厉参加实验D考试的概率是;②用列表或画树状图的方法求小王、小张抽到同一个实验的概率.20.(12分)如图所示,⊙O的半径为4,点A是⊙O上一点,直线l过点A;P是⊙O上的一个动点(不与点A重合),过点P 作PB⊥l于点B,交⊙O于点E,直径PD延长线交直线l于点F,点A是的中点.(1)求证:直线l是⊙O的切线;(2)若PA=6,求PB的长.21.(13分)如图,已知点A(﹣1,0),B(3,0),C(0,1)在抛物线y=ax2+bx+c上.(1)求抛物线解析式;(2)在直线BC上方的抛物线上求一点P,使△PBC面积为1;(3)在x轴下方且在抛物线对称轴上,是否存在一点Q,使∠BQC=∠BAC?若存在,求出Q点坐标;若不存在,说明理由.22.(13分)问题背景:我们学习等边三角形时得到直角三角形的一个性质:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.即:如图1,在Rt△ABC中,∠ACB=90°,∠ABC=30°,则:AC=AB.探究结论:小明同学对以上结论作了进一步研究.(1)如图1,连接AB边上中线CE,由于CE=AB,易得结论:①△ACE为等边三角形;②BE与CE之间的数量关系为.(2)如图2,点D是边CB上任意一点,连接AD,作等边△ADE,且点E在∠ACB的内部,连接BE.试探究线段BE与DE之间的数量关系,写出你的猜想并加以证明.(3)当点D为边CB延长线上任意一点时,在(2)条件的基础上,线段BE与DE之间存在怎样的数量关系?请直接写出你的结论.拓展应用:如图3,在平面直角坐标系xOy中,点A的坐标为(﹣,1),点B是x轴正半轴上的一动点,以AB为边作等边△ABC,当C点在第一象限内,且B(2,0)时,求C点的坐标.2018年山东省日照市中考数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,满分36分,在每小题所给出的四个选项中,只有一项是符合题目要求的1.(3分)|﹣5|的相反数是( )A.﹣5 B.5 C. D.﹣【考点】14:相反数;15:绝对值.菁优网版权所有【分析】根据绝对值、相反数的定义即可得出答案.【解答】解:根据绝对值的定义,∴︳﹣5︳=5,根据相反数的定义,∴5的相反数是﹣5.故选:A.2.(3分)在下列图案中,既是轴对称又是中心对称图形的是( )A. B.C.D.【考点】P3:轴对称图形;R5:中心对称图形.菁优网版权所有【分析】根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、此图案既不是轴对称图形又不是中心对称图形;B、此图案是轴对称图形,不是中心对称图形;C、此图案既是轴对称图形又是中心对称图形;D、此图案是中心对称图形,不是轴对称图形;故选:C.3.(3分)下列各式中,运算正确的是( )A.(a3)2=a5B.(a﹣b)2=a2﹣b2C.a6÷a2=a4D.a2+a2=2a4【考点】35:合并同类项;47:幂的乘方与积的乘方;48:同底数幂的除法;4C:完全平方公式.菁优网版权所有【分析】根据同底数幂的乘法、除法法则,合并同类项法则,幂的乘方,乘法公式一一判断即可;【解答】解:A、错误.(a3)2=a5;B、错误.(a﹣b)2=a2﹣2ab+b2;C、正确.D、错误.a2+a2=2a2故选:C.4.(3分)若式子有意义,则实数m的取值范围是( ) A.m>﹣2 B.m>﹣2且m≠1C.m≥﹣2 D.m≥﹣2且m≠1【考点】72:二次根式有意义的条件.菁优网版权所有【分析】根据二次根式有意义的条件即可求出答案.【解答】解:由题意可知:∴m≥﹣2且m≠1故选:D.5.(3分)某校为了解学生的课外阅读情况,随机抽取了一个班级的学生,对他们一周的读书时间进行了统计,统计数据如下表所示:A.9,8 B.9,9 C.9.5,9 D.9.5,8【考点】W4:中位数;W5:众数.菁优网版权所有【分析】根据表格中的数据可知该班有学生40人,从而可以求得中位数和众数,本题得以解决.【解答】解:由表格可得,该班学生一周读书时间的中位数和众数分别是:9、8,故选:A.6.(3分)如图,将一副直角三角板按图中所示位置摆放,保持两条斜边互相平行,则∠1=( )A.30°B.25°C.20°D.15°【考点】JA:平行线的性质.菁优网版权所有【分析】根据平行线的性质可得∠A=∠FDE=45°,再根据三角形内角与外角的性质可得∠1的度数.【解答】解:∵AB∥CD,∴∠A=∠FDE=45°,又∵∠C=30°.∴∠1=∠FDE﹣∠C=45°﹣30°=15°,故选:D.7.(3分)计算:()﹣1+tan30°•sin60°=( )A.﹣B.2 C. D.【考点】2C:实数的运算;6F:负整数指数幂;T5:特殊角的三角函数值.菁优网版权所有【分析】根据实数的运算,即可解答.【解答】解:()﹣1+tan30°•sin60°=2+=2+=故选:C.8.(3分)如图,在四边形ABCD中,对角线AC,BD相交于点O,AO=CO,BO=DO.添加下列条件,不能判定四边形ABCD 是菱形的是( )A.AB=AD B.AC=BD C.AC⊥BD D.∠ABO=∠CBO【考点】KD:全等三角形的判定与性质;L9:菱形的判定.菁优网版权所有【分析】根据菱形的定义及其判定、矩形的判定对各选项逐一判断即可得.【解答】解:∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,当AB=AD或AC⊥BD时,均可判定四边形ABCD是菱形;当∠ABO=∠CBO时,由AD∥BC知∠CBO=∠ADO,∴∠ABO=∠ADO,∴AB=AD,∴四边形ABCD是菱形;当AC=BD时,可判定四边形ABCD是矩形;故选:B.9.(3分)已知反比例函数y=﹣,下列结论:①图象必经过(﹣2,4);②图象在二,四象限内;③y随x的增大而增大;④当x>﹣1时,则y>8.其中错误的结论有( )个A.3 B.2 C.1 D.0【考点】G4:反比例函数的性质.菁优网版权所有【分析】根据反比例函数的性质,可得答案.【解答】解:①当x=﹣2时,y=4,即图象必经过点(﹣2,4);②k=﹣8<0,图象在第二、四象限内;③k=﹣8<0,每一象限内,y随x的增大而增大,错误;④k=﹣8<0,每一象限内,y随x的增大而增大,若0>x>﹣1,﹣y>8,故④错误,故选:B.10.(3分)如图,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠BED的正切值等于( )A.B.C.2 D.【考点】KQ:勾股定理;M5:圆周角定理;T7:解直角三角形.菁优网版权所有【分析】根据同弧或等弧所对的圆周角相等来求解.【解答】解:∵∠DAB=∠DEB,∴tan∠DAB=tan∠DEB=.故选:D.11.(3分)已知二次函数y=ax2+bx+c(a≠0)图象如图所示,下列结论:①abc<0;②2a﹣b<0;③b2>(a+c)2;④点(﹣3,y1),(1,y2)都在抛物线上,则有y1>y2.其中正确的结论有( )A.4个B.3个 C.2个 D.1个【考点】H4:二次函数图象与系数的关系.菁优网版权所有【分析】观察图象判断出a、b、c的符号,即可得出结论①正确,利用对称轴公式x>﹣1,可得结论②错误;判断出﹣b<a+c<b,可得结论③正确,利用图象法可以判断出④正确;【解答】解:∵抛物线开口向上,∴a>0,∵﹣<0,∴b>0,∵抛物线交y轴于负半轴,∴c<0,∴abc<0,故①正确,∵﹣>﹣1,a>0,∴b<2a,∴2a﹣b>0,故②错误,∵x=1时,y>0,∴a+b+c>0,∴a+c>﹣b,∵x=﹣1时,y<0,∴a﹣b+c<0,∴a+c<b,∴b2>(a+c)2,故③正确,∵点(﹣3,y1),(1,y2)都在抛物线上,观察图象可知y1>y2,故④正确.故选:B.12.(3分)定义一种对正整数n的“F”运算:①当n为奇数时,F(n)=3n+1;②当n为偶数时,F(n)=(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:若n=13,则第2018次“F”运算的结果是( )A.1 B.4 C.2018 D.42018【考点】1G:有理数的混合运算.菁优网版权所有【分析】计算出n=13时第一、二、三、四、五、六次运算的结果,找出规律再进行解答即可.【解答】解:若n=13,第1次结果为:3n+1=40,第2次结果是:=5,第3次结果为:3n+1=16,第4次结果为:=1,第5次结果为:4,第6次结果为:1,…可以看出,从第四次开始,结果就只是1,4两个数轮流出现,且当次数为偶数时,结果是1;次数是奇数时,结果是4,而2018次是偶数,因此最后结果是1.故选:A.二、填空题:本大题共4小题,每小题4分,满分16分,不需写出解答过程13.(4分)一个角是70°39′,则它的余角的度数是19°21′.【考点】II:度分秒的换算;IL:余角和补角.菁优网版权所有【分析】依据余角的定义列出算式进行计算即可.【解答】解:它的余角=90°﹣70°39′=19°21′.故答案为:19°21′.14.(4分)为创建“国家生态园林城市”,某小区在规划设计时,在小区中央设置一块面积为1200平方米的矩形绿地,并且长比宽多40米.设绿地宽为x米,根据题意,可列方程为x(x+40)=1200 .【考点】AC:由实际问题抽象出一元二次方程.菁优网版权所有【分析】先表示出矩形场地的长,再根据矩形的面积公式即可列出方程.【解答】解:由题意可得,x(x+40)=1200,故答案是:x(x+40)=1200.15.(4分)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积是4πcm2.【考点】MP:圆锥的计算;U3:由三视图判断几何体.菁优网版权所有【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其表面积.【解答】解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为cm,底面半径为1cm,故表面积=πrl+πr2=π×1×3+π×12=4πcm2,故答案为:4πcm2,16.(4分)在平面直角坐标系中,我们把横、纵坐标均为整数的点叫做整点.已知反比例函数y=(m<0)与y=x2﹣4在第四象限内围成的封闭图形(包括边界)内的整点的个数为2,则实数m 的取值范围为﹣2≤m<﹣1 .【考点】G4:反比例函数的性质;H3:二次函数的性质.菁优网版权所有【分析】根据题意可知抛物线在第四象限内的部分,然后根据反比例函数y=(m<0)与y=x2﹣4在第四象限内围成的封闭图形(包括边界)内的整点的个数为2,可以得到不等式组,从而可以求得m的取值范围.【解答】解:∵y=x2﹣4,∴当x=0时,y=﹣4,当y=0时,x=±2,当x=1时,y=﹣3,∴抛物线y=x2﹣4在第四象限内的部分是(0,﹣4)到(2,0)这一段曲线部分,∵反比例函数y=(m<0)与y=x2﹣4在第四象限内围成的封闭图形(包括边界)内的整点的个数为2,∴<,解得,﹣2≤m<﹣1.三、解答题:本大题共6小题,满分68分,解答时应写出必要的文字说明、证明过程或演算步骤17.(10分)(1)实数x取哪些整数时,不等式2x﹣1>x+1与x﹣1≤7﹣x都成立?(2)化简:(﹣)÷,并从0≤x≤4中选取合适的整数代入求值.【考点】6D:分式的化简求值;CC:一元一次不等式组的整数解.菁优网版权所有【分析】(1)根据题意分别求出每个不等式解集,根据口诀:大小小大中间找,确定两不等式解集的公共部分,即可得整数值.(2)根据分式的减法和除法可以化简题目中的式子,然后在0≤x≤4的范围内选取一个使得原分式有意义的整数代入化简后的式子即可解答本题.【解答】解:(1)根据题意可得不等式组>①②,解不等式①,得:x>2,解不等式②,得:x≤4,所以不等式组的解集为2<x≤4,则整数x的值为3、4;(2)原式=[﹣]•=[﹣]•=•=•=,∵,∴x≠0且x≠2、x≠4,∴在0≤x≤4中,可取的整数为x=1、x=3,当x=1时,原式=1;当x=3时,原式=1.18.(10分)“低碳生活,绿色出行”的理念已深入人心,现在越来越多的人选择骑自行车上下班或外出旅游.周末,小红相约到郊外游玩,她从家出发0.5小时后到达甲地,玩一段时间后按原速前往乙地,刚到达乙地,接到妈妈电话,快速返回家中.小红从家出发到返回家中,行进路程y(km)随时间x(h)变化的函数图象大致如图所示.(1)小红从甲地到乙地骑车的速度为20 km/h;(2)当1.5≤x≤2.5时,求出路程y(km)关于时间x(h)的函数解析式;并求乙地离小红家多少千米?【考点】FH:一次函数的应用.菁优网版权所有【分析】(1)根据OA段的速度,可得结论;(2)当1.5≤x≤2.5时,设y=20x+b,利用待定系数法即可解决问题;【解答】解:(1)在OA段,速度==20km/h,故答案为20.(2)当1.5≤x≤2.5时,设y=20x+b,把(1.5,10)代入得到,10=20×1.5+b,解得b=﹣20,∴y=20x﹣20,当x=2.5时,解得y=30,∴乙地离小红家30千米19.(10分)(1)某校招聘教师一名,现有甲、乙、丙三人通过专业知识、讲课、答辩三项测试,他们各自的成绩如下表所示:5:4:1.请计算三名应聘者的平均成绩,从成绩看,应该录取谁?(2)我市举行了某学科实验操作考试,有A、B、C、D四个实验,规定每位学生只参加其中一个实验的考试,并由学生自己抽签决定具体的考试实验.小王,小张,小厉都参加了本次考试.①小厉参加实验D考试的概率是;②用列表或画树状图的方法求小王、小张抽到同一个实验的概率.【考点】W2:加权平均数;X4:概率公式;X6:列表法与树状图法.菁优网版权所有【分析】(1)根据加权平均数分别计算三人的平均成绩,比较大小即可得;(2)①根据概率公式即可得;②列表得出所有等可能的情况数,找出两位同学抽到同一实验的情况数,即可求出所求概率.【解答】解:(1)==77(分),甲==86.5(分),乙==84.5(分),丙因为乙的平均成绩最高,所以应该录取乙;(2)①小厉参加实验D考试的概率是,故答案为:;②解:列表如下:有AA,BB,CC,DD,4种情况,所以小王、小张抽到同一个实验的概率为=.20.(12分)如图所示,⊙O的半径为4,点A是⊙O上一点,直线l过点A;P是⊙O上的一个动点(不与点A重合),过点P 作PB⊥l于点B,交⊙O于点E,直径PD延长线交直线l于点F,点A是的中点.(1)求证:直线l是⊙O的切线;(2)若PA=6,求PB的长.【考点】M2:垂径定理;ME:切线的判定与性质;S9:相似三角形的判定与性质.菁优网版权所有【分析】(1)连接DE,OA.想办法证明OA⊥BF即可;(2)作OH⊥PA于H,只要证明△AOH∽△PAB,可得=,即可解决问题.【解答】(1)证明:连接DE,OA.∵PD是直径,∴∠DEP=90°,∵PB⊥FB,∴∠DEP=∠FBP,∴DE∥BF,∵=,∴OA⊥DE,∴OA⊥BF,∴直线l是⊙O的切线.(2)解:作OH⊥PA于H.∵OA=OP,OH⊥PA,∴AH=PH=3,∵OA∥PB,∴∠OAH=∠APB,∵∠AHO=∠ABP=90°,∴△AOH∽△PAB,∴=,∴=,∴PB=.21.(13分)如图,已知点A(﹣1,0),B(3,0),C(0,1)在抛物线y=ax2+bx+c上.(1)求抛物线解析式;(2)在直线BC上方的抛物线上求一点P,使△PBC面积为1;(3)在x轴下方且在抛物线对称轴上,是否存在一点Q,使∠BQC=∠BAC?若存在,求出Q点坐标;若不存在,说明理由.【考点】HF:二次函数综合题.菁优网版权所有【分析】(1)设抛物线的解析式为y=a(x+1)(x﹣3),将C(0,1)代入求得a的值即可;(2)过点P作PD⊥x,交BC与点D,先求得直线BC的解析式为y=﹣x+1,设点P(x,﹣x2+x+1),则D(x,﹣x+1),然后可得到PD与x之间的关系式,接下来,依据△PBC的面积为1列方程求解即可;(3)首先依据点A和点C的坐标可得到∠BQC=∠BAC=45°,设△ABC外接圆圆心为M,则∠CMB=90°,设⊙M的半径为x,则Rt△CMB中,依据勾股定理可求得⊙M的半径,然后依据外心的性质可得到点M为直线y=﹣x与x=1的交点,从而可求得点M的坐标,然后由点M的坐标以及⊙M的半径可得到点Q 的坐标.【解答】解:(1)设抛物线的解析式为y=a(x+1)(x﹣3),将C(0,1)代入得﹣3a=1,解得:a=﹣,∴抛物线的解析式为y=﹣x2+x+1.(2)过点P作PD⊥x,交BC与点D.设直线BC的解析式为y=kx+b,则,解得:k=﹣,∴直线BC的解析式为y=﹣x+1.设点P(x,﹣x2+x+1),则D(x,﹣x+1)∴PD=(﹣x2+x+1)﹣(﹣x+1)=﹣x2+x,∴S△PBC=OB•DP=×3×(﹣x2+x)=﹣x2+x.又∵S△PBC=1,∴﹣x2+x=1,整理得:x2﹣3x+2=0,解得:x=1或x=2,∴点P的坐标为(1,)或(2,1).(3)存在.∵A(﹣1,0),C(0,1),∴OC=OA=1∴∠BAC=45°.∵∠BQC=∠BAC=45°,∴点Q为△ABC外接圆与抛物线对称轴在x轴下方的交点.设△ABC外接圆圆心为M,则∠CMB=90°.设⊙M的半径为x,则Rt△CMB中,由勾股定理可知CM2+BM2=BC2,即2x2=10,解得:x=(负值已舍去),∵AC的垂直平分线的为直线y=﹣x,AB的垂直平分线为直线x=1,∴点M为直线y=﹣x与x=1的交点,即M(1,﹣1),∴Q的坐标为(1,﹣1﹣).22.(13分)问题背景:我们学习等边三角形时得到直角三角形的一个性质:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.即:如图1,在Rt△ABC中,∠ACB=90°,∠ABC=30°,则:AC=AB.探究结论:小明同学对以上结论作了进一步研究.(1)如图1,连接AB边上中线CE,由于CE=AB,易得结论:①△ACE为等边三角形;②BE与CE之间的数量关系为BE=CE .(2)如图2,点D是边CB上任意一点,连接AD,作等边△ADE,且点E在∠ACB的内部,连接BE.试探究线段BE与DE之间的数量关系,写出你的猜想并加以证明.(3)当点D为边CB延长线上任意一点时,在(2)条件的基础上,线段BE与DE之间存在怎样的数量关系?请直接写出你的结论BE=DE .拓展应用:如图3,在平面直角坐标系xOy中,点A的坐标为(﹣,1),点B是x轴正半轴上的一动点,以AB为边作等边△ABC,当C点在第一象限内,且B(2,0)时,求C点的坐标.【考点】KY:三角形综合题.菁优网版权所有【分析】探究结论:(1)只要证明△ACE是等边三角形即可解决问题;(2)如图2中,结论:ED=EB.想办法证明EP垂直平分线段AB 即可解决问题;(3)结论不变,证明方法类似;拓展应用:利用(2)中结论,可得CO=CB,设C(1,n),根据OC=CB=AB,构建方程即可解决问题;【解答】解:探究结论(1)如图1中,∵∠ACB=90°,∠B=30°,∴∠A=60°,∵AC=AB=AE=EB,∴△ACE是等边三角形,∴EC=AE=EB,故答案为EC=EB.(2)如图2中,结论:ED=EB.理由:连接PE.∵△ACP,△ADE都是等边三角形,∴AC=AD=DE,AD=AE,∠CAP=∠DAE=60°,∴∠CAD=∠PAE,∴△CAD≌△PAE,∴∠ACD=∠APE=90°,∴EP⊥AB,∵PA=PB,∴EA=EB,∵DE=AE,∴ED=EB.(3)当点D为边CB延长线上任意一点时,同法可证:ED=EB,故答案为ED=EB.拓展应用:如图3中,作AH⊥x轴于H,CF⊥OB于F,连接OA.∵A(﹣,1),∴∠AOH=30°,由(2)可知,CO=CB,∵CF⊥OB,∴OF=FB=1,∴可以假设C(1,n),∵OC=BC=AB,∴1+n2=1+(+2)2,∴n=2+,∴C(1,2+).。

2018年山东日照中考数学试卷(含解析)

2018年山东日照中考数学试卷(含解析)

2018年山东省日照市初中毕业、升学考试数学(满分120分,时间120分钟)一、选择题(本大题共12小题,每小题3分,满分36分)1.(2018山东省日照市,1,3分)|-5|的相反数是( )A .-5B .5C . 51D . -51 【答案】A【解析】|-5|的相反数是-5。

数a 的相反数是-a 。

【知识点】绝对值 相反数2.(2018山东省日照市,2,3分)在下列图案中,既是轴对称又是中心对称图形的是( )A B C D【答案】C【解析】A 图案既不是轴对称又不是中心对称图形;B 图案只是轴对称图形;C 图案既是轴对称又是中心对称图形;D 图案只是中心对称图形,故选C 。

【知识点】轴对称图形 中心对称图形3.(2018山东省日照市,3,3分)下列各式中,运算正确的是( )A .(a 2)3=a 5B .(a -b )2=a 2-2ab +b 2C .a 5÷a 3=a 2D .a 3+a 2=2a 5,【答案】C【解析】因为(a 2)3=a 6,(a -b )2=a 2-2ab +b 2,a 5÷a 3=a 2,a 3+a 2不能合并,故选C 。

【知识点】积的乘方 完全平方公式 同底数幂的险法 同类项4.(2018山东省日照市,4,3分)若式子22(m 1)m +-有意义,则实数m 的取值范围是( ) A .m >-2 B . m >-2且m ≠1C .m ≥-2D . m ≥-2且m ≠1 【答案】D【解析】因为22(m 1)m +-有意义,所以m +2≥0且m -1≠0,解得m ≥-2且m ≠1,故选D 【知识点】二次根式 分式5.(2018山东省日照市,5,3分)学校为了了解学生课外阅读情况,随机抽取了一个班级的学生,对他们一周的读书时间进行了统计,统计数据如下表所示: 读书时间(小时) 7 89 10 11 学生人数 6 10 9 87 则该班学生一周读书中位数和众数分别是( )A .9,8B . 9,9C . 9.5,9D . 9.5,8【答案】A【解析】观察统计表可以看到共调查了40名学生,中位数为第20和21名学生读书时间的平均数,第20和21名学生读书时间均为9小时,所以中位数为9;读书时间为8小时的人数是10人,为最多,所以众数是8小时,故选A.【知识点】众数中位数6.(2018山东省日照市,6,3分)如图,将一副直角三角板按图中所示位置摆放,保持两条斜边互相平行,则∠=()A.30°B.25°C.20°D.15°1【答案】D【解析】如图,过点C作CD∥AF于,则∠BCD=∠B=45°,∠ACD=∠A=30°,所以∠BCA=45°-30°=15°,故选D。

2018年山东省日照市中考数学试卷

2018年山东省日照市中考数学试卷

2018年山东省日照市中考数学试卷一、选择题:本大题共12小题,每小题3分,满分36分,在每小题所给出的四个选项中,只有一项是符合题目要求的1.(3分)|﹣5|的相反数是()A.﹣5 B.5 C .D .﹣2.(3分)在下列图案中,既是轴对称又是中心对称图形的是()A .B .C .D .3.(3分)下列各式中,运算正确的是()A.(a3)2=a5B.(a﹣b)2=a2﹣b2 C.a6÷a2=a4D.a2+a2=2a44.(3分)若式子有意义,则实数m的取值范围是()A.m>﹣2 B.m>﹣2且m≠1 C.m≥﹣2 D.m≥﹣2且m≠15.(3分)某校为了解学生的课外阅读情况,随机抽取了一个班级的学生,对他们一周的读书时间进行了统计,统计数据如下表所示:则该班学生一周读书时间的中位数和众数分别是()A.9,8 B.9,9 C.9.5,9 D.9.5,86.(3分)如图,将一副直角三角板按图中所示位置摆放,保持两条斜边互相平行,则∠1=()A.30°B.25°C.20°D.15°7.(3分)计算:()﹣1+tan30°•sin60°=()A.﹣ B.2 C.D.8.(3分)如图,在四边形ABCD中,对角线AC,BD相交于点O,AO=CO,BO=DO.添加下列条件,不能判定四边形ABCD是菱形的是()A.AB=AD B.AC=BD C.AC⊥BD D.∠ABO=∠CBO9.(3分)已知反比例函数y=﹣,下列结论:①图象必经过(﹣2,4);②图象在二,四象限内;③y随x的增大而增大;④当x>﹣1时,则y>8.其中错误的结论有()个A.3 B.2 C.1 D.010.(3分)如图,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O 在格点上,则∠BED的正切值等于()A.B.C.2 D.11.(3分)已知二次函数y=ax2+bx+c(a≠0)图象如图所示,下列结论:①abc<0;②2a﹣b<0;③b2>(a+c)2;④点(﹣3,y1),(1,y2)都在抛物线上,则有y1>y2.其中正确的结论有()A.4个 B.3个 C.2个 D.1个12.(3分)定义一种对正整数n的“F”运算:①当n为奇数时,F(n)=3n+1;②当n为偶数时,F(n)=(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:若n=13,则第2018次“F”运算的结果是()A.1 B.4 C.2018 D.42018二、填空题:本大题共4小题,每小题4分,满分16分,不需写出解答过程13.(4分)一个角是70°39′,则它的余角的度数是.14.(4分)为创建“国家生态园林城市”,某小区在规划设计时,在小区中央设置一块面积为1200平方米的矩形绿地,并且长比宽多40米.设绿地宽为x米,根据题意,可列方程为.15.(4分)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积是.16.(4分)在平面直角坐标系中,我们把横、纵坐标均为整数的点叫做整点.已知反比例函数y=(m<0)与y=x2﹣4在第四象限内围成的封闭图形(包括边界)内的整点的个数为2,则实数m的取值范围为.三、解答题:本大题共6小题,满分68分,解答时应写出必要的文字说明、证明过程或演算步骤17.(10分)(1)实数x取哪些整数时,不等式2x﹣1>x+1与x﹣1≤7﹣x都成立?(2)化简:(﹣)÷,并从0≤x≤4中选取合适的整数代入求值.18.(10分)“低碳生活,绿色出行”的理念已深入人心,现在越来越多的人选择骑自行车上下班或外出旅游.周末,小红相约到郊外游玩,她从家出发0.5小时后到达甲地,玩一段时间后按原速前往乙地,刚到达乙地,接到妈妈电话,快速返回家中.小红从家出发到返回家中,行进路程y(km)随时间x(h)变化的函数图象大致如图所示.(1)小红从甲地到乙地骑车的速度为km/h;(2)当1.5≤x≤2.5时,求出路程y(km)关于时间x(h)的函数解析式;并求乙地离小红家多少千米?19.(10分)(1)某校招聘教师一名,现有甲、乙、丙三人通过专业知识、讲课、答辩三项测试,他们各自的成绩如下表所示:按照招聘简章要求,对专业知识、讲课、答辩三项赋权5:4:1.请计算三名应聘者的平均成绩,从成绩看,应该录取谁?(2)我市举行了某学科实验操作考试,有A、B、C、D四个实验,规定每位学生只参加其中一个实验的考试,并由学生自己抽签决定具体的考试实验.小王,小张,小厉都参加了本次考试.①小厉参加实验D考试的概率是;②用列表或画树状图的方法求小王、小张抽到同一个实验的概率.20.(12分)如图所示,⊙O的半径为4,点A是⊙O上一点,直线l过点A;P 是⊙O上的一个动点(不与点A重合),过点P作PB⊥l于点B,交⊙O于点E,直径PD延长线交直线l于点F,点A是的中点.(1)求证:直线l是⊙O的切线;(2)若PA=6,求PB的长.21.(13分)如图,已知点A(﹣1,0),B(3,0),C(0,1)在抛物线y=ax2+bx+c 上.(1)求抛物线解析式;(2)在直线BC上方的抛物线上求一点P,使△PBC面积为1;(3)在x轴下方且在抛物线对称轴上,是否存在一点Q,使∠BQC=∠BAC?若存在,求出Q点坐标;若不存在,说明理由.22.(13分)问题背景:我们学习等边三角形时得到直角三角形的一个性质:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.即:如图1,在Rt△ABC中,∠ACB=90°,∠ABC=30°,则:AC=AB.探究结论:小明同学对以上结论作了进一步研究.(1)如图1,连接AB边上中线CE,由于CE=AB,易得结论:①△ACE为等边三角形;②BE与CE之间的数量关系为.(2)如图2,点D是边CB上任意一点,连接AD,作等边△ADE,且点E在∠ACB的内部,连接BE.试探究线段BE与DE之间的数量关系,写出你的猜想并加以证明.(3)当点D为边CB延长线上任意一点时,在(2)条件的基础上,线段BE与DE之间存在怎样的数量关系?请直接写出你的结论.拓展应用:如图3,在平面直角坐标系xOy中,点A的坐标为(﹣,1),点B 是x轴正半轴上的一动点,以AB为边作等边△ABC,当C点在第一象限内,且B (2,0)时,求C点的坐标.2018年山东省日照市中考数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,满分36分,在每小题所给出的四个选项中,只有一项是符合题目要求的1.(3分)|﹣5|的相反数是()A.﹣5 B.5 C.D.﹣【分析】根据绝对值、相反数的定义即可得出答案.【解答】解:根据绝对值的定义,∴︳﹣5︳=5,根据相反数的定义,∴5的相反数是﹣5.故选:A.【点评】本题主要考查了绝对值和相反数的定义,比较简单.2.(3分)在下列图案中,既是轴对称又是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、此图案既不是轴对称图形又不是中心对称图形;B、此图案是轴对称图形,不是中心对称图形;C、此图案既是轴对称图形又是中心对称图形;D、此图案是中心对称图形,不是轴对称图形;故选:C.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)下列各式中,运算正确的是()A.(a3)2=a5B.(a﹣b)2=a2﹣b2 C.a6÷a2=a4D.a2+a2=2a4【分析】根据同底数幂的乘法、除法法则,合并同类项法则,幂的乘方,乘法公式一一判断即可;【解答】解:A、错误.(a3)2=a5;B、错误.(a﹣b)2=a2﹣2ab+b2;C、正确.D、错误.a2+a2=2a2故选:C.【点评】本题考查同底数幂的乘法、除法法则,合并同类项法则,幂的乘方,乘法公式等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4.(3分)若式子有意义,则实数m的取值范围是()A.m>﹣2 B.m>﹣2且m≠1 C.m≥﹣2 D.m≥﹣2且m≠1【分析】根据二次根式有意义的条件即可求出答案.【解答】解:由题意可知:∴m≥﹣2且m≠1故选:D.【点评】本题考查二次根式有意义的条件,解题的关键是熟练运用二次根式的条件,本题属于基础题型.5.(3分)某校为了解学生的课外阅读情况,随机抽取了一个班级的学生,对他们一周的读书时间进行了统计,统计数据如下表所示:则该班学生一周读书时间的中位数和众数分别是()A.9,8 B.9,9 C.9.5,9 D.9.5,8【分析】根据表格中的数据可知该班有学生40人,从而可以求得中位数和众数,本题得以解决.【解答】解:由表格可得,该班学生一周读书时间的中位数和众数分别是:9、8,故选:A.【点评】本题考查众数、中位数,解答本题的关键是明确题意,会求一组数据的众数和中位数.6.(3分)如图,将一副直角三角板按图中所示位置摆放,保持两条斜边互相平行,则∠1=()A.30°B.25°C.20°D.15°【分析】根据平行线的性质可得∠A=∠FDE=45°,再根据三角形内角与外角的性质可得∠1的度数.【解答】解:∵AB∥CD,∴∠A=∠FDE=45°,又∵∠C=30°.∴∠1=∠FDE﹣∠C=45°﹣30°=15°,故选:D.【点评】此题主要考查了平行线的性质,关键是掌握两直线平行,同位角相等.7.(3分)计算:()﹣1+tan30°•sin60°=()A.﹣ B.2 C.D.【分析】根据实数的运算,即可解答.【解答】解:()﹣1+tan30°•sin60°=2+=2+=故选:C.【点评】本题考查了实数的运算,解决本题的关键是熟记实数的运算.8.(3分)如图,在四边形ABCD中,对角线AC,BD相交于点O,AO=CO,BO=DO.添加下列条件,不能判定四边形ABCD是菱形的是()A.AB=AD B.AC=BD C.AC⊥BD D.∠ABO=∠CBO【分析】根据菱形的定义及其判定、矩形的判定对各选项逐一判断即可得.【解答】解:∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,当AB=AD或AC⊥BD时,均可判定四边形ABCD是菱形;当∠ABO=∠CBO时,由AD∥BC知∠CBO=∠ADO,∴∠ABO=∠ADO,∴AB=AD,∴四边形ABCD是菱形;当AC=BD时,可判定四边形ABCD是矩形;故选:B.【点评】本题主要考查菱形的判定,解题的关键是掌握菱形的定义和各判定及矩形的判定.9.(3分)已知反比例函数y=﹣,下列结论:①图象必经过(﹣2,4);②图象在二,四象限内;③y随x的增大而增大;④当x>﹣1时,则y>8.其中错误的结论有()个A.3 B.2 C.1 D.0【分析】根据反比例函数的性质,可得答案.【解答】解:①当x=﹣2时,y=4,即图象必经过点(﹣2,4);②k=﹣8<0,图象在第二、四象限内;③k=﹣8<0,每一象限内,y随x的增大而增大,错误;④k=﹣8<0,每一象限内,y随x的增大而增大,若0>x>﹣1,﹣y>8,故④错误,故选:B.【点评】本题考查了反比例函数的性质,熟记反比例函数的性质是解题关键.10.(3分)如图,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O 在格点上,则∠BED的正切值等于()A.B.C.2 D.【分析】根据同弧或等弧所对的圆周角相等来求解.【解答】解:∵∠DAB=∠DEB,∴tan∠DAB=tan∠DEB=.故选:D.【点评】此题主要考查了圆周角定理(同弧或等弧所对的圆周角相等)和正切的概念,正确得出相等的角是解题关键.11.(3分)已知二次函数y=ax2+bx+c(a≠0)图象如图所示,下列结论:①abc<0;②2a﹣b<0;③b2>(a+c)2;④点(﹣3,y1),(1,y2)都在抛物线上,则有y1>y2.其中正确的结论有()A.4个 B.3个 C.2个 D.1个【分析】观察图象判断出a、b、c的符号,即可得出结论①正确,利用对称轴公式x>﹣1,可得结论②错误;判断出﹣b<a+c<b,可得结论③正确,利用图象法可以判断出④正确;【解答】解:∵抛物线开口向上,∴a>0,∵﹣<0,∴b>0,∵抛物线交y轴于负半轴,∴c<0,∴abc<0,故①正确,∵﹣>﹣1,a>0,∴b<2a,∴2a﹣b>0,故②错误,∵x=1时,y>0,∴a+b+c>0,∴a+c>﹣b,∵x=﹣1时,y<0,∴a﹣b+c<0,∴a+c<b,∴b2>(a+c)2,故③正确,∵点(﹣3,y1),(1,y2)都在抛物线上,观察图象可知y1>y2,故④正确.故选:B.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a ≠0),二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c).抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.12.(3分)定义一种对正整数n的“F”运算:①当n为奇数时,F(n)=3n+1;②当n为偶数时,F(n)=(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:若n=13,则第2018次“F”运算的结果是()A.1 B.4 C.2018 D.42018【分析】计算出n=13时第一、二、三、四、五、六次运算的结果,找出规律再进行解答即可.【解答】解:若n=13,第1次结果为:3n+1=40,第2次结果是:=5,第3次结果为:3n+1=16,第4次结果为:=1,第5次结果为:4,第6次结果为:1,…可以看出,从第四次开始,结果就只是1,4两个数轮流出现,且当次数为偶数时,结果是1;次数是奇数时,结果是4,而2018次是偶数,因此最后结果是1.故选:A.【点评】本题主要考查了数字的变化类,能根据所给条件得出n=13时六次的运算结果,找出规律是解答此题的关键.二、填空题:本大题共4小题,每小题4分,满分16分,不需写出解答过程13.(4分)一个角是70°39′,则它的余角的度数是19°21′.【分析】依据余角的定义列出算式进行计算即可.【解答】解:它的余角=90°﹣70°39′=19°21′.故答案为:19°21′.【点评】本题主要考查的是余角的定义以及度分秒的换算,掌握相关概念是解题的关键.14.(4分)为创建“国家生态园林城市”,某小区在规划设计时,在小区中央设置一块面积为1200平方米的矩形绿地,并且长比宽多40米.设绿地宽为x米,根据题意,可列方程为x(x+40)=1200.【分析】先表示出矩形场地的长,再根据矩形的面积公式即可列出方程.【解答】解:由题意可得,x(x+40)=1200,故答案是:x(x+40)=1200.【点评】本题考查由实际问题抽象出一元二次方程,解题的关键是明确题意,列出相应的方程.15.(4分)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积是4πcm2.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其表面积.【解答】解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为cm,底面半径为1cm,故表面积=πrl+πr2=π×1×3+π×12=4πcm2,故答案为:4πcm2,【点评】考查学生对三视图掌握程度和灵活运用能力,关键是由主视图和左视图确定是柱体,锥体还是球体.16.(4分)在平面直角坐标系中,我们把横、纵坐标均为整数的点叫做整点.已知反比例函数y=(m<0)与y=x2﹣4在第四象限内围成的封闭图形(包括边界)内的整点的个数为2,则实数m的取值范围为﹣2≤m<﹣1.【分析】根据题意可知抛物线在第四象限内的部分,然后根据反比例函数y=(m <0)与y=x2﹣4在第四象限内围成的封闭图形(包括边界)内的整点的个数为2,可以得到不等式组,从而可以求得m的取值范围.【解答】解:∵y=x2﹣4,∴当x=0时,y=﹣4,当y=0时,x=±2,当x=1时,y=﹣3,∴抛物线y=x2﹣4在第四象限内的部分是(0,﹣4)到(2,0)这一段曲线部分,∵反比例函数y=(m<0)与y=x2﹣4在第四象限内围成的封闭图形(包括边界)内的整点的个数为2,∴,解得,﹣2≤m<﹣1.【点评】本题考查反比例函数的性质、二次函数的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用不等式的性质解答.三、解答题:本大题共6小题,满分68分,解答时应写出必要的文字说明、证明过程或演算步骤17.(10分)(1)实数x取哪些整数时,不等式2x﹣1>x+1与x﹣1≤7﹣x都成立?(2)化简:(﹣)÷,并从0≤x≤4中选取合适的整数代入求值.【分析】(1)根据题意分别求出每个不等式解集,根据口诀:大小小大中间找,确定两不等式解集的公共部分,即可得整数值.(2)根据分式的减法和除法可以化简题目中的式子,然后在0≤x≤4的范围内选取一个使得原分式有意义的整数代入化简后的式子即可解答本题.【解答】解:(1)根据题意可得不等式组,解不等式①,得:x>2,解不等式②,得:x≤4,所以不等式组的解集为2<x≤4,则整数x的值为3、4;(2)原式=[﹣]•=[﹣]•=•=•=,∵,∴x≠0且x≠2、x≠4,∴在0≤x≤4中,可取的整数为x=1、x=3,当x=1时,原式=1;当x=3时,原式=1.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法与解一元一次不等式组的步骤.18.(10分)“低碳生活,绿色出行”的理念已深入人心,现在越来越多的人选择骑自行车上下班或外出旅游.周末,小红相约到郊外游玩,她从家出发0.5小时后到达甲地,玩一段时间后按原速前往乙地,刚到达乙地,接到妈妈电话,快速返回家中.小红从家出发到返回家中,行进路程y(km)随时间x(h)变化的函数图象大致如图所示.(1)小红从甲地到乙地骑车的速度为20km/h;(2)当1.5≤x≤2.5时,求出路程y(km)关于时间x(h)的函数解析式;并求乙地离小红家多少千米?【分析】(1)根据OA段的速度,可得结论;(2)当1.5≤x≤2.5时,设y=20x+b,利用待定系数法即可解决问题;【解答】解:(1)在OA段,速度==20km/h,故答案为20.(2)当1.5≤x≤2.5时,设y=20x+b,把(1.5,10)代入得到,10=20×1.5+b,解得b=﹣20,∴y=20x﹣20,当x=2.5时,解得y=30,∴乙地离小红家30千米【点评】本题考查一次函数的应用,解题的关键是读懂图象信息,属于中考常考题型.19.(10分)(1)某校招聘教师一名,现有甲、乙、丙三人通过专业知识、讲课、答辩三项测试,他们各自的成绩如下表所示:按照招聘简章要求,对专业知识、讲课、答辩三项赋权5:4:1.请计算三名应聘者的平均成绩,从成绩看,应该录取谁?(2)我市举行了某学科实验操作考试,有A、B、C、D四个实验,规定每位学生只参加其中一个实验的考试,并由学生自己抽签决定具体的考试实验.小王,小张,小厉都参加了本次考试.①小厉参加实验D考试的概率是;②用列表或画树状图的方法求小王、小张抽到同一个实验的概率.【分析】(1)根据加权平均数分别计算三人的平均成绩,比较大小即可得;(2)①根据概率公式即可得;②列表得出所有等可能的情况数,找出两位同学抽到同一实验的情况数,即可求出所求概率.【解答】解:(1)==77(分),==86.5(分),==84.5(分),因为乙的平均成绩最高,所以应该录取乙;(2)①小厉参加实验D考试的概率是,故答案为:;②解:列表如下:所有等可能的情况有16种,其中两位同学抽到同一实验的情况有AA,BB,CC,DD,4种情况,所以小王、小张抽到同一个实验的概率为=.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.(12分)如图所示,⊙O的半径为4,点A是⊙O上一点,直线l过点A;P 是⊙O上的一个动点(不与点A重合),过点P作PB⊥l于点B,交⊙O于点E,直径PD延长线交直线l于点F,点A是的中点.(1)求证:直线l是⊙O的切线;(2)若PA=6,求PB的长.【分析】(1)连接DE,OA.想办法证明OA⊥BF即可;(2)作OH⊥PA于H,只要证明△AOH∽△PAB,可得=,即可解决问题.【解答】(1)证明:连接DE,OA.∵PD是直径,∴∠DEP=90°,∵PB⊥FB,∴∠DEP=∠FBP,∴DE∥BF,∵=,∴OA⊥DE,∴OA⊥BF,∴直线l是⊙O的切线.(2)解:作OH⊥PA于H.∵OA=OP,OH⊥PA,∴AH=PH=3,∵OA∥PB,∴∠OAH=∠APB,∵∠AHO=∠ABP=90°,∴△AOH∽△PAB,∴=,∴=,∴PB=.【点评】本题考查相似三角形的判定和性质、垂径定理、切线的判定等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型.21.(13分)如图,已知点A(﹣1,0),B(3,0),C(0,1)在抛物线y=ax2+bx+c 上.(1)求抛物线解析式;(2)在直线BC上方的抛物线上求一点P,使△PBC面积为1;(3)在x轴下方且在抛物线对称轴上,是否存在一点Q,使∠BQC=∠BAC?若存在,求出Q点坐标;若不存在,说明理由.【分析】(1)设抛物线的解析式为y=a(x+1)(x﹣3),将C(0,1)代入求得a 的值即可;(2)过点P作PD⊥x,交BC与点D,先求得直线BC的解析式为y=﹣x+1,设点P(x,﹣x2+x+1),则D(x,﹣x+1),然后可得到PD与x之间的关系式,接下来,依据△PBC的面积为1列方程求解即可;(3)首先依据点A和点C的坐标可得到∠BQC=∠BAC=45°,设△ABC外接圆圆心为M,则∠CMB=90°,设⊙M的半径为x,则Rt△CMB中,依据勾股定理可求得⊙M的半径,然后依据外心的性质可得到点M为直线y=﹣x与x=1的交点,从而可求得点M的坐标,然后由点M的坐标以及⊙M的半径可得到点Q的坐标.【解答】解:(1)设抛物线的解析式为y=a(x+1)(x﹣3),将C(0,1)代入得﹣3a=1,解得:a=﹣,∴抛物线的解析式为y=﹣x2+x+1.(2)过点P作PD⊥x,交BC与点D.设直线BC的解析式为y=kx+b,则,解得:k=﹣,∴直线BC的解析式为y=﹣x+1.设点P(x,﹣x2+x+1),则D(x,﹣x+1)∴PD=(﹣x2+x+1)﹣(﹣x+1)=﹣x2+x,∴S=OB•DP=×3×(﹣x2+x)=﹣x2+x.△PBC=1,又∵S△PBC∴﹣x2+x=1,整理得:x2﹣3x+2=0,解得:x=1或x=2,∴点P的坐标为(1,)或(2,1).(3)存在.∵A(﹣1,0),C(0,1),∴OC=OA=1∴∠BAC=45°.∵∠BQC=∠BAC=45°,∴点Q为△ABC外接圆与抛物线对称轴在x轴下方的交点.设△ABC外接圆圆心为M,则∠CMB=90°.设⊙M的半径为x,则Rt△CMB中,由勾股定理可知CM2+BM2=BC2,即2x2=10,解得:x=(负值已舍去),∵AC的垂直平分线的为直线y=﹣x,AB的垂直平分线为直线x=1,∴点M为直线y=﹣x与x=1的交点,即M(1,﹣1),∴Q的坐标为(1,﹣1﹣).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、三角形的外心的性质,求得点M的坐标以及⊙M的半径的长度是解题的关键.22.(13分)问题背景:我们学习等边三角形时得到直角三角形的一个性质:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.即:如图1,在Rt△ABC中,∠ACB=90°,∠ABC=30°,则:AC=AB.探究结论:小明同学对以上结论作了进一步研究.(1)如图1,连接AB边上中线CE,由于CE=AB,易得结论:①△ACE为等边三角形;②BE与CE之间的数量关系为BE=CE.(2)如图2,点D是边CB上任意一点,连接AD,作等边△ADE,且点E在∠ACB的内部,连接BE.试探究线段BE与DE之间的数量关系,写出你的猜想并加以证明.(3)当点D为边CB延长线上任意一点时,在(2)条件的基础上,线段BE与DE之间存在怎样的数量关系?请直接写出你的结论BE=DE.拓展应用:如图3,在平面直角坐标系xOy中,点A的坐标为(﹣,1),点B 是x轴正半轴上的一动点,以AB为边作等边△ABC,当C点在第一象限内,且B (2,0)时,求C点的坐标.【分析】探究结论:(1)只要证明△ACE是等边三角形即可解决问题;(2)如图2中,结论:ED=EB.想办法证明EP垂直平分线段AB即可解决问题;(3)结论不变,证明方法类似;拓展应用:利用(2)中结论,可得CO=CB,设C(1,n),根据OC=CB=AB,构建方程即可解决问题;【解答】解:探究结论(1)如图1中,∵∠ACB=90°,∠B=30°,∴∠A=60°,∵AC=AB=AE=EB,∴△ACE是等边三角形,∴EC=AE=EB,故答案为EC=EB.(2)如图2中,结论:ED=EB.理由:连接PE.∵△ACP,△ADE都是等边三角形,∴AC=AD=DE,AD=AE,∠CAP=∠DAE=60°,∴∠CAD=∠PAE,∴△CAD≌△PAE,∴∠ACD=∠APE=90°,∴EP⊥AB,∵PA=PB,∴EA=EB,∵DE=AE,∴ED=EB.(3)当点D为边CB延长线上任意一点时,同法可证:ED=EB,故答案为ED=EB.拓展应用:如图3中,作AH⊥x轴于H,CF⊥OB于F,连接OA.∵A(﹣,1),∴∠AOH=30°,由(2)可知,CO=CB,∵CF⊥OB,∴OF=FB=1,∴可以假设C(1,n),∵OC=BC=AB,∴1+n2=1+(+2)2,∴n=2+,∴C(1,2+).【点评】本题考查三角形综合题、等边三角形的判定和性质、全等三角形的判定和性质、勾股定理、线段的垂直平分线的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。

2018年山东省日照市中考数学试题(卷)

2018年山东省日照市中考数学试题(卷)

2018年山东省日照市中考数学试卷、选择题:本大题共12小题,每小题3分,满分36分,在每小题所给出的四个选项中,只有一项是符合题目要求的1. (3分)| - 5|的相反数是()A. —5 B . 5 C.丄D.—丄3、25 2 2 2 6 2 4 2 2 4A. (a ) =aB.( a - b) =a - b C . a 宁a =a D. a +a =2aA. m>- 2B. m>- 2 且m^ 1C. m>- 2D. m>- 2 且m^ 15. (3分)某校为了解学生的课外阅读情况,随机抽取了一个班级的学生,对他们一周的读书时间进行了统计,统计数据如下表所示:读书时间(小7 8 9 10时)学生人数 6 10 9 8则该班学生一周读书时间的中位数和众数分别是()A. 9,8B. 9,9C. 9.5,9D. 9.5,86. (3分)如图,将一副直角三角板按图中所示位置摆放,保持两条斜边互相平行,则/仁()C. 20°D. 15°1+tan30 ° ? sin60 ° =(4. 有意义,则实数m的取值范围是(11 2. (3分)在下列图案中,既是轴对称又是中心对称图形的是(3分)若式子25°8.(3分)如图,在四边形ABCDK 对角线AC, BD 相交于点O, AO=COBO=DO 添 加下列条件,不能判定四边形 ABCD 是菱形的是()9. (3分)已知反比例函数y=-丄,下列结论:①图象必经过(-2, 4);②图 象在二,四象限内;③y 随x 的增大而增大;④当x >- 1时,则y >8.其中错 误的结论有( )个 A. 3 B. 2C. 1D. 010. (3分)如图,边长为1的小正方形构成的网格中,半径为 1的O O 的圆心O 在格点上,则/ BED 勺正切值等于()11. (3分)已知二次函数y=ax 2+bx+c (a ^0)图象如图所示,下列结论: ①abc v 0;②2a - b v 0;③b 2>(a+c ) 2;④点(-3, yd , (1, y 2)都在抛物线A. 4个B. 3个C. 2个D. 1个亘B. 2 C. 1 D.上 2 2 2A./ ABO M CBO上,则有y 1>y 2.12. (3分)定义一种对正整数n的“F”运算:①当n为奇数时,F (n)=3n+1;②当n为偶数时,F (n)=•」(其中k是使F (n)为奇数的正整数)……,两2k 种运算交替重复进行,例如,取n=24,贝若n=13,则第2018次“F”运算的结果是()A. 1B. 4C. 2018D. 42018二、填空题:本大题共4小题,每小题4分,满分16分,不需写出解答过程13. _________________________________________________ (4分)一个角是70° 39',则它的余角的度数是____________________________ .14. (4分)为创建“国家生态园林城市”,某小区在规划设计时,在小区中央设置一块面积为1200平方米的矩形绿地,并且长比宽多40米.设绿地宽为x米,根据题意,可列方程为________ .15. (4分)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积是________ .16. (4分)在平面直角坐标系中,我们把横、纵坐标均为整数的点叫做整点.已知反比例函数y=±(m< 0)与y=x2- 4在第四象限内围成的圭寸闭图形(包括边界)内的整点的个数为2,则实数m的取值范围为_______ .三、解答题:本大题共6小题,满分68分,解答时应写出必要的文字说明、证明过程或演算步骤17. (10分)(1)实数x取哪些整数时,不等式2x- 1>x+1 与x - K 7-斗x 都成立?(2)化简:(「二—-)宁」,并从O W x w 4中选取合适的整数代入X2-2X X2-4I+4 X求值.18. (10分)“低碳生活,绿色出行”的理念已深入人心,现在越来越多的人选择骑自行车上下班或外出旅游.周末,小红相约到郊外游玩,她从家出发0.5小时后到达甲地,玩一段时间后按原速前往乙地,刚到达乙地,接到妈妈电话,快速返回家中.小红从家出发到返回家中,行进路程y (km随时间x (h)变化的函数图象大致如图所示.(1)__________________________________ 小红从甲地到乙地骑车的速度为_________________________________________ km/h;(2)当1.5 < x< 2.5时,求出路程y (km)关于时间x (h)的函数解析式;并求乙地离小红家多少千米?19. (10分)(1)某校招聘教师一名,现有甲、乙、丙三人通过专业知识、讲课、答辩三项测试,他们各自的成绩如下表所示:应聘者专业知识讲课答辩甲708580乙908575丙809085按照招聘简章要求,对专业知识、讲课、答辩三项赋权5: 4: 1 .请计算三名应聘者的平均成绩,从成绩看,应该录取谁?(2)我市举行了某学科实验操作考试,有A、B C、D四个实验,规定每位学生只参加其中一个实验的考试,并由学生自己抽签决定具体的考试实验. 小王,小张,小厉都参加了本次考试.①小厉参加实验D考试的概率是_______ ;②用列表或画树状图的方法求小王、小张抽到同一个实验的概率.20. (12分)如图所示,。

2018日照数学中考真题(解析版)

2018日照数学中考真题(解析版)

2018日照数学中考真题(解析版)学校:________ 班级:________ 姓名:________ 学号:________一、单选题(共12小题)1.|﹣5|的相反数是()A.﹣5 B.5 C .D .﹣2.在下列图案中,既是轴对称又是中心对称图形的是()A .B .C .D .3.下列各式中,运算正确的是()A.(a3)2=a5B.(a﹣b)2=a2﹣b2C.a6÷a2=a4D.a2+a2=2a44.若式子有意义,则实数m的取值范围是()A.m>﹣2 B.m>﹣2且m≠1 C.m≥﹣2 D.m≥﹣2且m≠15.某校为了解学生的课外阅读情况,随机抽取了一个班级的学生,对他们一周的读书时间进行了统计,统计数据如下表所示:7891011读书时间(小时)学生人数610987则该班学生一周读书时间的中位数和众数分别是()A.9,8 B.9,9 C.9.5,9 D.9.5,86.如图,将一副直角三角板按图中所示位置摆放,保持两条斜边互相平行,则∠1=()A.30°B.25°C.20°D.15°7.计算:()﹣1+tan30°•sin60°=()A.﹣B.2 C.D.8.如图,在四边形ABCD中,对角线AC,BD相交于点O,AO=CO,BO=DO.添加下列条件,不能判定四边形ABCD是菱形的是()A.AB=AD B.AC=BD C.AC⊥BD D.∠ABO=∠CBO9.已知反比例函数y=﹣,下列结论:①图象必经过(﹣2,4);②图象在二,四象限内;③y随x的增大而增大;④当x>﹣1时,则y>8.其中错误的结论有()个A.3 B.2 C.1 D.010.如图,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠BED的正切值等于()A.B.C.2 D.11.已知二次函数y=ax2+bx+c(a≠0)图象如图所示,下列结论:①abc<0;②2a﹣b<0;③b2>(a+c)2;④点(﹣3,y1),(1,y2)都在抛物线上,则有y1>y2.其中正确的结论有()A.4个B.3个C.2个D.1个12.定义一种对正整数n的“F”运算:①当n为奇数时,F(n)=3n+1;②当n为偶数时,F(n)=(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:若n=13,则第2018次“F”运算的结果是()A.1 B.4 C.2018 D.42018二、填空题(共4小题)13.一个角是70°39′,则它的余角的度数是.14.为创建“国家生态园林城市”,某小区在规划设计时,在小区中央设置一块面积为1200平方米的矩形绿地,并且长比宽多40米.设绿地宽为x米,根据题意,可列方程为.15.如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积是.16.在平面直角坐标系中,我们把横、纵坐标均为整数的点叫做整点.已知反比例函数y=(m<0)与y=x2﹣4在第四象限内围成的封闭图形(包括边界)内的整点的个数为2,则实数m的取值范围为﹣2﹣1.三、解答题(共6小题)17.(1)实数x取哪些整数时,不等式2x﹣1>x+1与x﹣1≤7﹣x都成立?(2)化简:(﹣)÷,并从0≤x≤4中选取合适的整数代入求值.18.“低碳生活,绿色出行”的理念已深入人心,现在越来越多的人选择骑自行车上下班或外出旅游.周末,小红相约到郊外游玩,她从家出发0.5小时后到达甲地,玩一段时间后按原速前往乙地,刚到达乙地,接到妈妈电话,快速返回家中.小红从家出发到返回家中,行进路程y(km)随时间x(h)变化的函数图象大致如图所示.(1)小红从甲地到乙地骑车的速度为km/h;(2)当1.5≤x≤2.5时,求出路程y(km)关于时间x(h)的函数解析式;并求乙地离小红家多少千米?19.(1)某校招聘教师一名,现有甲、乙、丙三人通过专业知识、讲课、答辩三项测试,他们各自的成绩如下表所示:应聘者专业知识讲课答辩甲708580乙908575丙809085按照招聘简章要求,对专业知识、讲课、答辩三项赋权5:4:1.请计算三名应聘者的平均成绩,从成绩看,应该录取谁?(2)我市举行了某学科实验操作考试,有A、B、C、D四个实验,规定每位学生只参加其中一个实验的考试,并由学生自己抽签决定具体的考试实验.小王,小张,小厉都参加了本次考试.①小厉参加实验D考试的概率是;②用列表或画树状图的方法求小王、小张抽到同一个实验的概率.20.如图所示,⊙O的半径为4,点A是⊙O上一点,直线l过点A;P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l于点B,交⊙O于点E,直径PD延长线交直线l于点F,点A是的中点.(1)求证:直线l是⊙O的切线;(2)若P A=6,求PB的长.21.如图,已知点A(﹣1,0),B(3,0),C(0,1)在抛物线y=ax2+bx+c上.(1)求抛物线解析式;(2)在直线BC上方的抛物线上求一点P,使△PBC面积为1;(3)在x轴下方且在抛物线对称轴上,是否存在一点Q,使∠BQC=∠BAC?若存在,求出Q点坐标;若不存在,说明理由.22.问题背景:我们学习等边三角形时得到直角三角形的一个性质:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.即:如图1,在Rt△ABC中,∠ACB=90°,∠ABC=30°,则:AC=AB.探究结论:小明同学对以上结论作了进一步研究.(1)如图1,连接AB边上中线CE,由于CE=AB,易得结论:①△ACE为等边三角形;②BE与CE之间的数量关系为.(2)如图2,点D是边CB上任意一点,连接AD,作等边△ADE,且点E在∠ACB的内部,连接BE.试探究线段BE与DE之间的数量关系,写出你的猜想并加以证明.(3)当点D为边CB延长线上任意一点时,在(2)条件的基础上,线段BE与DE之间存在怎样的数量关系?请直接写出你的结论.拓展应用:如图3,在平面直角坐标系xOy中,点A的坐标为(﹣,1),点B是x轴正半轴上的一动点,以AB为边作等边△ABC,当C点在第一象限内,且B(2,0)时,求C点的坐标.2018日照数学中考真题(解析版)参考答案一、单选题(共12小题)1.【分析】根据绝对值、相反数的定义即可得出答案.【解答】解:根据绝对值的定义,∴︳﹣5︳=5,根据相反数的定义,∴5的相反数是﹣5.故选:A.【知识点】相反数、绝对值2.【分析】根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、此图案既不是轴对称图形又不是中心对称图形;B、此图案是轴对称图形,不是中心对称图形;C、此图案既是轴对称图形又是中心对称图形;D、此图案是中心对称图形,不是轴对称图形;故选:C.【知识点】轴对称图形、中心对称图形3.【分析】根据同底数幂的乘法、除法法则,合并同类项法则,幂的乘方,乘法公式一一判断即可;【解答】解:A、错误.(a3)2=a5;B、错误.(a﹣b)2=a2﹣2ab+b2;C、正确.D、错误.a2+a2=2a2故选:C.【知识点】完全平方公式、合并同类项、幂的乘方与积的乘方、同底数幂的除法4.【分析】根据二次根式有意义的条件即可求出答案.【解答】解:由题意可知:∴m≥﹣2且m≠1故选:D.【知识点】二次根式有意义的条件5.【分析】根据表格中的数据可知该班有学生40人,从而可以求得中位数和众数,本题得以解决.【解答】解:由表格可得,该班学生一周读书时间的中位数和众数分别是:9、8,故选:A.【知识点】众数、中位数6.【分析】根据平行线的性质可得∠A=∠FDE=45°,再根据三角形内角与外角的性质可得∠1的度数.【解答】解:∵AB∥CD,∴∠A=∠FDE=45°,又∵∠C=30°.∴∠1=∠FDE﹣∠C=45°﹣30°=15°,故选:D.【知识点】平行线的性质7.【分析】根据实数的运算,即可解答.【解答】解:()﹣1+tan30°•sin60°=2+=2+=故选:C.【知识点】特殊角的三角函数值、实数的运算、负整数指数幂8.【分析】根据菱形的定义及其判定、矩形的判定对各选项逐一判断即可得.【解答】解:∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,当AB=AD或AC⊥BD时,均可判定四边形ABCD是菱形;当∠ABO=∠CBO时,由AD∥BC知∠CBO=∠ADO,∴∠ABO=∠ADO,∴AB=AD,∴四边形ABCD是菱形;当AC=BD时,可判定四边形ABCD是矩形;故选:B.【知识点】全等三角形的判定与性质、菱形的判定9.【分析】根据反比例函数的性质,可得答案.【解答】解:①当x=﹣2时,y=4,即图象必经过点(﹣2,4);②k=﹣8<0,图象在第二、四象限内;③k=﹣8<0,每一象限内,y随x的增大而增大,错误;④k=﹣8<0,每一象限内,y随x的增大而增大,若0>x>﹣1,﹣y>8,故④错误,故选:B.【知识点】反比例函数的性质10.【分析】根据同弧或等弧所对的圆周角相等来求解.【解答】解:∵∠DAB=∠DEB,∴tan∠DAB=tan∠DEB=.故选:D.【知识点】勾股定理、解直角三角形、圆周角定理11.【分析】观察图象判断出a、b、c的符号,即可得出结论①正确,利用对称轴公式x>﹣1,可得结论②错误;利用平方差公式,可得结论③正确,利用图象法可以判断出④正确;【解答】解:∵抛物线开口向上,∴a>0,∵﹣<0,∴b>0,∵抛物线交y轴于负半轴,∴c<0,∴abc<0,故①正确,∵﹣>﹣1,a>0,∴b<2a,∴2a﹣b>0,故②错误,∵x=1时,y>0,∴a+b+c>0,∴a+c>﹣b,∵x=﹣1时,y<0,∴a﹣b+c<0,∴(a+c)2﹣b2=(a+b+c)(a﹣b+c)<0,∴b2>(a+c)2,故③正确,∵点(﹣3,y1),(1,y2)都在抛物线上,观察图象可知y1>y2,故④正确.故选:B.【知识点】二次函数图象与系数的关系12.【分析】计算出n=13时第一、二、三、四、五、六次运算的结果,找出规律再进行解答即可.【解答】解:若n=13,第1次结果为:3n+1=40,第2次结果是:=5,第3次结果为:3n+1=16,第4次结果为:=1,第5次结果为:4,第6次结果为:1,…可以看出,从第四次开始,结果就只是1,4两个数轮流出现,且当次数为偶数时,结果是1;次数是奇数时,结果是4,而2018次是偶数,因此最后结果是1.故选:A.【知识点】有理数的混合运算二、填空题(共4小题)13.【分析】依据余角的定义列出算式进行计算即可.【解答】解:它的余角=90°﹣70°39′=19°21′.故答案为:19°21′.【知识点】度分秒的换算、余角和补角14.【分析】先表示出矩形场地的长,再根据矩形的面积公式即可列出方程.【解答】解:由题意可得,x(x+40)=1200,故答案是:x(x+40)=1200.【知识点】由实际问题抽象出一元二次方程15.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其表面积.【解答】解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为cm,底面半径为1cm,故表面积=πrl+πr2=π×1×3+π×12=4πcm2,故答案为:4πcm2,【知识点】由三视图判断几何体、圆锥的计算16.【分析】根据题意可知抛物线在第四象限内的部分,然后根据反比例函数y=(m<0)与y=x2﹣4在第四象限内围成的封闭图形(包括边界)内的整点的个数为2,可以得到不等式组,从而可以求得m的取值范围.【解答】解:∵y=x2﹣4,∴当x=0时,y=﹣4,当y=0时,x=±2,当x=1时,y=﹣3,∴抛物线y=x2﹣4在第四象限内的部分是(0,﹣4)到(2,0)这一段曲线部分,∵反比例函数y=(m<0)与y=x2﹣4在第四象限内围成的封闭图形(包括边界)内的整点的个数为2,∴,解得,﹣2≤m<﹣1.【知识点】二次函数的性质、反比例函数的性质三、解答题(共6小题)17.【分析】(1)根据题意分别求出每个不等式解集,根据口诀:大小小大中间找,确定两不等式解集的公共部分,即可得整数值.(2)根据分式的减法和除法可以化简题目中的式子,然后在0≤x≤4的范围内选取一个使得原分式有意义的整数代入化简后的式子即可解答本题.【解答】解:(1)根据题意可得不等式组,解不等式①,得:x>2,解不等式②,得:x≤4,所以不等式组的解集为2<x≤4,则整数x的值为3、4;(2)原式=[﹣]•=[﹣]•=•=•=,∵,∴x≠0且x≠2、x≠4,∴在0≤x≤4中,可取的整数为x=1、x=3,当x=1时,原式=1;当x=3时,原式=1.【知识点】分式的化简求值、一元一次不等式组的整数解18.【分析】(1)根据OA段的速度,可得结论;(2)当1.5≤x≤2.5时,设y=20x+b,利用待定系数法即可解决问题;【解答】解:(1)在OA段,速度==20km/h,故答案为20.(2)当1.5≤x≤2.5时,设y=20x+b,把(1.5,10)代入得到,10=20×1.5+b,解得b=﹣20,∴y=20x﹣20,当x=2.5时,解得y=30,∴乙地离小红家30千米【知识点】一次函数的应用19.【分析】(1)根据加权平均数分别计算三人的平均成绩,比较大小即可得;(2)①根据概率公式即可得;②列表得出所有等可能的情况数,找出两位同学抽到同一实验的情况数,即可求出所求概率.【解答】解:(1)==77(分),==86.5(分),==84.5(分),因为乙的平均成绩最高,所以应该录取乙;(2)①小厉参加实验D考试的概率是,故答案为:;②解:列表如下:A B C DA AA BA CA DAB AB BB CB DBC AC BC CC DCD AD BD CD DD所有等可能的情况有16种,其中两位同学抽到同一实验的情况有AA,BB,CC,DD,4种情况,所以小王、小张抽到同一个实验的概率为=.【知识点】列表法与树状图法、加权平均数、概率公式20.【分析】(1)连接DE,OA.想办法证明OA⊥BF即可;(2)作OH⊥PA于H,只要证明△AOH∽△PAB,可得=,即可解决问题.【解答】(1)证明:连接DE,OA.∵PD是直径,∴∠DEP=90°,∵PB⊥FB,∴∠DEP=∠FBP,∴DE∥BF,∵=,∴OA⊥DE,∴OA⊥BF,∴直线l是⊙O的切线.(2)解:作OH⊥PA于H.∵OA=OP,OH⊥PA,∴AH=PH=3,∵OA∥PB,∴∠OAH=∠APB,∵∠AHO=∠ABP=90°,∴△AOH∽△PAB,∴=,∴=,∴PB=.【知识点】切线的判定与性质、相似三角形的判定与性质、垂径定理21.【分析】(1)设抛物线的解析式为y=a(x+1)(x﹣3),将C(0,1)代入求得a的值即可;(2)过点P作PD⊥x,交BC与点D,先求得直线BC的解析式为y=﹣x+1,设点P(x,﹣x2+x+1),则D(x,﹣x+1),然后可得到PD与x之间的关系式,接下来,依据△PBC的面积为1列方程求解即可;(3)首先依据点A和点C的坐标可得到∠BQC=∠BAC=45°,设△ABC外接圆圆心为M,则∠CMB=90°,设⊙M的半径为x,则Rt△CMB中,依据勾股定理可求得⊙M的半径,然后依据外心的性质可得到点M为直线y=﹣x与x=1的交点,从而可求得点M的坐标,然后由点M的坐标以及⊙M的半径可得到点Q的坐标.【解答】解:(1)设抛物线的解析式为y=a(x+1)(x﹣3),将C(0,1)代入得﹣3a=1,解得:a=﹣,∴抛物线的解析式为y=﹣x2+x+1.(2)过点P作PD⊥x,交BC与点D.设直线BC的解析式为y=kx+b,则,解得:k=﹣,∴直线BC的解析式为y=﹣x+1.设点P(x,﹣x2+x+1),则D(x,﹣x+1)∴PD=(﹣x2+x+1)﹣(﹣x+1)=﹣x2+x,∴S△PBC=OB•DP=×3×(﹣x2+x)=﹣x2+x.又∵S△PBC=1,∴﹣x2+x=1,整理得:x2﹣3x+2=0,解得:x=1或x=2,∴点P的坐标为(1,)或(2,1).(3)存在.∵A(﹣1,0),C(0,1),∴OC=OA=1∴∠BAC=45°.∵∠BQC=∠BAC=45°,∴点Q为△ABC外接圆与抛物线对称轴在x轴下方的交点.设△ABC外接圆圆心为M,则∠CMB=90°.设⊙M的半径为x,则Rt△CMB中,由勾股定理可知CM2+BM2=BC2,即2x2=10,解得:x=(负值已舍去),∵AC的垂直平分线的为直线y=﹣x,AB的垂直平分线为直线x=1,∴点M为直线y=﹣x与x=1的交点,即M(1,﹣1),∴Q的坐标为(1,﹣1﹣).【知识点】二次函数综合题22.【分析】探究结论:(1)只要证明△ACE是等边三角形即可解决问题;(2)如图2中,结论:ED=EB.想办法证明EP垂直平分线段AB即可解决问题;(3)结论不变,证明方法类似;拓展应用:利用(2)中结论,可得CO=CB,设C(1,n),根据OC=CB=AB,构建方程即可解决问题;【解答】解:探究结论(1)如图1中,∵∠ACB=90°,∠B=30°,∴∠A=60°,∵AC=AB=AE=EB,∴△ACE是等边三角形,∴EC=AE=EB,故答案为EC=EB.(2)如图2中,结论:ED=EB.理由:连接PE.∵△ACP,△ADE都是等边三角形,∴AC=AD=DE,AD=AE,∠CAP=∠DAE=60°,∴∠CAD=∠PAE,∴△CAD≌△PAE,∴∠ACD=∠APE=90°,∴EP⊥AB,∵PA=PB,∴EA=EB,∵DE=AE,∴ED=EB.(3)当点D为边CB延长线上任意一点时,同法可证:ED=EB,故答案为ED=EB.拓展应用:如图3中,作AH⊥x轴于H,CF⊥OB于F,连接OA.∵A(﹣,1),∴∠AOH=30°,由(2)可知,CO=CB,∵CF⊥OB,∴OF=FB=1,∴可以假设C(1,n),∵OC=BC=AB,∴1+n2=1+(+2)2,∴n=2+,∴C(1,2+).【知识点】三角形综合题。

2018山东省日照市中考数学真题及答案

2018山东省日照市中考数学真题及答案

2018山东省日照市中考数学真题及答案一、选择题:本大题共12小题,每小题3分,满分36分,在每小题所给出的四个选项中,只有一项是符合题目要求的1.(2018•日照)|﹣5|的相反数是()A.﹣5 B.5 C.D.﹣【解答】解:根据绝对值的定义,∴︳﹣5︳=5,根据相反数的定义,∴5的相反数是﹣5.故选:A.【点评】本题主要考查了绝对值和相反数的定义,比较简单.2.(2018•日照)在下列图案中,既是轴对称又是中心对称图形的是()A.B.C.D.【解答】解:A、此图案既不是轴对称图形又不是中心对称图形;B、此图案是轴对称图形,不是中心对称图形;C、此图案既是轴对称图形又是中心对称图形;D、此图案是中心对称图形,不是轴对称图形;故选:C.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(2018•日照)下列各式中,运算正确的是()A.(a3)2=a5B.(a﹣b)2=a2﹣b2C.a6÷a2=a4D.a2+a2=2a4【解答】解:A、错误.(a3)2=a5;B、错误.(a﹣b)2=a2﹣2ab+b2;C、正确.D、错误.a2+a2=2a2故选:C.【点评】本题考查同底数幂的乘法、除法法则,合并同类项法则,幂的乘方,乘法公式等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4.(2018•日照)若式子有意义,则实数m的取值范围是()A.m>﹣2 B.m>﹣2且m≠1 C.m≥﹣2 D.m≥﹣2且m≠1【解答】解:由题意可知:∴m≥﹣2且m≠1故选:D.【点评】本题考查二次根式有意义的条件,解题的关键是熟练运用二次根式的条件,本题属于基础题型.5.(2018•日照)某校为了解学生的课外阅读情况,随机抽取了一个班级的学生,对他们一周的读书时间进行了统计,统计数据如下表所示:读书时间(小时)7 8 9 10 11学生人数 6 10 9 8 7则该班学生一周读书时间的中位数和众数分别是()A.9,8 B.9,9 C.9.5,9 D.9.5,8【解答】解:由表格可得,该班学生一周读书时间的中位数和众数分别是:9、8,故选:A.【点评】本题考查众数、中位数,解答本题的关键是明确题意,会求一组数据的众数和中位数.6.(2018•日照)如图,将一副直角三角板按图中所示位置摆放,保持两条斜边互相平行,则∠1=()A.30° B.25° C.20° D.15°【解答】解:∵AB∥CD,∴∠A=∠FDE=45°,又∵∠C=30°.∴∠1=∠FDE﹣∠C=45°﹣30°=15°,故选:D.【点评】此题主要考查了平行线的性质,关键是掌握两直线平行,同位角相等.7.(2018•日照)计算:()﹣1+tan30°•sin60°=()A.﹣ B.2 C.D.【解答】解:()﹣1+tan30°•sin60°=2+=2+=故选:C.【点评】本题考查了实数的运算,解决本题的关键是熟记实数的运算.8.(2018•日照)如图,在四边形ABCD中,对角线AC,BD相交于点O,AO=CO,BO=DO.添加下列条件,不能判定四边形ABCD是菱形的是()A.AB=AD B.AC=BD C.AC⊥BD D.∠ABO=∠CBO【解答】解:∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,当AB=AD或AC⊥BD时,均可判定四边形ABCD是菱形;当∠ABO=∠CBO时,由AD∥BC知∠CBO=∠ADO,∴∠ABO=∠ADO,∴AB=AD,∴四边形ABCD是菱形;当AC=BD时,可判定四边形ABCD是矩形;故选:B.【点评】本题主要考查菱形的判定,解题的关键是掌握菱形的定义和各判定及矩形的判定.9.(2018•日照)已知反比例函数y=﹣,下列结论:①图象必经过(﹣2,4);②图象在二,四象限内;③y随x的增大而增大;④当x>﹣1时,则y>8.其中错误的结论有()个A.3 B.2 C.1 D.0【解答】解:①当x=﹣2时,y=4,即图象必经过点(﹣2,4);②k=﹣8<0,图象在第二、四象限内;③k=﹣8<0,每一象限内,y随x的增大而增大,错误;④k=﹣8<0,每一象限内,y随x的增大而增大,若0>x>﹣1,﹣y>8,故④错误,故选:B.【点评】本题考查了反比例函数的性质,熟记反比例函数的性质是解题关键.10.(2018•日照)如图,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠BED的正切值等于()A.B.C.2 D.【解答】解:∵∠DAB=∠DEB,∴tan∠DAB=tan∠DEB=.故选:D.【点评】此题主要考查了圆周角定理(同弧或等弧所对的圆周角相等)和正切的概念,正确得出相等的角是解题关键.11.(2018•日照)已知二次函数y=ax2+bx+c(a≠0)图象如图所示,下列结论:①abc<0;②2a﹣b<0;③b2>(a+c)2;④点(﹣3,y1),(1,y2)都在抛物线上,则有y1>y2.其中正确的结论有()A.4个B.3个C.2个D.1个【解答】解:∵抛物线开口向上,∴a>0,∵﹣<0,∴b>0,∵抛物线交y轴于负半轴,∴c<0,∴abc<0,故①正确,∵﹣<﹣1,a>0,∴b>2a,∴2a﹣b<0,故②正确,∵x=1时,y>0,∴a+b+c>0,∴a+c>﹣b,∵x=﹣1时,y<0,∴a﹣b+c<0,∴a+c<b,∴b2>(a+c)2,故③正确,∵点(﹣3,y1),(1,y2)都在抛物线上,观察图象可知y1<y2,故④错误.故选:B.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置.当a与b同号时(即ab >0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c).抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.12.(2018•日照)定义一种对正整数n的“F”运算:①当n为奇数时,F(n)=3n+1;②当n为偶数时,F(n)=(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:若n=13,则第2018次“F”运算的结果是()A.1 B.4 C.2018 D.42018【解答】解:若n=13,第1次结果为:3n+1=40,第2次结果是: =5,第3次结果为:3n+1=16,第4次结果为: =1,第5次结果为:4,第6次结果为:1,…可以看出,从第四次开始,结果就只是1,4两个数轮流出现,且当次数为偶数时,结果是1;次数是奇数时,结果是4,而2018次是偶数,因此最后结果是1.故选:A.【点评】本题主要考查了数字的变化类,能根据所给条件得出n=13时六次的运算结果,找出规律是解答此题的关键.二、填空题:本大题共4小题,每小题4分,满分16分,不需写出解答过程13.(2018•日照)一个角是70°39′,则它的余角的度数是19°21′.【解答】解:它的余角=90°﹣70°39′=19°21′.故答案为:19°21′.【点评】本题主要考查的是余角的定义以及度分秒的换算,掌握相关概念是解题的关键.14.(2018•日照)为创建“国家生态园林城市”,某小区在规划设计时,在小区中央设置一块面积为1200平方米的矩形绿地,并且长比宽多40米.设绿地宽为x米,根据题意,可列方程为x(x+40)=1200 .【解答】解:由题意可得,x(x+40)=1200,故答案是:x(x+40)=1200.【点评】本题考查由实际问题抽象出一元二次方程,解题的关键是明确题意,列出相应的方程.15.(2018•日照)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积是4πcm2.【解答】解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为cm,底面半径为1cm,故表面积=πrl+πr2=π×1×3+π×12=4πcm2,故答案为:4πcm2,【点评】考查学生对三视图掌握程度和灵活运用能力,关键是由主视图和左视图确定是柱体,锥体还是球体.16.(2018•日照)在平面直角坐标系中,我们把横、纵坐标均为整数的点叫做整点.已知反比例函数y=(m<0)与y=x2﹣4在第四象限内围成的封闭图形(包括边界)内的整点的个数为2,则实数m的取值范围为﹣2≤m<﹣1 .【解答】解:∵y=x2﹣4,∴当x=0时,y=﹣4,当y=0时,x=±2,当x=1时,y=﹣3,∴抛物线y=x2﹣4在第四象限内的部分是(0,﹣4)到(2,0)这一段曲线部分,∵反比例函数y=(m<0)与y=x2﹣4在第四象限内围成的封闭图形(包括边界)内的整点的个数为2,∴,解得,﹣2≤m<﹣1.【点评】本题考查反比例函数的性质、二次函数的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用不等式的性质解答.三、解答题:本大题共6小题,满分68分,解答时应写出必要的文字说明、证明过程或演算步骤17.(10分)(1)(2018•日照)实数x取哪些整数时,不等式2x﹣1>x+1与x﹣1≤7﹣x都成立?解:(1)根据题意可得不等式组,解不等式①,得:x>2,解不等式②,得:x≤4,所以不等式组的解集为2<x≤4,则整数x的值为3、4;(2)(2018•日照)化简:(﹣)÷,并从0≤x≤4中选取合适的整数代入求值.【解答】原式=[﹣]•=[﹣]•=•=•=,∵,∴x≠0且x≠2、x≠4,∴在0≤x≤4中,可取的整数为x=1、x=3,当x=1时,原式=1;当x=3时,原式=1.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法与解一元一次不等式组的步骤.18.(2018•日照)(10分)“低碳生活,绿色出行”的理念已深入人心,现在越来越多的人选择骑自行车上下班或外出旅游.周末,小红相约到郊外游玩,她从家出发0.5小时后到达甲地,玩一段时间后按原速前往乙地,刚到达乙地,接到妈妈电话,快速返回家中.小红从家出发到返回家中,行进路程y(km)随时间x(h)变化的函数图象大致如图所示.(1)小红从甲地到乙地骑车的速度为20 km/h;(2)当1.5≤x≤2.5时,求出路程y(km)关于时间x(h)的函数解析式;并求乙地离小红家多少千米?【解答】解:(1)在OA段,速度==20km/h,故答案为20.(2)当1.5≤x≤2.5时,设y=20x+b,把(1.5,10)代入得到,10=20×1.5+b,解得b=﹣20,∴y=20x﹣20,当x=2.5时,解得y=30,∴乙地离小红家30千米【点评】本题考查一次函数的应用,解题的关键是读懂图象信息,属于中考常考题型.19.(2018•日照)(10分)(1)某校招聘教师一名,现有甲、乙、丙三人通过专业知识、讲课、答辩三项测试,他们各自的成绩如下表所示:应聘者专业知识讲课答辩甲70 85 80乙90 85 75丙80 90 85按照招聘简章要求,对专业知识、讲课、答辩三项赋权5:4:1.请计算三名应聘者的平均成绩,从成绩看,应该录取谁?(2)我市举行了某学科实验操作考试,有A、B、C、D四个实验,规定每位学生只参加其中一个实验的考试,并由学生自己抽签决定具体的考试实验.小王,小张,小厉都参加了本次考试.①小厉参加实验D考试的概率是;②用列表或画树状图的方法求小王、小张抽到同一个实验的概率.【解答】解:(1)==77(分),==86.5(分),==84.5(分),因为乙的平均成绩最高,所以应该录取乙;(2)①小厉参加实验D考试的概率是,故答案为:;②解:列表如下:A B C DA AA BA CA DAB AB BB CB DBC AC BC CC DCD AD BD CD DD所有等可能的情况有16种,其中两位同学抽到同一实验的情况有AA,BB,CC,DD,4种情况,所以小王、小张抽到同一个实验的概率为=.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.(2018•日照)(12分)如图所示,⊙O的半径为4,点A是⊙O上一点,直线l过点A;P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l于点B,交⊙O于点E,直径PD 延长线交直线l于点F,点A是的中点.(1)求证:直线l是⊙O的切线;(2)若PA=6,求PB的长.【解答】(1)证明:连接DE,OA.∵PD是直径,∴∠DEP=90°,∵PB⊥FB,∴∠DEP=∠FBP,∴DE∥BF,∵=,∴OA⊥DE,∴OA⊥BF,∴直线l是⊙O的切线.(2)解:作OH⊥PA于H.∵OA=OP,OH⊥PA,∴AH=PH=3,∵OA∥PB,∴∠OAH=∠APB,∵∠AHO=∠ABP=90°,∴△AOH∽△PAB,∴=,∴=,∴PB=.【点评】本题考查相似三角形的判定和性质、垂径定理、切线的判定等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型.21.(2018•日照)(13分)如图,已知点A(﹣1,0),B(3,0),C(0,1)在抛物线y=ax2+bx+c上.(1)求抛物线解析式;(2)在直线BC上方的抛物线上求一点P,使△PBC面积为1;(3)在x轴下方且在抛物线对称轴上,是否存在一点Q,使∠BQC=∠BAC?若存在,求出Q 点坐标;若不存在,说明理由.【解答】解:(1)设抛物线的解析式为y=a(x+1)(x﹣3),将C(0,1)代入得﹣3a=1,解得:a=﹣,∴抛物线的解析式为y=﹣x2+x+1.(2)过点P作PD⊥x,交BC与点D.设直线BC的解析式为y=kx+b,则,解得:k=﹣,∴直线BC的解析式为y=﹣x+1.设点P(x,﹣ x2+x+1),则D(x,﹣ x+1)∴PD=(﹣x2+x+1)﹣(﹣x+1)=﹣x2+x,∴S△PBC=OB•DP=×3×(﹣x2+x)=﹣x2+x.又∵S△PBC=1,∴﹣x2+x=1,整理得:x2﹣3x+2=0,解得:x=1或x=2,∴点P的坐标为(1,)或(2,1).(3)存在.∵A(﹣1,0),C(0,1),∴OC=OA=1∴∠BAC=45°.∵∠BQC=∠BAC=45°,∴点Q为△ABC外接圆与抛物线对称轴在x轴下方的交点.设△ABC外接圆圆心为M,则∠CMB=90°.设⊙M的半径为x,则Rt△CMB中,由勾股定理可知CM2+BM2=BC2,即2x2=10,解得:x=(负值已舍去),∵AC的垂直平分线的为直线y=﹣x,AB的垂直平分线为直线x=1,∴点M为直线y=﹣x与x=1的交点,即M(1,﹣1),∴Q的坐标为(1,﹣1﹣).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、三角形的外心的性质,求得点M的坐标以及⊙M的半径的长度是解题的关键.22.(2018•日照)(13分)问题背景:我们学习等边三角形时得到直角三角形的一个性质:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.即:如图1,在Rt△ABC中,∠ACB=90°,∠ABC=30°,则:AC=AB.探究结论:小明同学对以上结论作了进一步研究.(1)如图1,连接AB边上中线CE,由于CE=AB,易得结论:①△ACE为等边三角形;②BE与CE之间的数量关系为BE=CE .(2)如图2,点D是边CB上任意一点,连接AD,作等边△ADE,且点E在∠ACB的内部,连接BE.试探究线段BE与DE之间的数量关系,写出你的猜想并加以证明.(3)当点D为边CB延长线上任意一点时,在(2)条件的基础上,线段BE与DE之间存在怎样的数量关系?请直接写出你的结论BE=DE .拓展应用:如图3,在平面直角坐标系xOy中,点A的坐标为(﹣,1),点B是x轴正半轴上的一动点,以AB为边作等边△ABC,当C点在第一象限内,且B(2,0)时,求C点的坐标.【解答】解:探究结论(1)如图1中,∵∠ACB=90°,∠B=30°,∴∠A=60°,∵AC=AB=AE=EB,∴△ACE是等边三角形,∴EC=AE=EB,故答案为EC=EB.(2)如图2中,结论:ED=EB.理由:连接PE.∵△ACP,△ADE都是等边三角形,∴AC=AD=DE,AD=AE,∠CAP=∠DAE=60°,∴∠CAD=∠PAE,∴△CAD≌△PAE,∴∠ACD=∠APE=90°,∴EP⊥AB,∵PA=PB,∴EA=EB,∵DE=AE,∴ED=EB.(3)当点D为边CB延长线上任意一点时,同法可证:ED=EB,故答案为ED=EB.拓展应用:如图3中,作AH⊥x轴于H,CF⊥OB于F,连接OA.∵A(﹣,1),∴∠AOH=30°,由(2)可知,CO=CB,∵CF⊥OB,∴OF=FB=1,∴可以假设C(1,n),∵OC=BC=AB,∴1+n2=1+(+2)2,∴n=2+,∴C(1,2+).【点评】本题考查三角形综合题、等边三角形的判定和性质、全等三角形的判定和性质、勾股定理、线段的垂直平分线的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。

最新-山东省日照市2018年中等学校招生考试数学试题及

最新-山东省日照市2018年中等学校招生考试数学试题及

试卷类型A日照市2018年中等学校招生考试数 学 试 题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分,共10页.第Ⅰ卷2页为选择题,40分;第Ⅱ卷8页为非选择题,80分;共120分.考试时间为120分钟. 2.答卷前考生务必将自己的姓名、考号、考试科目涂写在答题卡上和试卷的指定填写处.考试结束,试题和答题卡一并收回.3.第Ⅰ卷每小题选出答案后,都必须用2B 铅笔把答题卡上的答案标号(ABCD )涂黑,如需改动,必须先用橡皮擦干净,再改涂其他答案.第Ⅰ卷(选择题 共40分)一、选择题:本题12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.第1~8题每小题选对得3分,第9~12题每小题选对得4分;选错、不选、或选出的答案超过一个,均记零分.1.若点P (m ,1-2m )的横坐标与纵坐标互为相反数,则点P 一定在(A )第一象限(B )第二象限(C )第三象限(D )第四象限2.已知小明家距离学校10千米,而小蓉家距离小明家3千米.如果小蓉家到学校的距离是d 千米,则d 满足(A )3<d <10 (B )3≤d ≤10 (C )7<d <13 (D )7 ≤d ≤133.某海产品深加工厂的生产流水线每小时可生产100件产品,生产前没有产品积压,生产3小时后安排工人装箱,若每小时可以装产品150件,则未装箱的产品数y (件)是时间t (小时)的函数,这个函数的大致图象可能是4.如图,在△ABC 中,AB=AC ,D 为AC 边上一点,且BD=BC=AD , 则∠A 等于(A )30o (B )36o (C )45o (D )72o 5.已知方程组2,231y x m y x m -=⎧⎨+=+⎩的解x 、y 满足2x+y ≥0,则m 的取值范围是 (A )m ≥-43(B )m ≥43(C )m ≥1(D )-43≤m ≤16.AE、CF是锐角△ABC的两条高,如果AE:CF=3:2,则sin A:sin C等于(A)3:2 (B)2:3 (C)9:4 (D)4:97.已知直线y=mx-1上有一点B(1,n),成的三角形的面积为(A)12(B)14或12(C)14或18(D)18或128.已知在正方形网格中,每个小方格都是边长为1的正方形,A、B 两点在小方格的顶点上,位置如图所示,点C也在小方格的顶点上,且以A、B、C为顶点的三角形面积为1,则点C的个数为(A)3个(B)4个(C)5个(D)6个9.已知M、N两点关于y轴对称,且点M在双曲线12yx上,点N在直线y=x+3上,设点M的坐标为(a,b),则二次函数y=-abx2+(a+b)x(A)有最小值,且最小值是92(B)有最大值,且最大值是-92(C)有最大值,且最大值是92(D)有最小值,且最小值是-9210.某电视台在黄金时段的2分钟广告时间内,计划插播长度为15秒和30秒的两种广告.15秒的广告每播一次收费0.6万元,30秒的广告每播一次收费1万元.若要求每种广告播放不少于2次,则电视台在播放时收益最大的播放方式是(A)15秒的广告播放4次,30秒的广告播放2次(B)15秒的广告播放2次,30秒的广告播放4次(C)15秒的广告播放2次,30秒的广告播放3次(D)15秒的广告播放3次,30秒的广告播放2次11.已知实数a、b、c满足:a<0,a-b+c>0,则一定有(A)b2-4a c>0(B)b2-4a c≥0(C)b2-4a c≤0(D)b2-4a c<012.如图,点P是⊙O的直径BA延长线上一点,PC与⊙O相切于点C,CD⊥AB,垂足为D,连结AC、BC、OC,那么下列结论中:①PC2=P A·PB;②PC·OC=OP·CD;③OA2=OD·OP.正确的有(A)0个(B)1个(C)2个(D)3个试卷类型:A日照市2018年中等学校招生考试数 学 试 题第Ⅱ卷(非选择题 共80分)注意事项:1.第Ⅱ卷共8页,用钢笔或圆珠笔直接答在试卷上.2二、填空题:本题共5小题,每小题填对得3分,共15分.只要求填写最后结果. 13.某电脑公司在5月1日将500台电脑投放市场,经市场调研发现,该批电脑每 隔10天平均日销售量减少2台,现准备用38天销售完该批电脑,则预计该公司5月1日至5月10日的平均日销售量是 台.14.如图,⊙O 的直径AB =12,AM 和BN 是它的两条切线,切点分别为A 、B ,DE 切⊙O 于E ,交AM 于D ,交BN 于C ,设AD=x ,BC=y ,则y 与x 的函数关系式是 . 15.已知,关于x 的方程22112()1x x x x +++=,那么11x x++的值为 .16.如图,在平行四边形ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,∠EAF =45o ,且AE+AF =ABCD 的周长是 .17.德国数学家莱布尼兹发现了下面的单位分数三角形(单位分数是分子为1,分母为正整数的分数):第一行 11第二行12 12 第三行 13 16 13第四行 14 112 112 14第五行 15 120 130120 15… …… ……根据前五行的规律,可以知道第六行的数依次是: . 三、解答题:本题共7小题,共65分.解答时应写出文字说明、证明过程或演算步骤.18.(本题满分8分)下表是某市4所中学举行男子足球单循环赛的成绩登记表.表中①与②表示的是同一场比赛,在这场比赛中一中进了3个球,三中进了2个球,即一中以3:2胜三中,或者说三中以2:3负于一中,其余依次类推.按照比赛规则胜一场得3分,平一场得1分,负一场得0分.(1)本次足球单循环赛共进行了几场比赛?你能排出他们的名次吗? (2)求各场比赛的平均进球数;(3)求各场比赛进球数的众数和中位数.19.(本题满分8分)如图,已知,等腰Rt △OAB 中,∠AOB =90o ,等腰Rt △EOF 中,∠EOF =90o ,连结AE 、BF .求证:(1)AE=BF ;(2)AE ⊥BF .20.(本题满分9分)如图,“五一”期间在某商贸大厦上从点A 到点B 悬挂了一条宣传条幅,小明和小雯的家正好住在商贸大厦对面的家属楼上.小明在四楼D 点测得条幅端点A 的仰角为30o,测得条幅端点B 的俯角为45o ;小雯在三楼C 点测得条幅端点A 的仰角为45o ,测得条幅端点B 的俯角为30o.若设楼层高度CD 为3米,请你根据小明和小雯测得的数据求出条幅AB 的长..732)21.(本题满分10分)在我市南沿海公路改建工程中,某段工程拟在30天内(含30天)完成.现有甲、乙两个工程队,从这两个工程队资质材料可知:若两队合做24天恰好完成;若两队合做18天后,甲工程队再单独做10天,也恰好完成.请问:(1)甲、乙两个工程队单独完成该工程各需多少天? (2)已知甲工程队每天的施工费用为0.6万元,乙工程队每天的施工费用为0.35万元,要使该工程的施工费用最低,甲、乙两队各做多少天(同时施工即为合做)?最低施工费用是多少万元?22.(本题满分10分)如图,已知抛物线与x 轴交于A (m ,0)、B (n ,0)两点,与y 轴交于点C (0, 3),点P 是抛物线的顶点,若m-n = -2,m ·n =3.(1)求抛物线的表达式及P 点的坐标; (2)求△ACP 的面积S △ACP .23.(本题满分10分)日照市是中国北方最大的对虾养殖产区,被国家农业部列为对虾养殖重点区域;贝类产品西施舌是日照特产.沿海某养殖场计划今年养殖无公害标准化对虾和西施舌,由于受养殖水面的制约,这两个品种的苗种的总投放量只有50吨.根据经验测算,这两个品种的种苗每投放一吨的先期投资、养殖期间的投资以及产值如下表: (单位:千元/吨)养殖场受经济条件的影响,先期投资不超过360千元,养殖期间的投资不超过290千元.设西施舌种苗的投放量为x 吨 (1)求x 的取值范围;(2)设这两个品种产出后的总产值为y (千元),试写出y 与x 之间的函数关系式,并求出当x 等于多少时,y 有最大值?最大值是多少?阅读下面的材料:如图(1),在以AB为直径的半圆O内有一点P,AP、BP的延长线分别交半圆O 于点C、D.求证:AP·AC+BP·BD=AB2.证明:连结AD、BC,过P作PM⊥AB,则∠ADB=∠AMP=90o,∴点D、M在以AP为直径的圆上;同理:M、C在以BP为直径的圆上.由割线定理得:AP·AC=AM·AB,BP·BD=BM·BA,所以,AP·AC+BP·BD=AM·AB+BM·AB=AB·(AM+BM)=AB2.当点P在半圆周上时,也有AP·AC+BP·BD=AP2+BP2=AB2成立,那么:(1)如图(2)当点P在半圆周外时,结论AP·AC+BP·BD=AB2是否成立?为什么?(2)如图(3)当点P在切线BE外侧时,你能得到什么结论?将你得到的结论写出来.日照市2018年中等学校招生考试 数学试题(A )参考答案及评分标准第Ⅰ卷(选择题 40分)一、选择题: 第1~8题每小题3分,第9~12题每小题4分.二、填空题:(只要求填写最后结果,每小题填对得3分,共15分) 13. 16; 14.y =36x(x >0; 15.-1; 16.8;17.111111,,,,,.6306060306 三、解答题:本题共7小题,共65分.解答时应写出文字说明、证明过程或演算步骤.18.(本题满分 8 分)解:(1)6场比赛;一中、二中、三中、四中的得分分别为6分、7分、4分、0分,所以,二中是第一名,一中是第二名,三中是第三名,四中是第四名;…… 4分(2)各场比赛的进球数为:1,5,2,2,3,5,所以平均进球数为:16(1+5+2+2+3+5)=3(球); … ……………6分(3)各场比赛进球数的众数为2和5,中位数2.5. …………8分19.(本题满分8分) 证明:(1)在△AEO 与△BFO 中,∵Rt △OAB 与Rt △EOF 等腰直角三角形,∴AO=OB ,OE=OF ,∠AOE =90o-∠BOE =∠BOF , ················ ··2分 ∴△AEO ≌△BFO , ∴AE=BF ; ·······················································4分 ( 2)延长AE 交BF 于D ,交OB 于C ,则∠BCD =∠ACO , ···················································6分由(1)知:∠OAC =∠OBF ,∴∠BDA =∠AOB =90o, ∴AE ⊥BF . ··················································· 8分 20.(本题满分9分)解:过D 作DM ⊥AE 于M ,过C 作CN ⊥AE 于N ,则:MN=CD =3米,设AM=x ,则AN=x +3,由题意:∠ADM =30o,∠ACN =45o, ··························4分在Rt △ADM 中,DM=AM ·cot30o,在Rt △ANC 中,CN=AN=x +3, 又DM=CN=MB ,+3,解之得,x =32(),··································7分∴AB=AM+MB=x+x +3=2×32)≈11(米)···········9分 21.(本题满分10 分) 解:(1)设:甲、乙两个工程队单独完成该工程各需x 天、y 天,由题意得方程组:24241,1818101x yx y x⎧+=⎪⎪⎨⎪++=⎪⎩,························3分解之得:x=40,y=60.························5分(2)已知甲工程队每天的施工费用为0.6万元,乙工程队每天的施工费用为0.35万元,根据题意,要使工程在规定时间内完成且施工费用最低,只要使乙工程队施工30天,其余工程由甲工程队完成.························7分由(1)知,乙工程队30天完成工程的301 602=,∴甲工程队需施工12÷140=20(天).最低施工费用为0.6×20+0.35×30=2.25(万元).······················9分答:(1)甲、乙两个工程队单独完成该工程各需40天和60天;(2)要使该工程的施工费最低,甲、乙两队各做20天和30天,最低施工费用是2.25万元.…………····10分22.(本题满分10分)(1)设抛物线的表达式为y=ax2+bx+c,∵抛物线过C(0,3),∴c=3,···········2分又∵抛物线与x轴交于A(m,0)、B(n,0)两点,∴m、n为一元二次方程ax2+bx+3=0的解,∴m+n=-ba,mn=3a,·································4分由已知m-n= -2,m·n =3,∴解之得a=1,b=-4;m=1,n=3,∴抛物线的表达式为y=x2-4x+3,P点的坐标是(2,)············6分(2)由(1)知,抛物线的顶点P(2,-1),过P作PD垂直于y轴于点D,所以,S△BCP =S梯形CBPD-S△CPD=S△COB+ S梯形OBPD- S△CPD,········8分∵B(3,0),C(0,3),∴S△BCP =S△COB+ S梯形OBPD- S△CPD=12×3×3+12×1×(3+2)-12×2×4=3.··················10分23.(本题满分10分)解:设西施舌的投放量为x吨,则对虾的投放量为(50-x)吨,根据题意,得:94(50)360,310(50)290.x xx x+-≤⎧⎨+-≤⎩…………………………2分解之,得:32,30.xx≤⎧⎨≥⎩·····································4分∴30≤x≤32;·············································6分(2)y=30x+20(50-x)=10x+1000.····································8分∵30≤x≤32,100>0,∴1300≤x≤1320,∴y的最大值是1320,因此当x=32时,y有最大值,且最大值是1320千元.······10分24.(本题满分10分)(1)成立.································1分证明:如图(2),∵∠PCM=∠PDM=900,∴点C、D在以PM为直径的圆上,·······················3分∴AC·AP=AM·MD,BD·BP=BM·BC,∴AC·AP+BD·BP=AM·MD+BM·BC,由已知,AM·MD+BM·BC=AB2,∴AP·AC+BP·BD=AB2.································5分(2)如图(3),过P作PM⊥AB,交AB的延长线于M,连结AD、BC,········6分则C、M在以PB为直径的圆上,∴AP·AC=AB·AM,①D、M在以PA为直径的圆上,∴BP·BD=AB·BM,②········8分由图象可知:AB=AM-BM,③由①②③可得:AP·AC-BP·BD=AB·(AM-BM)=AB2.·······10分注意:本标准中每小题只给出了一种解法,考生若给出其他的正确解法,应参考本评分标准给出相应的分数.阅读下面的材料:如图(1),AB是半圆O的直径,当点P是半圆O上异于A、B的任一点时,有P A2+ PB2=AB2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年山东省日照市中考数学试卷(含解析)一、选择题:本大题共12小题,每小题3分,满分36分,在每小题所给出的四个选项中,只有一项是符合题目要求的1.(3分)|﹣5|的相反数是()A.﹣5B.5C.D.﹣2.(3分)在下列图案中,既是轴对称又是中心对称图形的是()A.B.C.D.3.(3分)下列各式中,运算正确的是()A.(a3)2=a5B.(a﹣b)2=a2﹣b2C.a6÷a2=a4D.a2+a2=2a44.(3分)若式子有意义,则实数m的取值范围是()A.m>﹣2B.m>﹣2且m≠1C.m≥﹣2D.m≥﹣2且m≠15.(3分)某校为了解学生的课外阅读情况,随机抽取了一个班级的学生,对他们一周的读书时间进行了统计,统计数据如下表所示:则该班学生一周读书时间的中位数和众数分别是()A.9,8B.9,9C.9.5,9D.9.5,86.(3分)如图,将一副直角三角板按图中所示位置摆放,保持两条斜边互相平行,则∠1=()A.30°B.25°C.20°D.15°7.(3分)计算:()﹣1+tan30°•sin60°=()A.﹣B.2C.D.8.(3分)如图,在四边形ABCD中,对角线AC,BD相交于点O,AO=CO,BO=DO.添加下列条件,不能判定四边形ABCD是菱形的是()A.AB=AD B.AC=BD C.AC⊥BD D.∠ABO=∠CBO9.(3分)已知反比例函数y=﹣,下列结论:①图象必经过(﹣2,4);②图象在二,四象限内;③y 随x的增大而增大;④当x>﹣1时,则y>8.其中错误的结论有()个A.3B.2C.1D.010.(3分)如图,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠BED的正切值等于()A.B.C.2D.11.(3分)已知二次函数y=ax2+bx+c(a≠0)图象如图所示,下列结论:①abc<0;②2a﹣b<0;③b2>(a+c)2;④点(﹣3,y1),(1,y2)都在抛物线上,则有y1>y2.其中正确的结论有()A.4个B.3个C.2个D.1个12.(3分)定义一种对正整数n的“F”运算:①当n为奇数时,F(n)=3n+1;②当n为偶数时,F(n)=(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:若n=13,则第2018次“F”运算的结果是()A.1B.4C.2018D.42018二、填空题:本大题共4小题,每小题4分,满分16分,不需写出解答过程13.(4分)一个角是70°39′,则它的余角的度数是.14.(4分)为创建“国家生态园林城市”,某小区在规划设计时,在小区中央设置一块面积为1200平方米的矩形绿地,并且长比宽多40米.设绿地宽为x米,根据题意,可列方程为.15.(4分)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积是.16.(4分)在平面直角坐标系中,我们把横、纵坐标均为整数的点叫做整点.已知反比例函数y=(m <0)与y=x2﹣4在第四象限内围成的封闭图形(包括边界)内的整点的个数为2,则实数m的取值范围为.三、解答题:本大题共6小题,满分68分,解答时应写出必要的文字说明、证明过程或演算步骤17.(10分)(1)实数x取哪些整数时,不等式2x﹣1>x+1与x﹣1≤7﹣x都成立?(2)化简:(﹣)÷,并从0≤x≤4中选取合适的整数代入求值.18.(10分)“低碳生活,绿色出行”的理念已深入人心,现在越来越多的人选择骑自行车上下班或外出旅游.周末,小红相约到郊外游玩,她从家出发0.5小时后到达甲地,玩一段时间后按原速前往乙地,刚到达乙地,接到妈妈电话,快速返回家中.小红从家出发到返回家中,行进路程y(km)随时间x(h)变化的函数图象大致如图所示.(1)小红从甲地到乙地骑车的速度为km/h;(2)当1.5≤x≤2.5时,求出路程y(km)关于时间x(h)的函数解析式;并求乙地离小红家多少千米?19.(10分)(1)某校招聘教师一名,现有甲、乙、丙三人通过专业知识、讲课、答辩三项测试,他们各自的成绩如下表所示:按照招聘简章要求,对专业知识、讲课、答辩三项赋权5:4:1.请计算三名应聘者的平均成绩,从成绩看,应该录取谁?(2)我市举行了某学科实验操作考试,有A、B、C、D四个实验,规定每位学生只参加其中一个实验的考试,并由学生自己抽签决定具体的考试实验.小王,小张,小厉都参加了本次考试.①小厉参加实验D考试的概率是;②用列表或画树状图的方法求小王、小张抽到同一个实验的概率.20.(12分)如图所示,⊙O的半径为4,点A是⊙O上一点,直线l过点A;P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l于点B,交⊙O于点E,直径PD延长线交直线l于点F,点A是的中点.(1)求证:直线l是⊙O的切线;(2)若P A=6,求PB的长.21.(13分)如图,已知点A(﹣1,0),B(3,0),C(0,1)在抛物线y=ax2+bx+c上.(1)求抛物线解析式;(2)在直线BC上方的抛物线上求一点P,使△PBC面积为1;(3)在x轴下方且在抛物线对称轴上,是否存在一点Q,使∠BQC=∠BAC?若存在,求出Q点坐标;若不存在,说明理由.22.(13分)问题背景:我们学习等边三角形时得到直角三角形的一个性质:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.即:如图1,在Rt△ABC中,∠ACB=90°,∠ABC=30°,则:AC=AB.探究结论:小明同学对以上结论作了进一步研究.(1)如图1,连接AB边上中线CE,由于CE=AB,易得结论:①△ACE为等边三角形;②BE与CE 之间的数量关系为.(2)如图2,点D是边CB上任意一点,连接AD,作等边△ADE,且点E在∠ACB的内部,连接BE.试探究线段BE与DE之间的数量关系,写出你的猜想并加以证明.(3)当点D为边CB延长线上任意一点时,在(2)条件的基础上,线段BE与DE之间存在怎样的数量关系?请直接写出你的结论.拓展应用:如图3,在平面直角坐标系xOy中,点A的坐标为(﹣,1),点B是x轴正半轴上的一动点,以AB为边作等边△ABC,当C点在第一象限内,且B(2,0)时,求C点的坐标.2018年山东省日照市中考数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,满分36分,在每小题所给出的四个选项中,只有一项是符合题目要求的1.(3分)|﹣5|的相反数是()A.﹣5B.5C.D.﹣【分析】根据绝对值、相反数的定义即可得出答案.【解答】解:根据绝对值的定义,∴︳﹣5︳=5,根据相反数的定义,∴5的相反数是﹣5.故选:A.2.(3分)在下列图案中,既是轴对称又是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、此图案既不是轴对称图形又不是中心对称图形;B、此图案是轴对称图形,不是中心对称图形;C、此图案既是轴对称图形又是中心对称图形;D、此图案是中心对称图形,不是轴对称图形;故选:C.3.(3分)下列各式中,运算正确的是()A.(a3)2=a5B.(a﹣b)2=a2﹣b2C.a6÷a2=a4D.a2+a2=2a4【分析】根据同底数幂的乘法、除法法则,合并同类项法则,幂的乘方,乘法公式一一判断即可;【解答】解:A、错误.(a3)2=a5;B、错误.(a﹣b)2=a2﹣2ab+b2;C、正确.D、错误.a2+a2=2a2故选:C.4.(3分)若式子有意义,则实数m的取值范围是()A.m>﹣2B.m>﹣2且m≠1C.m≥﹣2D.m≥﹣2且m≠1【分析】根据二次根式有意义的条件即可求出答案.【解答】解:由题意可知:∴m≥﹣2且m≠1故选:D.5.(3分)某校为了解学生的课外阅读情况,随机抽取了一个班级的学生,对他们一周的读书时间进行了统计,统计数据如下表所示:则该班学生一周读书时间的中位数和众数分别是()A.9,8B.9,9C.9.5,9D.9.5,8【分析】根据表格中的数据可知该班有学生40人,从而可以求得中位数和众数,本题得以解决.【解答】解:由表格可得,该班学生一周读书时间的中位数和众数分别是:9、8,故选:A.6.(3分)如图,将一副直角三角板按图中所示位置摆放,保持两条斜边互相平行,则∠1=()A.30°B.25°C.20°D.15°【分析】根据平行线的性质可得∠A=∠FDE=45°,再根据三角形内角与外角的性质可得∠1的度数.【解答】解:∵AB∥CD,∴∠A=∠FDE=45°,又∵∠C=30°.∴∠1=∠FDE﹣∠C=45°﹣30°=15°,故选:D.7.(3分)计算:()﹣1+tan30°•sin60°=()A.﹣B.2C.D.【分析】根据实数的运算,即可解答.【解答】解:()﹣1+tan30°•sin60°=2+=2+=故选:C.8.(3分)如图,在四边形ABCD中,对角线AC,BD相交于点O,AO=CO,BO=DO.添加下列条件,不能判定四边形ABCD是菱形的是()A.AB=AD B.AC=BD C.AC⊥BD D.∠ABO=∠CBO【分析】根据菱形的定义及其判定、矩形的判定对各选项逐一判断即可得.【解答】解:∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,当AB=AD或AC⊥BD时,均可判定四边形ABCD是菱形;当∠ABO=∠CBO时,由AD∥BC知∠CBO=∠ADO,∴∠ABO=∠ADO,∴AB=AD,∴四边形ABCD是菱形;当AC=BD时,可判定四边形ABCD是矩形;故选:B.9.(3分)已知反比例函数y=﹣,下列结论:①图象必经过(﹣2,4);②图象在二,四象限内;③y 随x的增大而增大;④当x>﹣1时,则y>8.其中错误的结论有()个A.3B.2C.1D.0【分析】根据反比例函数的性质,可得答案.【解答】解:①当x=﹣2时,y=4,即图象必经过点(﹣2,4);②k=﹣8<0,图象在第二、四象限内;③k=﹣8<0,每一象限内,y随x的增大而增大,错误;④k=﹣8<0,每一象限内,y随x的增大而增大,若0>x>﹣1,﹣y>8,故④错误,故选:B.10.(3分)如图,边长为1的小正方形构成的网格中,半径为1的⊙O的圆心O在格点上,则∠BED的正切值等于()A.B.C.2D.【分析】根据同弧或等弧所对的圆周角相等来求解.【解答】解:∵∠DAB=∠DEB,∴tan∠DAB=tan∠DEB=.故选:D.11.(3分)已知二次函数y=ax2+bx+c(a≠0)图象如图所示,下列结论:①abc<0;②2a﹣b<0;③b2>(a+c)2;④点(﹣3,y1),(1,y2)都在抛物线上,则有y1>y2.其中正确的结论有()A.4个B.3个C.2个D.1个【分析】观察图象判断出a、b、c的符号,即可得出结论①正确,利用对称轴公式x>﹣1,可得结论②错误;利用平方差公式,可得结论③正确,利用图象法可以判断出④正确;【解答】解:∵抛物线开口向上,∴a>0,∵﹣<0,∴b>0,∵抛物线交y轴于负半轴,∴c<0,∴abc<0,故①正确,∵﹣>﹣1,a>0,∴b<2a,∴2a﹣b>0,故②错误,∵x=1时,y>0,∴a+b+c>0,∴a+c>﹣b,∵x=﹣1时,y<0,∴a﹣b+c<0,∴(a+c)2﹣b2=(a+b+c)(a﹣b+c)<0,∴b2>(a+c)2,故③正确,∵点(﹣3,y1),(1,y2)都在抛物线上,观察图象可知y1>y2,故④正确.故选:B.12.(3分)定义一种对正整数n的“F”运算:①当n为奇数时,F(n)=3n+1;②当n为偶数时,F(n)=(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:若n=13,则第2018次“F”运算的结果是()A.1B.4C.2018D.42018【分析】计算出n=13时第一、二、三、四、五、六次运算的结果,找出规律再进行解答即可.【解答】解:若n=13,第1次结果为:3n+1=40,第2次结果是:=5,第3次结果为:3n+1=16,第4次结果为:=1,第5次结果为:4,第6次结果为:1,…可以看出,从第四次开始,结果就只是1,4两个数轮流出现,且当次数为偶数时,结果是1;次数是奇数时,结果是4,而2018次是偶数,因此最后结果是1.故选:A.二、填空题:本大题共4小题,每小题4分,满分16分,不需写出解答过程13.(4分)一个角是70°39′,则它的余角的度数是19°21′.【分析】依据余角的定义列出算式进行计算即可.【解答】解:它的余角=90°﹣70°39′=19°21′.故答案为:19°21′.14.(4分)为创建“国家生态园林城市”,某小区在规划设计时,在小区中央设置一块面积为1200平方米的矩形绿地,并且长比宽多40米.设绿地宽为x米,根据题意,可列方程为x(x+40)=1200.【分析】先表示出矩形场地的长,再根据矩形的面积公式即可列出方程.【解答】解:由题意可得,x(x+40)=1200,故答案是:x(x+40)=1200.15.(4分)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积是4πcm2.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其表面积.【解答】解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为cm,底面半径为1cm,故表面积=πrl+πr2=π×1×3+π×12=4πcm2,故答案为:4πcm2,16.(4分)在平面直角坐标系中,我们把横、纵坐标均为整数的点叫做整点.已知反比例函数y=(m <0)与y=x2﹣4在第四象限内围成的封闭图形(包括边界)内的整点的个数为2,则实数m的取值范围为﹣2≤m<﹣1.【分析】根据题意可知抛物线在第四象限内的部分,然后根据反比例函数y=(m<0)与y=x2﹣4在第四象限内围成的封闭图形(包括边界)内的整点的个数为2,可以得到不等式组,从而可以求得m的取值范围.【解答】解:∵y=x2﹣4,∴当x=0时,y=﹣4,当y=0时,x=±2,当x=1时,y=﹣3,∴抛物线y=x2﹣4在第四象限内的部分是(0,﹣4)到(2,0)这一段曲线部分,∵反比例函数y=(m<0)与y=x2﹣4在第四象限内围成的封闭图形(包括边界)内的整点的个数为2,∴,解得,﹣2≤m<﹣1.三、解答题:本大题共6小题,满分68分,解答时应写出必要的文字说明、证明过程或演算步骤17.(10分)(1)实数x取哪些整数时,不等式2x﹣1>x+1与x﹣1≤7﹣x都成立?(2)化简:(﹣)÷,并从0≤x≤4中选取合适的整数代入求值.【分析】(1)根据题意分别求出每个不等式解集,根据口诀:大小小大中间找,确定两不等式解集的公共部分,即可得整数值.(2)根据分式的减法和除法可以化简题目中的式子,然后在0≤x≤4的范围内选取一个使得原分式有意义的整数代入化简后的式子即可解答本题.【解答】解:(1)根据题意可得不等式组,解不等式①,得:x>2,解不等式②,得:x≤4,所以不等式组的解集为2<x≤4,则整数x的值为3、4;(2)原式=[﹣]•=[﹣]•=•=•=,∵,∴x≠0且x≠2、x≠4,∴在0≤x≤4中,可取的整数为x=1、x=3,当x=1时,原式=1;当x=3时,原式=1.18.(10分)“低碳生活,绿色出行”的理念已深入人心,现在越来越多的人选择骑自行车上下班或外出旅游.周末,小红相约到郊外游玩,她从家出发0.5小时后到达甲地,玩一段时间后按原速前往乙地,刚到达乙地,接到妈妈电话,快速返回家中.小红从家出发到返回家中,行进路程y(km)随时间x(h)变化的函数图象大致如图所示.(1)小红从甲地到乙地骑车的速度为20km/h;(2)当1.5≤x≤2.5时,求出路程y(km)关于时间x(h)的函数解析式;并求乙地离小红家多少千米?【分析】(1)根据OA段的速度,可得结论;(2)当1.5≤x≤2.5时,设y=20x+b,利用待定系数法即可解决问题;【解答】解:(1)在OA段,速度==20km/h,故答案为20.(2)当1.5≤x≤2.5时,设y=20x+b,把(1.5,10)代入得到,10=20×1.5+b,解得b=﹣20,∴y=20x﹣20,当x=2.5时,解得y=30,∴乙地离小红家30千米19.(10分)(1)某校招聘教师一名,现有甲、乙、丙三人通过专业知识、讲课、答辩三项测试,他们各自的成绩如下表所示:按照招聘简章要求,对专业知识、讲课、答辩三项赋权5:4:1.请计算三名应聘者的平均成绩,从成绩看,应该录取谁?(2)我市举行了某学科实验操作考试,有A、B、C、D四个实验,规定每位学生只参加其中一个实验的考试,并由学生自己抽签决定具体的考试实验.小王,小张,小厉都参加了本次考试.①小厉参加实验D考试的概率是;②用列表或画树状图的方法求小王、小张抽到同一个实验的概率.【分析】(1)根据加权平均数分别计算三人的平均成绩,比较大小即可得;(2)①根据概率公式即可得;②列表得出所有等可能的情况数,找出两位同学抽到同一实验的情况数,即可求出所求概率.【解答】解:(1)==77(分),==86.5(分),==84.5(分),因为乙的平均成绩最高,所以应该录取乙;(2)①小厉参加实验D考试的概率是,故答案为:;②解:列表如下:所有等可能的情况有16种,其中两位同学抽到同一实验的情况有AA,BB,CC,DD,4种情况,所以小王、小张抽到同一个实验的概率为=.20.(12分)如图所示,⊙O的半径为4,点A是⊙O上一点,直线l过点A;P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l于点B,交⊙O于点E,直径PD延长线交直线l于点F,点A是的中点.(1)求证:直线l是⊙O的切线;(2)若P A=6,求PB的长.【分析】(1)连接DE,OA.想办法证明OA⊥BF即可;(2)作OH⊥P A于H,只要证明△AOH∽△P AB,可得=,即可解决问题.【解答】(1)证明:连接DE,OA.∵PD是直径,∴∠DEP=90°,∵PB⊥FB,∴∠DEP=∠FBP,∴DE∥BF,∵=,∴OA⊥DE,∴OA⊥BF,∴直线l是⊙O的切线.(2)解:作OH⊥P A于H.∵OA=OP,OH⊥P A,∴AH=PH=3,∵OA∥PB,∴∠OAH=∠APB,∵∠AHO=∠ABP=90°,∴△AOH∽△P AB,∴=,∴=,∴PB=.21.(13分)如图,已知点A(﹣1,0),B(3,0),C(0,1)在抛物线y=ax2+bx+c上.(1)求抛物线解析式;(2)在直线BC上方的抛物线上求一点P,使△PBC面积为1;(3)在x轴下方且在抛物线对称轴上,是否存在一点Q,使∠BQC=∠BAC?若存在,求出Q点坐标;若不存在,说明理由.【分析】(1)设抛物线的解析式为y=a(x+1)(x﹣3),将C(0,1)代入求得a的值即可;(2)过点P作PD⊥x,交BC与点D,先求得直线BC的解析式为y=﹣x+1,设点P(x,﹣x2+x+1),则D(x,﹣x+1),然后可得到PD与x之间的关系式,接下来,依据△PBC的面积为1列方程求解即可;(3)首先依据点A和点C的坐标可得到∠BQC=∠BAC=45°,设△ABC外接圆圆心为M,则∠CMB=90°,设⊙M的半径为x,则Rt△CMB中,依据勾股定理可求得⊙M的半径,然后依据外心的性质可得到点M为直线y=﹣x与x=1的交点,从而可求得点M的坐标,然后由点M的坐标以及⊙M的半径可得到点Q的坐标.【解答】解:(1)设抛物线的解析式为y=a(x+1)(x﹣3),将C(0,1)代入得﹣3a=1,解得:a=﹣,∴抛物线的解析式为y=﹣x2+x+1.(2)过点P作PD⊥x,交BC与点D.设直线BC的解析式为y=kx+b,则,解得:k=﹣,∴直线BC的解析式为y=﹣x+1.设点P(x,﹣x2+x+1),则D(x,﹣x+1)∴PD=(﹣x2+x+1)﹣(﹣x+1)=﹣x2+x,∴S△PBC=OB•DP=×3×(﹣x2+x)=﹣x2+x.又∵S△PBC=1,∴﹣x2+x=1,整理得:x2﹣3x+2=0,解得:x=1或x=2,∴点P的坐标为(1,)或(2,1).(3)存在.∵A(﹣1,0),C(0,1),∴OC=OA=1∴∠BAC=45°.∵∠BQC=∠BAC=45°,∴点Q为△ABC外接圆与抛物线对称轴在x轴下方的交点.设△ABC外接圆圆心为M,则∠CMB=90°.设⊙M的半径为x,则Rt△CMB中,由勾股定理可知CM2+BM2=BC2,即2x2=10,解得:x=(负值已舍去),∵AC的垂直平分线的为直线y=﹣x,AB的垂直平分线为直线x=1,∴点M为直线y=﹣x与x=1的交点,即M(1,﹣1),∴Q的坐标为(1,﹣1﹣).22.(13分)问题背景:我们学习等边三角形时得到直角三角形的一个性质:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.即:如图1,在Rt△ABC中,∠ACB=90°,∠ABC=30°,则:AC=AB.探究结论:小明同学对以上结论作了进一步研究.(1)如图1,连接AB边上中线CE,由于CE=AB,易得结论:①△ACE为等边三角形;②BE与CE 之间的数量关系为BE=CE.(2)如图2,点D是边CB上任意一点,连接AD,作等边△ADE,且点E在∠ACB的内部,连接BE.试探究线段BE与DE之间的数量关系,写出你的猜想并加以证明.(3)当点D为边CB延长线上任意一点时,在(2)条件的基础上,线段BE与DE之间存在怎样的数量关系?请直接写出你的结论BE=DE.拓展应用:如图3,在平面直角坐标系xOy中,点A的坐标为(﹣,1),点B是x轴正半轴上的一动点,以AB为边作等边△ABC,当C点在第一象限内,且B(2,0)时,求C点的坐标.【分析】探究结论:(1)只要证明△ACE是等边三角形即可解决问题;(2)如图2中,结论:ED=EB.想办法证明EP垂直平分线段AB即可解决问题;(3)结论不变,证明方法类似;拓展应用:利用(2)中结论,可得CO=CB,设C(1,n),根据OC=CB=AB,构建方程即可解决问题;【解答】解:探究结论(1)如图1中,∵∠ACB=90°,∠B=30°,∴∠A=60°,∵AC=AB=AE=EB,∴△ACE是等边三角形,∴EC=AE=EB,故答案为EC=EB.(2)如图2中,结论:ED=EB.理由:连接PE.∵△ACP,△ADE都是等边三角形,∴AC=AP=PC,AD=AE=DE,∠CAP=∠DAE=60°,∴∠CAD=∠P AE,∴△CAD≌△P AE,∴∠ACD=∠APE=90°,∴EP⊥AB,∵P A=PB,∴EA=EB,∵DE=AE,∴ED=EB.(3)当点D为边CB延长线上任意一点时,同法可证:ED=EB,故答案为ED=EB.拓展应用:如图3中,作AH⊥x轴于H,CF⊥OB于F,连接OA.∵A(﹣,1),∴∠AOH=30°,由(2)可知,CO=CB,∵CF⊥OB,∴OF=FB=1,∴可以假设C(1,n),∵OC=BC=AB,∴1+n2=1+(+2)2,∴n=2+,∴C(1,2+).。

相关文档
最新文档