高考模拟试题及答案
模拟高考各科试题及答案
![模拟高考各科试题及答案](https://img.taocdn.com/s3/m/95d53933ac02de80d4d8d15abe23482fb5da0252.png)
模拟高考各科试题及答案一、语文试题及答案1. 阅读下面一段文言文,完成(1)-(3)题。
(1)下列词语解释不正确的一项是:A. 觥筹交错(酒杯和酒筹相互错杂)B. 箪食瓢饮(用瓢盛水喝)C. 夙兴夜寐(早起晚睡)D. 箪食壶浆(用壶盛酒)答案:D(2)下列句子中,加点词的意义和用法相同的一项是:A. 吾谁与归B. 吾从子游C. 吾与点也D. 吾谁欺答案:A(3)翻译文中划线的句子。
句子:不以物喜,不以己悲。
翻译:不因为物质的得失而感到高兴或悲伤。
2. 现代文阅读,回答问题。
(1)文章中“他”为什么坚持要回家?答案:因为他思念家乡和亲人。
(2)文章中“她”对“他”的态度是怎样的?答案:她对“他”既关心又有些无奈。
(3)文章的主题是什么?答案:文章的主题是思乡之情。
二、数学试题及答案1. 已知函数f(x)=2x^2-3x+1,求f(2)的值。
答案:f(2)=2*(2^2)-3*2+1=52. 解方程:x^2-5x+6=0。
答案:x=2或x=33. 计算定积分:∫(0到1) (2x+3)dx。
答案:(2/2)x^2+3x | 0到1 = 2+3-0 = 5三、英语试题及答案1. 根据句意,选择填空。
I don't think it is necessary to ________ the matter.A. look intoB. look upC. look outD. look over答案:A2. 翻译句子。
句子:他决定去旅行,放松一下。
翻译:He decided to go on a trip to relax.3. 阅读理解,回答问题。
(1)文章中提到了哪些旅游目的地?答案:文章提到了巴黎、伦敦和纽约。
(2)作者对旅游的态度是什么?答案:作者认为旅游是一种放松和学习的方式。
四、物理试题及答案1. 已知一个物体的质量为2kg,受到的重力为19.6N,求物体的加速度。
答案:a=F/m=19.6N/2kg=9.8m/s^22. 一个电容器的电容为4μF,通过它的电流为2A,求电容器的电压。
2024年新高考九省联考高三第二次模拟数学试题及答案
![2024年新高考九省联考高三第二次模拟数学试题及答案](https://img.taocdn.com/s3/m/b7500ab3846a561252d380eb6294dd88d0d23d83.png)
2024年高考第二次模拟考试高三数学(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合(){}{}ln 3,1A x y x Bx x ==−=≤−,则()A B =R ( )A .{}13x x −<≤B .{}1x x >− C .{1x x ≤−,或}3x >D .{}3x x >2.已知复数i z a b =+(a ∈R ,b ∈R 且a b ),且2z 为纯虚数,则zz=( ) A .1B .1−C .iD .i −3.已知向量()2,4a =−,()1,b t = ,若a 与b 共线,则向量a b + 在向量()0,1j = 上的投影向量为( )A . jB . j −C . 2jD . 2j −4. “1ab >”是“10b a>>”( ) A . 充分不必要条件 B . 必要不充分条件 C . 充分必要条件D . 既不充分也不必要条件5.有甲、乙等五人到三家企业去应聘,若每人至多被一家企业录用,每家企业至少录用其中一人且甲、乙两人不能被同一家企业录用,则不同的录用情况种数是( ) A .60 B .114 C .278 D .3366.已知D :222210x y ax a +−−−=,点()3,0P −,若D 上总存在M ,N 两点使得PMN 为等边三角形,则a 的取值范围是( ) A . ()5,11,3 −−∪−+∞B . [)5,1,3−∞−∪+∞C . (][) ,21,−∞−∪+∞D . [)()2,11,−−−+∞7.已知ABC ∆中,60BAC ∠=°,2AB =,Q 是边BC 上的动点.若PA ⊥平面ABC ,PA =,且PQ与面ABC ,则三棱锥−P ABC 的外接球的表面积为( ) A . 4πB . 6πC . 8πD . 9π8.加斯帕尔-蒙日是1819世纪法国著名的几何学家.如图,他在研究圆锥曲线时发现:椭圆的任意两条互相垂直的切线的交点都在同一个圆上,其圆心是椭圆的中心,这个圆被称为“蒙日圆”.若长方形G 的四边均与椭圆22:164x y M +=相切,则下列说法错误的是( )A .椭圆MB .椭圆M 的蒙日圆方程为2210x y +=C .若G 为正方形,则G 的边长为D .长方形G 的面积的最大值为18二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得60分.9.已知抛物线2:6C y x =的焦点为F ,过点F 的直线交C 于,M N 两个不同点,则下列结论正确的是( ) A .MN 的最小值是6 B .若点5,22P,则MF MP +的最小值是4C .113MF NF+= D .若18MF NF ⋅=,则直线MN 的斜率为1± 10.已知双曲线()222:102x y E a a−=>的左、右焦点别为1F ,2F ,过点2F 的直线l 与双曲线E 的右支相交于,P Q 两点,则( )A . 若E 的两条渐近线相互垂直,则a =B. 若E E 的实轴长为1C . 若1290F PF ∠=°,则124PF PF ⋅=D . 当a 变化时,1F PQ 周长的最小值为11.在棱长为2的正方体1111ABCD A B C D −中,,E F 分别是棱,BC CD 的中点,则( ) A .11B D 与EF 是异面直线B .存在点P ,使得12A P PF =,且BC //平面1APBC .1A F 与平面1B EBD .点1B 到平面1A EF 的距离为45三、填空题:本题共3小题,每小题5分,共15分.12.若二项式nx+的展开式中二项式系数之和为64,则二项展开式中系数最大的项为13.若函数()sin f x ax x =+ 的图像上存在两条互相垂直的切线,则实数a 是__________.14. 若过点()0,1的直线l 自左往右交抛物线214y x =及圆()22114x y +−=于,,,A B C D 四点,则3AB CD +的最小值为________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知数列{}n a 的前n 项和为n S ,且对于任意的*n ∈N 都有321n n S a =+. (1)求数列{}n a 的通项公式;(2)记数列{}n a 的前n 项中的最大值为n M ,最小值为n m ,令2n nn M m b +=,求数列{}n b 的前20项和20T .16.(15分)灯带是生活中常见的一种装饰材料,已知某款灯带的安全使用寿命为5年,灯带上照明的灯珠为易损配件,该灯珠的零售价为4元/只,但在购买灯带时可以以零售价五折的价格购买备用灯珠,该灯带销售老板为了给某顾客节省装饰及后期维护的支出,提供了150条这款灯带在安全使用寿命内更换的灯珠数量的数据,数据如图所示.以这150条灯带在安全使用寿命内更换的灯珠数量的频率代替1条灯带更换的灯珠数量发生的概率,若该顾客买1盒此款灯带,每盒有2条灯带,记X 表示这1盒灯带在安全使用寿命内更换的灯珠数量,n 表示该顾客购买1盒灯带的同时购买的备用灯珠数量.(1)求X 的分布列;(2)若满足()0.6P X n ≥≤的n 的最小值为0n ,求0n ;(3)在灯带安全使用寿命期内,以购买替换灯珠所需总费用的期望值为依据,比较01nn =−与0n n =哪种方案更优.17.(15分)如图,在三棱柱111ABC A B C −中,直线1C B ⊥平面ABC,平面11AA C C ⊥平面11BB C C .(1)求证:1AC BB ⊥;(2)若12AC BC BC ===,在棱11A B 上是否存在一点P ,使二面角1P BC C −−?若存在,求111B PA B 的值;若不存在,请说明理由.18.(17分)已知函数()ln =−+f x x x a .(1)若直线(e 1)yx =−与函数()f x 的图象相切,求实数a 的值; (2)若函数()()g x xf x =有两个极值点1x 和2x ,且12x x <,证明:12121ln()x x x x +>+.(e 为自然对数的底数).19.(17分)阿波罗尼斯是古希腊著名数学家,他的主要研究成果集中在他的代表作《圆锥曲线》一书中.阿波罗尼斯圆是他的研究成果之一,指的是已知动点M 与两定点Q,P 的距离之比()||0,1,||MQ MP λλλλ=>≠是一个常数,那么动点M 的轨迹就是阿波罗尼斯圆,圆心在直线PQ 上.已知动点M 的轨迹是阿波罗尼斯圆,其方程为224x y +=,定点分别为椭圆2222:1x y C a b+=(0)a b >>的右焦点F 与右顶点A,且椭圆C 的离心率为1.2e = (1)求椭圆C 的标准方程;(2)如图,过右焦点F 斜率为(0)k k >的直线l 与椭圆C 相交于B ,D(点B 在x 轴上方),点S,T 是椭圆C 上异于B,D 的两点,SF 平分,BSD TF ∠平分.BTD ∠(1)求||||BF DF 的取值范围;(2)将点S 、F 、T 看作一个阿波罗尼斯圆上的三点,若△SFT 外接圆的面积为818π,求直线l 的方程.2024年高考第二次模拟考试高三数学全解全析一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.A .{13x x −<≤B .{1x x >− C.{1x x ≤−,或}3x >D .{3x x >【答案】B【分析】先化简集合,再利用集合的交并补运算求解即可, 【详解】由题意得{}3A x x =>,{}1B x x =≤−,又{}1B x x =>−R 则(){}1A B x x ∪=>−R ,故选:B.A .1B .1−C .iD .i −【答案】D【分析】利用复数的概念及四则运算法则运算即可求解.【详解】因为i z a b =+,所以()2222(i)2i z a b a b ab =+=−+,又因为2z 为纯虚数,所以2220a b ab −= ≠,即0a b =≠(舍)或0a b =−≠, 所以i z a a =−,所以i z a a =+, 所以2i 1i (1i)i i 1i (1i)(1i)z a a a a z −−−====−+++−. 故选:D3.已知向量()2,4a =−,()1,b t = ,若a 与b 共线,则向量a b +在向量()0,1j = 上的投影向量为( )A. jB. j −C. 2jD. 2j −【答案】C 【解析】【分析】根据a 与b 共线,可得240t −−=,求得2t =−,再利用向量a b +在向量()0,1j = 上的投影向量为()a b j jj j+⋅⋅ ,计算即可得解. 【详解】由向量()2,4a =−,()1,b t = ,若a与b共线,则240t −−=,所以2t =−,(1,2)a b +=−,所以向量a b +在向量()0,1j = 上的投影向量为: ()(1,2)(0,1)21a b j j j j j j+⋅−⋅⋅=⋅=, 故选:C4. “1ab >”是“10b a>>”( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件【答案】B 【解析】【分析】根据充分条件和必要条件的定义判断. 【详解】当0a >时,由1ab >,可得10b a>>, 当a<0时,由1ab >,得10b a<<; 所以“1ab >”不是“10b a>>”的充分条件. 因为01010a b ab a a>>>⇔− > ,所以1ab >, 所以“1ab >”是“10b a>>”的必要不充分条件. 故选:B.【点睛】本题考查不等式性质与充分、必要条件的判定,还考查了理解辨析问题的能力,属于基础题. 5.有甲、乙等五人到三家企业去应聘,若每人至多被一家企业录用,每家企业至少录用其中一人且甲、乙两人不能被同一家企业录用,则不同的录用情况种数是( ) A.60 B.114 C.278 D.336【答案】D【解析】命题意图 本题考查排列与组合的应用.录用3人,有 353360C A = 种情况;录用4 人,有 4232354333162C C A C A −=种情况;录用 5 人,有12323331345333333225)4(C C A C A (C A C A )11A −+−=种情况.所以共有336种.6.已知D :222210x y ax a +−−−=,点()3,0P −,若D 上总存在M ,N 两点使得PMN 为等边三角形,则a 的取值范围是( ) A. ()5,11,3 −−∪−+∞B. [)5,1,3−∞−∪+∞C. (][) ,21,−∞−∪+∞D. [)()2,11,−−−+∞【答案】B 【解析】【分析】D 的圆心坐标为(),0D a ,半径为1ra =+,要使D 上总存在M ,N 两点使得PMN 为等边三角形,则D 上存在一点M ,使得30MPD ∠=°,当PM 与D 相切时,MPD ∠最大,故sin sin 30rMPD PD∠=≥°,由此可求解. 【详解】D 的标准方程为()()2221x a y a −+=+,圆心坐标为(),0D a ,半径为1ra =+.因为,PM PN MD ND ==,所以PMD PND ≅△△.所以30MPD NPD ∠=∠=°.要使D 上总存在M ,N 两点使得PMN 为等边三角形, 则D 上存在一点M ,使得30MPD ∠=°,当PM 与D 相切时,MPD ∠最大,此时30MPD ∠≥°,故1sin sin 302r MPDPD ∠=≥°=,即()1132a a +≥+,整理得23250a a +−≥,解得[)5,1,3a∈−∞−∪+∞.故选:B.7.已知ABC 中,60BAC ∠=°,2AB =,Q 是边BC 上的动点.若PA ⊥平面ABC ,PA =,且PQ与面ABC ,则三棱锥−P ABC 的外接球的表面积为( ) A. 4π B. 6πC. 8πD. 9π【答案】B 【解析】【分析】根据题意得PQ AQ 的最小值是1,即A 到BC 的距离为1,则∠ACB =90°,结合图形找出△ABC 的外接圆圆心与三棱锥−P ABC 外接球的球心,求出外接球的半径,再计算它的表面积. 【详解】三棱锥−P ABC 中,PA ⊥平面ABC ,设直线PQ 与平面ABC 所成角为θ,∵sin θ,∴sin PA PQ θ==≤PQ ≥即PQ AQ 的最小值是1,即A 到BC 的距离为1, 直角三角形△ABQ 中,AB =2,所以∠BAQ =60°,又∠BAC =60°, 所以,A Q 重合,则∠ACB =90°, 则△ABC 的外接圆圆心M 为AB 的中点,又PA ⊥平面ABC ,从而外接球的球心O 为PB 的中点,外接球的半径R OB =,∴三棱锥−P ABC 的外接球的表面积224π4π6πS R ==×=.故选:B .8.加斯帕尔-蒙日是1819世纪法国著名的几何学家.如图,他在研究圆锥曲线时发现:椭圆的任意两条互相【分析】由椭圆标准方程求得,a b 后再求得c ,从而可得离心率,利用特殊的长方形(即边长与椭圆的轴平行)求得蒙日圆方程,从而可得长方形边长的关系,结合基本不等式得面积最大值,并得出长方形为正方形时的边长.【详解】由椭圆方程知a =2b =,则c ,离心率为e =A 正确;当长方形G 的边与椭圆的轴平行时,长方形的边长分别为4,因此蒙,圆方程为2210x y +=,B 正确; 设矩形的边长分别为,m n ,因此22402m n mn +=≥,即20mn ≤,当且仅当m n =时取等号,所以长方形G 的面积的最大值是20,此时该长方形G 为正方形,边长为C 正确,D 错误. 故选:D .二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知抛物线2:6C y x =的焦点为F ,过点F 的直线交C 于,M N 两个不同点,则下列结论正确的【分析】A ,根据12||=MN x x p ++结合基本不等式即可判断;B ,由抛物线定义知当,,P M A 三点共线时MF MP +;C ,D ,设直线方程,联立抛物线,应用韦达定理即可求解.【详解】对A ,设112212(,),(,),(,0)M x y N x y x x >, 因为这些MN 倾斜角不为0, 则设直线MN 的方程为32x ky =+,联立抛物线得2690y ky −−=, 则12126,9y y k y y +=⋅=−,所以()()221212121212399363,244k x x k y y k x x k y y y y ∴+=++=+=+++=, 则212||=3666MN x x k ++=+≥(当且仅当0k =时等号成立),A 正确; 对B ,如图MA ⊥抛物线准线,MF MP MA MP +=+要使其最小, 即,,P M A 三点共线时取得最小值,即53||422MF MP MA MP PA +=+==+=,B 正确; 对C ,由()121212311||||239||||||||324x x NF MF MF NF MF NF x x x x ++++===+++,C 错误; 对D ,1212123339()()()2224MF NF x x x x x x ⋅=+⋅+=+++2293993(63)(63)1842422k k =+++=++=,解得1k =±,D 正确故选:ABD.10.已知双曲线()222:102x y E a a −=>的左、右焦点别为1F ,2F ,过点2F 的直线l 与双曲线E 的右支相交于,P Q 两点,则( ) A. 若E的两条渐近线相互垂直,则a =B. 若EE 的实轴长为1C. 若1290F PF ∠=°,则124PF PF ⋅= D. 当a 变化时,1F PQ周长的最小值为【答案】ACD 【解析】【分析】根据双曲线的渐近线、离心率、定义、三角形的周长等知识对选项进行分析,从而确定正确答案.【详解】依题意,b =,A选项,若双曲线的两条渐近线相互垂直,所以1,ba b a===,故A 正确;B 选项,若E的离心率为c e a ==, 解得1a =,所以实轴长22a =,故B 错误;C 选项,若1290F PF ∠=°,则122221224PF PF a PF PF c −=+=, 整理得222121224448,4PF PF c a b PF PF ⋅=−==⋅=,故C 正确; D 选项,根据双曲线的定义可知,121222PF PF a QF QF a −=−= ,两式相加得11114,4PF QF PQ a PF QF a PQ +−=+=+, 所以1F PQ 周长为42a PQ +,当12PQ F F ⊥时,PQ 取得最小值224b a a=,所以8424a PQ a a +≥+≥, 当且仅当84a a=,即a = 所以1F PQ周长的最小值为D 正确. 故选:ACD11.在棱长为2的正方体1111ABCD A B C D −中,,E F 分别是棱,BC CD 的中点,则( )【分析】A 选项,建立空间直角坐标系,根据112B D EF = 得到11B D 与EF 平行;B 选项,先求出242,,333P,得到平面1APB 的法向量()1,0,1m =− ,根据数量积为0得到BC m ⊥ ,得到BC //平面1APB ;C 选项,先求出1A F 与平面1B EB 所成角的正弦值,进而求出余弦值;D 选项,求出平面1A EF 的法向量,根据点到平面距离公式求出答案.【详解】A 选项,以A 作坐标原点,1,,AB AD AA 所在直线分别为,,x y z 轴,建立空间直角坐标系,()()()()()()()1112,0,2,0,2,2,2,1,0,1,2,0,0,0,2,2,0,0,2,2,0B D E F A B C ,则()()112,2,0,1,1,0B D EF =−=− ,由于112B D EF =,故11B D 与EF 平行,A 错误; B 选项,设(),,P x y z ,因为12A P PF =,所以()()2,,21,2,x y z x y z −−−−=,即224222x xy y z z =− =− −=−,解得242,,333x y z ===,故242,,333P , 设平面1APB 的法向量为(),,m a b c =,则()()()1242242,,,,0333333,,2,0,2220m AP a b c a b c mAB a b c a c ⋅=⋅=++=⋅=⋅=+= , 令1a =,则0,1b c ==−,则()1,0,1m =−, 因为()()0,2,01,0,10BC m ⋅=−= ,故BC m ⊥ ,BC //平面1APB , 故存在点P ,使得12A P PF =,且BC //平面1APB ,B 正确;C 选项,平面1B EB 的法向量为()1,0,0n =,故1A F 与平面1B EB则1A F 与平面1B EBC 正确;D 选项,设平面1A EF 的法向量为()1111,,n x y z =,则()()()()11111111111111,,2,1,2220,,1,1,00n A E x y z x y z n EF x y z x y ⋅⋅−+− ⋅=⋅−=−+= , 令11x =,则1131,2y z ==,故131,1,2n = , 则点1B 到平面1A EFD 错误.故选:BC三、填空题:本题共3小题,每小题5分,共15分.12.若二项式nx+的展开式中二项式系数之和为64,则二项展开式中系数最大的项为【答案】240 【解析】【详解】因为二项式nx+ 的展开式中二项式系数之和为64,所以264n =,得6n =,所以二项式为6x+,则二项式展开式的通项3662166C C 2r r r r r rr T x x −−+=, 令第1r +项的系数最大,则11661166C 2C 2C 2C 2r r r r r r r r −−++ ≥ ≥ ,解得111433r ≤≤, 因为N r ∈,所以4r =,则二项展开式中系数最大的项为36444256C 2240T x −×==,所以填24013.若函数()sin f x ax x =+ 的图像上存在两条互相垂直的切线,则实数a 是__________.【答案】0 【解析】【详解】注意到,()cos f x a x =+′.若函数()f x 上存在两条切线垂直,则存在1x 、2x R ∈,使得()()()()12121cos cos 1f x f x a x a x ′′=−⇔++=−()21212cos cos cos cos 10a a x x x x ⇔+++⋅+=221212cos cos cos cos 1022x x x x a +−⇔++−=12cos cos 1,0x x a ⇔=−=±=.故答案为014. 若过点()0,1的直线l 自左往右交抛物线214y x =及圆()22114x y +−=于,,,A B C D 四点,则3AB CD +的最小值为________.【答案】2+ 【解析】【分析】根据抛物线的定义求得求出11,22A D AB y CD y =+=+,当l y ⊥轴时,则1D Ay y ==,可求3AB CD +的值;当直线方程为()1x n y =−时,代入抛物线方程,根据韦达定理结合基本不等式求得此时3AB CD +的最小值,即可得结论. 【详解】解:如图,其中抛物线214y x =的焦点坐标为()0,1F ,抛物线的准线方程为:1y =−,圆()22114x y +−=的半径12r =又抛物线的定义可得:1,1A D AF y DF y =+=+,又11,22A D AB AF BF y CD DF CF y =−=+=−=+,当l y ⊥轴时,则1A Dy y ==,所以113131622AB CD+=+++=; 当l 不垂直于y 轴时,设l 的方程为:()1x n y =−,代入抛物线方程得:()2222240n y n y n −++=, 所以2224,1A D A D n y y y y n++=⋅=。
高考数学模拟试题含答案详解
![高考数学模拟试题含答案详解](https://img.taocdn.com/s3/m/0e7e4f02302b3169a45177232f60ddccdb38e657.png)
高考数学模拟试题含答案详解一、选择题1. 已知函数 $ f(x) = x^2 4x + 3 $,求 $ f(2) $ 的值。
答案:将 $ x = 2 $ 代入函数 $ f(x) $,得 $ f(2) = 2^2 4\times 2 + 3 = 1 $。
2. 已知等差数列 $\{a_n\}$ 的首项为 $a_1 = 3$,公差为 $d = 2$,求第 $n$ 项 $a_n$ 的表达式。
答案:等差数列的通项公式为 $a_n = a_1 + (n 1)d$,代入$a_1 = 3$ 和 $d = 2$,得 $a_n = 3 + (n 1) \times 2 = 2n + 1$。
3. 已知等比数列 $\{b_n\}$ 的首项为 $b_1 = 2$,公比为 $q = 3$,求第 $n$ 项 $b_n$ 的表达式。
答案:等比数列的通项公式为 $b_n = b_1 \times q^{n1}$,代入 $b_1 = 2$ 和 $q = 3$,得 $b_n = 2 \times 3^{n1}$。
4. 已知三角形的两边长分别为 $a = 5$ 和 $b = 8$,夹角为$60^\circ$,求第三边长 $c$。
答案:利用余弦定理 $c^2 = a^2 + b^2 2ab \cos C$,代入 $a = 5$,$b = 8$,$C = 60^\circ$,得 $c^2 = 5^2 + 8^2 2 \times5 \times 8 \times \cos 60^\circ = 49$,所以 $c = 7$。
5. 已知函数 $ g(x) = \frac{1}{x} $,求 $ g(x) $ 的定义域。
答案:由于 $x$ 不能为 $0$,所以 $g(x)$ 的定义域为 $x \neq 0$。
二、填空题1. 已知函数 $ h(x) = \sqrt{4 x^2} $,求 $ h(x) $ 的定义域。
答案:由于根号内的值不能为负,所以 $4 x^2 \geq 0$,解得$2 \leq x \leq 2$。
浙江省宁波市 2025届高考模拟考试(一模)语文试题及参考答案
![浙江省宁波市 2025届高考模拟考试(一模)语文试题及参考答案](https://img.taocdn.com/s3/m/f2800ab427fff705cc1755270722192e44365856.png)
浙江省宁波市2025届高考模拟考试(一模)语文试题及参考答案一、现代文阅读(35分) 2024.11(一) 现代文阅读Ⅰ (本题共5小题,19分)阅读下面的文字,完成1~5题。
材料一:“科技向善”一词最早由影响力投资者保罗·米勒于2013年正式提出,并很快得到了科技企业的广泛认同和响应。
所谓科技向善,就是企业在追求科技创新的同时,主动且负责任地利用科技创新解决社会问题,如生态环境、公共健康、教育、就业、医疗、安全等方面的社会需求和薄弱环节。
近年来,政府、社会和企业界对科技向善的关注度逐渐提高,这一方面是源于对科技伦理认识的深化。
当前,新一轮科技革命和产业变革突飞猛进,新技术、新业态、新模式不断涌现,给经济社会发展带来了深远的影响,科技创新从未像今天这样深刻影响着国家实力和人民福祉。
但如何才能确保科技为人服务、造福人民面对这个问题,党的十八大以来,中国逐步明确了科技造福人民的价值取向,以及科技发展为了人民、依靠人民,科技成果由人民共享的科技伦理观。
2024年4月,三大交易所正式发布《上市公司可持续发展报告指引(试行)》,《指引》强调了科技创新的作用,并明确提出“鼓励披露主体积极践行创新驱动发展战略,持续提升创新能力和竞争力,在创新决策和实践中遵守科学伦理规范,尊重科学精神,发挥科学技术的正面效应”。
方向已经明确,共识业已建立。
但企业在践行科技向善的过程中依然面临着很多矛盾。
首先,需要平衡国家发展战略需要与企业资源有限的矛盾。
在当前推动中国式现代化的进程中,科技创新将发挥更大的作用。
然而;在某一特定时间、空间,企业的资源是有限的,这就需要企业从战略角度思考如何在保障企业生存成长的前提下,坚持长期主义,加大科技创新投入。
其次,作为行业龙头企业成关键企业,需要平衡产业可持续发展和自身可持续发展的关系,通过带动产业链上下游企业高质量发展,提升企业自身的可持续竞争力。
第三,需要平衡追求利润最大化与承担社会责任的关系,在企业发展的同时积极回报社会,增进社会民生福祉。
新高考全国 I 卷语文模拟试题(附答案)
![新高考全国 I 卷语文模拟试题(附答案)](https://img.taocdn.com/s3/m/b1b8e604302b3169a45177232f60ddccda38e69b.png)
新高考全国I 卷语文模拟试题(附答案)一、现代文阅读(35 分)(一)现代文阅读I(本题共 5 小题,17 分)阅读下面的文字,完成1~5 题。
材料一:中国古典诗歌中的意象,是诗人情感与客观物象的融合,是诗人心灵的映照。
意象的运用,使诗歌具有了丰富的内涵和独特的艺术魅力。
诗歌中的意象往往具有特定的象征意义。
比如,梅花常被赋予高洁、坚贞的品质;菊花象征着淡泊、隐逸;杨柳则代表着离别、思念。
诗人通过这些意象,传达出自己的情感和思想。
意象的组合也能创造出丰富的意境。
不同的意象组合在一起,可以形成不同的意境。
如“明月松间照,清泉石上流”,明月、青松、清泉、山石等意象的组合,营造出一种清幽、宁静的意境。
此外,意象还可以通过比喻、拟人、夸张等修辞手法来增强表现力。
例如,“忽如一夜春风来,千树万树梨花开”,将雪花比作梨花,生动地描绘出了雪景的美丽。
材料二:在现代诗歌中,意象的运用也非常广泛。
现代诗人常常通过独特的意象来表达自己对生活、对世界的感悟。
与古典诗歌相比,现代诗歌中的意象更加多样化和个性化。
现代诗人可以从日常生活中的各种事物中选取意象,如汽车、高楼、电脑等。
同时,现代诗歌中的意象也更加注重对内心世界的挖掘和表达。
现代诗歌中的意象组合也更加自由和灵活。
诗人可以根据自己的创作意图,随意组合各种意象,创造出独特的意境。
然而,无论是古典诗歌还是现代诗歌,意象都是诗歌的灵魂。
它能够激发读者的联想和想象,使读者更好地理解诗歌的内涵。
1. 下列关于材料中“意象” 的表述,不正确的一项是(3 分)A. 意象是诗人情感与客观物象的融合,能使诗歌具有丰富内涵和独特艺术魅力。
B. 古典诗歌中的意象往往有特定象征意义,如梅花代表高洁坚贞,菊花象征淡泊隐逸。
C. 现代诗歌中的意象更加多样化和个性化,可从日常生活事物中选取,也更注重内心世界表达。
D. 古典诗歌和现代诗歌中的意象组合都很自由灵活,能创造出独特意境,激发读者联想想象。
2025年高考(新高考)模拟试卷英语试题(一)(含听力音频和答案)
![2025年高考(新高考)模拟试卷英语试题(一)(含听力音频和答案)](https://img.taocdn.com/s3/m/94a0b311f6ec4afe04a1b0717fd5360cba1a8d90.png)
2025年高考(新高考)模拟试题卷英语听力音频 双击收听.mp3本试卷共12页,考试用时150分钟,满分150分;广东省考生无需答听力部分,考试用时120分钟,满分120分。
注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
第一部分听力(共两节,满分30分)做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
例:How much is the shirt?A. £19.15.B. £9.18.C. £9.15.答案是C。
1.What does the woman think of the movie?A.It’s amusing B.It’s exciting C.It’s disappointing 2.How will Susan spend most of her time in France?A.Traveling around B.Studying at a school C.Looking after her aunt 3.What are the speakers talking about?A.Going out B.Ordering drinks C.Preparing for a party 4.Where are the speakers?A.In a classroom B.In a library C.In a bookstore 5.What is the man going to do?A.Go on the Internet B.Make a phone call C.Take a train trip第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。
2024年上海市高考高三数学模拟试卷试题及答案详解
![2024年上海市高考高三数学模拟试卷试题及答案详解](https://img.taocdn.com/s3/m/7810c8baf71fb7360b4c2e3f5727a5e9846a2776.png)
2024上海高考高三数学模拟试卷(本试卷共10页,满分150分,90分钟完成.答案一律写在答题纸上)命题:侯磊审核:杨逸峰一、填空题.(本题共12小题,前6题每小题4分;后6题每小题5分,共54分.请在横线上方填写最终的、最简的、完整的结果)1.已知集合{}()1,2,3,4,5,2,5A B ==,则A B =.2.已知圆柱底面圆的周长为2π,母线长为4,则该圆柱的体积为.3.101x x ⎛⎫+ ⎪⎝⎭的二项展开式中,2x 项的系数为.4.等比数列{}n a 的各项和为2,则首项1a 的取值范围为.5.已知平面向量()()1,2,,4a b m == ,若a 与b的夹角为锐角,则实数m 的取值范围为.6.已知复数z 满足22z z -==,则3z =.7.已知空间向量()()1,1,0,0,1,1a b == ,则b 在a方向上的投影为.8.已知()ln(4f x ax c x =++(a 、b 、c 为实数),且3(lg log 10)5f =,则(lglg3)f 的值是9.已知A B 、是抛物线24y x =上的两个不同的点,且10AB =,若点M 为线段10AB =的中点,则M 到y 轴的距离的最小值为.10.一个飞碟射击运动员练习射击,每次练习可以开2枪.当他发现飞碟后,开第一枪命中的概率为0.8;若第一枪没有命中,则开第二枪,且第二枪命中的概率为0.6;若2发子弹都没打中,该次练习就失败了.若已知在某次练习中,飞碟被击中的条件下,则飞碟是运动员开第二枪命中的概率为.11.已知ABC 中,,,A B C 为其三个内角,且tan ,tan ,tan A B C 都是整数,则tan tan tan A B C ++=.12.已实数m n 、满足221m n +≤,则2263m n m n +-+--的取值范围是.二、选择题(本题共4小题,前2题每小题4分;后2题每小题5分,共18分.在每小题给出的四个选项中,只有一项是符合题目要求的,请填写符合要求的选项前的代号)13.以下能够成为某个随机变量分布的是()A .0111⎛⎫ ⎪⎝⎭B .101111236-⎛⎫ ⎪⎝⎭C .123111248⎛⎫ ⎪ ⎝⎭D .11.222.40.50.50.30.7⎛⎫⎪-⎝⎭14.某高级中学高一年级、高二年级、高三年级分别有学生1400名、1200名、1000名,为了解学生的健康状况,用分层抽样的方法从该校学生中抽取一个容量为n 的样本,若从高三年级抽取25名学生,则n 为A .75B .85C .90D .10015.设等比数列{}n a 的前n 项和为n S ,设甲:123a a a <<,乙:{}n S 是严格增数列,则甲是乙的()A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件16.椭圆具有如下的声学性质:从一个焦点出发的声波经过椭圆反射后会经过另外一个焦点.有一个具有椭圆形光滑墙壁的建筑,某人站在一个焦点处大喊一声,声音向各个方向传播后经墙壁反射(不考虑能量损失),该人先后三次听到了回音,其中第一、二次的回音较弱,第三次的回音较强;记第一、二次听到回音的时间间隔为x ,第二、三次听到回音的时间间隔为y ,则椭圆的离心率为()A .2xx y+B .2x x y+C .2y x y +D .2y x y+三、解答题.(本大题共5小题,满分78分.请写出必要的证明过程或演算步骤)17.三棱柱111ABC A B C -中,1AA ⊥平面ABC ,且1AB BC ==,12,90,AA ABC D =∠=︒为1CC中点.(1)求四面体1A ABD -的体积:(2)求平面ABD 与1ACB 所成锐二面角的余弦值.18.(1)在用“五点法”作出函数[]1sin ,0,2πy x x =-∈的大致图象的过程中,第一步需要将五个关键点列表,请完成下表:x0sin x -01sin x-1(2)设实数0a >且1a ≠,求证:()ln x x a a a '=;(可以使用公式:()e e x x '=)(3)证明:等式()()()32123x ax bx c x x x x x x +++=---对任意实数x 恒成立的充要条件是123122331123x x x a x x x x x x bx x x c ++=-⎧⎪++=⎨⎪=-⎩19.为帮助乡村脱贫,某勘探队计划了解当地矿脉某金属的分布情况,测得了平均金属含量y (单位:克每立方米)与样本对原点的距离x (单位:米)的数据,并作了初步处理,得到了下面的一些统计量的值.(表中9111,9i i i i u u u x ===∑).xyu921()ii x x =-∑921()i i u u =-∑921()i i y y =-∑91(())i ii x y x y =--∑91()()i ii u u y y =--∑697.900.212400.1414.1226.13 1.40-(1)利用相关系数的知识,判断y a bx =+与dy c x=+哪一个更适宜作为平均金属含量y 关于样本对原点的距离x 的回归方程类型;(2)根据(1)的结果建立y 关于x 的回归方程,并估计样本对原点的距离20x =米时,平均金属含量是多少?20.已知抛物线2:2(0)C y px p =>,过点()(),00M a a ≠与x 轴不垂直的直线l 与C 交于()()1122,,A x y B x y 、两点.(1)求证:OA OB ⋅是定值(O 是坐标原点);(2)AB 的垂直平分线与x 轴交于(),0N n ,求n 的取值范围;(3)设A 关于x 轴的对称点为D ,求证:直线BD 过定点,并求出定点的坐标.21.已知2()ln(1)2x f x a x x =++-,函数()y f x =的导函数为()y f x '=.(1)当1a =时,求()y f x =在2x =处的切线方程;(2)求函数()y f x =的极值点;(3)函数()y f x =的图象上是否存在一个定点(,)(.(0,))m n m n ∈+∞,使得对于定义域内的任意实数00()x x m ≠,都有000()()()2x mf x f x m n +'=-+成立?证明你的结论.1.{3,4}【分析】根据给定条件,利用交集的定义直接求解即可.【详解】集合{}()1,2,3,4,5,2,5A B ==,则{3,4}A B = .故答案为:{3,4}2.4π【分析】根据条件,直接求出1r =,再利用圆柱的体积公式,即可求出结果.【详解】设圆柱的底面半径为r ,所以2π2πr =,得到1r =,又圆柱的母线长为4l =,所以圆柱的体积为2π4πV r l ==,故答案为:4π.3.210【分析】先求出二项式展开式的通项公式,然后令x 的次数为2,求出r ,代入通项公式中可求得结果.【详解】101x x ⎛⎫+ ⎪⎝⎭的二项展开式的通项公式为10102110101C C rr r rr r T x x x --+⎛⎫=⋅⋅=⋅ ⎪⎝⎭,令1022r -=,得4r =,所以2x 项的系数为410C 210=,故答案为:2104.(0,2)(2,4)【分析】根据给定条件,利用等比数列各项和公式,结合公比的取值范围求解即得.【详解】依题意,121a q=-,10q -<<或01q <<,则12(1)a q =-,102a <<或124a <<,所以首项1a 的取值范围为(0,2)(2,4) .故答案为:(0,2)(2,4) 5.(8,2)(2,)-+∞ 【分析】根据给定条件,利用向量夹角公式结合共线向量列出不等式组求解即得.【详解】向量()()1,2,,4a b m == 的夹角为锐角,则0a b ⋅> 且a 与b不共线,因此8024m m +>⎧⎨≠⎩,解得8m >-且2m ≠,所以实数m 的取值范围为(8,2)(2,)-+∞ .故答案为:(8,2)(2,)-+∞ 6.8-【分析】设i z a b =+,根据22z z -==得到方程组,求出1,a b ==答案,从而求出3z .【详解】设i z a b =+,则22i z a b -=-+,所以()2222424a b a b ⎧+=⎪⎨-+=⎪⎩,解得1,a b ==当1,a b =1=z ,故()222113i 22z =+=++=-+,()()322126i 8z =-++=-+=-;当1,a b ==1z =-,故()222113i 22z =-=-=--,()()322126i 8z =--=-+=-故答案为:-87.11(,,0)22【分析】根据给定条件,利用投影向量的定义求解即得.【详解】向量()()1,1,0,0,1,1a b == ,则1,||a b a ⋅==,所以b 在a 方向上的投影为2111(,,0)222||a b a a a ⋅==,故答案为:11(,,0)228.3【分析】令()ln(g x ax c x =+,则()()4f x g x =+,然后判断()g x 的奇偶性,再利用函数的奇偶性求值即可【详解】令()ln(g x ax c x =+,则()()4f x g x =+,函数的定义域为R ,因为()ln(g x ax c x -=---ln ax c ⎛⎫=--(1ln ax c x -=--+(ln ax c x =--+(ln ()ax c x g x ⎡⎤=-++=-⎢⎥⎣⎦,所以()g x 为奇函数,因为3(lg log 10)5f =,所以3(lg log 10)45g +=,所以(lg lg 3)1g -=,所以(lg lg 3)1g =-,所以(lg lg3)(lg lg3)4143f g =+=-+=,故答案为:39.4【分析】求出过抛物线焦点的弦长范围,再利用抛物线定义列式求解即得.【详解】抛物线24y x =的焦点(1,0)F ,准线方程=1x -,令过点F 与抛物线交于两点的直线方程为1x ty =+,由214x ty y x=+⎧⎨=⎩消去x 得,2440y ty --=,设两个交点为1122(,),(,)P x y Q x y ,则124y y t +=,21212()242x x t y y t +=++=+,于是212||11444PQ x x t =+++=+≥,当且仅当0=t 时取等号,令点,,A B M 的横坐标分别为0,,A B x x x ,而||104AB =≥,则0111[(1)(1)]1(||||)1||142222A B A B x x x x x FA FB AB +==+++-=+-≥-=,当且仅当,,A F B 三点共线时取等号,所以M 到y 轴的距离的最小值为4.故答案为:410.323【分析】根据给定条件,利用条件概率公式计算即得.【详解】记事件A 为“运动员开第一枪命中飞碟”,B 为“运动员开第二枪命中飞碟”,C 为“飞碟被击中”,则()0.20.60.12P B =⨯=,()()()()0.80.120.92P C P A B P A P B ==+=+= ,所以飞碟是运动员开第二枪命中的概率为()()0.123(|)()()0.9223P BC P B P B C P C P C ====.故答案为:32311.6【分析】不妨令A B C ≤≤,利用正切函数的单调性,结合已知求出tan A ,再利用和角的正切公式分析求解即得.【详解】在ABC 中,不妨令A B C ≤≤,显然A 为锐角,而tan A 是整数,若πtan 2tan3A =>=,又函数tan y x =在π(0,)2上单调递增,则π3A >,此时3πA B C A ++≥>与πA B C ++=矛盾,因此tan 1A =,π3π,44A B C =+=,tan tan tan()11tan tan B CB C B C++==--,整理得(tan 1)(tan 1)2B C --=,又tan ,tan B C 都是整数,且tan tan B C ≤,因此tan 2,tan 3B C ==,所以tan tan tan 6A B C ++=.故答案为:612.[3,13]【分析】确定动点(,)P m n 的几何意义,利用直线现圆的位置关系分段讨论,结合几何意义求解即得.【详解】显然点(,)P m n 在圆22:1O x y +=及内部,直线1:630l x y --=,直线2:220l x y +-=,1=>,得直线1l与圆O相离,且|63|63m n m n--=--,由222201x yx y+-=⎧⎨+=⎩,解得3545xy⎧=⎪⎪⎨⎪=⎪⎩或1xy=⎧⎨=⎩,即直线2l与圆O交于点34(,),(1,0)55A B,①当220m n+-≥时,即点P在直线2l与圆O所围成的小弓形及内部,|22||63|226324m n m n m n m n m n+-+--=+-+--=-+,目标函数124z x y=-+,即142z x y-=-表示斜率为12,纵截距为142z-的平行直线系,画出直线0:20p x y-=,平移直线p分别到直线12,p p,当1p过点A时,142z-取得最大值,1z最小,当2p过点B时,142z-取得最小值,1z最大,因此1min34()24355z=-⨯+=,1max()12045z=-⨯+=,从而3245m n≤-+≤;②当220m n+-<时,即点P在直线2l与圆O所围成的大弓形及内部(不含直线2l上的点),|22||63|(22)63348m n m n m n m n m n+-+--=-+-+--=--+,目标函数2348z x y=--+,即2834z x y-=+表示斜率为34-,纵截距为282z-的平行直线系,画出直线0:340q x y+=,显直线q OA⊥,平移直线q分别到直线12,q q,直线12,q q与圆O分别相切于点34,(,)55A--,当1q过点A时,282z-取得最大值,2z最小,因此2min34()834355z=-⨯-⨯=,当2q过点34(,)55--时,282z-取得最小值,2z最大,因此2max34()8341355z=+⨯+⨯=,从而383413m n<--≤,所以2263m n m n+-+--的取值范围是[3,13].故答案为:[3,13]【点睛】方法点睛:求解线性规划问题的一般方法:①准确作出不等式组表示的平面区域,作图时一定要分清虚实线、准确确定区域;②根据目标函数的类型及几何意义结合图形判断目标函数在何处取得最值.13.B【分析】分布列中各项概率大于0,且概率之和为1,从而得到正确答案.【详解】由题意得,分布列中各项概率非负,且概率之和为1,显然AC 选项不满足概率之和为1,D 选项不满足各项概率大于0,B 选项满足要求.故选:B 14.C【详解】分析:由题意结合分层抽样的性质得到关于n 的方程,解方程即可求得最终结果.详解:由题意结合分层抽样的定义可得:251000140012001000n =++,解得:90n =.本题选择C 选项.点睛:进行分层抽样的相关计算时,常利用以下关系式巧解:(1)n N =样本容量该层抽取的个体数总体的个数该层的个体数;(2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比.15.D【分析】举出反例得到充分性和必要性均不成立.【详解】不妨设111,2a q =-=,则2311,24a a =-=-,满足123a a a <<,但{}n S 是严格减数列,充分性不成立,当111,2a q ==时,{}n S 是严格增数列,但123a a a >>,必要性不成立,故甲是乙的既非充分又非必要条件.故选:D 16.B【分析】根据给定条件,分析听到的三次回声情况确定几个时刻声音的路程,再列出等式求解即得.【详解】依题意,令声音传播速度为v ,1t 时刻,刚刚呐喊声音传播为0,2t 时刻听到第一次回声,声音的路程为2()-a c ,即从左焦点到左顶点再次回到左焦点,3t 时刻,声音的路程为2()a c +,即从左焦点到右顶点,又从右顶点回到左焦点,4t 时刻,声音的路程为4a ,即从左焦点反射到右焦点,再反射到左焦点,因此32,2()2()x t t a c a c vx =-+--=,43,42()y t t a a c vy =--+=,即4,22c vx a c vy =-=,则2a c y c x -=,即2a c y c x -=,整理得2a y xc x+=,所以椭圆的离心率为2c xa x y=+.故选:B【点睛】关键点点睛:利用椭圆几何性质,确定听到回声的时刻,回声的路程是解题的关键.17.(1)136【分析】(1)利用等体积法11A ABD D A AB V V --=,再根据条件,即可求出结果;(2)建立空间直角坐标系,求出平面ABD 与1ACB 的法向量,再利用面面角的向量法,即可求出结果.【详解】(1)因为1AA ⊥平面ABC ,又BC ⊂面ABC ,所以1AA BC ⊥,又AB BC ⊥,1AA AB A = ,1,AA AB ⊂面11ABB A ,所以CB ⊥面11ABB A ,因为1//CC 面11ABB A ,所以D 到面11ABB A 的距离即BC ,又111112122AA B S AB AA =⋅=⨯⨯= ,1BC =,所以1111133A ABD D A AB A AB V V S CB --=== .(2)如图,建立空间直角坐标系,因为1AB BC ==,12AA =,则1(0,0,0),(0,1,0),(1,0,0),(0,0,2),(1,0,1)B AC BD ,所以1(0,1,0),(1,0,1),(0,1,2),(1,1,0)BA BD AB AC ===-=-设平面ABD 的一个法向量为(,,)n x y z =,由1100BA n BD n ⎧⋅=⎪⎨⋅=⎪⎩ ,得到00y x z =⎧⎨+=⎩,取1x =,得到0,1y z ==-,所以(1,0,1)n =- ,设平面1ACB 的一个法向量为(,,)m a b c =,则由10AC m AB m ⎧⋅=⎪⎨⋅=⎪⎩,得到020a b b c -=⎧⎨-+=⎩,取2a =,则2,1b c ==,所以(2,2,1)m = ,设平面ABD 与1ACB 所成锐二面角为θ,则cos cos ,n mn m n m θ⋅====18.(1)表格见解析;(2)证明见解析;(3)证明见解析.【分析】(1)根据给定条件,结合“五点法”作图完善表格.(2)根据给定条件,利用复合函数求导法则计算即得.(3)根据给定条件,利用恒等式成立的充要条件推理即得.【详解】(1)“五点法”作函数[]sin ,0,2πy x x =∈的图象的5个关键点的横坐标为π3π0,,π,,2π22,所以表格如下:xπ2π3π22πsin x -01-0101sin x-1121(2)实数0a >且1a ≠,则ln ln e e xx a x a a ==,因此ln ln ()(e )e (ln )ln x x a x a x a x a a a '''==⋅=,所以()ln x x a a a '=.(3)212212133)())[()])(((x x x x x x x x x x x x x x =-----++32332121212312()()x x x x x x x x x x x x x x x x =+--+-++32123122331123()()x x x x x x x x x x x x x x x =-+++++-,依题意,3212312233112332()()x x x x x x x x x x x x ax bx x x x x c -+++-+++=++对任意实数x 恒成立,因此123123122331122331123123()a x x x x x x ab x x x x x x x x x x x x bc x x x x x x c=-++++=-⎧⎧⎪⎪=++⇔++=⎨⎨⎪⎪=-=-⎩⎩,所以等式32123()()()x ax bx c x x x x x x +++=---对任意实数x 恒成立的充要条件是123122331123x x x ax x x x x x b x x x c ++=-⎧⎪++=⎨⎪=-⎩.19.(1)dy c x=+更适宜作为回归方程类型;(2)10ˆ100yx=-,399.5g /m .【分析】(1)根据题意,分别求得相关系数的值,结合10.449r ≈和20.996r ≈-,结合12r r <,即可得到结论.(2)(i )根据最小二乘法,求得回归系数,进而求得回归方程;(ii )当20x =时,结合回归方程,即可求得预报值.【详解】(1)因为y a bx =+的线性相关系数91)9()(0.44iix y r x y --==≈∑,dy c x=+的线性相关系数92(0.996iiu u y r y --≈-∑,因为12r r <,所以dy c x=+更适宜作为平均金属含量y 关于样本对原点的距离x 的回归方程类型.(2)依题意,992110ˆ()()1(.4010.14)i ii i iu u y u u yβ==----===-∑∑,则ˆˆ97.9(10)0.21100y u αβ=-=--⨯=,于是10ˆ10010100y u x=-=-,所以y 关于x 的回归方程为10ˆ100yx=-.当20x =时,金属含量的预报值为31010099.5g /m 20ˆy=-=.20.(1)证明见解析;(2))||(,p a ++∞;(3)证明见解析,(),0a -.【分析】(1)联立直线和抛物线方程,再利用韦达定理及数量积的坐标表示计算即得..(2)求出弦AB 的中点坐标及弦AB 的中垂线方程,进而求出n ,再结合判别式求解即得.(3)设出D 点的坐标,求出直线BD 的方程211121()y y y x x y x x +=---,借助(1)的信息,推理判断即得.【详解】(1)显然直线l 不垂直于坐标轴,设过点(),0M a 的直线l 的方程为x my a =+,由22y px x my a ⎧=⎨=+⎩消去x 得:2220y pmy pa --=,22Δ480p m pa =+>,则121222y y pm y y pa +=⎧⎨⋅=-⎩,所以22212121212222y y OA OB x x y y y y a pa p p⋅=+=⋅+=- 为定值.(2)设,A B 两点的中点坐标为()33,Q x y ,则21212322x x my my x a pm a ++==+=+,1232y y y pm +==,则()2,Q pm a pm +,即AB 的垂直平分线为()2y m x pm a pm =---+,令0y =,解得2n pm a p =++,显然22480p m pa ∆=+>,当0a >时,恒有220pm a +>成立,则n p a >+,当a<0时,2pm a a +>-,则n p a >-,所以n 的取值范围为)||(,p a ++∞.(3)由A 关于x 轴的对称点为D ,得()11,D x y -,则直线BD :211121()y y y x x y x x +=---,整理得:2112212121y y x y x yy x x x x x ++=---.又()()()1221211212122x y x y y my a y my a my y a y y +=+++=++422pam pam pam =-+=-.因此直线BD 为:212122pm pam y x x x x x =+--,即()212pmy x a x x =+-过定点(),0a -,所以直线BD 过定点(),0a -.【点睛】方法点睛:求解直线过定点问题常用方法如下:①“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明;②“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;③求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.21.(1)48ln 333y x =-+;(2)答案见解析;(3)不存在,理由见解析.【分析】(1)利用导数求切线斜率,再求出切点坐标,点斜式写出切线方程即可.(2)利用导数探讨单调性,进而确定函数的极值点.(3)假设存在,利用导数,将等式化简,减少变量,从而可构造适当新函数,研究新函数的性质,即可判断.【详解】(1)当1a =时,2()ln(1),(2)ln 32x f x x x f =++-=,求导得14()1,(2)13f x x f x ''=+-=+,切线方程为4ln 3(2)3y x -=-,所以所求切线方程为48ln 333y x =-+.(2)函数2()ln(1)2x f x a x x =++-的定义域为(1,)-+∞,求导得21()111a x af x x x x -+'=+-=++,令()0f x '=,即210x a -+=,即21x a =-,①当1a ≥时,函数()y f x =在定义域内严格增,无极值点;②当01a <<时,当1x -<<或x >时,()0f x '>,当x <()0f x '<,函数()y f x =在(1,-和)+∞严格增,在(严格减,此时极大值点为③当0a ≤时,当1x -<<时,()0f x '<,当x >时,()0f x '>,函数()y f x =在(-严格减,在)+∞严格增的,所以当1a ≥时,函数()y f x =无极值点;当01a <<时,函数()y f x =极大值点为当0a ≤时,函数()y f x =.(3)假设存在定点(,)m n 满足条件,由000()()()2x mf x f x m n +'=-+得:000)(2()f x n x m f x m -+'=-,又点(,)m n 在曲线()f x 上,则2()ln(1)2mn f m a m m ==++,于是220000001[ln(1)ln(1)])()()(2a x m x m x m f x n x mx m+-++----=--000[ln(1)ln(1)]12a x m x mx m +-++=+--,而()11a f x x x '=+-+,于是000002()1=1222212x m x m x m a af x m x m +++'=+-+-++++,因此000ln(1)ln(1)22x m x m x m +-+=-++,变形得00012(1)11ln 1111x x m x m m +-++=++++,令01(0)1x t t m +=>+,则2(1)ln 1t t t -=+,令函数22()ln ,01t g t t t t -=->+,求导得22214(1)()0(1)(1)t g t t t t t '-=-=≥++,则()g t 在(0,)+∞单调递增,又(1)0g =,于是()0g t =只有唯一解1t =,即0111x m +=+,又0m x ≠,则1t ≠,故不存在定点(,)m n 满足条件.【点睛】结论点睛:函数y =f (x )是区间D 上的可导函数,则曲线y =f (x )在点00(,())x f x 0()x D ∈处的切线方程为:000()()()y f x f x x x '-=-.。
高考模拟试题大全及答案
![高考模拟试题大全及答案](https://img.taocdn.com/s3/m/9baa7dab7d1cfad6195f312b3169a4517723e5f1.png)
高考模拟试题大全及答案一、选择题1. 下列关于细胞结构的描述,哪项是错误的?A. 细胞核是细胞的控制中心B. 线粒体是细胞的能量工厂C. 细胞壁只存在于植物细胞中D. 细胞膜具有选择性通透性答案:C2. 在化学反应中,下列哪种物质不是催化剂?A. 硫酸B. 氢氧化钠C. 酶D. 氧化铁答案:A二、填空题1. 光合作用是植物通过______将光能转化为化学能的过程。
答案:叶绿体2. 根据题目所给的化学反应方程式,如果反应物A的摩尔质量是B的2倍,且反应物A和B按照1:2的摩尔比参与反应,那么生成物C的摩尔质量是______。
答案:B的3倍三、简答题1. 简述牛顿第二定律的内容及其应用。
答案:牛顿第二定律指出,物体的加速度与作用在其上的合力成正比,与物体的质量成反比。
公式表示为:\[ F = ma \]。
这一定律在物理学中广泛应用于分析和计算物体在受力情况下的运动状态。
2. 描述水的三态变化及其影响因素。
答案:水的三态包括固态(冰)、液态(水)和气态(水蒸气)。
水的三态变化受温度影响,当温度降低时,水会从液态转变为固态;当温度升高时,水会从液态转变为气态。
此外,压力也会影响水的相变。
四、计算题1. 已知某物体在水平面上受到的摩擦力是其重力的0.25倍,求物体在水平面上的加速度,假设物体的质量为10kg。
答案:首先计算物体的重力:\[ F_{重力} = m \times g = 10\times 9.8 \] N。
摩擦力为:\[ F_{摩擦} = 0.25 \times F_{重力} \]。
根据牛顿第二定律,\[ F_{摩擦} = m \times a \],解得加速度\( a = \frac{F_{摩擦}}{m} = \frac{0.25 \times 10 \times9.8}{10} = 2.45 \) m/s²。
2. 某化学反应的速率常数 \( k \) 为0.05 s⁻¹,如果反应物的初始浓度为1 mol/L,求10秒后反应物的浓度。
湖南省2024-2025学年高三高考模拟试题含解析
![湖南省2024-2025学年高三高考模拟试题含解析](https://img.taocdn.com/s3/m/69c70ff4d0f34693daef5ef7ba0d4a7302766cd6.png)
湖南省2024-2025学年高三高考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、单项选择题:本题共6小题,每小题4分,共24分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、一质点做速度逐渐增大的匀加速直线运动,在时间间隔t 内位移为s ,速度变为原来的2倍,该质点的加速度为( )A .2s tB .22s tC .223s tD .232s t 2、如图,两束单色光A 、B 分别沿半径方向由空气射入半圆形玻璃砖,出射时合成一束复色光P ,下列说法正确的是A .A 光的频率小于B 光的频率B .在玻璃砖中A 光的传播速度小于B 光的传播速度C .玻璃砖对A 光的折射率大于对B 光的折射率D .两种单色光由玻璃射向空气时,A 光的临界角较小3、在一大雾天,一辆小汽车以30m/s 的速度行驶在高速公路上,突然发现正前方30m 处有一辆大卡车以10m/s 的速度同方向匀速行驶,小汽车紧急刹车,刹车过程中刹车失灵。
如图所示a 、b 分别为小汽车和大卡车的v -t 图像,以下说法正确的是( )A .因刹车失灵前小汽车已减速,不会追尾B .在t =5s 时追尾C .在t =2s 时追尾D.若刹车不失灵不会追尾4、如图所示,薄纸带放在光滑水平桌面上,滑块放在薄纸带上,用水平恒外力拉动纸带,滑块落在地面上A点;将滑块和纸带都放回原位置,再用大小不同的水平恒外力拉动纸带,滑块落在地面上B点。
2024年全国1卷高考语文模拟试题及答案
![2024年全国1卷高考语文模拟试题及答案](https://img.taocdn.com/s3/m/8549e01f59fb770bf78a6529647d27284b733713.png)
2024年全国1卷高考语文模拟试题及答案2024年全国1卷高考语文模拟试题及答案一、选择题1、下列词语中,字形和读音全部正确的一项是:()A. 订正、汲取教训、锲而不舍、撒手锏B. 修茸、一筹莫展、越俎代庖、狙击手C. 针砭、明察秋毫、咎由自取、口头禅D. 矍铄、言简意赅、气冲霄汉、洗脚婢2、下列句子中,没有语病的一项是:()A. 我们既要传承传统文化,又要与时俱进,以适应新的时代环境。
B. 大量的事实告诉我们,环境恶化导致生物灭绝,人类要善待大自然。
C. 有关部门高度重视人民的意见,以确保“禁烟令”的顺利实施。
D. 即使生活再艰辛,我也要坚持不懈地努力,因为我的梦想就是成为一个科学家。
3、下列作品中,属于鲁迅小说集《呐喊》的是:()A. 《孔乙己》B. 《背影》C. 《荷塘月色》D. 《葫芦僧判断葫芦案》二、阅读理解阅读下面的文言文,完成4-6题。
未几,夫恬上前,问所欲言。
王曰:“吾欲言南尚可斗太守恶其无状。
”恬曰:“前日恬罪甚重,郎中令劳赐如令,是恬与并得罪。
”夫恬曰:“死未晚也。
”恬闻天下之至苦也莫苦于狱吏而吏道也莫患于无文而止在促捕之众也幸而道不携犹破折锐首而折左股而话之犹无所羞而夫恬为上相与为朝廷之法而以贾竖受货为资而挛拘牵张于辞语者恶独安?窃见郡县之吏徒以阿坐为毕能郡之大者也吏安得不悉虎狼还以道为尚父且父之不德而咎若曹罪乃大矣陷乃公独痴牧羊而道苦索则何?”恬不为理,引首以塞其气。
相与营当引太守舍,驾不能过半涂,良市卒正言于从者曰:“可与杀牛茵茵也。
”而恬得兵甚备,因恬请曰:“窃闻恬为人臣,佞而无骨,畏强怀弱,以货自免。
骄君甚则贵而求逆,暴君甚则利而求逆。
恬不知为死计,而尚与贾竖受货。
”恬得死诚节矣!4、下列句子中,断句正确的一项是:()A. 前日/恬罪甚重B. 贾竖/受货为资/而挛拘牵张于辞语者/恶独安C. 引首以塞/其气D. 可与杀牛茵茵也5、下列关于文章内容的理解,正确的一项是:()A. 夫恬认为自己的罪行很重,所以觉得自己应该被处死。
高考数学模拟试题含答案
![高考数学模拟试题含答案](https://img.taocdn.com/s3/m/02c37a83763231126edb119d.png)
高考数学模拟试题 (一)一、选择题(本题共12个小题,每题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的,请把符合要求一项的字母代号填在题后括号内.)1.已知集合M={x∣-3x -28 ≤0},N = {x|-x-6>0},则M∩N 为()A.{x| 4≤x<-2或3<x≤7}B. {x|-4<x≤-2或3≤x<7 }C.{x|x≤-2或x>3 }D. {x|x<-2或x≥3}2.在映射f的作用下对应为,求-1+2i的原象()A.2-iB.-2+iC.iD.23.若,则()A.a>b>c B.b>a>c C.c>a>b D.b>c>a4.要得到函数y=sin2x的图像,可以把函数的图像()A.向左平移个单位B. 向右平移个单位C.向左平移个单位D. 向右平移个单位5. 如图,是一程序框图,则输出结果中()A. B.C. D.6.平面的一个充分不必要条件是()A.存在一条直线B.存在一个平面C.存在一个平面D.存在一条直线7.已知以F1(-2,0),F2(2,0)为焦点的椭圆与直线有且仅有一个交点,则椭圆的长轴长为()A. B. C. D.8.O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足,则p的轨迹一定通过△ABC的()A.外心B. 重心C.内心D. 垂心9.设{a n}是等差数列,从{a1,a2,a3,…,a20}中任取3个不同的数,使这3个数仍成等差数列,则这样不同的等差数列最多有()A.90个 B.120个C.180个 D.200个10.下列说法正确的是 ( )A.“x2=1”是“x=1”的充分不必要条件B.“x=-1”是“x2-5x-6=0”的必要不充分条件C.命题“使得”的否定是:“均有”D.命题“若α=β,则sinα=sinβ”的逆否命题为真命题11.设等比数列的公比q=2,前n项和为,则()A. 2B. 4C.D.12.设曲线在点(3,2)处的切线与直线ax+y+1=0垂直,则a=()A.2 B.-2 C. D.二、填空题(本大题共4小题,每小题5分,满分20分.把答案直接填在题中的横线上.)13. 已知,,则的最小值.14. 如图是一个几何体的三视图,根据图中数据可得几何体的表面积为.15. 已知(1+x)+(1+x)2+(1+x)3+…+(1+x)n=a0+a1x+a2x+…+a n x n,若a1+a2+…+a n-1=29-n,则自然数n等于.16.有以下几个命题:①曲线x2-(y+1)2=1按a=(-1,2)平移可得曲线(x+1)2-(y+3)2=1②与直线相交,所得弦长为2③设A、B为两个定点,m为常数,,则动点P的轨迹为椭圆④若椭圆的左、右焦点分别为F1、F2,P是该椭圆上的任意一点,则点F2关于∠F1PF2的外角平分线的对称点M的轨迹是圆其中真命题的序号为(写出所有真命题的序号).三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分12分)求函数y=7-4sinxcosx+4cos2x-4cos4x的最大值与最小值.18.(本小题满分12分)同时抛掷3个正方体骰子,各个面上分别标以数(1,2,3,4,5,6),出现向上的三个数的积被4整除的事件记为A.(1)求事件A发生的概率P(A);(2)这个试验重复做3次,求事件A至少发生2次的概率;(3)这个试验反复做6次,求事件A发生次数ξ的数学期望.19.(本小题满分12分)如图所示,已知四棱锥P-ABCD的底面是直角梯形, ∠ABC=∠BCD=90°,AB=BC=PB=PC=2CD=2,侧面PBC⊥底面ABCD,O是BC的中点,AO交BD于E.(1)求证:PA⊥BD;(2)求证:平面PAD⊥平面PAB;(3)求二面角P-DC-B.20. (本小题满分12分)如图,M是抛物线y2=x上的一点,动弦ME、MF分别交x轴于A、B两点,且MA=MB.(1)若M为定点,证明直线EF的斜率为定值;(2)若M为动点,且∠EMF=90°,求△EMF的重心G的轨迹方程.21.(本小题满分12分)已知函数的图象与直线相切,切点的横坐标为1.(1)求函数f(x)的表达式和直线的方程;(2)求函数f(x)的单调区间;(3)若不等式f(x)≥2x+m对f(x)定义域内的任意x恒成立,求实数m的取值范围.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.作答时用2B铅笔在答题卡上把所选题目对应的题号涂黑.22.(本小题满分10分)[几何证明选讲]如图,E是圆内两弦AB和CD的交点,直线EF//CB,交AD的延长线于F,FG切圆于G,求证:(1)∽;(2)EF=FG.23.[选修4-4:坐标系与参数方程]已知曲线C:(t为参数), C:(为参数).(1)化C,C的方程为普通方程,并说明它们分别表示什么曲线;(2)若C上的点P对应的参数为,Q为C上的动点,求PQ中点M到直线(t为参数)距离的最小值.24.【不等式选讲】解不等式:参考答案1.A2.D3.A4.A5.D6.D7.C8.B9.C 10.D 11.C 12.B13. 3 14. 12π15.4 16.④17.解:y=7-4sinxcosx+4cos2x-4cos4x=7-2sin2x+4cos2x(1-cos2x)=7-2sin2x+4cos2xsin2x=7-2sin2x+sin22x=(1-sin2x)2+6.由于函数z=(u-1)2+6在[-1,1]中的最大值为z max=(-1-1)2+6=10,最小值为z min=(1-1)2+6=6,故当sin2x=-1时y取得最大值10,当sin2x=1时y取得最小值6.18.解:(1)解法1先考虑事件A的对立事件,共两种情况:①3个都是奇数;②只有一个是2或6,另两个都是奇数,.解法2 事件的发生有以下五种情况:三个整数都是4:;有两个整数是4,另一个不是4:;只有一个数是4,另两个不是4:;三个数都是2或6:;有两个数是2或6,另一个数是奇数:故得.(2).(3).19.解法一:(1)证明:∵PB=PC,∴PO⊥BC.又∵平面PBC⊥平面ABCD,平面PBC∩平面ABCD=BC,∴PO⊥平面ABCD.在梯形ABCD中,可得Rt△ABO≌Rt△BCD,∴∠BEO=∠OAB+∠DBA=∠DBC+∠DBA=90°,即AO⊥BD.∵PA在平面ABCD内的射影为AO,∴PA⊥BD.(2)证明:取PB的中点N,连接CN.∵PC=BC, ∴CN⊥PB.①∴AB⊥BC,且平面PBC⊥平面ABCD.∴AB⊥平面PBC.∵AB平面PAB,∴平面PBC⊥平面PAB.②由①、②知CN⊥平面PAB,连接DM、MN,则由MN∥AB∥CD,得四边形MNCD为平行四边形,∴DM⊥平面PAB.∵DC⊥BC,且平面PBC⊥平面ABCD,∴DC⊥平面PBC,∵PC平面PBC.∴DC⊥PC.∴∠PCB为二面角P-DC-B的平面角.∵三角形PBC是等边三角形,∴∠PCB=60°,即二面角P-DC-B的大小为60°.∵DM平面PAD,∴平面PAD⊥平面PAB.解法二:取BC的中点O,因为三角形PBC是等边三角形,由侧面PBC⊥底面ABCD,得PO⊥底面ABCD.以BC中点O为原点,以BC所在直线为x轴,过点O与AB平行的直线为y轴,建立空间直角坐标系O-xyz.(1)证明:∵CD=1,则在直角梯形中,AB=BC=2,在等边三角形PBC中,.(2)证明:,(3)显然所夹角等于所示二面角的平面角.20. 解:(1)设M(y02,y0),直线ME的斜率为k(k>0),则直线MF的斜率为-k,所以直线ME的方程为y-y0=k(x-y02).....所以直线EF的斜率为定值.(2)当∠EMF=90°时,∠MAB=45°,所以k=1.∴直线ME的方程为:y-y0=x-y02..同理可得.设重心消去得21.解:(1). ∴f(1)=1.∴节点为(1,1).∴1=-2×1+c.∴c=3.∴直线l的方程为y=-2x+3.(2).(3)令,由得,在上是减函数,在上是增函数...22.解: EF//CB,∽.FG是圆的切线.故FG=EF.23.解:(Ⅰ).为圆心是,半径是1的圆,为中心是坐标原点,焦点在轴上,长半轴长是8,短半轴长是3的椭圆.(Ⅱ)当时,,故,为直线.精品文档. M到的距离 .从而当时,d取得最小值.24.解:(1)时,得,解得,所以,;(2)时,得,解得,所以,;(3)时,得,解得,所以,无解.综上,不等式的解集为.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年高考模拟试题及参考答案命题人:卢锦亮一、单项选择题:1、科学家发现在月球上含有丰富的32He (氦3),它是一种高效、清洁、安全的核聚变燃料,其参与的一种核聚变反应的方程式为32He +32He →112H +42He ,关于32He 聚变下列表述正确的是A.聚变反应不会释放能量 B.聚变反应产生了新的原子核 C .聚变反应没有质量亏损 D.目前核电站都采用32He 聚变反应发电 2、下列关于热学现象和热学规律说法正确的是:A .根据热力学第二定律可知热量能够从高温物体传到低温物体,但不可能从低温物体传到高温物体B .用活塞压缩气缸里的空气,对空气做功2.0×105J ,同时空气的内能增加了1.5×105J ,则空气从外界吸收热量0.5×105JC .物体的温度为0℃时,物体分子的平均动能为零D .一定质量的气体,保持温度不变,压强随体积增大而减小的微观原因是:单位体积内的分子数减小3.质量为M 的人造地球卫星在距地球表面高度为R 的轨道上绕地球做匀速圆周运动,其中R 为地球半径,设地球表面的重力加速度为g ,以下说法正确的是 A .卫星的线速度为2gRv =B .一个质量m 的物体在该卫星内所受的重力为0C .如果该卫星经变轨到距地面高为2R 的新轨道上运动则其运动周期变小D .该卫星是地球的同步卫星4.两根光滑的金属导轨,平行放置在倾角为θ的斜面上,导轨的左端接有电阻R ,导轨的电阻可忽略不计。
斜面处在匀强磁场中,磁场方向垂直于斜面向上。
质量为m ,电阻可不计的金属棒ab 在沿着斜面与金属棒垂直的拉力F 作用下沿导轨匀速上滑,并上升h 高度,如图所示,在这个过程中 A .作用在金属棒上各个力的合力所做的功等于电阻R 上产生的焦耳热 B .作用在金属棒上各个力的合力所做的功等于mgh 与电阻R 上产生的焦耳热之和C .恒力F 与重力的合力所做的功等于电阻R 上产生的焦耳热D .恒力F 与安培力的合力所做的功等于零h Fb a θB二、双项选择题5.某物体受到合力F的作用,由静止开始运动,其v-t图象如图所示,由图可知:A.该物体只向一个方向运动B.该物体所受的合力F方向不断变化,而大小始终不变C.3 s末物体回到原出发点D.2 s~4 s内,物体的动量变化量不等于零,合力F对物体所做的功等于零6.如图所示,平行金属板中的带电质点P处于静止状态,不考虑电流表和电压表对电路的影响,当滑动变阻器R4滑片向b端移动时()A.电流表读数增大B.电压表读数增大C.R3上消耗的电功率增大D.质点P将向下运动7、在如图甲所示的电路中,电阻R的阻值为50Ω,在ab间加上图乙所示的正弦交流电,则下面说法中正确的是:A、电流表示数为2AB、产生该交流电的线圈在磁场中转动的角速度为3.14rad/sC、如果产生该交流电的线圈转速提高一倍,则电流表的示数也增大一倍D、1秒内通过R的电流方向变化50次。
8、如图中虚线表示匀强电场的等势面1、2、3、4。
一带正电的粒子只在电场力的作用下从电场中的a点运动到b点,轨迹如图中实线所示。
由此可判断A.4等势面电势最高B.粒子从a运动到b过程中动能增大C.粒子从a运动到b过程中电势能增大D.在运动中粒子的电势能与动能之和不变9.地铁是大都市重要的交通工具之一,在地铁列车上通常有提示列车加速状态的指示灯,旅客可以通过指示灯把握好自己的坐姿,防止自己从座位上摔出去,其结构如图所示,M是质量较大的金属块,左右两端分别与金属丝制作的弹簧相连,并套在光滑水平金属杆上,当M平衡时两根弹簧均处于原长,此时两灯都不亮。
下列说法正确的是A、当地铁列车加速前进时,甲灯可能变亮B、当乙灯突然变亮时, 旅客有向车后倒的趋势MV头车后甲灯乙灯C、当乙灯亮时, 旅客受的合力方向向车后D、当甲灯亮时,列车可能是减速进站了三、实验题:10、有一同学测量小车从斜面上下滑所受到的阻力大小,他利用一打点计时器固定在斜面上某处,一小车拖着穿过打点计时器的纸带从斜面上滑下,如图8所示.图9是打出的纸带的一段,已量出各相邻计数段的长度分别为:S1、S2、S3、S4、S5、S6、S7、S8 .(1)已知打点计时器使用的交流电频率f =50Hz,打点的周期为 s. 用以上已知的物理量表示小车下滑的加速度算式为a = .(2)为了求出小车在下滑过程中所受的阻力,还需测量的物理量有 . (3)用加速度a及其他需要测得的量表示阻力的计算式为f = .11、在做“描绘小灯泡的伏安特性曲线”的实验中,采用的仪器有:电源E(电动势6V,内阻不计);额定电压4.0V的小灯泡L;电流表○A(量程0.6A,内阻约2Ω);电压表表○V(量程5V,内阻约15kΩ);滑动变阻器R(最大阻值15Ω);开关S,导线若干。
实验中要求加在小灯泡上的电压从零到小灯泡的额定电压连续可调。
(I).在做实验时,连成的实物电路图如下:请你指出上述实验电路图中的错误..之处:①;②(II).请你在虚线方框中画出实验所用的正确电路原理图。
S1 S2 S3 S4 S5 S6 S7 S8图8 图9(Ⅲ)某位同学测得小灯泡的伏安特性曲线如图4所示。
图象是一条曲线而不是直线的原因是————————————————;某次测量时,电流表指针位置如图5所示,电流表读数为 A,此时小灯泡的实际功率为 W 。
三、计算题:20.(16分) 一轻质细绳一端系一质量为201m kg 的小球A ,另一端挂在光滑水平轴O 上,O 到小球的距离为L =0.1m ,小球跟水平面接触,但无相互作用,在球的两侧等距离处分别固定一个光滑的斜面和一个挡板,如图所示,水平距离s 为2m ,动摩擦因数为0.25.现有一小滑块B ,质量也为m ,从斜面上滑下,与小球碰撞时交换速度,与挡板碰撞不损失机械能.若不计空气阻力,并将滑块和小球都视为质点,g 取10m/s 2,试问:(1)若滑块B 从斜面某一高度h 处滑下与小球第一次碰撞后,使小球恰好在竖直平面内 做圆周运动,求此高度h .(2)若滑块B 从h =5m 处滑下,求滑块B 与小球第一次碰后瞬间绳子对小球的拉力. (3)若滑块B 从h =5m 处下滑与小球碰撞后,小球在竖直平面内做圆周运动,求小球做完整圆周运动的次数.13、如图,在x oy 平面第一象限内的MN 和x 轴之间有平行于y 轴的匀强电场和垂直于x oy 平面的匀强磁场,y 轴上离坐标原点4L 的A 点处有一电子枪,可以沿+x 方向射出速度为v 0的电子(质量为m ,电量为e )不计电子的重力。
.如果电场和磁场同时存在,电子将做匀速直线运动,如果撤去电场,只保留磁场,电子将从x 轴上距坐标原点3L 的C 点离开磁场.求:(1)磁感应强度B 和电场强度E 的大小和方向;(2)如果撤去磁场,只保留电场,电子将从D 点(图中未标出)离开电场,求D 点的坐标;(3)电子通过D 点时的动能。
O s /2 s /2 A hB(3)从A 点到D 点,由动能定理 20212υm E L Ee kD -=⋅ (2分)求出25057υm E kD =2011年高考模拟试题答案:一、单项选择题:1、B 、2、D 、3、A 、4、C二、双项选择题:5、CD 、6、AD 、7、AC 、8、BD 、9、BD 三、实验题: 10、(1)略(2).①电流表没有接成外接电路 ②滑动变阻器没有接成分压电路。
Ⅱ.见右图Ⅲ.①灯丝电阻随温度而改变(灯丝电阻随I 或随U 改变亦可)②10Ω(9.5Ω到10.5Ω之间都给分)11、 (16分)解:(1)小球刚能完成一次完整的圆周运动,它到最高点的速度为v 1,在最高点,仅有重力充当向心力,则有 Lv mmg 21=①在小球从最低点运动到最高点的过程中,机械能守恒,并设小球在最低点速度为v ,则又有21221221mv L mg mv +⋅= ②解①②有s m v /5=滑块从h 1高处运动到将与小球碰撞时速度为v ,对滑块由能的转化及守恒定律有21212mv s mg mgh +⋅=μ 因碰撞后速度交换s m v /5=,解上式有h 1=0.5m(2)若滑块从h =5m 处下滑到将要与小球碰撞时速度为u ,同理有2212s mg mu mgh ⋅+=μ ③ 解得s m u /95=滑块与小球碰后的瞬间,同理滑块静止,小球以s m u /95=的速度开始作圆周运动,绳的拉力T 和重力的合力充当向心力,则有 Lu m mg T 2=-④ 解④式得T =48N(3)滑块和小球最后一次碰撞时速度为s m v /5=,滑块最后停在水平面上,它通过的路程为s ',同理有 s mg mv mgh '+=μ221⑤ 小球作完整圆周运动的次数为12+-'=ss s n ⑥ 解⑤、⑥得m s 19=',n =10次 12.(20分)解:(1)只有磁场时,电子运动轨迹如图1所示(1分)洛仑兹力提供向心力RmBe 20υυ= (1分)由几何关系 222)4()3(R L L R -+=(2分) 求出eL m B 2580υ=垂直纸面向里(2分) 电子做匀速直线运动0υBe Ee = (1分) 求出eLm E 25820υ=沿y 轴负方向(2分)(2)只有电场时,电子从MN 上的D 点离开电场,如图2所示(1分)设D 点横坐标为x t x 0υ= (2分) 2212t meE L = (2分) 求出D 点的横坐标为L L x 5.3225≈= (1分)纵坐标为L y 6= (1分)(3)从A 点到D 点,由动能定理 20212υm E L Ee kD -=⋅ (2分)求出25057υm E kD =。