北航数值分析作业第一题题解
北航数值分析大作业 第一题 幂法与反幂法
![北航数值分析大作业 第一题 幂法与反幂法](https://img.taocdn.com/s3/m/017f7e91dd88d0d233d46a9c.png)
数 值 分 析(B ) 大 作 业(一)姓名: 学号: 电话:1、算法设计:①求1λ、501λ和s λ的值:s λ:s λ表示矩阵的按模最小特征值,为求得s λ直接对待求矩阵A 应用反幂法即可。
1λ、501λ:若矩阵A 的特征值满足关系 1n λλ<<且1n λλ≠,要求1λ、及501λ时,可按如下方法求解: a . 对矩阵A 用幂法,求得按模最大的特征值1m λ。
b . 按平移量1m λ对矩阵A 进行原点平移得矩阵1m BA I λ=+,对矩阵B 用反幂法求得B 的按模最小特征值2m λ。
c . 321m m m λλλ=-则:113min(,)m m λλλ=,13max(,)n m m λλλ=即为所求。
②求和A 的与数5011140k k λλμλ-=+最接近的特征值ik λ(k=0,1,…39):求矩阵A 的特征值中与P 最接近的特征值的大小,采用原点平移的方法:先求矩阵 B=A-PI 对应的按模最小特征值k β,则k β+P 即为矩阵A 与P 最接近的特征值。
在本次计算实习中则是先求平移矩阵k B A I μ=-,对该矩阵应用反幂法求得s λ,则与k μ最接近的A 的特征值为:s P λ+重复以上过程39次即可求得ik λ(k=0,1,…39)的值。
③求A 的(谱范数)条件数2cond()A 和行列式det A :在(1)中用反幂法求矩阵A 的按模最小特征值时,要用到Doolittle 分解方法,在Doolittle 分解完成后得到的两个矩阵分别为L 和U ,则A 的行列式可由U 阵求出,即:det(A)=det(U)。
求得det(A)不为0,因此A 为非奇异的实对称矩阵,则: max 2()scond A λλ=,max λ和s λ分别为模最大特征值与模最小特征值。
2、程序源代码:#include "Stdio.h"#include "Conio.h"#include "math.h"//****************************************************************************// // 在存储带状矩阵时,下面的几个量在程序中反复用到,为方便编程故把它们定义成宏.// // M :转换后的矩阵的行数,M=R+S+1。
北航研究生数值分析作业第一题
![北航研究生数值分析作业第一题](https://img.taocdn.com/s3/m/b0e2bec629ea81c758f5f61fb7360b4c2e3f2a28.png)
北航研究⽣数值分析作业第⼀题北航研究⽣数值分析作业第⼀题:⼀、算法设计⽅案1.要求计算矩阵的最⼤最⼩特征值,通过幂法求得模最⼤的特征值,进⾏⼀定判断即得所求结果;2.求解与给定数值接近的特征值,可以该数做漂移量,新数组特征值倒数的绝对值满⾜反幂法的要求,故通过反幂法即可求得;3.反幂法计算时需要⽅程求解中间过渡向量,需设计Doolite分解求解;4.|A|=|B||C|,故要求解矩阵的秩,只需将Doolite分解后的U矩阵的对⾓线相乘即为矩阵的Det。
算法编译环境:vlsual c++6.0需要编译函数:幂法,反幂法,Doolite分解及⽅程的求解⼆、源程序如下:#include#include#include#includeint Max(int value1,int value2);int Min(int value1,int value2);void Transform(double A[5][501]);double mifa(double A[5][501]);void daizhuangdoolite(double A[5][501],double x[501],double b[501]); double fanmifa(double A[5][501]); double Det(double A[5][501]);/***定义2个判断⼤⼩的函数,便于以后调⽤***/int Max(int value1,int value2){return((value1>value2)?value1:value2);}int Min(int value1,int value2){return ((value1}/*****************************************//***将矩阵值转存在⼀个数组⾥,节省空间***/void Transform(double A[5][501],double b,double c){int i=0,j=0;A[i][j]=0,A[i][j+1]=0;for(j=2;j<=500;j++)A[i][j]=c;i++;j=0;A[i][j]=0;for(j=1;j<=500;j++)A[i][j]=b;i++;for(j=0;j<=500;j++)A[i][j]=(1.64-0.024*(j+1))*sin(0.2*(j+1))-0.64*exp(0.1/(j+1)); i++;for(j=0;j<=499;j++)A[i][j]=b;A[i][j]=0;i++;for(j=0;j<=498;j++)A[i][j]=c;A[i][j]=0,A[i][j+1]=0;}/***转存结束***///⽤于求解模最⼤的特征值,幂法double mifa(double A[5][501]){int s=2,r=2,m=0,i,j;double b2,b1=0,sum,u[501],y[501];for (i=0;i<=500;i++){u[i] = 1.0;}do{sum=0;if(m!=0)b1=b2;m++;for(i=0;i<=500;i++)sum+=u[i]*u[i];for(i=0;i<=500;i++)y[i]=u[i]/sqrt(sum);for(i=0;i<=500;i++){u[i]=0;for(j=Max(i-r,0);j<=Min(i+s,500);j++)u[i]=u[i]+A[i-j+s][j]*y[j];}b2=0;for(i=0;i<=500;i++)b2=b2+y[i]*u[i];}while(fabs(b2-b1)/fabs(b2)>=exp(-12));return b2;}//带状DOOLITE分解,并且求解出⽅程组的解void daizhuangdoolite(double A[5][501],double x[501],double b[501]) { int i,j,k,t,s=2,r=2;double B[5][501],c[501];for(i=0;i<=4;i++){for(j=0;j<=500;j++)B[i][j]=A[i][j];}for(i=0;i<=500;i++)c[i]=b[i];for(k=0;k<=500;k++){for(j=k;j<=Min(k+s,500);j++){for(t=Max(0,Max(k-r,j-s));t<=k-1;t++)B[k-j+s][j]=B[k-j+s][j]-B[k-t+s][t]*B[t-j+s][j]; }for(i=k+1;i<=Min(k+r,500);i++){for(t=Max(0,Max(i-r,k-s));t<=k-1;t++)B[i-k+s][k]=B[i-k+s][k]-B[i-t+s][t]*B[t-k+s][k]; B[i-k+s][k]=B[i-k+s][k]/B[s][k];}}for(i=1;i<=500;i++)for(t=Max(0,i-r);t<=i-1;t++)c[i]=c[i]-B[i-t+s][t]*c[t];x[500]=c[500]/B[s][500];for(i=499;i>=0;i--){x[i]=c[i];for(t=i+1;t<=Min(i+s,500);t++)x[i]=x[i]-B[i-t+s][t]*x[t];x[i]=x[i]/B[s][i];}}//⽤于求解模最⼤的特征值,反幂法double fanmifa(double A[5][501]){int s=2,r=2,m=0,i;double b2,b1=0,sum=0,u[501],y[501];for (i=0;i<=500;i++){u[i] = 1.0;}do{if(m!=0)b1=b2;m++;sum=0;for(i=0;i<=500;i++)sum+=u[i]*u[i];for(i=0;i<=500;i++)y[i]=u[i]/sqrt(sum);daizhuangdoolite(A,u,y);b2=0;for(i=0;i<=500;i++)b2+=y[i]*u[i];}while(fabs(b2-b1)>=fabs(b1)*exp(-12));return 1/b2;}//⾏列式的LU分解,U的主线乘积即位矩阵的DET double Det(double A[5][501]) {int i,j,k,t,s=2,r=2;for(k=0;k<=500;k++){for(j=k;j<=Min(k+s,500);j++){for(t=Max(0,Max(k-r,j-s));t<=k-1;t++)A[k-j+s][j]=A[k-j+s][j]-A[k-t+s][t]*A[t-j+s][j];}for(i=k+1;i<=Min(k+r,500);i++){for(t=Max(0,Max(i-r,k-s));t<=k-1;t++)A[i-k+s][k]=A[i-k+s][k]-A[i-t+s][t]*A[t-k+s][k];A[i-k+s][k]=A[i-k+s][k]/A[s][k];}}double det=1;for(i=0;i<=500;i++)det*=A[s][i];return det;}void main(){double b=0.16,c=-0.064,p,q;int i,j;double A[5][501];Transform(A,b,c); //进⾏A的赋值cout.precision(12); //定义输出精度double lamda1,lamda501,lamdas;double k=mifa(A);if(k>0) //判断求得最⼤以及最⼩的特征值.如果K>0,则它为最⼤特征值值,//并以它为偏移量再⽤⼀次幂法求得新矩阵最⼤特征值,即为最⼤ //与最⼩的特征值的差{lamda501=k;for(i=0;i<=500;i++)A[2][i]=A[2][i]-k;lamda1=mifa(A)+lamda501;for(i=0;i<=500;i++)A[2][i]=A[2][i]+k;}else //如果K<=0,则它为最⼩特征值值,并以它为偏移量再⽤⼀次幂法//求得新矩阵最⼤特征值,即为最⼤与最⼩的特征值的差{lamda1=k;for(i=0;i<=500;i++)A[2][i]=A[2][i]-k;lamda501=mifa(A)+lamda1;for(i=0;i<=500;i++)A[2][i]=A[2][i]+k;}lamdas=fanmifa(A);FILE *fp=fopen("result.txt","w");fprintf(fp,"λ1=%.12e\n",lamda1);fprintf(fp,"λ501=%.12e\n",lamda501);fprintf(fp,"λs=%.12e\n\n",lamdas);fprintf(fp,"\t要求接近的值\t\t\t实际求得的特征值\n");for(i=1;i<=39;i++) //反幂法求得与给定值接近的特征值{p=lamda1+(i+1)*(lamda501-lamda1)/40;for(j=0;j<=500;j++)A[2][j]=A[2][j]-p;q=fanmifa(A)+p;for(j=0;j<=500;j++)A[2][j]=A[2][j]+p;fprintf(fp,"µ%d: %.12e λi%d: %.12e\n",i,p,i,q);}double cond=fabs(mifa(A)/fanmifa(A));double det=Det(A);fprintf(fp,"\ncond(A)=%.12e\n",cond);fprintf(fp,"\ndetA=%.12e\n",det);}三、程序运⾏结果λ1=-1.069936345952e+001λ501=9.722283648681e+000λs=-5.557989086521e-003要求接近的值实际求得的特征值µ1: -9.678281104107e+000 λi1: -9.585702058251e+000µ2: -9.167739926402e+000 λi2: -9.172672423948e+000µ3: -8.657198748697e+000 λi3: -8.652284007885e+000µ4: -8.146657570993e+000 λi4: -8.0934********e+000µ5: -7.636116393288e+000 λi5: -7.659405420574e+000µ6: -7.125575215583e+000 λi6: -7.119684646576e+000µ7: -6.615034037878e+000 λi7: -6.611764337314e+000µ8: -6.104492860173e+000 λi8: -6.0661********e+000µ9: -5.593951682468e+000 λi9: -5.585101045269e+000µ10: -5.0834********e+000 λi10: -5.114083539196e+000µ11: -4.572869327058e+000 λi11: -4.578872177367e+000µ12: -4.062328149353e+000 λi12: -4.096473385708e+000µ13: -3.551786971648e+000 λi13: -3.554211216942e+000µ14: -3.0412********e+000 λi14: -3.0410********e+000µ15: -2.530704616238e+000 λi15: -2.533970334136e+000µ16: -2.020*********e+000 λi16: -2.003230401311e+000µ17: -1.509622260828e+000 λi17: -1.503557606947e+000µ18: -9.990810831232e-001 λi18: -9.935585987809e-001µ19: -4.885399054182e-001 λi19: -4.870426734583e-001µ20: 2.200127228676e-002 λi20: 2.231736249587e-002µ21: 5.325424499917e-001 λi21: 5.324174742068e-001µ22: 1.043083627697e+000 λi22: 1.052898964020e+000µ23: 1.553624805402e+000 λi23: 1.589445977158e+000µ24: 2.064165983107e+000 λi24: 2.060330427561e+000µ25: 2.574707160812e+000 λi25: 2.558075576223e+000µ26: 3.0852********e+000 λi26: 3.080240508465e+000µ27: 3.595789516221e+000 λi27: 3.613620874136e+000µ28: 4.106330693926e+000 λi28: 4.0913********e+000µ29: 4.616871871631e+000 λi29: 4.603035354280e+000µ30: 5.127413049336e+000 λi30: 5.132924284378e+000µ31: 5.637954227041e+000 λi31: 5.594906275501e+000µ32: 6.148495404746e+000 λi32: 6.080933498348e+000µ33: 6.659036582451e+000 λi33: 6.680354121496e+000µ34: 7.169577760156e+000 λi34: 7.293878467852e+000µ35: 7.680118937861e+000 λi35: 7.717111851857e+000µ36: 8.190660115566e+000 λi36: 8.225220016407e+000µ37: 8.701201293271e+000 λi37: 8.648665837870e+000µ38: 9.211742470976e+000 λi38: 9.254200347303e+000µ39: 9.722283648681e+000 λi39: 9.724634099672e+000cond(A)=1.925042185755e+003detA=2.772786141752e+118四、分析如果初始向量选择不当,将导致迭代中X1的系数等于零.但是,由于舍⼊误差的影响,经若⼲步迭代后,.按照基向量展开时,x1的系数可能不等于零。
北航数值分析实验报告
![北航数值分析实验报告](https://img.taocdn.com/s3/m/c0b25020ef06eff9aef8941ea76e58fafab045da.png)
北航数值分析实验报告篇一:北航数值分析报告第一大题《数值分析》计算实习报告第一大题学号:DY1305姓名:指导老师:一、题目要求已知501*501阶的带状矩阵A,其特征值满足?1?2...?501。
试求:1、?1,?501和?s的值;2、A的与数?k??1?k?501??140最接近的特征值?ik(k=1,2,...,39);3、A的(谱范数)条件数c nd(A)2和行列式de tA。
二、算法设计方案题目所给的矩阵阶数过大,必须经过去零压缩后进行存储和运算,本算法中压缩后的矩阵A1如下所示。
?0?0?A1??a1??b??c0b a2bcc bb c............c bb ccb a500b0a 3...a499c?b??a501??0?0??由矩阵A的特征值满足的条件可知?1与?501之间必有一个最大,则采用幂法求出的一个特征值必为其中的一个:当所求得的特征值为正数,则为?501;否则为?1。
在求得?1与?501其中的一个后,采用带位移的幂法则可求出它们中的另一个,且位移量即为先求出的特征值的值。
用反幂法求得的特征值必为?s。
由条件数的性质可得,c nd(A)2为模最大的特征值与模最小的特征值之比的模,因此,求出?1,?501和?s的值后,则可以求得c nd(A)2。
北航数值分析大作业第一题幂法与反幂法
![北航数值分析大作业第一题幂法与反幂法](https://img.taocdn.com/s3/m/bf22e493bed5b9f3f90f1cce.png)
《数值分析》计算实习题目第一题:1. 算法设计方案(1)1λ,501λ和s λ的值。
1)首先通过幂法求出按模最大的特征值λt1,然后根据λt1进行原点平移求出另一特征值λt2,比较两值大小,数值小的为所求最小特征值λ1,数值大的为是所求最大特征值λ501。
2)使用反幂法求λs ,其中需要解线性方程组。
因为A 为带状线性方程组,此处采用LU 分解法解带状方程组。
(2)与140k λλμλ-5011=+k 最接近的特征值λik 。
通过带有原点平移的反幂法求出与数k μ最接近的特征值 λik 。
(3)2cond(A)和det A 。
1)1=nλλ2cond(A),其中1λ和n λ分别是按模最大和最小特征值。
2)利用步骤(1)中分解矩阵A 得出的LU 矩阵,L 为单位下三角阵,U 为上三角阵,其中U 矩阵的主对角线元素之积即为det A 。
由于A 的元素零元素较多,为节省储存量,将A 的元素存为6×501的数组中,程序中采用get_an_element()函数来从小数组中取出A 中的元素。
2.全部源程序#include <stdio.h>#include <math.h>void init_a();//初始化Adouble get_an_element(int,int);//取A 中的元素函数double powermethod(double);//原点平移的幂法double inversepowermethod(double);//原点平移的反幂法int presolve(double);//三角LU 分解int solve(double [],double []);//解方程组int max(int,int);int min(int,int);double (*u)[502]=new double[502][502];//上三角U 数组double (*l)[502]=new double[502][502];//单位下三角L 数组double a[6][502];//矩阵Aint main(){int i,k;double lambdat1,lambdat2,lambda1,lambda501,lambdas,mu[40],det;init_a();//初始化Alambdat1=powermethod(0);lambdat2=powermethod(lambdat1);lambda1=lambdat1<lambdat2?lambdat1:lambdat2;lambda501=lambdat1>lambdat2?lambdat1:lambdat2;presolve(0);lambdas=inversepowermethod(0);det=1;for(i=1;i<=501;i++)det=det*u[i][i];for (k=1;k<=39;k++){mu[k]=lambda1+k*(lambda501-lambda1)/40;presolve(mu[k]);lambda[k]=inversepowermethod(mu[k]);}printf("------------所有特征值如下------------\n");printf("λ=%1.11e λ=%1.11e\n",lambda1,lambda501);printf("λs=%1.11e\n",lambdas);printf("cond(A)=%1.11e\n",fabs(lambdat1/lambdas));printf("detA=%1.11e \n",det);for (k=1;k<=39;k++){printf("λi%d=%1.11e ",k,lambda[k]);if(k % 3==0) printf("\n");} delete []u;delete []l;//释放堆内存return 0;}void init_a()//初始化A{int i;for (i=3;i<=501;i++) a[1][i]=a[5][502-i]=-0.064;for (i=2;i<=501;i++) a[2][i]=a[4][502-i]=0.16;for (i=1;i<=501;i++) a[3][i]=(1.64-0.024*i)*sin(0.2*i)-0.64*exp(0.1/i); }double get_an_element(int i,int j)//从A中节省存储量的提取元素方法{if (fabs(i-j)<=2) return a[i-j+3][j];else return 0;}double powermethod(double offset)//幂法{int i,x1;double beta=0,prebeta=-1000,yita=0;for (i=1;i<=501;i++)u[i]=1,y[i]=0;//设置初始向量u[]for (int k=1;k<=10000;k++){yita=0;for (i=1;i<=501;i++) yita=sqrt(yita*yita+u[i]*u[i]);for (i=1;i<=501;i++) y[i]=u[i]/yita;for (x1=1;x1<=501;x1++){u[x1]=0;for (int x2=1;x2<=501;x2++)u[x1]=u[x1]+((x1==x2)?(get_an_element(x1,x2)-offset):get_an_element(x1,x2))*y[x2];} prebeta=beta;beta=0;for (i=1;i<=501;i++) beta=beta+ y[i]*u[i];if (fabs((prebeta-beta)/beta)<=1e-12) {printf("offset=%f lambda=%f err=%e k=%d\n",offset,(beta+offset),fabs((prebeta-beta)/beta),k);break;};//输出中间过程,包括偏移量,误差,迭代次数}return (beta+offset);}double inversepowermethod(double offset)//反幂法{int i;double u[502],y[502];double beta=0,prebeta=0,yita=0;for (i=1;i<=501;i++)u[i]=1,y[i]=0; //设置初始向量u[]for (int k=1;k<=10000;k++){yita=0;for (i=1;i<=501;i++) yita=sqrt(yita*yita+u[i]*u[i]);for (i=1;i<=501;i++) y[i]=u[i]/yita;solve(u,y);prebeta=beta;beta=0;for (i=1;i<=501;i++) beta=beta+ y[i]*u[i];beta=1/beta;if (fabs((prebeta-beta)/beta)<=1e-12) {printf("offset=%f lambda=%f err=%e k=%d\n",offset,(beta+offset),fabs((prebeta-beta)/beta),k);break;};//输出中间过程,包括偏移量,误差,迭代次数}return (beta+offset);}int presolve(double offset)//三角LU分解{int i,k,j,t;double sum;for (k=1;k<=501;k++)for (j=1;j<=501;j++){u[k][j]=l[k][j]=0;if (k==j) l[k][j]=1;} //初始化LU矩阵for (k=1;k<=501;k++){for (j=k;j<=min(k+2,501);j++){sum=0;for (t=max(1,max(k-2,j-2)) ; t<=(k-1) ; t++)sum=sum+l[k][t]*u[t][j];u[k][j]=((k==j)?(get_an_element(k,j)-offset):get_an_element(k,j))-sum;}if (k==501) continue;for (i=k+1;i<=min(k+2,501);i++){sum=0;for (t=max(1,max(i-2,k-2));t<=(k-1);t++)sum=sum+l[i][t]*u[t][k];l[i][k]=(((i==k)?(get_an_element(i,k)-offset):get_an_element(i,k))-sum)/u[k][k];}}return 0;}int solve(double x[],double b[])//解方程组{int i,t;double y[502];double sum;y[1]=b[1];for (i=2;i<=501;i++){sum=0;for (t=max(1,i-2);t<=i-1;t++)sum=sum+l[i][t]*y[t];y[i]=b[i]-sum;}x[501]=y[501]/u[501][501];for (i=500;i>=1;i--){sum=0;for (t=i+1;t<=min(i+2,501);t++)sum=sum+u[i][t]*x[t];x[i]=(y[i]-sum)/u[i][i];}return 0;}int max(int x,int y){return (x>y?x:y);}int min(int x,int y){return (x<y?x:y);}3.计算结果结果如下图所示:部分中间结果:给出了偏移量(offset),误差(err),迭代次数(k)4.讨论迭代初始向量的选取对计算结果的影响,并说明原因使用u[i]=1(i=1,2,...,501)作为初始向量进行迭代,可得出以上结果。
北航数值分析大作业一
![北航数值分析大作业一](https://img.taocdn.com/s3/m/999bb7f5cc17552706220851.png)
北京航空航天大学数值分析大作业一学院名称自动化专业方向控制工程学号ZY*******学生姓名许阳教师孙玉泉日期2021 年11月26 日设有501501⨯的实对称矩阵A ,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=5011A a b c b c c b c b a其中,064.0,16.0),501,,2,1(64.0)2.0sin()024.064.1(1.0-==⋅⋅⋅=--=c b i e i i a ii 。
矩阵A 的特征值为)501,,2,1(⋅⋅⋅=i i λ,并且有||min ||,501150121i i s λλλλλ≤≤=≤⋅⋅⋅≤≤1λ,501λ和s λ的值。
A 的与数4015011λλλμ-+=kk 最接近的特征值)39,,2,1(⋅⋅⋅=k k i λ。
A 的(谱范数)条件数2)A (cond 和行列式detA 。
一 方案设计1 求1λ,501λ和s λ的值。
s λ为按模最小特征值,||min ||5011i i s λλ≤≤=。
可使用反幂法求得。
1λ,501λ分别为最大特征值及最小特征值。
可使用幂法求出按模最大特征值,如结果为正,即为501λ,结果为负,那么为1λ。
使用位移的方式求得另一特征值即可。
2 求A 的与数4015011λλλμ-+=kk 最接近的特征值)39,...,2,1(=k k i λ。
题目可看成求以k μ为偏移量后,按模最小的特征值。
即以k μ为偏移量做位移,使用反幂法求出按模最小特征值后,加上k μ,即为所求。
3 求A 的(谱范数)条件数2)(A cond 和行列式detA 。
矩阵A 为非奇异对称矩阵,可知,||)(min max2λλ=A cond(1-1)其中m ax λ为按模最大特征值,min λ为按模最小特征值。
detA 可由LU 分解得到。
因LU 均为三角阵,那么其主对角线乘积即为A 的行列式。
二 算法实现1 幂法使用如下迭代格式:⎪⎪⎩⎪⎪⎨⎧⋅===⋅⋅⋅=------||max |)|sgn(max ||max /),,(111111)0()0(10k k k k k k k k Tn u u Ay u u u y u u u β任取非零向量 (2-1)终止迭代的控制理论使用εβββ≤--||/||1k k k , 实际使用εβββ≤--||/||||||1k k k(2-2)由于不保存A 矩阵中的零元素,只保存主对角元素a[501]及b,c 值。
数值分析B(第一题)
![数值分析B(第一题)](https://img.taocdn.com/s3/m/3fdb3f63ddccda38376baffe.png)
北航2009级研究生《数值分析B》计算实习题目(第一题)设计文档与源程序姓名:学号:打印内容1 算法的设计方案(1)运行平台(2)算法描述2 全部源代码3 输出结果,包含以下内容:特征值λ1,λ501,和λik(k=1,2, (39)A的(谱范数)条件数cond(A)2和行列式detA4讨论迭代初始向量的选取对计算结果的影响及其原因1 算法的设计方案(1)运行与开发平台操作系统:Windows 7;开发平台:VC++ 6.0;工程类型:Win32 Console Application;工程名:Power_EigenValue;(2)算法描述设计思想:题目要求的求解内容主要通过采用幂法和反幂法来实现。
首先计算出A各元素值(元素值为的0的不存储),然后采用幂法求解矩阵A的按模最大特征值,然后通过原点平移方法求解出另一个按模最大特征值,通过比较可以得出最大特征值λ1、最小特征值λ501;再者,对矩阵A进行LU三角分解,在此基础上采用反幂法求解按模最小特征值λs,并求出A的与μk值最接近的特征值;矩阵A的(谱范数)条件数cond(A)2由|λ1|/|λs|求得,矩阵A的行列式值由LU分解后的对角线元素相乘得出。
具体算法如下:(精度eps=le-12,最大迭代次数L=1000,n=501)(1)、计算矩阵A为了减少计算机的计算负荷,提高解算速度,对于原始稀疏矩阵A,在程序中不对矩阵的0元素进行存储,因此将矩阵转换成5×501阶阵。
其中,原对角线的元素计算如下:for(i=0;i<n;i++){a[2][i] = (1.64-0.024*(i+1))*sin(0.2*(i+1))-0.64*exp(0.1/(i+1));}其他元素存储如下:for(i=0;i<n-1;i++){a[1][i+1] = 0.16;a[3][i] = 0.16;}for(i=0;i<n-2;i++){a[0][i+2] = -0.064;a[4][i] = -0.064;}(2)、幂法函数幂法函数为:double Power_Method(double a[5][n])。
数值分析第一次作业解答
![数值分析第一次作业解答](https://img.taocdn.com/s3/m/ee5e4d73dd88d0d232d46a99.png)
数值分析第一次作业解答1:(a) —个问题的病态性如何,与求解它的算法有关系。
x ;(b) 无论问题是否病态,好的算法都会得到它好的近似解。
x ;(C)计算中使用更高的精度,可以改善问题的病态性。
X ;(d) 用一个稳定的算法计算一个良态问题,一定会得到他好的近似解。
V;(e) 浮点数在整个数轴上是均匀分布。
x ;(f) 浮点数的加法满足结合律。
x(g) 浮点数的加法满足交换律。
X ;(h) 浮点数构成有效集合。
V;(i) 用一个收敛的算法计算一个良态问题,一定得到它好的近似解2: 程序t=0.1;n=1:10;e=n/10-n*te = 1.0e-015 *[ 0 0 -0.0555 0 0-0.1110 -0.1110 0 0 0] 由舍人误差造成n=3,6,7 时的结果不为零。
4:两种等价的一元二次方程求解公式-b - Pb2 - 4acx =2a2cx 二-b b2 - 4ac对a=1, b=-100000000, c=1,应采用哪种算法?A二[1,-100000000,1];roots(A);可得:X1 = 100000000;x2=0a=1;b=-100000000;c=1;x1仁(-b-sqrt(b*b-4*a*c))/(2*a)x12=(-b+sqrt(b*b-4*a*c))/(2*a)x2仁2*c/(-b-sqrt(b*b-4*a*c))x22=2*c/(-b+sqrt(b*b-4*a*c))由第一种算法:X1 = 100000000;x2=7.45058 X10由第二种算法:X1 = 13417728;x2=-1.0 X108原因:太小的数作分母。
5:程序:fun cti on y=tt(x)s=0;t=x;n=1;while s+t~=s;s=s+t;t=-x A2/(( n+1)*( n+2))*tn=n+2;endntt(2n 1)eps)(a)t小于计算机的计算精度。
北航数值分析计算实习第一题编程
![北航数值分析计算实习第一题编程](https://img.taocdn.com/s3/m/6d462421dd36a32d737581ff.png)
i − t + s +1,t t − k + s +1, k t = max(1,i − r ,k − s )
∑c
c
) / cs +1, k
[i = k + 1, k + 2,⋯ , min( k + r , n); k < n]
(2) 求解 Ly = b,Ux = y (数组 b 先是存放原方程右端向量,后来存放中间向量 y)
0 b a2
b c
c b a3 b c
⋯ ⋯ ⋯ ⋯ ⋯
c b a499 b c
c b a500 b 0
c ⎤ b ⎥ ⎥ a501 ⎥ ⎥ 0 ⎥ 0 ⎥ ⎦
在数组 C 中检索矩阵 A 的带内元素 aij 的方法是: A 的带内元素 aij =C 中的元素 ci − j + s +1, j
2
数值分析计算实习题目一
i −1
bi := bi −
பைடு நூலகம்
i − t + s +1,t t t = max(1,i − r )
∑c
b
(i = 2,3,⋯ , n)
xn := bn / cs +1, n
min( i + s )
xi := (bi −
t = i +1
∑c
i −t + s +1,t t
x ) / cs +1,i
(i = n − 1, n − 2,⋯ ,1)
3、Doolittle 分解求解 n 元带状线性方程组(doolittle()函数)
按照上述对带状矩阵 A 的存储方法和元素 aij 的检索方法,并且把三角分解的结果 ukj 和 lik 分 别存放在 akj 和 aik 原先的存储单元内,那么用 Doolittle 分解法求解 n 元带状线性方程组的算法 可重新表述如下(其中“:=”表示赋值) : (1) 作分解 A = LU 。 对于 k=1,2, ……,n 执行
北航数值分析大作业一.docx
![北航数值分析大作业一.docx](https://img.taocdn.com/s3/m/f3bca2fca45177232e60a228.png)
数值分析—计算实习作业一学院:机械工程学院专业:材料加工工程姓名:暴一品学号:SY12071342012-10-29一、算法设计方案观察矩阵A ,结构为带状,且与主对角线相邻的两个带的值b 和c 都是常数。
从而可以用带原点平移的幂法或反幂法计算λ1和λ501。
所以算法的设计方案如下:1.求按模最大的特征值,并记为max_eigenvalue ,算法如下所示⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=======------≤≤-),2,1()sgn(),,(/max ),,()(1)()(11)1(11)1(1)1()0()0(10ΛΛΛk h h h h Ay u h u y h h h h u k r k r k Tk nk k kk r k k k j nj k rTn β任取非零向量2.平移矩阵得到A ’=A-max_eigenvalueI ,再次用幂法,这次求出的A ’的按模大的特征值pymax_eigenvalue 就是与步骤1求出的特征值相差最大的特征值。
即两者一个为最大的特征值,另一个为最小的特征值。
3.根据max_eigenvalue 和pymax_eigenvalue 的正负性,直接确定λ1,和λ501。
4.对原矩阵A 用反幂法,求出其按模最小的特征值,记为s_eigenvalue ,此即λs 。
⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=====∈--------),2,1(/111111110Λk u y y Au u y u u R u k T k k k k k k k k Tk k n βηη任取非零向量在反幂法的求解过程中,每迭代一次都要求满足解线性方程组Auk=yk-1。
本题中矩阵A 上半带宽为2,下半带宽也为2 。
故选择采用三角分解法求解方程组:先将原矩阵改写成5行501列的矩阵C (不存储A 的0元素) A 的带内元素aij=c 中的元素ci-j+3。
再对C 矩阵做LU 分解。
对于k=1,2,…,n ,执行∑---=+-+-+-+--=1)2,2,1max(,3,3,3,3:k j k t jj t t t k j j k j j k ccc c [j=k,k+1,…,min(k+2,n)]kk s k r i t k k t t t i k k i k k i c ccc c ,31),,1max(,3,3,3,3/)(:∑---=+-+-+-+--=[i=k+1,k+2,…,min(k+2,n);k<n]求解Lx=b ,Uuk=x (数组b 先是存放原方程组右端向量yk-1,后来存放中间向量x )∑--=+--=1),1max(,3:i r i t tt t i i i bcb b (i=2,3,…,n )nn kn c b u ,3/:=in i i t kt tt i i ki c u cb u ,3),2min(1,3/)(:∑++=+--= (i=n-1,n-2, (1)5.对k=1,2,……39执行:先根据题中给出的公式算出μk ,再将矩阵平移A ”=A-μk ,对矩阵A ”运用反幂法(线性方程组的解法同上),就可以求出与μk 最接近的特征值λik ,保存在数组py_eigenvalue 中。
北航数值分析第一次大作业
![北航数值分析第一次大作业](https://img.taocdn.com/s3/m/2305e236b90d6c85ec3ac619.png)
b2[i-1]=b[i-1]-sum3; } x[n-1]=b2[n-1]/C[s][n-1]; for(i=n-1;i>=1;i--) { double sum4=0; for(int t=i+1;t<=min(i+s,n);t++) { sum4+=C[i-t+s][t-1]*x[t-1]; } x[i-1]=(b2[i-1]-sum4)/C[s][i-1]; } } /*反幂法*/ double FMF(double C[m][n]) { LU(C); for(int k=1;k<=n;k++) u[k-1]=1; /*为迭代初始向量赋值*/ beta1=beta2=0; do { ent=0; for(int i=1;i<=n;i++) ent+=u[i-1]*u[i-1]; ent=sqrt(ent); for(i=1;i<=n;i++) y[i-1]=u[i-1]/ent; HD(C,y,u); beta1=beta2; beta2=0; for(i=1;i<=n;i++) { beta2+=y[i-1]*u[i-1]; } }while(fabs(1/beta2-1/beta1)/fabs(1/beta2)>1.0e-12); return 1/beta2; } /*求 detA*/ double det(double C[m][n]) { LU(C); double detA=1; for(int j=1;j<=n;j++)
数值分析第一次作业
姓名:吴少波 学号:SY1105513
一、算法的设计方案 1.将带状矩阵 A 压缩为矩阵 C 存储。先用幂法算出 A 按模最大的特征值,记为 maxLambda, 再 将 其 平 移 ,用 带 原点 平 移 的 幂 法求 A-maxLambdaI 按模 最 大的 特 征 值 , 记为 p1 , 记 p2=p1+maxLambda,比较 maxLambda 和 p2 的大小,大的为λ 501,小的为λ 1。 用反幂法求解λ s 时,其中需解方程 Auk=yk-1,先把矩阵 A LU 分解(不列主元) ,再在每次循环 迭代时回代求解。 2.将 A 平移μ k(k=1,2,…,39)个单位,用带原点平移的反幂法求与μ k(k=1,2,…,39) 最接近的 39 个特征值。 3.cond(A)2=│maxLambda / λ s│ A 的行列式等于把 A LU 分解后 A 所有对角线上元素的乘积。 二、源程序(VC6.0 环境下的 C 语言) #include<stdio.h> #include<stdlib.h> #include<math.h> #include<malloc.h> #define m 5 #define n 501 #define r 2 #define s 2 double C[m][n]; double u[n]; double y[n]; double ent,beta1,beta2; void YS(); /*将带状矩阵 A 压缩为 C*/ int max(int a,int b); /*两数求较大的一个*/ int min(int a,int b); /*两数求较小的一个*/ double MF(double C[m][n]); /*幂法*/ double FMF(double C[m][n]); /*反幂法*/ void LU(double C[m][n]); /*LU 分解*/ void HD(double C[m][n],double b[n],double x[n]); /*回代过程*/ double det(double C[m][n]); /*求 detA*/ double Move_MF(double C[m][n],double maxLambda); /*带原点平移的幂法*/ double Move_FMF(double C[m][n],double p); /*带原点平移的反幂法*/ /**主函数**/ void main() { /*定义变量*/ double maxLambda=0,minLambda=0,condA,detA,Lambda1,Lambda501,p1,p2,Mu_k,Lambdaik; /*算第一题*/
北航研究生数值分析编程大作业1
![北航研究生数值分析编程大作业1](https://img.taocdn.com/s3/m/23a56d39b94ae45c3b3567ec102de2bd9705de58.png)
数值分析大作业一、算法设计方案1、矩阵初始化矩阵[]501501⨯=ij a A 的下半带宽r=2,上半带宽s=2,设置矩阵[][]5011++s r C ,在矩阵C 中检索矩阵A 中的带内元素ij a 的方法是:j s j i ij c a ,1++-=。
这样所需要的存储单元数大大减少,从而极大提高了运算效率。
2、利用幂法求出5011λλ,幂法迭代格式:0111111nk k k k kk T k k k u R y u u Ay y u ηηβ------⎧∈⎪⎪=⎪=⎨⎪=⎪⎪=⎩非零向量 当1210/-≤-k k βββ时,迭代终止。
首先对于矩阵A 利用幂法迭代求出一个λ,然后求出矩阵B ,其中I A B λ-=(I 为单位矩阵),对矩阵B 进行幂法迭代,求出λ',之后令λλλ+'='',比较的大小与λλ'',大者为501λ,小者为1λ。
3、利用反幂法求出ik s λλ,反幂法迭代格式:0111111nk k k k kk T k k k u R y u Au y y u ηηβ------⎧∈⎪⎪=⎪=⎨⎪=⎪⎪=⎩非零向量 当1210/-≤-k k βββ时,迭代终止,1s k λβ=。
每迭代一次都要求解一次线性方程组1-=k k y Au ,求解过程为:(1)作分解LU A =对于n k ,...,2,1=执行[][]s k n r k k k i c c c c c n s k k k j c cc c k s ks k t k s k r i t t s t i k s k i k s k i js j t k s j r k t t s t k j s j k j s j k <+++=-=++=-=+++----=++-++-++-++----=++-++-++-∑∑);,min(,...,2,1/)(:),min(,...,1,:,1,11),,1max(,1,1,1,11),,1max(,1,1,1(2)求解y Ux b Ly ==,(数组b 先是存放原方程组右端向量,后来存放中间向量y))1,...,2,1(/)(:/:),...,3,2(:,1),min(1.1.11),1max(,1--=-===-=+++-++-+--=++-∑∑n n i c x c b x c b x n i b c b b i s t n s i i t t s t i i i ns n n ti r i t t s t i i i使用反幂法,直接可以求得矩阵按模最小的特征值s λ。
北航数分大作业一
![北航数分大作业一](https://img.taocdn.com/s3/m/d71158b6960590c69ec3764d.png)
《数值分析》计算实习题第一题姓名:学号:一、 算法的设计方案 ⒈矩阵A 的存储由于A[501][501]是带状矩阵,并且阶数远大于带宽5,为节省内存空间,设置一个二维数组C[5][501]用于存放A 的带内元素。
A 中元素与C 数组中元素的对应关系,即A 的检索方式为: A 的元素ij a =C 中的元素1,i j s j C -++ 2.求解特征值λ1,λ501,λs①由于λ1‹λ2‹…‹λ501,所以在以所有特征值建立的数轴上,λ1、λ50⒊1位于数轴的两端,两者之一必为按模最大。
利用幂法,可以求出来按模最大的特征值λM ,即为λ1和λ501中一个;然后将原矩阵平移λM,再利用幂法求一次平移后矩阵的按模最大的特征值λM ′。
比较λM 和λM+λM ′大小,大者为λ501,小的为λ1。
②利用反幂法,求矩阵A 的按模最小的特征值λs 。
但是反幂法中要用到线性方程组的求解,而原矩阵A 又是带状矩阵,采用LU 分解。
所以在这之前要定义一个LU 分解子程序,将A 矩阵分解为单位下三角矩阵L 和上三角矩阵U 的乘积。
⒊求解A 的与数μk =λ1+k (λ501-λ1)/40的最接近的特征值λik(k=1,2,…,39)。
先使k 从1到39循环,求出μk 的值,然后使用带原点平移的反幂法,令平移量p=μk 。
计算过程需调用LU 分解子程序对A-u k I 矩阵进行LU 分解。
最终反幂法求出的值加上μk 即为与μk 最接近的特征值λik4.求解A的(谱范数)条件数cond(A)2和行列式detAcond(A)2=|λ1/λn|,其中λ1和λn分别是矩阵A的模最大和最小特征值,上边已经求出,可直接调用。
detA等于对A记性LU分解以后U的所有对角线上元素的乘积。
二、全部源程序#include<stdio.h>#include <math.h>/***全局变量、函数申明***/#define N 501#define EMS 1.0e-12double U[N],Y[N];double c[5][N] ;double fuzhi(); /*对A进行压缩存储*/ void DLU(double C[5][N]); /*对矩阵A进行LU分解*/ double pingyi(double C[5][N],double b); /*求矩阵的平移矩阵*/ double mifa(double c[5][N]); /*幂法计算矩阵A按模最大的特征值*/ double fmifa(double c[5][N],double b); /*反幂法求矩阵A按模最小的特征值*/void main(){double lamuda_m1,lamuda_m2,lamuda_max,lamuda_min,lamuda_sum,lamuda_s;fuzhi();lamuda_m1=mifa(c);pingyi(c, lamuda_m1);lamuda_m2 =mifa(c);lamuda_sum= lamuda_m1+ lamuda_m2;if (lamuda_m1>lamuda_sum){lamuda_max=lamuda_m1;lamuda_min=lamuda_sum;}else{lamuda_max=lamuda_sum;lamuda_min=lamuda_m1;}printf("矩阵的最大特征值为:\n lamuda_501=%.11e\n",lamuda_max); printf("矩阵的最小特征值为:\n lamuda_1=%.11e\n",lamuda_min); int i;double conda,u[39];for(i=1;i<40;i++)u[i]=lamuda_min+(lamuda_max-lamuda_min)*i/40;lamuda_s=fmifa(c,0);printf("矩阵的按模最小特征值为:\n lamuda_s=%.11e\n", lamuda_s); printf("与uk最接近的特征值如下:\n");/*求与uk接近的特征值*/for(i=1;i<40;i++)printf("u[%2d]=%.11e 与其最接近的特征值为lamuda_%2d=%.11e\n",i,u[i],i,fmifa(c,u[i]));/*求矩阵A的条件数*/conda=fabs(lamuda_m1/lamuda_s);printf("矩阵A的(谱范数)条件数为:\n cond(A)=%.11e\n", conda); /*求矩阵A的行列式*/fuzhi();double detA=1.0;DLU(c);for(i=0;i<N;i++)detA*=c[2][i];printf("矩阵A的行列式为:\n detA=%.11e\n", detA);}/*建立矩阵A的压缩存储二维数组,并对其赋值*/double fuzhi(){int i;c[0][0]=0;c[0][1]=0;c[1][0]=0;c[3][500]=0;c[4][499]=0;c[4][500]=0;for(i=2;i<N;i++)c[0][i]=-0.064;for(i=1;i<N;i++)c[1][i]=0.16;for(i=1;i<N+1;i++)c[2][i-1]=(1.64-0.024*i)*sin(0.2*i)-0.64*exp(0.1/i); for(i=0;i<N-1;i++)c[3][i]=0.16;for(i=0;i<N-2;i++)c[4][i]=-0.064;return (c[5][N]);}/*求最大值*/int max(int a,int b){if(a>b) return a;else return b;}/*求最小值*/int min(int a,int b){if(a<b) return a;else return b;}/*向量乘以向量*/double xiangliangji(double G[N],double H[N]) {int i;double sum;sum=0;for(i=0;i<N;i++)sum+=G[i]*H[i];return sum;}/*向量除数*/void xlcs (double G[N],double yita){int i;for(i=0;i<N;i++)Y[i]=G[i]/yita;}/*矩阵乘向量*/void juchengxiang(double c[N][N],double G[N])int i,j;double m;for(i=0;i<N;i++)U[i]=0;for(i=0;i<N;i++){m=max(0,i-2);for(j=min(i+2,N-1);j>=m;j--)U[i]+=c[i+2-j][j]*G[j];}}/*矩阵的主对角线元素平移*/ double pingyi(double C[5][N],double b) {int i;for(i=0;i<N;i++)C[2][i]=C[2][i]-b;return C[5][N];}/*幂法求按模最大特征值*/double mifa(double c[5][N])int i,q;double sum,yita,beita,beita1,cancha; beita=0;for(i=0;i<N;i++)U[i]=1;for (q=1;;q++){beita1=beita;sum= xiangliangji(U,U);yita=sqrt(sum);xlcs (U,yita);juchengxiang (c,Y);beita=xiangliangji(Y,U);cancha=fabs((beita1-beita)/beita); if (cancha<EMS) break;}return beita;}/*矩阵的Doolittle分解*/void DLU(double C[5][N]){ int k,i,j,t;int m,l;for(k=0;k<N;k++){m=min(k+2,N-1);for(j=k;j<=m;j++){double sum=0;l=max(max(0,k-2),j-2);for(t=l;t<=k-1;t++)sum+=C[k-t+2][t]*C[t-j+2][j];C[k-j+2][j]=C[k-j+2][j]-sum;}if(k<N-1){m=min(k+2,N-1);for(i=k+1;i<=m;i++){double sum=0;l=max(max(0,i-2),k-2);for(t=l;t<=k-1;t++)sum+=C[i-t+2][t]*C[t-k+2][k];C[i-k+2][k]=(C[i-k+2][k]-sum)/C[2][k];}}}}/*反幂法求按模最小特征值*/double fmifa(double c[5][N],double b){int i,q;int m,t,p;double sum,yita,beita,beita1,cancha,lamuda;double G[N];beita=0;for(i=0;i<N;i++) /*设置初始向量U0*/{U[i]=1;}for (q=1;;q++){beita1=beita;sum=xiangliangji (U,U);yita=sqrt(sum);xlcs (U,yita);fuzhi();pingyi(c,b);DLU(c);for(i=0;i<N;i++)G[i]=Y[i];for(i=1;i<N;i++){double sum=0;m=max(0,i-2);for(t=m;t<=i-1;t++)sum+=c[i-t+2][t]*G[t];G[i]=G[i]-sum;}U[N-1]=G[N-1]/c[2][N-1]; for(i=N-2;i>=0;i--){double sum=0;p=min(i+2,N-1);for(t=i+1;t<=p;t++)sum+=c[i-t+2][t]*U[t];U[i]=(G[i]-sum)/c[2][i]; }beita=xiangliangji(Y,U);lamuda=1/beita+b;cancha=fabs((beita1-beita)/beita);if (cancha<1.0e-12) break;}printf("迭代次数%d\n",q);return lamuda;}三、计算结果矩阵的最大特征值为:lamuda_501=9.72463409878e+000矩阵的最小特征值为:lamuda_1=-1.07001136150e+001迭代次数70, 矩阵的按模最小特征值为:lamuda_s=-5.55791079423e-003与uk最接近的特征值如下:迭代次数7, u[ 1]=-1.01894949222e+001lamuda_1=-1.01829340331e+001 迭代次数226, u[ 2]=-9.67887622933e+000lamuda_ 2=-9.58570742507e+000迭代次数7, u[ 3]=-9.16825753648e+000lamuda_ 3=-9.17267242393e+000迭代次数8, u[ 4]=-8.65763884364e+000lamuda_ 4=-8.65228400790e+000迭代次数118, u[ 5]=-8.14702015079e+000lamuda_ 5=-8.0934*******e+000迭代次数16, u[ 6]=-7.63640145795e+000lamuda_ 6=-7.65940540769e+000迭代次数15, u[ 7]=-7.12578276510e+000lamuda_ 7=-7.11968464869e+000迭代次数19, u[ 8]=-6.61516407226e+000lamuda_ 8=-6.61176433940e+000迭代次数28, u[ 9]=-6.10454537941e+000lamuda_ 9=-6.0661*******e+000迭代次数21, u[10]=-5.59392668657e+000lamuda_10=-5.58510105263e+000lamuda_11=-5.11408352981e+000迭代次数13, u[12]=-4.57268930088e+000 lamuda_12=-4.57887217687e+000迭代次数290, u[13]=-4.06207060803e+000 lamuda_13=-4.09647092626e+000迭代次数13, u[14]=-3.55145191519e+000 lamuda_14=-3.55421121575e+000迭代次数6, u[15]=-3.04083322234e+000 lamuda_15=-3.0410*******e+000迭代次数1606, u[16]=-2.53021452950e+000 lamuda_16=-2.53397031113e+000迭代次数72, u[17]=-2.01959583665e+000 lamuda_17=-2.00323076956e+000迭代次数19, u[18]=-1.50897714381e+000 lamuda_18=-1.50355761123e+000迭代次数17, u[19]=-9.98358450965e-001 lamuda_19=-9.93558606008e-001迭代次数11, u[20]=-4.87739758120e-001 lamuda_20=-4.87042673885e-001迭代次数10, u[21]=2.28789347246e-002 lamuda_21=2.23173624957e-002迭代次数13, u[22]=5.33497627570e-001 lamuda_22=5.32417474207e-001迭代次数15, u[23]=1.04411632041e+000 lamuda_23=1.05289896269e+000迭代次数29, u[24]=1.55473501326e+000 lamuda_24=1.58944588188e+000迭代次数81, u[25]=2.06535370610e+000 lamuda_25=2.06033046027e+000迭代次数40, u[26]=2.57597239895e+000 lamuda_26=2.55807559707e+000迭代次数13, u[27]=3.08659109179e+000 lamuda_27=3.08024050931e+000迭代次数23, u[28]=3.59720978464e+000 lamuda_28=3.61362086769e+000迭代次数16, u[29]=4.10782847748e+000 lamuda_29=4.0913*******e+000迭代次数23, u[30]=4.61844717033e+000 lamuda_30=4.60303537828e+000迭代次数12, u[31]=5.12906586317e+000 lamuda_31=5.132********e+000迭代次数30, u[32]=5.63968455602e+000 lamuda_32=5.59490634808e+000lamuda_33=6.08093385703e+000迭代次数18, u[34]=6.66092194171e+000lamuda_34=6.68035409211e+000迭代次数74, u[35]=7.17154063455e+000lamuda_35=7.29387744813e+000迭代次数30, u[36]=7.68215932740e+000lamuda_36=7.71711171424e+000迭代次数11, u[37]=8.19277802024e+000lamuda_37=8.22522001405e+000迭代次数38, u[38]=8.70339671309e+000lamuda_38=8.64866606519e+000迭代次数10, u[39]=9.21401540593e+000lamuda_39=9.25420034458e+000矩阵A的(谱范数)条件数为:cond(A)=1.92520427390e+003矩阵A的行列式为:detA=2.77278614175e+118四、讨论迭代初始向量的选取对于计算结果的影响:1.影响迭代速度。
北航数值分析实习题目第一题
![北航数值分析实习题目第一题](https://img.taocdn.com/s3/m/38ed02d48bd63186bcebbc3c.png)
《数值分析B》大作业一ZY1515105 樊雪松一.算法设计方案:1.矩阵A的存储与检索将带状线性矩阵A[501][501]转存为一个矩阵MatrixC[5][501] 。
在数组MatrixC[5][501]中检索A的带内元素a ij的方法是:A的带内元素a ij=C中的元素c i-j+2,j。
2.求解λ1,λ501,λs1、首先分别使用幂法和反幂法迭代求出矩阵按摸最大和最小的特征值λmax和λmin。
λmin即为λs;如果λ max>0,则λ501=λmax;如果λmax<0,则λ1=λmax。
2、使用带原点平移的幂法(mifa()函数),令平移量p=λmax,求出对应的按摸最大的特征值λ’max,如果λ max>0,则λ1=λ’max+p;如果λmax<0,则λ501=λ’max+p。
3、求解A的与数μk=λ1+k(λ501-λ1)/40 的最接近的特征值λik (k=1,2,…,39)。
使用带原点平移的反幂法,令平移量p=μk,即可求出与μk最接近的特征值λ ik。
4、求解A的(谱范数)条件数cond(A)2和行列式detA。
cond(A)2=|λ1/λn|,其中λ1和λn分别是矩阵A的模最大和最小特征值。
求解矩阵A的行列式,可先对矩阵A进行LU分解后,detA等于U所有对角线上元素的乘积。
二.源程序#include<stdio.h>#include<math.h>#include<conio.h>//定义A中元素double C[5][501];double a[501];double b;double c;//声明所有函数void YaSuoJZ(double C[5][501],double a[501],double b,double c) ;//压缩矩阵函数double mifa(double C[5][501]); //幂法函数void daizhuangLU(double A[5][501]); //带状矩阵的LU分解double fanmifa(double C[5][501]);//反幂法函数//最值函数int max2(int x,int y);int max3(int x,int y,int z);int min(int x,int y);//最值函数int max2(int x,int y) //求2个数的最大值{int z;z=x>y?x:y;return(z);}int max3(int x,int y,int z) //求3个数的最大值{int w;w = z > max2(x,y)? z:max2(x,y);return(w);}int min(int x,int y) //求2个数的最小值{int z;z=x>y?y:x;return(z);}//将矩阵A压缩存储在矩阵C中void YaSuoJZ(double C[5][501],double a[501],double b,double c) {int i;for(i=0;i<=500;i++){if(i>=2) C[0][i]=c;else C[0][i]=0;if(i>=1) C[1][i]=b;else C[1][i]=0;if(i<=499) C[3][i]=b;else C[3][i]=0;if(i<=498) C[4][i]=c;else C[4][i]=0;C[2][i]=a[i];}}//幂法函数:用幂法求矩阵模最大的特征值double mifa(double C[5][501]){double u[501];double y[501]={0},η=0;double β,βk=0;double ε=1;// ε为精度double sumu=0,sumAY=0;int i,j,k=1; //k为循环次数for (i=0;i<=500;i++) //取任一非零向量u0u[i] = 1.0;while(ε>=1e-12){for(i=0;i<=500;i++) //求u(k-1)的2范数ηsumu=sumu+u[i]*u[i];η=sqrt(sumu);sumu=0;for(i=0;i<=500;i++) //求y(k-1)y[i]=u[i]/η;for(i=0;i<=500;i++) //求u(k)的各分量u[i]{for(j=max2(0,i-2);j<=min(i+2,500);j++)sumAY=sumAY+C[i-j+2][j]*y[j];u[i]=sumAY;sumAY=0;}//求幂法中的βkβ=βk; //将β(k-1)放在β中βk=0;for(i=0;i<=500;i++) //求βkβk=βk+y[i]*u[i];if(k>=2)ε=fabs(βk-β)/fabs(βk);k++;}return(βk);}//带状矩阵的LU分解void daizhuangLU(double A[5][501]){int i,j,k,m,t;double sumukj=0,sumlik=0;for(k=0;k<=500;k++){for(j=k;j<=min(k+2,500);j++) //求ukj并存在A[k-j+2][j]中{for(t=max3(0,k-2,j-2);t<=k-1;t++)sumukj=sumukj+A[k-t+2][t]*A[t-j+2][j];A[k-j+2][j]=A[k-j+2][j]-sumukj;sumukj=0;}if(k<500)for(i=k+1;i<=min(k+2,500);i++) //求lik并存在A[i-k+2][k]中{for(m=max3(0,i-2,k-2);m<=k-1;m++)sumlik=sumlik+A[i-m+2][m]*A[m-k+2][k];A[i-k+2][k]=(A[i-k+2][k]-sumlik)/A[2][k];sumlik=0;}}}//反幂法函数:用反幂法求矩阵的模最小的特征值double fanmifa(double M[5][501]){double u[501];double y[501]={0},x[501],η=0;double fβ,fβk=0;double ε=1;double fsumu=0,sumLX=0,sumUu=0;int i,t,m,k=1;for(i=0;i<=500;i++) //任取一非零向量u0u[i]=1;daizhuangLU(M); //对A进行LU分解A=LU,Au(k)=y(k-1)等价于Uu(k)=x和Lx=y(k-1) while(ε>=1e-12){for(i=0;i<=500;i++) //求u(k-1)的2范数ηfsumu=fsumu+u[i]*u[i];η=sqrt(fsumu);fsumu=0;for(i=0;i<=500;i++) //求y(k-1)y[i]=u[i]/η;for(i=0;i<=500;i++) //求中间向量xx[i]=y[i];for(i=1;i<=500;i++){for(t=max2(0,i-2);t<=i-1;t++)sumLX=sumLX+M[i-t+2][t]*x[t];x[i]=x[i]-sumLX;sumLX=0;}u[500]=x[500]/C[2][500]; //求u(k)的各分量u[i]for(i=499;i>=0;i--){for(m=i+1;m<=min(i+2,500);m++)sumUu=sumUu+M[i-m+2][m]*u[m];u[i]=(x[i]-sumUu)/M[2][i];sumUu=0;}//求反幂法中的βkfβ=fβk; //将fβ(k-1)放在fβ中fβk=0;for(i=0;i<=500;i++) //求fβkfβk=fβk+y[i]*u[i];if(k>=2)ε=fabs(1/fβk-1/fβ)/fabs(1/fβk);k++;}return(1/fβk);}//主函数void main(){int i,j,k;double λ1,λ501,λm,λm1,λm2,λs,λ,p;double cond,detA=1;for(i=1;i<=501;i++)a[i-1]=(1.64-0.024*i)*sin(0.2*i)-0.64*exp(0.1/i);b=0.16;c=-0.064;YaSuoJZ(C,a,b, c); //将矩阵A中元素压缩存储在C中λm1=mifa(C); //对A用幂法求出模最大的特征值λm1λs=fanmifa(C); //对A用反幂法求出模最小的特征值λsYaSuoJZ(C,a,b, c); //还原矩阵A中元素并压缩存储在C中for(j=0;j<=500;j++) //对A进行平移,平移量为λm1,平移后矩阵元素压缩存储在C中C[2][j]=C[2][j]-λ?m1;λm=mifa(C);λm2=λm1+λm; //λm1与λm2是矩阵的最大最小特征值if(λm1>λm2) //判断A最大最小特征值{λ501=λm1;λ1=λm2;}else{λ501=λm2;λ1=λm1;}printf("数值分析计算实习第一题\n\n ZY1515105 樊雪松\n\n (1)A的最大最小以及模最小的特征值\n");printf("A的最小特征值λ1=%.13e\n",λ1);printf("A的最大特征值λ501=%.13e\n",λ501);printf("A的模最小特征值λs=%.13e\n",λs);printf("\n(2)与数μk最接近的特征值\n");printf("\t要求接近的值\t\t\t实际求得的特征值\n");YaSuoJZ(C,a,b, c); //还原矩阵A中元素并压缩存储在C中for(k=1;k<=39;k++){p=λ1+k*(λ501-λ1)/40;for(j=0;j<=501;j++)C[2][j]=C[2][j]-p;λ=fanmifa(C)+p;printf("μ%d=%.13e λ%d=%.13e\n",k,p,k,λ);YaSuoJZ(C,a,b, c); //还原矩阵A中元素并压缩存储在C中}printf("\n(3)计算A的条件数cond(A)和行列式detA\n");cond=λm1/λs;daizhuangLU(C);for(j=0;j<=500;j++)detA=detA*C[2][j];printf("A的条件数cond(A)=%.13e\n",cond);printf("A的行列式detA=%.13e\n",detA);getch();}三、运行结果数值分析计算实习第一题ZY1515105 樊雪松(1)A的最大最小以及模最小的特征值A的最小特征值λ1=-1.0700113615018e+001A的最大特征值λ501=9.7246340987773e+000A的模最小特征值λs=-5.5579107942295e-003(2)与数μk最接近的特征值要求接近的值实际求得的特征值μ1=-1.0189494922173e+001 λ1=-1.0182934033146e+001 μ2=-9.6788762293280e+000 λ2=-9.5857074250676e+000 μ3=-9.1682575364831e+000 λ3=-9.1726724239280e+000 μ4=-8.6576388436383e+000 λ4=-8.6522840078976e+000 μ5=-8.1470201507934e+000 λ5=-8.0934838086753e+000 μ6=-7.6364014579485e+000 λ6=-7.6594054076924e+000 μ7=-7.1257827651036e+000 λ7=-7.1196846486912e+000 μ8=-6.6151640722588e+000 λ8=-6.6117643393973e+000 μ9=-6.1045453794139e+000 λ9=-6.0661032265951e+000 μ10=-5.5939266865690e+000 λ10=-5.5851010526284e+000 μ11=-5.0833079937241e+000 λ11=-5.1140835298122e+000 μ12=-4.5726893008792e+000 λ12=-4.5788721768651e+000 μ13=-4.0620706080344e+000 λ13=-4.0964709262599e+000 μ14=-3.5514519151895e+000 λ14=-3.5542112157508e+000 μ15=-3.0408332223446e+000 λ15=-3.0410900181333e+000 μ16=-2.5302145294997e+000 λ16=-2.5339703111304e+000 μ17=-2.0195958366549e+000 λ17=-2.0032307695635e+000μ18=-1.5089771438100e+000 λ18=-1.5035576112274e+000μ19=-9.9835845096511e-001 λ19=-9.9355860600754e-001μ20=-4.8773975812023e-001 λ20=-4.8704267388496e-001μ21=2.2878934724645e-002 λ21=2.2317362495748e -002μ22=5.3349762756952e-001 λ22=5.3241747420686e -001μ23=1.0441163204144e+000 λ23=1.0528989626935e+000μ24=1.5547350132593e+000 λ24=1.5894458818809e+000μ25=2.0653537061042e+000 λ25=2.0603304602743e+000μ26=2.5759723989490e+000 λ26=2.5580755970728e+000μ27=3.0865910917939e+000 λ27=3.0802405093071e+000μ28=3.5972097846388e+000 λ28=3.6136208676923e+000μ29=4.1078284774837e+000 λ29=4.0913785104506e+000μ30=4.6184471703285e+000 λ30=4.6030353782791e+000μ31=5.1290658631734e+000 λ31=5.1329242838984e+000μ32=5.6396845560183e+000 λ32=5.5949063480833e+000μ33=6.1503032488632e+000 λ33=6.0809338570269e+000μ34=6.6609219417080e+000 λ34=6.6803540921116e+000μ35=7.1715406345529e+000 λ35=7.2938774481266e+000μ36=7.6821593273978e+000 λ36=7.7171117142356e+000μ37=8.1927780202427e+000 λ37=8.2252200140502e+000μ38=8.7033967130876e+000 λ38=8.6486660651935e+000μ39=9.2140154059324e+000 λ39=9.2542003445750e+000(3)计算A 的条件数cond(A)和行列式detAA 的条件数cond(A)=1.9252042739022e+003A 的行列式detA=2.7727861417521e+118四、结果分析设A 的n 个线性无关的特征向量为1x ,2x ,…,n x ,其相对应的特征值满足的关系为n λλλλ≥≥≥> 321。
北航数值分析第一次大作业
![北航数值分析第一次大作业](https://img.taocdn.com/s3/m/4bf9721e6c175f0e7cd13781.png)
一、算法的设计方案:(一)各所求值得计算方法1、最大特征值λ501,最小特征值λ1,按模最小特征值λs的计算方法首先使用一次幂法运算可以得到矩阵的按模最大的特征值λ,λ必为矩阵A的最大或最小特征值,先不做判断。
对原矩阵A进行一次移项,即(A-λI),在进行一次幂法运算,可以得到另一个按模最大特征值λ0。
比较λ和λ的大小,较大的即为λ501,较小的即为λ1。
对矩阵A进行一次反幂法运算,即可得到按模最小特征值λs。
2、A与μk 值最接近的特征值λik的计算方法首先计算出k所对应的μk 值,对原矩阵A进行一次移项,即(A-μkI),得到一个新的矩阵,对新矩阵进行一次反幂法运算,即可得到一个按模最小特征值λi 。
则原矩阵A与μk值最接近的特征值λik=λi+μk。
3、A的(谱范数)条件数cond(A)2的计算方法其中错误!未找到引用源。
矩阵A的按模最大和按模最小特征值。
(二)程序编写思路。
由于算法要求A的零元素不存储,矩阵A本身为带状矩阵,所以本题的赋值,LU分解,反幂法运算过程中,均应采用Doolittle分解法求解带状线性方程组的算法思路。
幂法、反幂法和LU分解均是多次使用,应编写子程序进行反复调用。
二、源程序:#include<stdio.h>#include<iostream>#include<stdlib.h>#include<math.h>#include<float.h>#include<iomanip> /*头文件*//*定义全局变量*/#define N 502 /*取N为502,可实现从1到501的存储,省去角标变换的麻烦*/ #define epsilon 1.0e-12 /*定义精度*/#define r 2 /*r,s为带状矩阵的半带宽,本题所给矩阵二者都是2*/ #define s 2double c[6][N]; /*定义矩阵存储压缩后的带状矩阵*/double fuzhi(); /*赋值函数*/void LUfenjie(); /*LU分解程序*/int max(int a,int b); /*求两个数字中较大值*/int min(int a,int b); /*求两个数字中较小值*/double mifa(); /*幂法计算程序*/double fanmifa(); /*反幂法计算程序*/double fuzhi() /*赋值程序,按行赋值,行从1到5,列从1到501,存储空间的第一行第一列不使用,角标可以与矩阵一一对应,方便书写程序*/{int i,j;i=1;for(j=3;j<N;j++){c[i][j]=-0.064;}i=2;for(j=2;j<N;j++){c[i][j]=0.16;}i=3;for(j=1;j<N;j++){c[i][j]=(1.64-0.024*j)*sin(0.2*j)-0.64*exp(0.1/j);}i=4;for(j=1;j<N-1;j++){c[i][j]=0.16;}i=5;for(j=1;j<N-2;j++){c[i][j]=-0.064;}return(c[i][j]);}int max(int a,int b){ return((a>b)?a:b);}int min(int a,int b){ return((a<b)?a:b);}void LUfenjie() /*LU分解程序,采用的是带状矩阵压缩存储后的LU分解法*/{double temp;int i,j,k,t;for(k=1;k<N;k++){ for(j=k;j<=min(k+s,N-1);j++){temp=0;for(t=max(1,max(k-r,j-s));t<=(k-1);t++){temp=temp+c[k-t+s+1][t]*c[t-j+s+1][j];}c[k-j+s+1][j]=c[k-j+s+1][j]-temp;}for(i=k+1;i<=min(k+r,N-1);i++){temp=0;for(t=max(1,max(i-r,k-s));t<=(k-1);t++){temp=temp+c[i-t+s+1][t]*c[t-k+s+1][k];}c[i-k+s+1][k]=(c[i-k+s+1][k]-temp)/c[s+1][k];}}}double mifa() /*幂法计算程序*/ {double u0[N],u1[N];double temp,Lu,beta=0,beta0;int i,j;for(i=1;i<N;i++) /*选取迭代初始向量*/{u0[i]=1;}do{beta0=beta;temp=0;for(i=1;i<N;i++){temp=temp+u0[i]*u0[i]; }Lu=sqrt(temp);for(i=1;i<N;i++){u1[i]=u0[i]/Lu;}for(i=1;i<N;i++){temp=0;for(j=max(i-1,1);j<=min(i+2,N-1);j++){temp=temp+c[i-j+s+1][j]*u1[j]; }u0[i]=temp;} //新的u0temp=0;for(i=1;i<N;i++){temp=temp+u1[i]*u0[i]; }beta=temp;}while(fabs(beta-beta0)/fabs(beta)>=epsilon); /*迭代运行条件判断*/return(beta);}double fanmifa() /*反幂法计算程序*/{double u0[N],u1[N],u2[N];double temp,Lu,beta=0,beta0;int i,t;for(i=1;i<N;i++) /*选取迭代初始向量*/{u0[i]=1;}do{beta0=beta;temp=0;for(i=1;i<N;i++){temp=temp+u0[i]*u0[i]; }Lu=sqrt(temp);for(i=1;i<N;i++){u1[i]=u0[i]/Lu;u2[i]=u1[i];}fuzhi();LUfenjie();/*带状矩阵压缩存储并进行LU分解后,求解线性方程组得到迭代向量u k,即程序中的u0*/for(i=2;i<N;i++){ temp=0;for(t=max(1,i-r);t<=(i-1);t++){temp=temp+c[i-t+s+1][t]*u2[t];}u2[i]=u2[i]-temp;}u0[N-1]=u2[N-1]/c[s+1][N-1];for(i=N-2;i>=1;i--){ temp=0;for(t=i+1;t<=min(i+s,N-1);t++){temp=temp+c[i-t+s+1][t]*u0[t];}u0[i]=(u2[i]-temp)/c[s+1][i];}temp=0;for(i=1;i<N;i++){temp=temp+u1[i]*u0[i]; }beta=temp;beta=1/beta; /*beta即为所求特征值,可直接返回*/}while(fabs(beta-beta0)/fabs(beta)>=epsilon); /*迭代运行条件判断*/return(beta);}void main(){double u[40]; /*定义数组,存放k值运算得到的μk值*/double lambda1,lambda501,lambdak,a,b,d,cond,det;int i,j,k;fuzhi();a=mifa(); /*幂法计算按模最大值*/fuzhi();d=fanmifa(); /*反幂法计算按模最小值*/fuzhi();for(j=1;j<N;j++){c[3][j]=c[3][j]-a;}b=mifa()+a; /*移项后幂法计算按模最大值*/if(a>b) /*比较两个按模最大值大小,并相应输出最大特征值λ501和最小特征值λ1*/ {lambda1=b;lambda501=a;printf("矩阵A最小的特征值lambda1=%13.11e\n",lambda1);printf("矩阵A最大的特征值lambda501=%13.11e\n",lambda501);}else{lambda1=a;lambda501=b;printf("矩阵A最小的特征值lambda1=%13.11e\n",lambda1);printf("矩阵A最大的特征值lambda501=%13.11e\n",lambda501);}printf("矩阵A按模最小特征值lambdas=%13.11e\n",d); /*输出按模最小特征值λs*/for(k=1;k<40;k++) /*对每一个进行移项反幂法运算,求出最接近μk的特征值并输出*/ {u[k]=(lambda501-lambda1)*k/40+lambda1;fuzhi();for(j=1;j<N;j++){c[3][j]=c[3][j]-u[k];}lambdak=fanmifa()+u[k];i=k;printf("矩阵A最接近uk特征值lambdak%d=%13.11e\n",i,lambdak);}cond=fabs(a/d);printf("A的条件数=%13.11e\n",cond); /*计算A条件数并输出*/fuzhi(); /*计算A的行列式值并输出*/LUfenjie();det=1;for(i=1;i<N;i++){det=det*c[3][i];}printf("行列式的值detA=%13.11e\n",det);}三、程序的运行结果:四、初始向量的选取对计算结果的影响:(一)选取形式不变,数值变换1、取u0为[0.5,0.5………..0.5],运行结果如下:2、取u0为[50,50………..50],运行结果如下:从运行结果来看,此类初始向量的选取对结果不会产生影响,即使选成0,结果也不变化。
北航硕士研究生数值分析大作业一
![北航硕士研究生数值分析大作业一](https://img.taocdn.com/s3/m/552f7b83a0116c175e0e4801.png)
数值分析—计算实习作业一学院:17系专业:精密仪器及机械姓名:张大军学号:DY14171142014-11-11数值分析计算实现第一题报告一、算法方案算法方案如图1所示。
(此算法设计实现完全由本人独立完成)图1算法方案流程图二、全部源程序全部源程序如下所示#include <iostream.h>#include <iomanip.h>#include <math.h>int main(){double a[501];double vv[5][501];double d=0;double r[3];double uu;int i,k;double mifayunsuan(double *a,double weiyi);double fanmifayunsuan(double *a,double weiyi);void yasuo(double *A,double (*C)[501]);void LUfenjie(double (*C)[501]);//赋值语句for(i=1;i<=501;i++){a[i-1]=(1.64-0.024*i)*sin(0.2*i)-0.64*exp(0.1/i);}//程序一:使用幂方法求绝对值最大的特征值r[0]=mifayunsuan(a,d);//程序二:使用幂方法求求平移λ[0]后绝对值最大的λ,得到原矩阵中与最大特征值相距最远的特征值d=r[0];r[1]=mifayunsuan(a,d);//比较λ与λ-λ[0]的大小,由已知得if(r[0]>r[1]){d=r[0];r[0]=r[1];r[1]=d;}//程序三:使用反幂法求λr[2]=fanmifayunsuan(a,0);cout<<setiosflags(ios::right);cout<<"λ["<<1<<"]="<<setiosflags(ios::scientific)<<setprecision(12)<<r[0]<<endl;cout<<"λ["<<501<<"]="<<setiosflags(ios::scientific)<<setprecision(12)<<r[1]<<endl;cout<<"λ[s]="<<setiosflags(ios::scientific)<<setprecision(12)<<r[2]<<endl;//程序四:求A的与数u最接近的特征值for(k=1;k<40;k++){uu=r[0]+k*(r[1]-r[0])/40;cout<<"最接近u["<<k<<"]"<<"的特征值为"<<setiosflags(ios::scientific)<<setprecision(12)<<fanmifayunsuan(a,uu)<<endl;}//程序五:谱范数的条件数是绝对值最大的特征值除以绝对值最小的特征值的绝对值cout<<"cond(A)2="<<fabs(r[0]/r[2])<<endl;//程序六:A的行列式的值就是A分解成LU之U的对角线的乘积yasuo(a,vv);LUfenjie(vv);uu=1;for(i=0;i<501;i++){uu=uu*vv[2][i];}cout<<"Det(A)="<<uu<<endl;return 1;}double mifayunsuan(double *a,double weiyi){int i,k;double b=0.16;double c=-0.064;double ee,w,v1,v2,mm,sum;double u[501];double y[505]={0};for(i=0;i<501;i++)u[i]=1;//给u赋初值if (weiyi!=0){for (i=0;i<501;i++)a[i]-=weiyi;}ee=1;k=0;//使得初始计算时进入循环语句while(ee>1e-12){mm=0;for(i=0;i<501;i++){mm=mm+u[i]*u[i];}w=sqrt(mm);for(i=0;i<501;i++){y[i+2]=u[i]/w;//注意此处编程与书上不同,之后会解释它的巧妙之处1 }for(i=0;i<501;i++){u[i]=c*y[i]+b*y[i+1]+a[i]*y[i+2]+b*y[i+3]+c*y[i+4];//1显然巧妙之处凸显出来}sum=0;for(i=0;i<501;i++){sum+=y[i+2]*u[i];}v1=v2;v2=sum;//去除特殊情况,减少漏洞if(k==0){k++;}else{ee=fabs(v2-v1)/fabs(v2);}}if (weiyi!=0){for (i=0;i<501;i++)a[i]+=weiyi;}//还原A矩阵return (v2+weiyi);}double fanmifayunsuan(double *a,double weiyi){int i,k;double b=0.16;double c=-0.064;double ee,w,v1,v2,mm,sum;double u[501];double y[501];double C[5][501];void yasuo(double *A,double (*C)[501]);void LUfenjie(double (*C)[501]);void qiuU(double (*C)[501],double *y,double *u);//把A阵压缩到C阵中for(i=0;i<501;i++)u[i]=1;//给u赋初值if (weiyi!=0){for (i=0;i<501;i++)a[i]-=weiyi;}yasuo(a,C);LUfenjie(C);ee=1;k=0; //使得初始计算时进入循环语句while(ee>1e-12){mm=0;for(i=0;i<501;i++){mm=mm+u[i]*u[i];}w=sqrt(mm);for(i=0;i<501;i++){y[i]=u[i]/w;}qiuU(C,y,u);sum=0;for(i=0;i<501;i++){sum+=y[i]*u[i];}v1=v2;v2=sum;//去除特殊情况,减少漏洞if(k==0){k++;}else{ee=fabs(1/v2-1/v1)/fabs(1/v2);}}if (weiyi!=0){for (i=0;i<501;i++)a[i]+=weiyi;}//还原A矩阵return (1/v2+weiyi);}void yasuo(double *A,double (*C)[501]){double b=0.16;double c=-0.064;int i;for(i=0;i<501;i++){C[0][i]=c;C[1][i]=b;C[2][i]=A[i];C[3][i]=b;C[4][i]=c;}}void LUfenjie(double (*C)[501]){int k,t,j;int r=2,s=2;double sum;int minn(int ,int );int maxx(int ,int );for(k=0;k<501;k++){for(j=k;j<=minn(k+s,501-1);j++){if(k==0)sum=0;else{sum=0;for(t=maxx(k-r,j-s);t<k;t++){sum=sum+C[k-t+s][t]*C[t-j+s][j];}}C[k-j+s][j]=C[k-j+s][j]-sum;}for(j=k+1;j<=minn(k+r,501-1);j++){if(k<501-1){if(k==0)sum=0;else{sum=0;for(t=maxx(j-r,k-s);t<k;t++){sum=sum+C[j-t+s][t]*C[t-k+s][k];}}C[j-k+s][k]=(C[j-k+s][k]-sum)/C[s][k];}}}}void qiuU(double (*C)[501],double *y,double *u){int i,t;double b[501];double sum;int r=2,s=2;int minn(int ,int );int maxx(int ,int );for(i=0;i<501;i++){b[i]=y[i];}for(i=1;i<501;i++){sum=0;for(t=maxx(0,i-r);t<i;t++){sum=sum+C[i-t+s][t]*b[t];}b[i]=b[i]-sum;}u[500]=b[500]/C[s][500];for(i=501-2;i>=0;i--){sum=0;for(t=i+1;t<=minn(i+s,500);t++){sum=sum+C[i-t+s][t]*u[t];}u[i]=(b[i]-sum)/C[s][i];}}int minn(int x,int y){int min;if(x>y)min=y;elsemin=x;return min;}int maxx(int b,int c){int max;if(b>c){if(b>0)max=b;elsemax=0;}else{if(c>0)max=c;elsemax=0;}return max;}三、特征值以及的值λ[1]=-1.070011361502e+001 λ[501]=9.724634098777e+000λ[s]=-5.557910794230e-003最接近u[1]的特征值为-1.018293403315e+001最接近u[2]的特征值为-9.585707425068e+000最接近u[3]的特征值为-9.172672423928e+000最接近u[4]的特征值为-8.652284007898e+000最接近u[5]的特征值为-8.0934********e+000最接近u[6]的特征值为-7.659405407692e+000最接近u[7]的特征值为-7.119684648691e+000最接近u[8]的特征值为-6.611764339397e+000最接近u[9]的特征值为-6.0661********e+000最接近u[10]的特征值为-5.585101052628e+000最接近u[11]的特征值为-5.114083529812e+000最接近u[12]的特征值为-4.578872176865e+000最接近u[13]的特征值为-4.096470926260e+000最接近u[14]的特征值为-3.554211215751e+000最接近u[15]的特征值为-3.0410********e+000最接近u[16]的特征值为-2.533970311130e+000最接近u[17]的特征值为-2.003230769563e+000最接近u[18]的特征值为-1.503557611227e+000最接近u[19]的特征值为-9.935586060075e-001最接近u[20]的特征值为-4.870426738850e-001最接近u[21]的特征值为2.231736249575e-002最接近u[22]的特征值为5.324174742069e-001最接近u[23]的特征值为1.052898962693e+000最接近u[24]的特征值为1.589445881881e+000最接近u[25]的特征值为2.060330460274e+000最接近u[26]的特征值为2.558075597073e+000最接近u[27]的特征值为3.080240509307e+000最接近u[28]的特征值为3.613620867692e+000最接近u[29]的特征值为4.0913********e+000最接近u[30]的特征值为4.603035378279e+000最接近u[31]的特征值为5.132924283898e+000最接近u[32]的特征值为5.594906348083e+000最接近u[33]的特征值为6.080933857027e+000最接近u[34]的特征值为6.680354092112e+000最接近u[35]的特征值为7.293877448127e+000最接近u[36]的特征值为7.717111714236e+000最接近u[37]的特征值为8.225220014050e+000最接近u[38]的特征值为8.648666065193e+000最接近u[39]的特征值为9.254200344575e+000cond(A)2=1.925204273902e+003 Det(A)=2.772786141752e+118四、现象讨论在大作业的程序设计过程当中,初始向量的赋值我顺其自然的设为第一个分量为1,其它分量为0的向量,计算结果与参考答案存在很大差别,计算结果对比如下图2所示(左侧为正确结果,右侧为错误结果),导致了我花了很多的时间去检查程序算法。
北航数值分析第一次大作业
![北航数值分析第一次大作业](https://img.taocdn.com/s3/m/9dbb5dc058f5f61fb736665c.png)
一、算法的设计方案1、求矩阵最大特征值,最小特征值与按模最小特征值的方法首先用幂法求出矩阵A 的一个特征值λ,则其必为最大特征值与最小特征值二者其一,之后对矩阵A 进行一次移项,即A-λI ,然后再次用幂法求出另一个按模最大特征值,再比较这两个值的大小,则较大的为矩阵A 的最大特征值,较小的为矩阵A 的最小特征值。
用反幂法可以求得矩阵的按模最小特征值λs 2、求矩阵A 与k μ最接近的特征值k i λ可以先对矩阵A 进行移项,即A-k μI ,对这个移项后的矩阵用反幂法求出按模最小的特征值,然后再加上k μ,就求出所要求的k i λ。
3、求矩阵A 的条件数cond(A)2和行列式detA由于矩阵A 是非奇异的实对称矩阵,所以可以用以下公式方便地求出矩阵A 的条件数cond(A)2=sλλ501对于矩阵A 行列式的求法也比较简单。
由于在用反幂法的过程中对A 进行了Doolittle LU 分解,所以detA=detL*detU ,而detL=1,detU 可以用对角线元素相乘方便地算出,所以detA 就是U 阵对角线元素的乘积。
4、几点说明由于A 中的零元素都不存储,所以在存储矩阵的时候采用书上26页的压缩存储方式。
在反幂法中采用LU 分解求解带状线性方程组的算法来求解每一次迭代的方程组,由于每一次方程左边的系数都相同,所以只要进行一次LU 分解即可。
因为幂法,反幂法,LU 分解,求最大值与最小值在程序编写的过程中多次用到,所以这几项作为子函数单独进行编写。
二、源程序如下:#include "stdio.h"#include "math.h"# define s 2# define r 2# define N 501double c[5][N]={0};double lameda[40];double max(double x,double y);double min(double x,double y);double mifa();double fanmifa();void LUfenjie();void main(){int i=0,j=0;/*============对数组进行赋值==============*/ for(j=3;j<=N;j++)c[0][j-1]=-0.064;for(j=2;j<=N;j++)c[1][j-1]=0.16;for(j=1;j<=N;j++)c[2][j-1]=(1.64-0.024*j)*sin(0.2*j)-0.64*exp(0.1/j);for(j=1;j<=N-1;j++)c[3][j-1]=0.16;for(j=1;j<=N-2;j++)c[4][j-1]=-0.064;/*========幂法求最大和最小特征值==============*/ double a=mifa();for(j=1;j<=N;j++)c[2][j-1]-=a;double b=mifa()+a;double lameda501=max(a,b);double lameda1=min(a,b);printf("矩阵A最大的特征值=%13.11e\n",lameda501);printf("矩阵A最小的特征值=%13.11e\n",lameda1);/*========反幂法求绝对值最小特征值===========*/for(j=1;j<=N;j++)c[2][j-1]+=a;double lamedas=fanmifa();printf("矩阵A按模最小的特征值=%13.11e\n",lamedas);/*========求条件数和行列式的值===========*/double detA=1;for(j=1;j<=N;j++)detA*=c[2][j-1];printf("矩阵A的行列式=%13.11e\n",detA);double condA=fabs(lameda501/lamedas);printf("矩阵A的条件数=%13.11e\n",condA);/*========反幂法求与uk最接近的特征值========*/for(int k=1;k<40;k++){ for(j=3;j<=N;j++)c[0][j-1]=-0.064;for(j=2;j<=N;j++)c[1][j-1]=0.16;for(j=1;j<=N;j++)c[2][j-1]=(1.64-0.024*j)*sin(0.2*j)-0.64*exp(0.1/j);for(j=1;j<=N-1;j++)c[3][j-1]=0.16;for(j=1;j<=N-2;j++)c[4][j-1]=-0.064;for(j=1;j<=N;j++)c[2][j-1]-=(lameda1+k*(lameda501-lameda1)/40);lameda[k]=fanmifa()+(lameda1+k*(lameda501-lameda1)/40);printf("矩阵A最接近u%d的特征值=%13.11e\n",k,lameda[k]);}}double max(double x,double y) //求两数中的最大值{double z;z=x>y ? x:y;return(z);}double min(double x,double y) //求两数中的最小值{double z;z=x<y ? x:y;return(z);}double mifa() //幂法求按模最大特征值{double u[N]={0};double sum=0;double zero=0;double y[N]={0};double b1=0,b2=0;int i=0,j=0;for(i=0;i<N;i++)u[i]=1;do{ sum=0;for(i=0;i<N;i++)sum+=u[i]*u[i];for(i=0;i<N;i++)y[i]=u[i]/sqrt(sum);for(i=0;i<N;i++){ u[i]=0;for(j=max(0,i-2);j<=min(i+2,N-1);j++){u[i]+=c[i-j+s][j]*y[j];}}b2=b1;zero=0;for(i=0;i<N;i++)zero+=y[i]*u[i];b1=zero;}while((fabs(b1-b2)/fabs(b1))>1e-12);return(b1);}double fanmifa() //反幂法求按模最小特征值{double u[N]={0};double sum=0;double zero=0;double y[N]={0};double b[N]={0};double b1=0,b2=0;int i=0,j=0,t=0;for(i=0;i<N;i++)u[i]=1;LUfenjie();do{ sum=0;for(i=0;i<N;i++)sum+=u[i]*u[i];for(i=0;i<N;i++){b[i]=u[i]/sqrt(sum);y[i]=b[i];}for(i=1;i<N;i++)for(t=max(0,i-r);t<i;t++)y[i]-=c[i-t+s][t]*y[t];u[N-1]=y[N-1]/c[s][N-1];for(i=N-2;i>=0;i--){ for(t=i+1;t<=min(i+s,N-1);t++)y[i]-=c[i-t+s][t]*u[t];u[i]=y[i]/c[s][i];}b2=b1;zero=0;for(i=0;i<N;i++)zero+=b[i]*u[i];b1=1/zero;}while((fabs(b1-b2)/fabs(b1))>1e-12);return(b1);}void LUfenjie() //对矩阵做LU分解{ int k=0;int j=0;int i=0;int t=0;for(k=0;k<N;k++){ for(j=k;j<=min(k+s,N-1);j++)for(t=max(max(0,k-r),j-s);t<k;t++)c[k-j+s][j]-=c[k-t+s][t]*c[t-j+s][j];for(i=k+1;i<=min(k+r,N-1);i++){ for(t=max(max(0,i-r),k-s);t<k;t++)c[i-k+s][k]-=c[i-t+s][t]*c[t-k+s][k];c[i-k+s][k]/=c[s][k];}}}三、运行结果如下四、初始向量对计算结果的影响在本程序的编写中,为了方便起见,所以迭代向量的初值选为u=[1 1 1 ...1]。
北航数值分析第一次大作业(幂法反幂法)
![北航数值分析第一次大作业(幂法反幂法)](https://img.taocdn.com/s3/m/e44d5fd1b14e852458fb57a1.png)
一、问题分析及算法描述1. 问题的提出:(1)用幂法、反幂法求矩阵A =[a ij ]20×20的按摸最大和最小特征值,并求出相应的特征向量。
其中 a ij ={sin (0.5i +0.2j ) i ≠j 1.5cos (i +1.2j ) i =j要求:迭代精度达到10−12。
(2)用带双步位移的QR 法求上述的全部特征值,并求出每一个实特征值相应的特征向量。
2. 算法的描述:(1) 幂法幂法主要用于计算矩阵的按摸为最大的特征值和相应的特征向量。
其迭代格式为:{ 任取非零向量u 0=(h 1(0),⋯,h n (0))T|h r (k−1)|=max 1≤j≤n |h r (k−1)| y ⃑ k−1=u ⃑ k−1|h r (k−1)| u ⃑ k =Ay ⃑ k−1=(h 1(k ),⋯,h n (k ))T βk =sgn (h r (k−1))h r (k ) (k =1,2,⋯) 终止迭代的控制选用≤ε。
幂法的使用条件为n ×n 实矩阵A 具有n 个线性无关的特征向量x 1,x 2,⋯,x n ,其相应的特征值λ1,λ2,⋯,λn 满足不等式|λ1|>|λ2|≥|λ3|≥⋯≥|λn |或λ1=λ2=⋯=λm|λ1|>|λm+1|≥|λm+2|≥⋯≥|λn |幂法收敛速度与比值|λ2λ1|或|λm+1λ1|有关,比值越小,收敛速度越快。
(2) 反幂法反幂法用于计算n ×n 实矩阵A 按摸最小的特征值,其迭代格式为:{任取非零向量u 0∈R nηk−1=√u ⃑ k−1T u ⃑ k−1 y ⃑ k−1=u ⃑ k−1ηk−1⁄ Au ⃑ k =y ⃑ k−1 βk =y ⃑ k−1u ⃑ k (k =1,2,⋯) 每迭代一次都要求解一次线性方程组Au ⃑ k =y ⃑ k−1。
当k 足够大时,λn ≈1βk ,y ⃑ k−1可近似的作为矩阵A 的属于λn 的特征向量。
北航数值分析-实习作业1(C语言详细注释)
![北航数值分析-实习作业1(C语言详细注释)](https://img.taocdn.com/s3/m/6055f8da84254b35eefd3463.png)
《数值分析》计算实习作业《一》北航第一题 设有501501⨯的矩阵⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=501500499321a bc b a b cc b a b ccb a bc c b a b c b a A其中.064.0,16.0);501,2,1(64.0)2.0sin()024.064.1(1.0-===--=c b i e i i a i i 矩阵的特征值)501,,2,1( =i i λ满足||min ||,501150121i i s λλλλλ≤≤=<<<试求1. 5011,λλ和s λ的值2. 的与数4015011λλκλμ-+=k 最接近的特征值)39,,2,1( =K κλi3. 的(谱范数)条件数2)A (cond 和行列式A det要求1. 算法的设计方案(A 的所有零元素都不能存储)2. 全部源程序(详细注释)。
变量为double ,精度-1210=ε,输出为e 型12位有效数字3. 特征值s 5011,,λλλ和)39,,2,1( =K κλi 以及A cond det ,)A (2的值 4. 讨论迭代初始向量的选取对计算结果的影响,并说明原因解答:1. 算法设计对于s λ满足||min ||5011i i s λλ≤≤=,所以s λ是按模最小的特征值,直接运用反幂法可求得。
对于5011,λλ,一个是最大的特征值,一个是最小的特征值,不能确定两者的绝对值是否相等,因此必须首先假设||||5011λλ≠,然后运用幂法,看能否求得一个特征值,如果可以求得一个,证明A 是收敛的,求得的结果是正确的,然后对A 进行带原点平移的幂法,偏移量是前面求得的特征值,可以求得另一个特征值,最后比较这两个特征值,较大的特征值是501λ,较小的特征值就是1λ。
如果在假设的前提下,无法运用幂法求得按模最大的特征值,即此时A 不收敛,则需要将A 进行带原点平移的幂法,平移量可以选取1,再重复上述步骤即可求得两个特征值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北航数值分析作业第一题:一、算法设计方案1.要求计算矩阵的最大最小特征值,通过幂法求得模最大的特征值,进行一定判断即得所求结果;2.求解与给定数值接近的特征值,可以该数做漂移量,新数组特征值倒数的绝对值满足反幂法的要求,故通过反幂法即可求得;3.反幂法计算时需要方程求解中间过渡向量,需设计Doolite分解求解;4.|A|=|B||C|,故要求解矩阵的秩,只需将Doolite分解后的U矩阵的对角线相乘即为矩阵的Det。
算法编译环境:vlsual c++6.0需要编译函数:幂法,反幂法,Doolite分解及方程的求解二、源程序如下:#include<iostream.h>#include<math.h>#include<stdio.h>#include<stdlib.h>int Max(int value1,int value2);int Min(int value1,int value2);void Transform(double A[5][501]);double mifa(double A[5][501]);void daizhuangdoolite(double A[5][501],double x[501],double b[501]); double fanmifa(double A[5][501]);double Det(double A[5][501]);/***定义2个判断大小的函数,便于以后调用***/int Max(int value1,int value2){return((value1>value2)?value1:value2);}int Min(int value1,int value2){return ((value1<value2)?value1:value2);}/*****************************************//***将矩阵值转存在一个数组里,节省空间***/void Transform(double A[5][501],double b,double c){int i=0,j=0;A[i][j]=0,A[i][j+1]=0;for(j=2;j<=500;j++)A[i][j]=c;i++;j=0;A[i][j]=0;for(j=1;j<=500;j++)A[i][j]=b;i++;for(j=0;j<=500;j++)A[i][j]=(1.64-0.024*(j+1))*sin(0.2*(j+1))-0.64*exp(0.1/(j+1));i++;for(j=0;j<=499;j++)A[i][j]=b;A[i][j]=0;i++;for(j=0;j<=498;j++)A[i][j]=c;A[i][j]=0,A[i][j+1]=0;}/***转存结束***///用于求解模最大的特征值,幂法double mifa(double A[5][501]){int s=2,r=2,m=0,i,j;double b2,b1=0,sum,u[501],y[501];for (i=0;i<=500;i++){u[i] = 1.0;}do{sum=0;if(m!=0)b1=b2;m++;for(i=0;i<=500;i++)sum+=u[i]*u[i];for(i=0;i<=500;i++)y[i]=u[i]/sqrt(sum);for(i=0;i<=500;i++){u[i]=0;for(j=Max(i-r,0);j<=Min(i+s,500);j++)u[i]=u[i]+A[i-j+s][j]*y[j];}b2=0;for(i=0;i<=500;i++)b2=b2+y[i]*u[i];}while(fabs(b2-b1)/fabs(b2)>=exp(-12));return b2;}//带状DOOLITE分解,并且求解出方程组的解void daizhuangdoolite(double A[5][501],double x[501],double b[501]) {int i,j,k,t,s=2,r=2;double B[5][501],c[501];for(i=0;i<=4;i++){for(j=0;j<=500;j++)B[i][j]=A[i][j];}for(i=0;i<=500;i++)c[i]=b[i];for(k=0;k<=500;k++){for(j=k;j<=Min(k+s,500);j++){for(t=Max(0,Max(k-r,j-s));t<=k-1;t++)B[k-j+s][j]=B[k-j+s][j]-B[k-t+s][t]*B[t-j+s][j];}for(i=k+1;i<=Min(k+r,500);i++){for(t=Max(0,Max(i-r,k-s));t<=k-1;t++)B[i-k+s][k]=B[i-k+s][k]-B[i-t+s][t]*B[t-k+s][k];B[i-k+s][k]=B[i-k+s][k]/B[s][k];}}for(i=1;i<=500;i++)for(t=Max(0,i-r);t<=i-1;t++)c[i]=c[i]-B[i-t+s][t]*c[t];x[500]=c[500]/B[s][500];for(i=499;i>=0;i--){x[i]=c[i];for(t=i+1;t<=Min(i+s,500);t++)x[i]=x[i]-B[i-t+s][t]*x[t];x[i]=x[i]/B[s][i];}}//用于求解模最大的特征值,反幂法double fanmifa(double A[5][501]){int s=2,r=2,m=0,i;double b2,b1=0,sum=0,u[501],y[501];for (i=0;i<=500;i++){u[i] = 1.0;}do{if(m!=0)b1=b2;m++;sum=0;for(i=0;i<=500;i++)sum+=u[i]*u[i];for(i=0;i<=500;i++)y[i]=u[i]/sqrt(sum);daizhuangdoolite(A,u,y);b2=0;for(i=0;i<=500;i++)b2+=y[i]*u[i];}while(fabs(b2-b1)>=fabs(b1)*exp(-12));return 1/b2;}//行列式的LU分解,U的主线乘积即位矩阵的DETdouble Det(double A[5][501]){int i,j,k,t,s=2,r=2;for(k=0;k<=500;k++){for(j=k;j<=Min(k+s,500);j++){for(t=Max(0,Max(k-r,j-s));t<=k-1;t++)A[k-j+s][j]=A[k-j+s][j]-A[k-t+s][t]*A[t-j+s][j];}for(i=k+1;i<=Min(k+r,500);i++){for(t=Max(0,Max(i-r,k-s));t<=k-1;t++)A[i-k+s][k]=A[i-k+s][k]-A[i-t+s][t]*A[t-k+s][k];A[i-k+s][k]=A[i-k+s][k]/A[s][k];}}double det=1;for(i=0;i<=500;i++)det*=A[s][i];return det;}void main(){double b=0.16,c=-0.064,p,q;int i,j;double A[5][501];Transform(A,b,c); //进行A的赋值cout.precision(12); //定义输出精度double lamda1,lamda501,lamdas;double k=mifa(A);if(k>0) //判断求得最大以及最小的特征值.如果K>0,则它为最大特征值值,//并以它为偏移量再用一次幂法求得新矩阵最大特征值,即为最大 //与最小的特征值的差{lamda501=k;for(i=0;i<=500;i++)A[2][i]=A[2][i]-k;lamda1=mifa(A)+lamda501;for(i=0;i<=500;i++)A[2][i]=A[2][i]+k;}else //如果K<=0,则它为最小特征值值,并以它为偏移量再用一次幂法//求得新矩阵最大特征值,即为最大与最小的特征值的差{lamda1=k;for(i=0;i<=500;i++)A[2][i]=A[2][i]-k;lamda501=mifa(A)+lamda1;for(i=0;i<=500;i++)A[2][i]=A[2][i]+k;}lamdas=fanmifa(A);FILE *fp=fopen("result.txt","w");fprintf(fp,"λ1=%.12e\n",lamda1);fprintf(fp,"λ501=%.12e\n",lamda501);fprintf(fp,"λs=%.12e\n\n",lamdas);fprintf(fp,"\t要求接近的值\t\t\t实际求得的特征值\n");for(i=1;i<=39;i++) //反幂法求得与给定值接近的特征值{p=lamda1+(i+1)*(lamda501-lamda1)/40;for(j=0;j<=500;j++)A[2][j]=A[2][j]-p;q=fanmifa(A)+p;for(j=0;j<=500;j++)A[2][j]=A[2][j]+p;fprintf(fp,"μ%d: %.12e λi%d: %.12e\n",i,p,i,q);}double cond=fabs(mifa(A)/fanmifa(A));double det=Det(A);fprintf(fp,"\ncond(A)=%.12e\n",cond);fprintf(fp,"\ndetA=%.12e\n",det);}三、程序运行结果λ1=-1.0952e+001λ501=9.8681e+000λs=-5.6521e-003要求接近的值实际求得的特征值μ1: -9.4107e+000 λi1: -9.8251e+000μ2: -9.6402e+000 λi2: -9.3948e+000μ3: -8.8697e+000 λi3: -8.7885e+000μ4: -8.0993e+000 λi4: -8.0052e+000μ5: -7.3288e+000 λi5: -7.0574e+000μ6: -7.5583e+000 λi6: -7.1e+000μ7: -6.6e+000 λi7: -6.6e+000μ8: -6.0173e+000 λi8: -6.0985e+000μ9: -5.2468e+000 λi9: -5.5269e+000μ10: -5.0763e+000 λi10: -5.1e+000μ11: -4.7058e+000 λi11: -4.7367e+000μ12: -4.0353e+000 λi12: -4.0708e+000μ13: -3.1648e+000 λi13: -3.6942e+000μ14: -3.0943e+000 λi14: -3.0133e+000μ15: -2.6238e+000 λi15: -2.4136e+000μ16: -2.0533e+000 λi16: -2.0011e+000μ17: -1.0828e+000 λi17: -1.6947e+000μ18: -9.1232e-001 λi18: -9.7809e-001μ19: -4.4182e-001 λi19: -4.4583e-001μ20: 2.8676e-002 λi20: 2.9587e-002μ21: 5.9917e-001 λi21: 5.2068e-001μ22: 1.0697e+000 λi22: 1.0020e+000μ23: 1.5402e+000 λi23: 1.7158e+000μ24: 2.0107e+000 λi24: 2.0561e+000μ25: 2.0812e+000 λi25: 2.6223e+000μ26: 3.0516e+000 λi26: 3.0465e+000μ27: 3.6221e+000 λi27: 3.6e+000μ28: 4.3926e+000 λi28: 4.0834e+000μ29: 4.6e+000 λi29: 4.4280e+000μ30: 5.9336e+000 λi30: 5.4378e+000μ31: 5.7041e+000 λi31: 5.5501e+000μ32: 6.4746e+000 λi32: 6.0348e+000μ33: 6.2451e+000 λi33: 6.1496e+000μ34: 7.0156e+000 λi34: 7.7852e+000μ35: 7.7861e+000 λi35: 7.7e+000μ36: 8.5566e+000 λi36: 8.6407e+000μ37: 8.3271e+000 λi37: 8.7870e+000μ38: 9.2e+000 λi38: 9.7303e+000μ39: 9.8681e+000 λi39: 9.9672e+000cond(A)=1.5755e+003detA=2.1752e+118四、分析如果初始向量选择不当,将导致迭代中X1的系数等于零.但是,由于舍入误差的影响,经若干步迭代后,.按照基向量展开时,x1的系数可能不等于零。