投影与视图全章教案
北师大版九年级数学上第四章视图与投影全章教案
第四章视图与投影1.视图(一)一、教学目标1. 知识与技能:经历探索基本几何体(圆柱、圆锥、球)与其三视图之间的关系。
能根据三视图描述基本几何体或实物图形,培养和发展学生推理能力和空间观念。
2. 过程与方法:结合具体实例,初步体会视图在现实生活中的应用,感受数学与现实生活的密切联系,增强学生的数学应用意识。
3. 情感态度与价值观:让学生在课堂活动中通过相互间的合作与交流,进一步发展学生合作交流的能力和数学表达能力。
二、教学重点和难点1、重点:会画圆柱、圆锥、球的三种视图,体会这几种几何体与其视图之间的相互转. 画几何体的三视图。
会画直棱柱的三种视图。
2、难点:画直棱柱的三种视图要明确图中实线和虚线的区别。
三、教学过程第一环节:情境问题引入活动内容:1还记得一个物体的主视图、左视图和俯视图吗?2你能自己或者与同伴画出下图的主视图、左视图和俯视图吗?附答案1、主视图:2、左视图:3、俯视图:第二环节:活动探究(获取信息,体会特点)活动内容:110页的图中物体的形状分别可以看成什么样的几何体?从正面、侧面、上面看这些几何体,他们的形状各是什么样的?活动目的:首先让学生经历将实物抽象成几何体的过程,培养学生的抽象能力和想象能力,并通过亲身体验归纳总结三种视图的不同特点,及在现实生活中的实际意义。
第三环节:合作学习活动内容:(1)在下图中找出上图中各物体的主视图。
(1) (2) (3)(4) (5) (6)(2) 上图中各物体的左视图是什么?俯视图呢?与同伴进行交流。
活动目的:以问题串的形式引导学生逐步深入地思考三种视图的区别与联系。
前一个问题的设置帮助培养学生的空间想象能力,问题(2)的设置帮助学生体会:三种视图在长、宽、高等方面的联系。
在以上两个问题的铺设下,图表的设置起到归纳总结的作用 。
第四环节:练习提高活动内容:如图是一个蒙古包的照片。
小明认为这个蒙古包可以看成下图所示的几何体,并画出这个几何体的三种视图,你同意小明的做法吗?主视图 左视图俯视图活动目的:对本节知识进行巩固练习。
第五章投影与视图单元(教案)
另外,小组讨论环节非常活跃,学生们能够积极思考并参与讨论。但在分享成果时,我发现有些小组的表达不够清晰,这可能是因为他们在讨论过程中的逻辑梳理不够。我打算在下次的小组活动中,提前给出一些指导性的问题,帮助他们更好地组织和表达自己的观点。
2.教学难点
-空间想象能力的培养,特别是对于复杂的几何体,如何从不同的角度进行观察和想象。
-投影变换的理解,包括如何将三维空间中的物体转换成二维平面上的视图。
-视图的精细绘制和尺寸标注,如何确保视图的准确性和清晰度。
-对透视图的理解,以及如何将透视图与实际物体对应起来。
-计算机辅助设计软件的使用,如何将传统视图绘制方法与现代化工具相结合。
第五章投影与视图单元(教案)
一、教学内容
第五章投影与视图
1.投影的基本概念与分类
-中心投影
-平行投影
-斜投影
2.三视图的形成及其特性
-主视图
-俯视图
-左视图
-等轴测图
3.视图绘制方法与步骤
-确定投影方向
-绘制主视图
-绘制俯视图Leabharlann 左视图-标注尺寸和细节4.空间几何体的视图识别与应用
-立方体
-球体
-圆柱体
3.重点难点解析:在讲授过程中,我会特别强调平行投影和中心投影这两个重点。对于难点部分,如透视图的理解,我会通过实例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与视图相关的实际问题,如如何从给定的视图重建三维模型。
北师大九年级数学上册教案:第5章 投影与视图
第五章投影与视图5.1投影第1课时投影的概念与中心投影课题中心投影课型新授课教学目标1.经历实践、探索的过程,了解中心投影的含义,体会灯光下物体的影子在生活中的应用。
2.通过观察、想像,能根据灯光来辨别物体的影子,初步进行中心投影条件下物体与其投影之间的相互转化。
3.体会灯光投影在生活中的实际价值。
教学重点了解中心投影的含义。
教学难点在中心投影条件下物体与其投影之间相互转化的理解。
教学方法观察实践法教学后记教学内容及过程备注一、创设情境、操作感知皮影戏是用兽皮或纸板做成的人物剪影来表演故事的戏曲,表演时,用灯光把剪影照射在银幕上,艺人在幕后一边操纵剪影,一边演唱,并配以音乐。
学生在灯光下做不同的手势,观察映射到屏幕上的表象。
学生小组合作,实验感悟。
概念:物体在光线的照射下,会在地面或其他平面上留下它的影子,这就是投影现象,影子所在的平面称为投影面.做一做取一些长短不等的小棒和三角形、矩形纸片,用手电筒(或台灯)去照射这些小棒和纸片。
提问:(1)固定手电筒(或台灯),改变小棒或纸片的摆放位置和方向,它们的影子分别发生了什么变化?(2)固定小棒和纸片,改变手电筒(或台灯)的摆放位置和方向,它们的影子发生了什么变化?学生小组合作,实验感悟。
概念:手电筒、路灯和台灯的光线可以看成是从一点发出的,这样的光线所形成的投影称为中心投影。
二、范例学习、理解领会例1确定图5-1中路灯灯泡所在的位置。
学生观察屏幕,动手实验,找出灯泡的位置。
三、联系生活、丰富联想议一议图5-3,一个广场中央有一盏路灯.(1)高矮相同的两个人在这盏路灯下的影子一定一样长吗?如果不一定,那么什么情况下他们的影子一样长?请实际试一试,并与同伴交流.继续探索:(2)高矮不同的两个人在这盏路灯下的影子有可能一样长吗?学生交流、画图。
四、随堂练习课本随堂练习1、2五、课堂总结本节课让同学们通过实践、观察、探索。
了解中心投影的含义,学会进行中心投影条件下的物体与其投影之间的相互转化。
数学第4章视图与投影全章教案(北师大版九年级上)
第四章视图与投影4.1视图(一)知识与技能目标:1.经历由实物抽象出几何体的过程,进一步发展空间观念.2.会画圆柱、圆锥、球的三种视图,体会这几种几何体与其视图之间的相互转化.过程与方法目标:通过实例能够判断简单物体属于何种几何体,并能画出物体的三种视图,从而经历由圆柱、圆锥和球到其三种视图的转化过程,发展学生的空间观念.情感态度与价值观目标:1.通过具体活动,积累数学活动经验,进一步增强学生的动手实践能力和数学思考能力,发展学生的空间观念.2.通过学习和实践活动,激发学生对视图学习的好奇心,体会数学与现实生活的联系.教学重点1.经历由实物抽象出几何体的过程,进一步发展空间观念。
2.会画圆柱、圆锥、球的三种视图,体会这几种几何体与其视图之间的相互转化。
重点、难点、关键:1.重点:掌握部分几何体的三视图的画法。
2.难点:几何体与视图之间的相互转化。
3.关键:充分发挥三维想象空间,运用实物进行合理抽象,想象物体的形状.教学过程:活动:学生利用准备好的大小相同的正方体方块,搭建如课本图4—1的立体图形,让同学们画出三视图。
而后,再要求学生利用手中12块正方体的方块实物,搭建2个立体图形,并画出它们的三视图。
议一议1.用4—2中物体的形状分别可以看成什么样的几何体?从正面、侧面、上面看这些几何体。
它们的形状各是什么样的?2.在图4一3中找出图4—2中各物体的主视图。
做一做如图4—4,是一个蒙古包的照片,小明认为这个蒙古包可以看成用4—5所示的几何体,并画出了这个几何体的三种视图,你同意小明的做法吗?随堂练习:课本随堂练习1、2课堂小结:本节课主要通过对由实物抽象出几何体的过程,发展大家的空间想象能力。
在画实物的视图时,必须首先对实物进行合理的抽象,即把实物抽象成相应的几何体,在此基础上再画其视图.例如,圆柱形、圆锥形和球形实物,与作为几何体的圆柱、圆锥和球是有区别的,但我们可以合理地把它们分别想象成圆柱、圆锥、球,进而画出它们的视图。
九年级数学下册投影与视图全章教案新人教版
新人教版九年级数学下册《投影与视图》全章教案第一节:投影的概念与分类教学目标:1. 了解投影的概念,掌握投影的分类。
2. 能够运用投影的知识解决实际问题。
教学重点:投影的概念,投影的分类。
教学难点:投影的应用。
教学过程:1. 导入:通过展示图片,引导学生思考投影的概念。
2. 新课:介绍投影的分类,讲解不同类型的投影特点。
3. 练习:让学生运用投影的知识解决实际问题。
课后作业:1. 复习投影的概念与分类。
2. 运用投影的知识解决实际问题。
第二节:视图的概念与分类教学目标:1. 了解视图的概念,掌握视图的分类。
2. 能够运用视图的知识解决实际问题。
教学重点:视图的概念,视图的分类。
教学难点:视图的应用。
教学过程:1. 导入:通过展示图片,引导学生思考视图的概念。
2. 新课:介绍视图的分类,讲解不同类型的视图特点。
3. 练习:让学生运用视图的知识解决实际问题。
课后作业:1. 复习视图的概念与分类。
2. 运用视图的知识解决实际问题。
第三节:三视图教学目标:1. 了解三视图的概念,掌握三视图的画法。
2. 能够运用三视图的知识解决实际问题。
教学重点:三视图的概念,三视图的画法。
教学难点:三视图的应用。
教学过程:1. 导入:通过展示图片,引导学生思考三视图的概念。
2. 新课:介绍三视图的画法,讲解不同类型的三视图特点。
3. 练习:让学生运用三视图的知识解决实际问题。
课后作业:1. 复习三视图的概念与画法。
2. 运用三视图的知识解决实际问题。
第四节:投影与视图的应用教学目标:1. 了解投影与视图在实际中的应用,掌握投影与视图的转换方法。
2. 能够运用投影与视图的知识解决实际问题。
教学重点:投影与视图的应用,投影与视图的转换方法。
教学难点:投影与视图在实际问题中的应用。
教学过程:1. 导入:通过展示图片,引导学生思考投影与视图在实际中的应用。
2. 新课:介绍投影与视图的转换方法,讲解不同类型的投影与视图应用。
3. 练习:让学生运用投影与视图的知识解决实际问题。
九年级数学下册投影与视图全章教案新人教版
九年级数学下册《投影与视图》全章教案新人教版第一章:投影与视图的概念教学目标:1. 理解投影的概念,掌握平行投影和中心投影的性质。
2. 理解视图的概念,掌握主视图、左视图和俯视图的定义及关系。
3. 学会用投影和视图的方式观察和描述几何体的形状。
教学内容:1. 投影的概念和分类2. 平行投影和中心投影的性质3. 视图的概念和分类4. 主视图、左视图和俯视图的定义及关系5. 用投影和视图观察和描述几何体的形状教学重点:投影与视图的概念及性质教学难点:用投影和视图观察和描述几何体的形状教学方法:采用问题驱动法、案例教学法和小组合作学习法。
教学过程:1. 引入新课:通过展示实际生活中的投影与视图现象,引发学生对投影与视图的兴趣。
2. 讲解投影的概念和分类,引导学生理解投影的性质。
3. 讲解视图的概念和分类,引导学生理解主视图、左视图和俯视图的定义及关系。
4. 通过实例演示,引导学生学会用投影和视图的方式观察和描述几何体的形状。
教学评价:1. 通过课堂问答,检查学生对投影与视图概念的理解程度。
2. 通过练习题,检查学生对投影与视图性质的掌握程度。
3. 通过小组合作学习,评估学生在实际操作中用投影和视图观察和描述几何体形状的能力。
第二章:三视图的绘制教学目标:1. 掌握三视图的绘制方法。
2. 学会通过三视图还原几何体的形状。
教学内容:1. 三视图的概念2. 三视图的绘制方法3. 通过三视图还原几何体的形状教学重点:三视图的绘制方法和通过三视图还原几何体的形状教学难点:通过三视图还原几何体的形状教学方法:采用案例教学法、小组合作学习和实践操作法。
教学过程:1. 引入新课:通过展示实际生活中的三视图现象,引发学生对三视图的兴趣。
2. 讲解三视图的概念,引导学生理解三视图的重要性。
3. 讲解三视图的绘制方法,引导学生学会正确绘制三视图。
4. 通过实例演示,引导学生学会通过三视图还原几何体的形状。
教学评价:1. 通过课堂问答,检查学生对三视图概念的理解程度。
北师大版九年级数学上册:第五章投影与视图教案
第五章投影与视图1投影第1课时灯光与影子1.了解投影和中心投影的概念,体会灯光下物体的影子在生活中的运用.2.能根据灯光来辨别物体的影子,初步进行中心投影条件下物体与其投影之间的相互转化.重点了解中心投影的概念.难点利用中心投影解决问题.一、情境导入教师:在日常生活中,我们可以看到各种各样的影子.比如,太阳光照射在窗框、长椅等物体上时,会在墙壁或地面上留下影子;而皮影和手影都是在灯光照射下形成的影子.要求学生在灯光下做不同的手势,观察映射到屏幕上的表象.引导学生得出:物体在光线的照射下,会在地面或其他平面上留下它的影子,这就是投影现象,影子所在的平面称为投影面.二、探究新知1.学生活动:取一些长短不等的小棒和三角形、矩形纸片,用手电筒(或台灯)等去照射这些小棒和纸片,观察它们的影子.引导学生思考:(1)固定手电筒(或台灯),改变小棒或纸片的摆放位置和方向,它们的影子分别发生了什么变化?(2)固定小棒和纸片,改变手电筒(或台灯)的摆放位置和方向,它们的影子发生了什么变化?学生小组合作交流后给出答案,教师点评,引导学生得出:从一个点(点光源)发出的光线所形成的投影称为中心投影.教师进一步讲解中心投影的性质:(1)光源、物体边缘上的点以及它在影子上的对应点在同一条直线上,根据同一灯光下两个不同物体及它们的影子,可以确定灯(点光源)所在的位置;(2)若物体相对于光源的方向改变,则该物体的影子的方向也发生变化,但光源、物体的影子始终分居在物体的两侧.2.课件出示:(1)下列现象属于中心投影的有()①小孔成像;②皮影戏;③手影;④放电影.A.1个B.2个C.3个D.4个(2)小华自制了一个简易的幻灯机,其工作情况如图所示,幻灯片与屏幕平行,光源到幻灯片的距离是30 cm,幻灯片到屏幕的距离是1.5 m,幻灯片上小树的高度是10 cm,则屏幕上小树的高度是()A.50 cm B.60 cmC.500 cm D.600 cm学生思考完成后举手回答,教师点评,提问:通过上面的学习,你能总结出中心投影的特点吗?引导学生总结归纳出中心投影的三个特点:(1)等高物体垂直地面放置:离点光源越近,影子越短;离点光源越远,影子越长.(2)等长物体平行地面放置:离点光源越近,影子越长;离点光源越远,影子越短,但不会小于物体本身的长度.(3)点光源、物体边缘的点以及其在物体的影子上的对应点在同一条直线上.三、举例分析例(课件出示教材第126页例1)学生独立完成后给出答案,教师点评,并进一步讲解确定中心投影的光源位置的方法:根据点光源、物体边缘上的点以及它在影子上的对应点在同一条直线上,知道其中两个点,就可确定第三个点的位置,先找物体上两点及其在影子上的对应点,再分别过物体上的点及其在影子上的对应点画直线,两条直线的交点即为光源所在的位置.四、练习巩固1.教材第126页“议一议”.2.教材第127页“随堂练习”第1,2题.五、小结1.通过本节课的学习,你有什么收获?2.中心投影的概念及特点分别是什么?3.说说确定中心投影的光源位置的方法.六、课外作业教材第128~129页习题5.1第1~3题.本节课的内容是灯光与影子.在教学过程中,让学生通过实践、观察、探索了解中心投影的含义,体会灯光下物体的影子在生活中的应用,感悟灯光与影子在现实生活中的应用价值.通过观察、想象,能根据灯光来辨别物体的影子,初步进行中心投影条件下物体与其投影之间的相互转化.在课堂上,以学生为主,教师引导学生探讨新知识,提高学生的分析能力,调动学生的学习积极性.第2课时太阳光与影子1.理解平行投影与正投影的含义,能够确定物体在太阳光下的影子.2.理解不同时刻物体在太阳光下形成的影子的大小和方向是不同的.重点理解平行投影与正投影的含义,能够确定物体在太阳光下的影子.难点理解不同时刻物体在太阳光下形成的影子的大小和方向是不同的.一、复习导入1.下图是两棵小树在同一时刻的影子,请在图中画出形成树影的光线.它是太阳的光线还是灯光的光线?它是太阳的光线,因为两棵树的顶端及其影子的顶端的两线相交于一点.2.下图的影子是在太阳光下形成的还是在灯光下形成的?画出同一时刻旗杆的影子(用线段表示),并与同伴交流这样做的理由.学生小组讨论交流,教师点评.教师:本节课我们就来研究“太阳光与影子”.二、探究新知1.平行投影(1)学生活动:取若干长短不等的小棒及三角形、矩形纸片,观察它们在太阳光下的影子.引导学生思考:①固定投影面,改变小棒或纸片的摆放位置和方向,它们的影子分别发生了什么变化?②固定小棒或纸片,改变投影面的摆放位置和方向,它们的影子分别发生了什么变化?学生操作、观察、探索后回答问题,教师引导学生得出:太阳光线可以看成平行光线,平行光线所形成的投影称为平行投影.注意:①平行投影中对应点的连线是相互平行的;②物体与投影的对应点的连线是相互平行的就说明是平行投影;③物体在不同时刻的太阳光下,不仅影子的大小在变,而且影子的方向也在改变.就我们生活的北半球而言,上午的影子的方向是由西向北变化,影子越来越短;下午的影子方向由北向东变化,影子越来越长.(2)课件出示:这三幅图是我国北方某地某天上午不同时刻的同一位置拍摄的.①在三个不同时刻,同一棵树的影子长度不同,请将它们按拍摄的先后顺序进行排列,并说明你的理由.②在同一时刻,两棵树影子的长度与它们的高度之间有什么关系?与同伴进行交流.学生观察、交流,得出结论:在同一时刻,两棵树的影子的长度与它们的高度成比例.教师进一步讲解平行投影的特点:①等高的物体垂直于地面放置时,在同一时刻的太阳光下,它们的影子一样长;②等长的物体平行于地面放置时,在太阳光下,它们的影子一样长,且等于物体本身的长度;③在太阳光下,不同时刻,同一地点,同一物体的影子的长度可能不同;④在太阳光下,同一时刻,同一地点,以同样的方式放置不同的物体,影子的长度与物体的长度成正比.2.正投影教师:平行光线与投影面垂直,这种投影称为正投影.如图所示:强调:(1)正投影是特殊的平行投影,它不可能是中心投影;(2)正投影中强调的是光线与投影面之间的关系,与物体的位置无关;(3)物体的正投影的形状、大小与物体相对于投影面的位置有关,它分物体与投影面平行、倾斜、垂直三种情况.三、举例分析例1小乐用一块矩形硬纸板在阳光下做投影试验,通过观察,发现这块矩形硬纸板在平整的地面上不可能出现的投影是()A.三角形B.线段C.矩形D.平行四边形分析:将矩形硬纸的板面与投影线平行时,形成的影子为线段;将矩形硬纸板与地面平行放置时,形成的影子为矩形;将矩形硬纸板倾斜放置形成的影子为平行四边形.例2(课件出示教材第130页例2)学生完成后给出答案,教师点评并引导学生得出画物体的平行投影的方法:先根据物体的投影确定光线,然后利用两个物体的顶端和各自影子的顶端的连线是一组平行线,过物体顶端作平行线与地面相交,从而确定其影子.四、练习巩固1.教材第131页“做一做”.2.教材第132页“随堂练习”.五、小结1.通过本节课的学习,你有什么收获?2.平行投影的概念及其特点分别是什么?3.画物体平行投影的方法是什么?4.什么是正投影?六、课外作业教材第132~133页习题5.2第1~4题.太阳光与影子是日常生活中的常见现象,学生在其他课程的学习中已经积累了物体在太阳光下形成的影子的有关知识.而本节课是在学生学习了投影和中心投影这两个概念后,再一次给出了平行投影和正投影的概念.本节课的目的在于让学生通过众多实例进一步讨论物体在太阳光下所形成的影子的大小、形状、方向等几何知识.相比于灯光与影子,本节课的内容难度要大一些.仅仅依靠学生的想象力,还无法解决全部问题,因此本节课教师应利用课堂时间组织学生动手实践去体会太阳光与影子之间的关系.2视图1.会从投影的角度理解视图的概念,能说出基本几何体的三视图的形状.会画三棱柱、四棱柱的三视图.能根据几何体的俯视图画出其主视图和左视图.2.经历探索简单几何体及棱柱的三视图的过程,培养学生的空间想象能力及画图能力.3.经历由几何体的俯视图探索主视图和俯视图的过程,进一步发展学生的推理能力和空间感.重点掌握三视图的画法,能进行几何体和三视图之间的相互转化.难点几何体与三视图之间的相互转化.一、复习导入教师:什么是投影?什么是中心投影?什么是平行投影?什么是正投影?教师指名学生回答.二、探究新知1.主视图、俯视图、左视图的概念课件出示教材第134页图5-12,提出问题:(1)假设有一束平行光线从正面投射到图中的物体上,你能想象出它在这束平行光线下的正投影吗?把你想象的正投影画出来,并与同伴交流.(2)如果平行线光线从左面投射到图中的物体上,情况又如何?如果平行光线从上面投射到图中的物体上呢?学生独立画图,教师巡视指导,并讲解:用正投影的方法绘制的物体在投影面上的图形,叫做物体的视图.通常我们把从正面得到的视图叫做主视图,从左面得到的视图叫做左视图;从上面得到的视图叫做俯视图.(正视图、左视图、俯视图统称为三视图) 2.主视图、左视图、俯视图的画法学生活动:请同学们拿出事先准备好的直三棱柱、直四棱柱,根据你所摆放的位置经过想象,再抽象出这两个直棱柱的主视图、左视图和俯视图.学生分四人小组,合作学习.观察、画图、交流,上台演示.教师:请你将抽象出来的三种视图画出来,并与同伴交流.指名同学在黑板上画出其中一个几何体的主视图、左视图和俯视图,完成后提出问题:你认为他画得对不对?谈谈你的看法.学生积极举手回答,发表自己的看法.教师:当你手中的两个直棱柱摆放的角度变化时,它们的三种视图是否会随之改变?试一试.学生动手操作演示,教师巡视.课件出示一个长方体,提出问题:请画出这个长方体的主视图、左视图、俯视图.学生独立完成后,教师课件演示:对几何体进行正投影得到三视图.教师:将水平面、侧面、正面展开到同一平面,观察得到三种视图有什么位置关系?教师引导学生得出三种视图的位置关系:主视图在图纸的左上方;左视图在主视图的右方;俯视图在主视图的下方.教师:三种视图大小有什么规律?引导学生发现三种视图的大小对应关系:主视图与俯视图长对正,主视图与左视图高平齐,左视图与俯视图宽相等.教师强调长、宽、高的概念:从正面观察几何体.长是几何体从左到右的距离,宽是几何体从前到后的距离,高是几何体从上到下的距离.3.根据几何体的三视图,描述物体的形状课件出示教材第141页图5-24,图5-25,提出问题:你能在图5-25中找出与之对应的几何体吗?学生独立完成后汇报答案,教师点评.课件出示教材第141页图5-26,提出问题:你能想象出相应几何体的形状吗?学生独立思考,并小组内交流.三、举例分析例(课件出示教材第138页例题)学生独立完成后,教师点评,并引导学生得出三视图画法的注意事项:(1)注意物体摆放的位置;(2)明确三种视图的形状;(3)明确三种视图的大小;(4)注意实线与虚线的用法.四、练习巩固1.教材第136页“随堂练习”第1,2题.2.教材第139页“随堂练习”第1,2题.3.教材第142页“随堂练习”第1,2题.五、小结1.通过本节课的学习,你有什么收获?2.什么是三视图?3.说说三视图的画法及注意事项.六、课外作业1.教材第137页习题5.3第1,2题.2.教材第140页习题5.4第1,2题.3.教材第143页习题5.5第3题.本节课的内容为视图,主要是通过对由实物抽象出几何体的过程,发展学生的空间想象能力.在教学过程中通过具体活动,积累学生的观察、想象物体投影的经验.在画实物的视图时,必须首先对实物进行合理的抽象,即把实物抽象成相应的几何体,在此基础上再画其视图.而且也会根据三视图描述几何体的形状.通过观察、操作、猜想、讨论、合作等活动,使学生体会到三视图中位置及各部分之间大小的对应关系,积累数学活动的经验.在应用数学解决生活中问题的过程中,品尝成功的喜悦,激发学生应用数学的热情.培养学生自主学习与合作学习相结合的学习方式,使学生体会从生活中发现数学.。
九年级数学下册投影与视图全章教案新人教版
九年级数学下册《投影与视图》全章教案新人教版第一章:投影的概念与分类教学目标:1. 了解投影的概念,掌握各种投影的分类。
2. 能够运用投影的知识解决实际问题。
教学内容:1. 投影的概念:平行投影、中心投影。
2. 投影的分类:正投影、斜投影。
3. 投影的基本性质。
教学步骤:1. 引入投影的概念,展示各种投影的图片,引导学生观察并思考。
2. 讲解平行投影和中心投影的定义,通过示例让学生理解两种投影的特点。
3. 介绍正投影和斜投影的分类,让学生通过实际例子区分两种投影。
4. 引导学生总结投影的基本性质,如相似性、形状不变等。
5. 布置练习题,让学生巩固所学内容。
教学评价:1. 学生能够准确描述投影的概念和分类。
2. 学生能够运用投影的知识解决实际问题。
第二章:视图的定义与分类教学目标:1. 理解视图的定义,掌握各种视图的分类。
2. 能够运用视图的知识解决实际问题。
教学内容:1. 视图的定义:主视图、左视图、俯视图。
2. 视图的分类:正视图、侧视图、俯视图。
3. 视图的基本性质。
教学步骤:1. 引入视图的概念,展示各种视图的图片,引导学生观察并思考。
2. 讲解主视图、左视图、俯视图的定义,通过示例让学生理解三种视图的特点。
3. 介绍正视图、侧视图、俯视图的分类,让学生通过实际例子区分三种视图。
4. 引导学生总结视图的基本性质,如相互补充、完整性等。
5. 布置练习题,让学生巩固所学内容。
教学评价:1. 学生能够准确描述视图的定义和分类。
2. 学生能够运用视图的知识解决实际问题。
第三章:简单几何体的三视图教学目标:1. 掌握简单几何体的三视图的画法。
2. 能够运用三视图的知识解决实际问题。
教学内容:1. 简单几何体的三视图:正方体、长方体、圆柱体、圆锥体。
2. 三视图的画法与特点。
教学步骤:1. 讲解正方体、长方体、圆柱体、圆锥体的三视图的画法,通过示例让学生理解各种几何体的三视图特点。
2. 引导学生动手画出各种几何体的三视图,并观察其特点。
投影与视图全章教案
投影与视图全章教案课题:29.1投影(1)⼀、学习⽬标:1、经历实践探索,了解投影、投影⾯、平⾏投影和中⼼投影的概念;2、了⾓平⾏投影和中⼼投影的区别。
3、学会关注⽣活中有关投影的数学问题,提⾼数学的应⽤意识。
⼆、教学重、难点教学重点:理解平⾏投影和中⼼投影的特征;教学难点:在投影⾯上画出平⾯图形的平⾏投影或中⼼投影。
三、教学过程:(⼀)板书课题,出⽰⽬标:同学们,现在我们来学习29.1投影,请看学习⽬标。
(⼆)指导⾃学为了达到本节课的⽬标,下⾯请按照⾃学指导认真⾃学,请看⾃学指导:请同学们认真看课本P100--101内容:问题:1、什么是投影呢?2、什么是平⾏投影?3、什么是中⼼投影?⾃学过程中如有不懂的地⽅,可⼩声请教同桌或举⼿问⽼师。
5分钟后,⽐⼀⽐谁会解答类似的问题(三)、学⽣⾃学,⽼师巡视1、学⽣看书、思考,教师巡视,督促每个学⽣都紧张的⾃学。
2、检测P101练习3、学⽣练习,教师巡视,收集错误。
(四)后教(在课前布置,以数学学习⼩组为单位)探究平⾏投影和中⼼投影和性质和区别1、以数学习⼩组为单位,观察在太阳光线下,⽊杆和三⾓形纸板在地⾯的投影。
2、不断改变⽊杆和三⾓形纸板的位置,什么时候⽊杆的影⼦成为⼀点,三⾓形纸板的影⼦是⼀条线段?当⽊杆的影⼦及⽊杆长度相等时,你发现⽊杆在什么位置?三⾓形纸板在什么位置时,它的影⼦恰好及三⾓形纸板成为全等图形?还有其他情况吗?3、由于中⼼投影及平⾏投影的投射线具有不同的性质,因此,在这两种投影下,物体的影⼦也就有明显的差别。
如图4-14,当线段AB 及投影⾯平⾏时,AB的中⼼投影A‘B’把线段AB放⼤了,且AB∥A’B‘,△OAB~ OA‘B’.⼜如图4-15,当△ABC所在的平⾯及投影⾯平⾏时,△ABC的中⼼投影△A‘B’C‘也把△ABC放⼤了,从△ABC到△A‘B’C‘是我们熟悉的位似变换。
4、请观察平⾏投影和中⼼投影,它们有什么相同点及不同点?教师引导学⽣讨论,归纳,弄清为什么?平⾏投影及中⼼投影的区别及联系区别联系光线物体及投影⾯平⾏时的投影平⾏投影平⾏的投射线全等都是物体在光线的照射下,在某个平⾯内形成的影⼦。
九年级上册投影与视图全章教案
九年级上册投影与视图全章教案教案标题:九年级上册投影与视图全章教案教学目标:1. 了解投影与视图的概念及其在几何学中的应用。
2. 掌握常见图形的投影与视图的绘制方法。
3. 培养学生的几何思维和空间想象能力。
教学重点:1. 投影与视图的概念及其应用。
2. 常见图形的投影与视图的绘制方法。
教学难点:1. 投影与视图的概念的理解与应用。
2. 复杂图形的投影与视图的绘制方法。
教学准备:1. 教师准备:投影与视图的相关教学资料、投影仪、白板、彩色粉笔。
2. 学生准备:几何工具、绘图纸、彩色铅笔。
教学过程:一、导入(5分钟)1. 利用投影仪或白板展示一幅图形的不同视图,引发学生对投影与视图的兴趣。
2. 引导学生思考以下问题:在日常生活中,我们经常接触到哪些投影与视图的例子?它们有什么作用?二、概念讲解(10分钟)1. 讲解投影与视图的定义:投影是指将一个物体的某一部分或全部在垂直于某个平面的投影面上的投影;视图是指将一个物体在不同方向上观察所得的图形。
2. 通过示意图和实例,进一步说明投影与视图的概念及其在几何学中的应用。
三、绘制简单图形的投影与视图(15分钟)1. 选择一个简单的图形,如正方体,引导学生观察并绘制其不同视图。
2. 引导学生观察并绘制正方体在不同位置上的投影。
四、绘制复杂图形的投影与视图(20分钟)1. 选择一个复杂的图形,如一个倾斜的长方体,引导学生观察并绘制其不同视图。
2. 引导学生观察并绘制倾斜长方体在不同位置上的投影。
五、综合练习(15分钟)1. 提供一些综合练习题,要求学生绘制给定图形的不同视图和投影。
2. 分组讨论和展示学生的答案,互相评价和纠正。
六、拓展应用(10分钟)1. 引导学生思考投影与视图在实际生活中的应用,并列举一些例子,如建筑设计、机械制图等。
2. 鼓励学生尝试应用投影与视图的知识解决实际问题。
七、小结与反思(5分钟)1. 对本节课的内容进行小结,强调投影与视图的重要性和应用。
九年级数学下册投影与视图全章教案新人教版
教案:九年级数学下册《投影与视图》全章教案新人教版第一课时:投影的概念及分类教学目标:1. 了解投影的概念,掌握平行投影和中心投影的性质。
2. 能够区分不同类型的投影,并应用于实际问题。
3. 培养学生的空间想象能力和实际操作能力。
教学重点:1. 投影的概念及分类。
2. 平行投影和中心投影的性质。
教学难点:1. 理解不同类型投影的特点及应用。
2. 空间想象能力的培养。
教学准备:1. 投影仪或其他展示设备。
2. 相关图片或实物。
教学过程:1. 引入新课:通过展示图片或实物,引导学生观察并思考投影的概念。
2. 讲解投影的概念:解释投影是指光线照射到物体上,在另一平面上形成的影子。
3. 介绍平行投影:讲解平行投影的性质,如光线平行,投影也是平行的;投影与物体的大小相等。
4. 介绍中心投影:讲解中心投影的性质,如光线从一点发出,投影到各个方向;投影的大小与物体到光源的距离有关。
5. 区分不同类型的投影:通过示例,让学生区分平行投影和中心投影。
6. 练习与应用:给出实际问题,让学生运用投影的知识进行解答。
第二课时:视图的概念及分类教学目标:1. 了解视图的概念,掌握正视图、侧视图和俯视图的性质。
2. 能够区分不同类型的视图,并应用于实际问题。
3. 培养学生的空间想象能力和实际操作能力。
教学重点:1. 视图的概念及分类。
2. 正视图、侧视图和俯视图的性质。
教学难点:1. 理解不同类型视图的特点及应用。
2. 空间想象能力的培养。
教学准备:1. 相关图片或实物。
2. 展示设备。
教学过程:1. 引入新课:通过展示图片或实物,引导学生观察并思考视图的概念。
2. 讲解视图的概念:解释视图是指从不同方向观察物体时,在眼睛与物体之间的平面上的投影。
3. 介绍正视图:讲解正视图的性质,如正视图是物体在垂直于观察方向平面上的投影。
4. 介绍侧视图:讲解侧视图的性质,如侧视图是物体在垂直于侧观察方向平面上的投影。
5. 介绍俯视图:讲解俯视图的性质,如俯视图是物体在垂直于俯观察方向平面上的投影。
第四章投影和视图单元教案
第四章投影和视图单元教案第一节教学目标。
1. 了解投影和视图的概念和基本原理。
2. 掌握投影和视图的绘制方法。
3. 理解不同视图之间的关系。
4. 能够应用投影和视图的知识解决实际问题。
第二节教学重点和难点。
1. 投影和视图的概念和基本原理。
2. 投影和视图的绘制方法。
3. 不同视图之间的关系。
第三节教学内容。
1. 投影和视图的概念和基本原理。
1.1 投影的概念。
投影是指将三维空间中的物体投射到二维平面上的过程。
在工程制图中,常用投影的方法来表示物体的形状和尺寸。
1.2 视图的概念。
视图是指从不同方向观察物体所得到的投影。
常用的视图有主视图、俯视图和侧视图等。
1.3 投影和视图的基本原理。
投影和视图的绘制是基于投影的原理,通过投影将物体的形状和尺寸投射到平面上,再根据需要绘制不同的视图。
2. 投影和视图的绘制方法。
2.1 正投影和斜投影。
正投影是指投影线垂直于投影面的投影方法,斜投影是指投影线与投影面不垂直的投影方法。
在工程制图中常用正投影来表示物体的形状和尺寸。
2.2 视图的选择和布置。
在进行投影和视图的绘制时,需要根据物体的形状和尺寸选择合适的视图,并合理布置在图纸上。
3. 不同视图之间的关系。
3.1 主视图、俯视图和侧视图的关系。
主视图是指从正面观察物体所得到的视图,俯视图是指从上方观察物体所得到的视图,侧视图是指从侧面观察物体所得到的视图。
这三个视图之间具有一定的关系,可以通过它们来全面地了解物体的形状和尺寸。
第四节教学过程。
1. 投影和视图的概念和基本原理。
1.1 通过实物或图片等形式,让学生了解投影和视图的概念和基本原理。
1.2 讲解投影和视图的基本原理,引导学生理解投影和视图的绘制方法。
2. 投影和视图的绘制方法。
2.1 展示正投影和斜投影的绘制方法,让学生掌握投影的基本技巧。
2.2 给学生提供一些实例,让他们在老师的指导下进行投影和视图的绘制。
3. 不同视图之间的关系。
3.1 通过实例讲解主视图、俯视图和侧视图之间的关系,引导学生理解不同视图之间的联系。
第4章视图与投影全章教案(北师大版初中九年级数学)
第四章视图与投影(课时安排)1.视图2课时2.太阳光与影子1课时3.灯光与影子2课时1.视图(一)知识与技能目标:1.经历由实物抽象出几何体的过程,进一步发展空间观念.2.会画圆柱、圆锥、球的三种视图,体会这几种几何体与其视图之间的相互转化.过程与方法目标:通过实例能够判断简单物体属于何种几何体,并能画出物体的三种视图,从而经历由圆柱、圆锥和球到其三种视图的转化过程,发展学生的空间观念.情感态度与价值观目标:1.通过具体活动,积累数学活动经验,进一步增强学生的动手实践能力和数学思考能力,发展学生的空间观念.2.通过学习和实践活动,激发学生对视图学习的好奇心,体会数学与现实生活的联系.教学重点1.经历由实物抽象出几何体的过程,进一步发展空间观念。
2.会画圆柱、圆锥、球的三种视图,体会这几种几何体与其视图之间的相互转化。
重点、难点、关键:1.重点:掌握部分几何体的三视图的画法。
2.难点:几何体与视图之间的相互转化。
3.关键:充分发挥三维想象空间,运用实物进行合理抽象,想象物体的形状.教学过程:活动:学生利用准备好的大小相同的正方体方块,搭建如课本图4—1的立体图形,让同学们画出三视图。
而后,再要求学生利用手中12块正方体的方块实物,搭建2个立体图形,并画出它们的三视图。
议一议1.用4—2中物体的形状分别可以看成什么样的几何体?从正面、侧面、上面看这些几何体。
它们的形状各是什么样的?2.在图4一3中找出图4—2中各物体的主视图。
做一做如图4—4,是一个蒙古包的照片,小明认为这个蒙古包可以看成用4—5所示的几何体,并画出了这个几何体的三种视图,你同意小明的做法吗?随堂练习:课本随堂练习1、2课堂小结:本节课主要通过对由实物抽象出几何体的过程,发展大家的空间想象能力。
在画实物的视图时,必须首先对实物进行合理的抽象,即把实物抽象成相应的几何体,在此基础上再画其视图.例如,圆柱形、圆锥形和球形实物,与作为几何体的圆柱、圆锥和球是有区别的,但我们可以合理地把它们分别想象成圆柱、圆锥、球,进而画出它们的视图。
第二十九章投影与视图全章教案精品
教学内容:29.1投影(1)教学目标:1、经历实践探索,了解投影、投影面、平行投影和中心投影的概念;2、了角平行投影和中心投影的区别。
3、使学生学会关注生活中有关投影的数学问题,提高数学的应用意识。
教学重、难点教学重点:理解平行投影和中心投影的特征;教学难点:在投影面上画出平面图形的平行投影或中心投影。
教学资源:多媒体教学方法:自主阅读法,引导探索法教学过程:(一)创设情境你看过皮影戏吗? 皮影戏又名“灯影子”,是我国民间一种古老而奇特的戏曲艺术,在关中地区很为流行。
皮影戏演出简便,表演领域广阔,演技细腻,活跃于广大农村,深受农民的欢迎。
(有条件的)放映电影《小兵张嘎》部分片段 ---小胖墩和他爸在日军炮台内为日本鬼子表演皮影戏(二)你知道吗出示投影:北京故宫中的日晷闻名世界,是我国光辉出灿烂文化的瑰宝.它是我国古代利用日影测定时刻的仪器,它由“晷面”与“晷针”组成,当太阳光照在日晷中轴上产生投影,晷针的影子就会投向晷面,随着时间的推移,晷针的影的长度发生变化,晷针的影子在晷面上慢慢移动,聪明的古人以此来显示时刻.问题:那什么是投影呢?出示投影让学生感受在日常生活中的一些投影现象。
一般地.用光线照射物体.在某个平面(地面、墙壁等)上得到的影子叫做物体的投影.照射光线叫做投影线,投影所在的平面叫做投影面.有时光线是一组互相平行的射线.例如太阳光或探照灯光的一束光中的光线(如图).由平行光线形成的投影是平行投影.例如.物体在太阳光的照射下形成的影子(简称日影)就是平行投影.由同一点(点光源)发出的光线形成的投影叫做中心投影.例如.物体在灯泡发出的光照射下形成影子就是中心投影.(三)问题探究(在课前布置,以数学学习小组为单位)探究平行投影和中心投影和性质和区别1、以数学习小组为单位,观察在太阳光线下,木杆和三角形纸板在地面的投影。
2、不断改变木杆和三角形纸板的位置,什么时候木杆的影子成为一点,三角形纸板的影子是一条线段?当木杆的影子与木杆长度相等时,你发现木杆在什么位置?三角形纸板在什么位置时,它的影子恰好与三角形纸板成为全等图形?还有其他情况吗?3、由于中心投影与平行投影的投射线具有不同的性质,因此,在这两种投影下,物体的影子也就有明显的差别。
第五章投影与视图 教案
做俯视图
第三环节:合作学习
(1)下图中物体的形状分别可以看成什么样
的几何体?与同伴交流。(2)在下图中分别找出几何体的主视图。
下图中物体的形状分别可以看成什么样 的几何体?
7
-andperfomctsih.Iy,vwulb;4)g(zk5qC731BxSjDT260
圆柱、圆锥和球的三种视图
第四环节:练习提高 如图是一个蒙古包的照片,你认为它可以看成是那些几何体的组合?你能画出该蒙古包 的三种视图吗?
午餐肉
(1)
(2)
(3)
(4)
(a)
(b)
(c)
(d)
2、画出下列几何体的三种视图:
第二环节:探索实践
9
-andperfomctsih.Iy,vwulb;4)g(zk5qC731BxSjDT260
如右图,出示一个三棱柱(最好有实物模型) 1.提问:你能想象出这个正三棱柱的主视图、左视图和俯视图吗?你能画出它们吗?
二、教学重难点 重点:理解投影和中心投影的概念。
难点:中心投影条件下物体与其投影之间的相互转化
三、教学过程分析 第一环节 综合调查,创设资源
成影现象调查(提前一周布置)以 4 人合作小组为单位,开展调查活动: (1)尽所能收集生活中各类成影现象、(用电子图片形式呈现). (2)小组长整理所收集图片,统一规格要求,交给数学教师
第五环节:随堂练习 P136 第六环节:小结 作业布置:习题 5.3 第 1.2.
8
-andperfomctsih.Iy,vwulb;4)g(zk5qC731BxSjDT260
2.视图(二)
一、教学目标:
① 使学生想象直三棱柱和直四棱柱的三种视图,经历由直三棱柱和直四棱柱到其 三种视图的转化过程;
第29章 投影与视图教案
第二十九章投影与视图29.1投影第1课时投影投影知识是学习视图的基础.学生对投影和视图的知识已有初步感性认识,在此基础上,本课时通过对实例的观察比较,引人基本概念,归纳基本规律.不仅是使学生对投影的认识从感性上升为理性,达到更高的水平,更是为学生对后面学习三视图作铺垫、打基础.本课时以物体在日光或灯光照射下在地面或墙壁上形成的影子为基础,抽象出投影、投影线、投影面等概念.根据投影线与投影面的不同位置关系,将投影分为平行投影和中心投影两类.本节教学涉及空间中直线与直线、直线与平面的位置关系,而学生缺乏这方面的知识,因此学习本节内容有一定的难度.教学过程中要注意加强与实际的联系,运用多媒体,展示丰富的实物图片,让学生通过观察具体的实例,结合已有的生活经验,了解这些空间位置关系,并把这种认知迁移到本节课对平行投影和中心投影中投影线不同位置关系的了解.【情景导入】你看过皮影戏吗?皮影戏又名“灯影子”,是我国民间一种古老而奇特的传统艺术,在很多地区广为流行.皮影戏演出简便,表演领域广阔,演技细腻,活跃于广大农村,深受农民的欢迎.皮影戏与手影戏有什么共同特征?【说明与建议】说明:通过幻灯片展示生活中常见的各种影子,使学生体会本节课学习的价值,从而自然地引出课题及投影的相关概念,符合学生的认知特点,激发学生的学习兴趣.建议:在以上活动的基础上引出投影的相关概念:一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面.问题由学生口答完成,从而引入新课.【归纳导入】教师课前整理、选择教学资源,多媒体展示,如图.选3~4个小组代表简单介绍,分析投影的光线特点.对展示图片编号,要求学生根据一定的标准进行分类(学优生可以先设定标准,再分类;学困生可以先分类,再根据自己的分类尝试写出分类的标准),通过对分类及标准的过程性加工,使学生理解由同一点(点光源)发出的光线形成的投影叫做中心投影,由平行光线形成的投影叫做平行投影.一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面.【说明与建议】说明:通过分类,使学生明晰平行投影和中心投影的本质区别,培养学生从大量信息中辨析本质的能力,由此引出本节课要研究的问题.建议:课前让学生自己感受生活中太阳光下的影子,并做好预习,了解投影分类,以便学习.【悬念激趣】你知道古埃及的金字塔吗?两千六百多年前,埃及有个国王,他想要知道已经盖好了的大金字塔的准确高度,可是谁也不知道该怎样测量,因为塔身是斜的.究竟用什么方法来测量呢?后来,国王请一个名叫泰勒斯的学者来解决这个问题,泰勒斯答应了.在一个风和日丽的日子,国王、祭司们亲自驾临,举行了测塔仪式.看时间已经不早,太阳光给每个在场的人和巨大的金字塔都投下了长长的影子.当泰勒斯确知自己的影子恰好等于他的身高时,他发出命令,让助手们立即测出金字塔的影子长度,接着泰勒斯结合其他信息十分准确地算出了金字塔的高度.【说明与建议】说明:从历史上有趣的事件入手,让学生体会数学来源于生活,又服务于生活.引发学生初步感受阳光下的影子的作用,激发学生的求知欲及学习兴趣.建议:学生在教师的引导下观看两幅图片,积极思考,提前感受阳光下的物体影子的实例,为后面的学习做铺垫.命题角度1 太阳光下影子的变化1.如图是一棵小树一天内在太阳下不同时刻的照片,将它们按时间先后顺序进行排列正确的是(B)A.③-④-①-② B.②-①-④-③ C.④-①-②-③ D.④-①-③-②命题角度2 利用太阳光下的影子求物体的高度2.如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影长DE=1.8 m,窗户下檐到地面的距离BC=1 m,EC=1.2 m,则窗户的高AB为(A)A.1.5 m B.1.6 m C.1.86 m D.2.16 m3.小红想利用阳光下的影长测量学校旗杆AB的高度.如图,他在某一时刻在地面上竖直立一个2米长的标杆CD,测得其影长DE=0.4米.(1)请在图中画出此时旗杆AB在阳光下的投影BF.(2)如果BF=1.6米,求旗杆AB的高.解:(1)连接CE,过A点作AF∥CE交BD于F,则BF为所求,如图.(2)8米.命题角度3 中心投影特点的应用4.如图,晚上小明在路灯下沿路从A处径直走到B处,这一过程中他在地上的影子(B)A.一直都在变短 B.先变短后变长 C.一直都在变长 D.先变长后变短5.如图,在地面上竖直安装着AB,CD,EF三根立柱,在同一时刻同一光源下立柱AB,CD形成的影子分别为BG与DH.(1)此光源下形成的投影是中心投影.(2)作出立柱EF在此光源下所形成的影子.解:如图所示,线段FI为立柱EF在此光源下所形成的影子.命题角度4 相似三角形在中心投影中的应用6.如图,一路灯距地面5.6米,身高1.6米的小方从距离灯的底部(点O)5米的A处,沿OA所在的直线行走到点C时,人影长度增长3米,求小方行走的路程.解:∵AE⊥OD,GO⊥OD,∴EA∥GO,∴△AEB∽△OGB.∴AEOG=ABOB.∴1.65.6=ABAB+5.解得AB=2 m.∵OA所在的直线行走到点C时,人影长度增长3米,∴DC=5 m.同理可得△DFC∽△DGO.∴FCGO=CDOD,即1.65.6=55+5+AC.解得AC=7.5(m).答:小方行走的路程AC为7.5 m.皮影戏与投影“银灯映照千员将,一箱容下百万兵”,这优美的诗句描述的是我国独特的民间艺术——皮影.据传,两千多年前,汉武帝爱妃李夫人染疾故去,武帝思念心切神情恍惚,终日不理朝政.大臣李少翁一日出门,路遇孩童手拿布娃娃玩耍,影子倒映于地栩栩如生.李少翁心中一动,用棉帛裁成李夫人影像,涂上色彩,并在手脚处装上木杆.入夜围方帷,张灯烛,恭请皇帝端坐帐中观看. 武帝看罢龙颜大悦,就此爱不释手. 这个载入《汉书》的故事,被认为是皮影戏最早的渊源.皮影后来逐步发展成为彩绘,镂雕,又改纸制为皮制,再配上音乐,唱腔,慢慢地成了后来的皮影戏.宋代已经成熟和盛行,东京汴梁瓦舍中的影戏艺人已有董十五、赵七、曹保义等9人.山西繁峙岩山寺文殊殿金代壁画中有一幅《影戏图》,生动形象地表现了当时山西皮影演出的实况.经过宋、金、元、明四个历史时期的发展,流行全国各地的皮影戏在清代呈现出繁荣局面.三、四十年代中,古“丝绸之路”上进入河西走廊的重镇——张掖,皮影戏有七十多个正本戏,一百多个折子戏,不少是个人创作独家所有,内容上也逐步有所改进.张掖的上寨小满一带制作的皮影刻成各种生动传神戏剧人物,具有造型简洁、纹样夸张的特点.各地皮影,风格不同.皮影除作戏剧表演外,还是一种有趣味的装饰品和艺术欣赏品.逢年过节或喜庆日子都要请皮影戏班子唱戏.道具主要为影窗,俗称“亮子”,一般高3尺,宽5尺,最高不过4尺,宽不过6尺,以白纸作幕,以便单人操作.其次为油灯一盏,用以映射影人和表演动作.一个皮影,要用五根竹棍操纵,艺人手指灵活,常常玩得观众眼花缭乱.不仅手上功夫绝妙高超,嘴上还要说、念、打、唱,脚下还要制动锣鼓.演皮影的屏幕,是用一块1米大小的白纱布做成的.白纱布经过鱼油打磨后,变得挺括透亮.演出时,皮影紧贴屏幕活动,镂空的人影和五彩缤纷的颜色真切动人.皮影是采用皮革为材料制成的,出于坚固性和透明性的考虑,又以牛皮和驴皮为佳.上色时主要使用红、黄、青、绿、黑等五种纯色的透明颜料.正是由于这些特殊的材质,使得皮影人物及道具在后背光照耀下投影到布幕上的影子显得瑰丽而晶莹剔透,具有独特的美感.由于受材质限制,保存甚难,所以传至今世的古影不多.最后告诉大家一个重要数学秘密,皮影的投影属中心投影,这是因为皮影的光源通常是一盏煤油灯,是点光源.皮影表演时,由于紧贴屏幕,所以产生的效果逼真.又因为是加工成半透明状的皮革刻制上彩而成,它是能透过与本身色彩相同的光线,映照在白色幕布上,因而皮影戏是彩色的.课题29.1 第1课时投影授课人素养目标1.经历实践探索,了解投影、投影面、平行投影和中心投影的概念.2.通过观察、比较,了解平行投影和中心投影的含义.3.学生学会关注生活中有关投影的数学问题,提高数学的应用意识,增强学好数学的信心.教学重点理解平行投影和中心投影的特征.教学难点在投影面上画出物体的平行投影或中心投影.授课类型新授课课时教学步骤师生活动设计意图活动一:创设情境、导入新课【课堂引入】影子我们已司空见惯,在日常生活中,我们可以看到各种各样的影子.比如,太阳照射在窗框、长椅等物体上时,会在墙壁或地面上留下影子,而皮影和手影都是在灯光照射下形成的影子.明确学习本章及本节内容的目的和意义,激发学生的学习热情.现应用的旗杆的高是(A)A.15 m B.16 m C.18 m D.20 m例2(1)如图,在路灯的同侧有两根高度相同的木棒,请分别画出这两根木棒的影子.解:如图所示:(2)如图,一墙墩(用线段AB表示)的影子是BC,小明(用线段DE表示)的影子是EF.试判断是路灯还是太阳光产生的影子,如果是路灯产生的影子确定路灯的位置(用点P表示).如果是太阳光请画出光线.解:如图所示:P点即为路灯的位置;学生自主解答问题后,分组展开讨论,待学生充分交流后,教师组织学生展示自己的答案,共同得到正确的结论.【变式训练】如图,电灯P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=2 m,CD=6 m,点P到CD的距离是3 m,求P到AB的距离.解:∵AB∥CD,∴△PAB∽△PCD∴AB∶CD=P到AB的距离∶点P到CD的距离.∴2∶6=P到AB的距离∶3.∴P到AB的距离为1 m.给予学生一定的时间去思考,充分讨论,争取让学生自己得到正确答案,并对学习有困难的学生适当引导、点拨.画出平面图形的中心投影,通过物体的影子能够分析出点光源的具体位置.变式训练从不同角度考察投影的知识,加强学生对知识的掌握和理解.活动四:课堂检测【课堂检测】1.下列各种现象属于中心投影的是(A)A.晚上人走在路灯下的影子 B.中午用来乘凉的树影通过设置课堂检测,进一步巩固所学新知,同时检测C.上午人走在路上的影子 D.早上升旗时地面上旗杆的影子2.如图所示,甲、乙两建筑物在太阳光的照射下的影子的端点重合在C处.若BC=20 m,CD=40 m,乙的楼高BE=15 m,则甲的楼高AD=30m.3.如图,两幅图片中竹竿的影子是在太阳光下形成的,还是在灯光下形成的?请你画出两图中小树的影子.①②解:如图所示:图①是灯泡光线形成的,图②是太阳光线形成的.学生进行当堂检测,完成后,教师进行批阅、点评、讲解.学习效果,做到“堂堂清”.课堂小结1.课堂总结:(1)本节课主要学习了哪些知识?学习了哪些数学思想和方法?(2)本节课还有哪些疑惑?说一说!师生总结:主要内容有投影、投影面、投影线、平行投影和中心投影的概念.主要技能是在投影面上画出物体的中心投影,并能通过投影分析出点光源的具体位置.2.布置作业:教材第92页习题29.1第1,2题.注重课堂小结,激发学生参与课堂总结的主动性,为每一个学生的发展与表现创造机会.板书设计29.1 投影第1课时投影1.平行投影2.中心投影提纲挈领,重点突出.教学反思反思教学过程和教师表现,进一步提升操作流程和自身素质.详见电子资源第2课时正投影在学习本课时之前,学生已经具有一定的关于平面图形与立体图形的知识,并且在七年级上册接触过“从不同方向观察物体”和“点、线、面、体”之间的联系及基本几何体的平面展开图等反映平面图形与立体图形之间的联系问题.上一节课,学生又学习了投影的一些基础知识包括投影、中心投影、平行投影的概念,在此基础上,这节课主要学习正投影概念及探究正投影的成像规律,以正投影为平台,进一步深入研究投影的性质,更深一层理解立体图形与平面图形的相互转化关系,培养学生的空间观念,这为过渡到三视图的学习起着辅垫的作用,更为高中学习立体几何打下基础.【归纳导入】如图表示一块三角尺在光线照射下形成的投影,三个图的投影存在如下特点:图①中的投影线集中于一点,形成中心投影;图②③中,投影线互相平行,形成平行投影.图③中投影线垂直照射到投影面,这种投影叫正投影,而图②中,投影线斜着照射到投影面,不是正投影,所以平行投影不一定是正投影,但正投影一定是平行投影.正投影是光线与投影面之间的关系,与物体的放置无关.①②③【说明与建议】说明:经过观察、分析、比较的过程,抽象出正投影的概念,学生通过思考教师提出的问题,加深对正投影概念的理解.建议:让学生自主观察图形特点,结合概念加以理解.命题角度常见几何体的正投影及判断1.把一个正三棱柱如图摆放,光线由上向下照射此正三棱柱时的正投影是(B)A B C D2.圆形的纸片在平行光线下的正投影是(D)A.圆形 B.椭圆形 C.线段 D.以上都可能日晷简介日晷,本意是指太阳的影子.现代的“日晷”指的是人类古代利用日影测得时刻的一种计时仪器,又称“日规”.其原理就是利用太阳的投影方向来测定并划分时刻,通常由晷针和晷面组成.利用日晷计时的方法是人类在天文计时领域的重大发明,这项发明被人类沿用达几千年之久.在一天中,被太阳照射到的物体投下的影子在不断地改变着:第一是影子的长短在改变.早晨的影子最长,随着时间的推移,影子逐渐变短,一过中午它又重新变长.第二是影子的方向在改变.在北回归线以北的地方,早晨的影子在西方,中午的影子在北方,傍晚的影子在东方.从原理上来说,根据影子的长度或方向都可以计时,但根据影子的方向来计时更方便一些.故通常都是以影子的方位计时.随着时间的推移,晷针上的影子慢慢地由西向东移动.移动着的晷针影子好像是现代钟表的指针,晷面则是钟表的表面,以此来显示时刻.早晨,影子投向盘面西端的卯时附近;当太阳达正南最高位置(上中天)时,针影位于正北(下)方,指示着当地的午时正时刻.午后,太阳西移,日影东斜,依次指向未、申、酉各个时辰.课题29.1 第2课时正投影授课人素养目标1.了解正投影的概念.2.能根据正投影的性质画出简单图形的正投影.3.学生学会关注生活中有关投影的数学问题,提高数学的应用意识.教学重点正投影的含义及根据正投影的性质正确画出简单图形的正投影.教学难点归纳正投影的性质,正确画出简单图形的正投影.授课类型新授课课时教学步骤师生活动设计意图回顾展示问题:1.什么是投影?投影的两个要素是什么,试举例进行说明.2.投影是如何进行分类的?试举例进行说明.学生回顾已学过的知识和生活实例,为学习新知做好铺垫.活动一:创设情境、导【课堂引入】1.观察图(1)(2)(3)中的投影线有什么区别?它们分别形成了什么投影?通过观察活动,使学生体会到将实入新课师生活动:教师展示图片,提出问题,学生观察思考,相互讨论,发表意见.(1) (2) (3)2.图(2)(3)的投影都是什么投影?它们的投影线与投影面的位置关系有什么区别?师生活动:教师展示图片,学生观察思考、相互交流,教师引导学生回答图(2)(3)两幅图中的投影都是平行投影,图(2)中的投影线斜着照射投影面,图(3)中的投影线垂直照射投影面.给出正投影的概念:平行投影中,投影线垂直于投影面产生的投影叫做正投影.际问题抽象成几何图形,有助于分析问题的本质.经过对比更清楚地认识平行投影和中心投影的区别,为引出正投影的概念做必要的铺垫.活动二:实践探究、交流新知问题1:把一根直的铁丝(记为线段AB)放在三个不同的位置:①铁丝平行于投影面;②铁丝倾斜于投影面;③铁丝垂直于投影面(铁丝不一定要与投影面有交点).三种情形下铁丝的正投影各是什么图形?大小有何关系?师生活动:教师实物演示或图片展示,提出问题,学生观察、猜想、测量,教师引导学生归纳得出结论:①正投影是线段,线段长等于正投影长;②正投影是线段,线段长大于正投影长;③正投影是一个点.问题2:把一块正方形硬纸板(记为正方形ABCD)放在三个不同的位置:①纸板平行于投影面;②纸板倾斜于投影面;③纸板垂直于投影面.三种情形下纸板的正投影各是什么图形?大小有何关系?师生活动:教师实物演示,提出问题,学生先独立观察、思考,再相互交流,大胆猜想,勇于发表见解,教师引导学生归纳得出结论:①纸板的正投影与纸板的形状、大小一样;②纸板的正投影与纸板的形状、大小不完全一样;③纸板的正投影为一条线段.问题3:当物体的某个面平行于投影面时,这个面的正投影与这个面有怎样的关系?1.通过试验观察,分析正投影,简单直观,易于发现正投影的规律,为研究物体的正投影规律打下基础.2.用正方形纸板表示正方形,运用正投影的概念,观察分析它的正投影,根据前面所得规律,运用类比归纳得出平面图形正投影的规律.师生活动:教师提出问题,学生独立思考,大胆猜想,得出结论.教师根据学生的回答进行完善,师生共同归纳物体正投影的性质:当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小完全相同.活动三:开放训练、体现应用【典型例题】例1(教材第90页例)画出如图摆放的正方体在投影面上的正投影.(1)正方体的一个面ABCD平行于投影面(图1).(2)正方体的一个面ABCD倾斜于投影面,底面ADEF垂直于投影面,并且其对角线AE垂直于投影面(图2).图1 图2例2当某一几何体在投影面P前的摆放位置确定以后,改变它与投影面P的距离,其正投影的形状(A)A.不发生变化 B.变大 C.变小 D.无法确定学生自主解答问题后,分组展开讨论,待学生充分交流后,教师组织学生展示自己的答案,共同得到正确的结论.【变式训练】如图,回答下列图形在投影面上的正投影是什么图形.(1)矩形AA1D1D.(2)矩形CC1D1D.(3)棱CC1,A1B1.解:(1)矩形AA1D1D的正投影是矩形.(2)矩形CC1D1D的正投影是线段.(3)棱CC1的正投影是线段,棱A1B1的投影是点.给予学生一定的时间去思考,充分讨论,争取让学生自己得到正确答案,并对学习有困难的学生适当引导、点拨.通过利用正投影的性质画物体的正投影,巩固所学重点内容,提高学生灵活运用知识解决实际问题的能力,发展学生的空间观念.重点考查正投影的含义及性质.活动四:课堂检测【课堂检测】1.木棒长为1.5 m,则它的正投影的长一定(D)A.大于1.5 m B.小于1.5 m C.等于1.5 m D.小于或等于1.5 m2.矩形的正投影不可能是(B)A.矩形 B.梯形 C.正方形 D.线段3.如图,投影线的方向如箭头所示.画出下列图中几何体的正投影.(1) (2) (3)解:(1) (2) (3)学生进行当堂检测,完成后,教师进行批阅、点评、讲解.通过设置课堂检测,进一步巩固所学新知,同时检测学习效果,做到“堂堂清”.课堂小结1.课堂总结:(1)本节课主要学习了哪些知识?重点研究了什么问题?(2)平行投影与中心投影是根据什么进行分类的?平行投影与正投影有怎样的联系和区别?2.布置作业:教材第92~93页习题29.1第3,4题.通过小结,使学生梳理本节课所学内容,形成概念体系,掌握本节课的核心知识.板书设计29.1 投影第2课时正投影1.线段的正投影2.平面图形的正投影提纲挈领,重点突出.教学反思反思教学过程和教师表现,进一步提升操作流程和自身素质.详见电子资源29.2三视图第1课时三视图本节内容是立体几何的基础之一,三视图是利用物体的三个正投影来表现空间几何体的方法,在教材中起着衔接平面几何和立体几何的重要作用.【情景导入】多媒体播放古诗《题西林壁》的配画朗诵视频.【宋】苏轼横看成岭侧成峰,远近高低各不同.不识庐山真面目,只缘身在此山中.这首诗教会了我们怎样观察物体(横看、侧看、近看、身处其中看),这类似于本节课所研究的内容——三视图.【说明与建议】说明:通过一首古诗和美丽的庐山图中,引出课题,能够激发学生的学习兴趣,也能很好的反映本节课的主题.建议:由文学诗歌引入数学概念,体现教师的亲和力和学科之间的联系性,展示了数学的深层价值.【置疑导入】活动一:如图 1,直三棱柱的侧棱与水平面垂直.请与同伴一起探讨下面的问题:(1)以水平面为投影面,这个直三棱柱的三条侧棱的正投影分别是什么图形?(2)画出直三棱柱在水平面的正投影,得到的投影是什么图形?它与直三棱柱的底面有什么关系?(3)水平面的这个投影能完全反映这个物体的形状和大小吗?如果不能,那么还需要哪些投影?图1如图 2所示是一个长方体,从上面、正面、左面三个不同方向对长方体进行正投影,得到不同的图形,它们都有什么特点呢?图2【说明与建议】说明:活动一回顾上节课学习的正投影,为本节课做好铺垫和准备.建议:班级分组操作活动二,教师引导学生得到主视图、俯视图和左视图的概念及性质.命题角度1 识别几何体的视图1.如图所示的几何体是由5个大小相同的小正方体搭成的,则从上面看到的该几何体的形状图是(C)A B C D命题角度2 识别实物的视图2.如图,这是一个由2个大小不一样的圆柱组成的几何体,则该几何体的俯视图是(B)A B C D命题角度3 画物体的三视图3.请你画出如图几何体的三视图.解:如图所示:课题29.2 第1课时三视图授课人素养目标1.会从投影的角度理解视图的概念.2.会画简单几何体的三视图.3.通过观察探究等活动知道物体的三视图与正投影的相互关系及三视图中位置关系、大小关系.教学重点从投影的角度加深对三视图的理解和会画简单的三视图.。
人教版九年级数学下册第29章投影与视图全章教案
第 29章投影与三视图一、教学内容及教材分析:1、本章的主要内容有测量、一是从不同方向看物体,以及由此而产生的盲区和影子的概念与性质,二是物体的三视图、投影时视图的基础。
2、空间观念的形成是一个长期的过程。
本章是第七章内容的继续和发展。
二、重难点与关键1、了解中心投影的概念以及中心投影下线段、平面图形与其投影的关系。
2、认识平行投影及其特征,能够画简单几何体在水平投影面和竖直投影面上的正投影。
3、能通过正投影理解三视图的概念、三视图的投影规律,能画出简单几何体的三视图。
4、能由三视图想象简单几何体。
难点:几何体与其投影的关系及由三视图想象几何体。
三、教学目标:1、通过实例,了解视点、视线、盲区的含义及生活上的应用。
2、通过实例,了解中心投影、平行投影和正投影的概念和基本性质。
3、了解三视图的概念:会画基本几何体的三视图,能判断简单的物体的视图,并会根据视图描述简单的儿何体。
4、通过简单几何体与它的三视图之间的相互转化,体会几何体与平面图形的之间的相互联系,感悟转化的数学思想,发展学生的空间观念。
5、通过三视图的学习,培养学生识图、画图的基本技能。
6、通过实例,了解视图在现实生活中的应用,增强学生的应用意识。
四、教学方法与策略:(一)重视结合实际例子讨论问题,在直观认识的基础上归纳基本规律数学易以数量关系和空间形式为主要研究对象的科学,数量关系和空间形式是从理牢世界中抽象出来的。
很明显,关于投影和视图的知识是从实际需要(建筑、制造等)中产生的,它们与实际模型联系得非常紧密。
在本章之前,学生已经数次接触过“从不同方向看物体”等内容,对投影和视图的知识已有初步的,朦胧的了解,只是还没有明碗地接触过一些基本名词术语,对有关基本规律还缺乏归纳总结。
(二)重视平面图形与立体图形的联系,重在培养空间想象能力在学习本章之前,学生已经具有一定的关于平面图形与立体图形的匆识,并且接鲀过“从不同方向观察物体”,基本儿何体的平面展开图等反映平面图形与立体图形之间的联系的问题。
人教版初中数学九年级下册第二十九章:投影与视图(全章教案)
第二十九章投影与视图教材简析本章的主要内容有:(1)平行投影、中心投影的概念和简单应用以及正投影的成像规律;(2)三视图的概念、画法以及根据三视图描述基本几何体或实物原型;(3)直棱柱、圆锥的侧面展开图,以及根据平面展开图判断和制作立体模型.本章内容在数学学习中起着承上启下的作用,学生已经学习过“图形的初步知识”“图形和变换”等几何知识,在此基础上本章继续研究“投影与视图”,它是反映空间观念的重要内容,也为高中学习立体几何作了铺垫.教学指导【本章重点】1.掌握平行投影和中心投影的简单应用.2.会画简单图形的三视图.3.能根据三视图描述基本几何体或实物的原型.【本章难点】根据三视图描述基本几何体或实物原型,理解基本几何体与其三视图、展开图之间的联系,通过典型实例知道这种关系在现实生活中的应用.【本章思想方法】1.体会转化思想.在本章的学习中,把立体图形的问题通过三视图转化为平面图形的问题,实物的投影也是立体图形与平面图形的相互转化,这都体现了转化思想.同时还要注重空间想象力的培养.2.体会方程思想.在根据平行投影或中心投影的性质,结合三角形建立比例式构造方程进行相关计算时,体现了方程思想的应用.课时计划29.1投影2课时29.2三视图3课时29.3课题学习制作立体模型1课时29.1投影第1课时投影教学目标一、基本目标【知识与技能】1.通过实践探索,了解投影、投影面、平行投影和中心投影的概念.2.能够确定物体在平行光线和点光源发出的光线在某一平面上的投影.【过程与方法】通过联系生活实际,初步感受平行投影和中心投影,体会数学与生活之间的密切联系.【情感态度与价值观】使学生学会关注生活中有关投影的数学问题,提高数学的应用意识,增强学好数学的信心.二、重难点目标【教学重点】理解平行投影和中心投影的特征.【教学难点】在投影面上画出平面图形的平行投影或中心投影.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P87~P88的内容,完成下面练习.【3 min反馈】1.一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子,叫做物体的投影,照射光线叫做投影线,投影所在的平面叫做投影面.2.由平行光线形成的投影叫做平行投影,由同一点(点光源)发出的光线形成的投影叫做中心投影.3.皮影戏是利用平行投影(填“平行投影”或“中心投影”)的一种表演艺术.4.如图,在灯光下,四个选项中,灯光与物体的影子最合理的是(A)环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】晚上小亮在路灯下散步,在小亮从远处走到灯下,再远离路灯这一过程中,他在地上的影子()A.逐渐变短B.先变短后变长C.先变长后变短D.逐渐变长【互动探索】(引发学生思考)灯光的照射属于中心投影还是平行投影?其投影有什么特征?【分析】晚上小亮在路灯下散步,当小亮从远处走到灯下的时候,他在地上的影子由长变短,当他再远离路灯的时候,他在地上的影子由短变长.故选B.【答案】B【互动总结】(学生总结,老师点评)中心投影的光线特点是从一点出发的投射线.物体与投影面平行时的投影是放大(即位似变换)的关系.【例2】如图所示,AB和DE是直立在地面上的两根立柱,AB=5 m,某一时刻AB在阳光下的投影BC=3 m.(1)请在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6 m,请你计算DE的长.【互动探索】(引发学生思考)阳光下的投影属于中心投影还是平行投影?其投影有什么特征?【解答】(1)如图所示,连结AC,过点D作DF∥AC,交直线BC于点F,线段EF即为DE的投影.(2)∵AC∥DF,∴∠ACB=∠DFE.又∵∠ABC=∠DEF=90°,∴△ABC∽△DEF,∴ABDE=BCEF,即5DE=36,∴DE=10 m.【互动总结】(学生总结,老师点评)在同一时刻的物体高度与影长的关系:物体高度物体影长=另一物体的高度另一物体的影长.活动2 巩固练习(学生独学) 1.下列结论正确的有( B )①同一时刻物体在阳光照射下影子的方向是相同的; ②物体在任何光线照射下影子的方向都是相同的; ③物体在路灯照射下,影子的方向与路灯的位置有关; ④物体在光线照射下,影子的长短仅与物体的长短有关. A .1个 B .2个 C .3个D .4个2.如图所示,光源P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,AB ∥CD ,AB =2 m ,CD =6 m ,点P 到CD 的距离是2.7 m ,则AB 与CD 之间的距离是1.8m.3.李航想利用太阳光测量楼高,他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量方法如下:如示意图,李航边移动边观察,发现站到点E 处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得李航落在墙上的影子高度CD =1.2 m ,CE =0.6 m ,CA =30 m(点A 、E 、C 在同一直线上).已知李航的身高EF 是1.6 m ,请你帮李航求出楼高A B.解:如图,过点D 作DN ⊥AB ,垂足为N ,交EF 于点M ,则四边形CDME 、ACDN 是矩形.∴AN =ME =CD =1.2 m ,DN =AC =30 m ,DM =CE =0.6 m , ∴MF =EF -ME =1.6-1.2=0.4(m). ∵EF ∥AB , ∴△DFM ∽△DBN , ∴DM DN =MF BN ,即0.630=0.4BN, ∴BN =20 m ,∴AB =BN +AN =20+1.2=21.2(m).即楼高为21.2 m.环节3 课堂小结,当堂达标 (学生总结,老师点评)1.投影:一般地,用光线照射物体,在某个平面(地面、墙壁等)上得到的影子,叫做物体的投影.2.⎩⎪⎨⎪⎧平行投影:由平行光线形成的投影中心投影:由同一点(点光源)发出的光线形 成的投影练习设计请完成本课时对应练习!第2课时正投影教学目标一、基本目标【知识与技能】1.掌握正投影的概念,了解中心投影、平行投影和正投影的关系.2.掌握线段、正方形、正方体的正投影的特征.【过程与方法】1.通过动手操作画图形的正投影,培养学生动手实践能力,发展空间想象能力.2.通过探究生活中有关正投影的数学问题,体会数学与实际生活的紧密联系,提高学生的数学应用意识.【情感态度与价值观】感受日常生活中的一些投影现象,体会数学与生活实际密不可分,激发学生学习数学的兴趣.二、重难点目标【教学重点】1.正投影的概念.2.能根据正投影的性质画出简单的平面图形的正投影.【教学难点】归纳正投影的性质,正确画出简单平面图形的正投影.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P88~P91的内容,完成下面练习.【3 min反馈】1.(1)投影线垂直于投影面产生的投影叫做正投影.(2)正投影是一种特殊的平行投影,它区别于一般的平行投影的不同之处是投影线垂直于投影面.(3)平行投影与中心投影的主要区别是光线是平行还是交于一点.(4)平行投影有两种情况:一种是投影线倾斜着照射投影面;另一种是投影线垂直照射投影面,这种投影就是正投影.教师点拨:注意区分正投影与平行投影之间的区别与联系,掌握正投影是特殊的平行投影,是光线垂直于投影面的特殊情况.2.线段的正投影是(D)A.直线B.线段C.射线D.线段或点环节2合作探究,解决问题活动1小组讨论(师生互学)(一)关于线段的正投影【例1】如图,把一根直的细铁丝(记为线段AB)放在三个不同位置:(1)铁丝平行于投影面;(2)铁丝倾斜于投影面;(3)铁丝垂直于投影面(铁丝不一定要与投影面有公共点).三种情况下铁丝的正投影各是什么形状?【互动探索】(引发学生思考)(1)铁丝平行于投影面时,它的正投影的形状跟大小与它本身完全相等;(2)铁丝倾斜于投影面,它的正投影仍然是一条线段,但长度变短了;(3)铁丝垂直于投影面,它的正投影变成了一个点.【解答】(1)当线段AB平行于投影面P时,它的正投影是线段A1B1,线段与它的投影的大小关系为AB=A1B1.(2)当线段AB倾斜于投影面P时,它的正投影是线段A2B2,线段与它的投影的大小关系为AB>A2B2.(3)当线段AB垂直于投影面P时,它的正投影是一个点A3.【教师点拨】以上的规律可以通过用铅笔作投影试验得出.(二)关于平面的正投影【例2】如图,把一块正方形硬纸板Q(记为正方形ABCD)放在三个不同位置:(1)纸板平行于投影面;(2)纸板倾斜于投影面;(3)纸板垂直于投影面.三种情况下纸板的正投影各是什么形状?【互动探索】(引发学生思考)(1)纸板Q平行于投影面P时,Q的正投影与Q形状、大小一样(即全等);(2)纸板Q倾斜于投影面P时,Q的正投影与Q的形状、大小发生变化(面积变小);(3)纸板Q垂直于投影面P时,Q的正投影成为一条线段.【教师点拨】用作业本做一个投影试验就可得出结论.【互动总结】(学生总结,老师点评)当物体的某个面平行于投影面时,这个面的正投影与这个面的形状、大小完全相同.(三)有关立体图形的正投影【例3】画出如图摆放的正方体在投影面上的正投影.(1)正方体的一个面ABCD平行于投影面,如图1;(2)正方体的一个面ABCD倾斜于投影面,上底面ADEF垂直于投影面,并且上底面的对角线AE垂直于投影面,如图2.【互动探索】详细见教材P90~P91分析.【解答】(1)如图1,正方体的正投影为正方形A′B′C′D′,它与正方体的一个面是全等关系.(2)如图2,正方体的正投影为矩形F′G′C′D′,这个矩形的长等于正方体的底面对角线长,矩形的宽等于正方体的棱长.矩形上、下两边中点连线A′B′是正方体的侧棱AB 及它所对的另一条侧棱EH的投影.【互动总结】(学生总结,老师点评)因为影子是光线被物体遮挡所形成的,所以要考虑到面与面,线与线的遮挡问题.【例4】如图所示,水杯的杯口与投影面平行,投影线的方向如箭头所示,它的正投影图是()【互动探索】(引发学生思考)依题意,光线是垂直照下的,故只有D符合.【答案】D【互动总结】(学生总结,老师点评)当投影面垂直于入射光线时,球体的投影是圆形,否则为椭圆形;若投影面不是平面,则投影形状要复杂得多.活动2巩固练习(学生独学)1.把一个正五棱柱按如图所示的方式摆放,当投影线由正前方射到后方时,它的正投影是如图所示的(B)2.若木棒长1.2米,则它的正投影的长一定(D)A.大于1.2米B.小于1.2米C.等于1.2米D.小于或等于1.2米活动3拓展延伸(学生对学)【例5】在长、宽都为4 m,高为3 m的房间正中央的天花板上悬挂着一只白炽灯泡,为了集中光线,加上了灯罩(如图所示).已知灯罩深AN=8 cm,灯泡离地面2 m,为了使光线恰好照在相对的墙角D、E处,灯罩的直径BC应为多少?(结果保留两位小数,2≈1.414)【互动探索】根据题意可知,AN=0.08 m,AM=2 m,由房间的地面为边长为4 m的正方形可算出DE的长,再根据△ABC∽△ADE利用相似三角形对应边成比例解答.【解答】如图,光线恰好照在墙角D、E处.由题意可知,AN=0.08 m,AM=2 m.∵房间的地面为边长为4 m的正方形,∴DE=4 2 m.∵BC∥DE,∴△ABC∽△ADE,∴BCDE=ANAM,即BC42=0.082,∴BC≈0.23 m.即灯罩的直径BC约为0.23 m.【互动总结】(学生总结,老师点评)解此题的关键是画出图形,合理使用相似的知识进行有关计算,计算时注意单位要统一.环节3课堂小结,当堂达标(学生总结,老师点评)1.投影线垂直于投影面的投影叫做正投影.注意,正投影是特殊的平行投影,中心投影不可能是正投影.2.几种基本图形(线段、正方形、圆、正方体)的正投影分几种情况.3.当物体的某个面平行于投影面时,这个面的正投影与这个面全等;物体正投影的形状、大小与它相对于投影面的位置有关.练习设计请完成本课时对应练习!29.2三视图第1课时几何体的三视图教学目标一、基本目标【知识与技能】1.了解视图的概念,明确视图与投影的关系.2.理解三视图中主视图、左视图、俯视图的概念,明确三视图与我们从三个方向看物体所得到的图象的联系与区别,会画立体图形的三视图.3.画三视图时,要使主视图与俯视图的长对正,主视图与左视图的高平齐,左视图与俯视图的宽相等.【过程与方法】通过观察、操作、猜想、讨论、合作等活动,使学生体会到三视图中各部分之间位置及大小的对应关系,积累数学活动的经验.【情感态度与价值观】通过探究物体的三视图,学会多角度看问题,激发学生学习数学的热情.二、重难点目标【教学重点】从投影的角度理解三视图的概念,会画简单的三视图.【教学难点】对三视图概念理解的升华及正确画出三棱柱的三视图.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P94~P97的内容,完成下面练习.【3 min反馈】1.当我们从某一角度观察一个物体时,所看到的图象叫做物体的一个视图,也可以看作物体在某一角度的光线下的投影.2.主视图是在正面内得到的由前向后观察物体的视图;俯视图是在水平面内得到的由上向下观察物体的视图;左视图是在侧面内得到的由左向右观察物体的视图.3.主视图与俯视图的长对正,主视图与左视图的高平齐,左视图与俯视图的宽相等.4.三视图一般规定主视图要在左上边,俯视图在主视图下方,左视图在主视图的右边,其中主视图反映物体的长和高,左视图反映物体的高和宽,俯视图反映物体的长和宽.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】画出如图所示一些基本几何体的三视图.【互动探索】(引发学生思考)根据三视图的定义解决问题.【解答】如图所示:【互动总结】(学生总结,老师点评)画这些基本几何体的三视图时,要注意从三个方面观察它们,具体画法如下:确定主视图的位置,画出主视图;在主视图下方画出俯视图,注意与主视图“长对正”;在主视图的正右方画出左视图,注意与主视图“高平齐”、与俯视图“宽相等”.【例2】画出如图所示的支架(一种小零件)的三视图,其中支架的两个台阶的高度和宽度相等.【互动探索】(引发学生思考)支架的形状是由两个大小不等的长方体构成的组合体,画三视图时要注意这两个长方体的上下、前后位置.【解答】如图是支架的三视图.【互动总结】(学生总结,老师点评)对于由几种基本几何体组合而成的几何体,其各种视图可以分解为基本几何体的视图再组合,画三视图时要注意各几何体的上、下、前、后、左、右位置关系.活动2巩固练习(学生独学)1.如图所示的物体的主视图为(B)2.下列几何体中,左视图是圆的是(D)3.在下列几何体:①长方体;②球;③圆锥;④竖放的圆柱;⑤竖放的正三棱柱中,其主视图、左视图、俯视图都完全相同的是②.(填序号)4.如图所示的是由6个同样大小的正方体摆成的几何体,将正方体①移走后,所得几何体的主视图改变,左视图不变,俯视图改变.(填“改变”或“不变”)活动3拓展延伸(学生对学)【例3】如图是一根钢管的直观图,画出它的三视图.【互动探索】钢管有内外壁,从一定角度看它时,看不见内壁,为全面地反映立体图形的形状,画图时规定:看得见部分的轮廓线画成实线,因被其他部分遮挡而看不见部分的轮廓线画成虚线.【解答】如图是钢管的三视图,其中的虚线表示钢管的内壁.【互动总结】(学生总结,老师点评)画三视图的步骤如下:(1)确定主视图位置,画出主视图;(2)在主视图的正下方画出俯视图,注意与主视图“长对正”;(3)在主视图的正右方画出左视图,注意与主视图“高平齐”、与俯视图“宽相等”.要注意几何体看得见部分的轮廓线画成实线,被其他部分遮挡而看不见部分的轮廓线画成虚线.环节3课堂小结,当堂达标(学生总结,老师点评)1.主视图、俯视图和左视图的概念.2.三视图的画法.练习设计请完成本课时对应练习!第2课时由三视图确定几何体教学目标一、基本目标【知识与技能】1.学会根据物体的三视图描述出几何体的基本形状或实物原型.2.体会三视图与实物原型之间的关系.【过程与方法】经历探索由简单的几何体的三视图还原几何体的过程,进一步发展空间想象力.【情感态度与价值观】通过对三视图的学习,逐步养成严谨、细致、规范的行为习惯,同时激发学生热爱生活、热爱数学的情感.二、重难点目标【教学重点】根据物体的三视图描述出几何体的基本形状或实物原型.【教学难点】根据物体的三视图想象几何体的形状.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P98~P99的内容,完成下面练习.【3 min反馈】1.由三视图想象立体图形时,要分别根据主视图、俯视图、左视图想象立体图形的前面、上面、侧面,然后再结合起来考虑整体图形.2.下列几何体中,其主视图、左视图与俯视图均相同的是(A)A.正方体B.三棱柱C.圆柱D.圆锥3.如图所给的三视图表示的几何体是(B)A.长方体B.圆柱C.圆锥D.圆台环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】分别根据三视图(1)(2)说出立体图形的名称.【互动探索】(引发学生思考)由三视图想象立体图形时,首先分别根据主视图、俯视图和左视图想象立体图形的前面、上面和左侧面,然后综合起来考虑整个图形.【解答】详细内容见教材P98例3.【例2】见教材P98~P99例4.【例3】一个物体的三视图如下图所示,请描述该物体的形状.【互动探索】(引发学生思考)由一个物体的三视图描述该物体的形状,关键是能想象出三视图和立体图形之间的联系,从而描述该物体的形状.【解答】该物体是一个圆柱体被左右两侧平面及水平平面切成缺口面形成的几何图形,它的形状如图所示.【互动总结】(学生总结,老师点评)根据主视图、俯视图和左视图想象几何体的正面、上面和左面的形状以及几何体的长、宽、高;从实线和虚线想象几何体看得见的部分和看不见的部分的轮廓线.活动2巩固练习(学生独学)1.由下列三视图想象出实物形状.解:A是四棱锥,B是球,C是三棱柱.2.已知一个几何体的三视图如图所示,想象出这个几何体.解:根据三视图想象出的几何体是一个长方体上面正中部竖立一个小圆柱,如图.活动3拓展延伸(学生对学)【例4】某几何体的主视图和俯视图如图.(1)请你画出符合如图所示的几何体的两种左视图;(2)若组成这个几何体的小正方体的块数为n,请你写出n的所有可能值.【互动探索】(1)由俯视图可得该几何体有2行,则左视图应有2列.由主视图可得该几何体共有3层,那么其中一列必有3个正方体,另一列最少是1个,最多是3个;(2)由俯视图可得该几何体有3列,2行,以及最底层正方体的个数及摆放形状,由主视图结合俯视图可得该几何体从左边数第2列第2层最少有1个正方体,最多有2个正方体,第3列第2层最少有1个正方体,最多有2个正方体,第3层最少有1个正方体,最多有2个正方体,分别相加得到组成该几何体的最少个数及最多个数,即可得到n的可能值.【解答】(1)如图所示:(2)∵俯视图有5个正方形,∴最底层有5个正方体.由主视图可得第2层最少有2个正方体,第3层最少有1个正方体;或第2层最多有4个正方体,第3层最多有2个正方体,∴该几何体最少有5+2+1=8(个)正方体,最多有5+4+2=11(个)正方体,∴n可能为8或9或10或11.【互动总结】(学生总结,老师点评)解决本题要明确俯视图中正方形的个数是几何体最底层正方体的个数.环节3课堂小结,当堂达标(学生总结,老师点评)由三视图确定几何体的步骤:(1)根据主视图、俯视图和左视图想象几何体的正面、上面和左面以及几何体的长、宽、高;(2)从实线和虚线想象几何体看得见的部分和看不见部分的轮廓线.练习设计请完成本课时对应练习!第3课时由三视图确定几何体的表面积教学目标一、基本目标【知识与技能】1.根据三视图求几何体的侧面积、表面积和体积等.2.解决实际生活中的面积、体积方面的用料问题.【过程与方法】通过探究由物体的三视图还原出物体的形状,进一步认识物体与其三视图之间的关系,提高学生的空间想象力.【情感态度与价值观】培养学生自主学习与合作交流的学习方式,加强学生从生活中发现数学的能力.二、重难点目标【教学重点】根据三视图求几何体的侧面积、表面积和体积.【教学难点】解决实际生活中的面积、体积方面的用料问题.教学过程环节1自学提纲,生成问题【5 min阅读】阅读教材P99~P100的内容,完成下面练习.【3 min反馈】1.圆锥沿它的一条母线剪开的侧面展开图是扇形.2.圆柱沿它的一条母线剪开的侧面展开图是矩形.3.正方体、长方体的六个面展开的平面图的面积等于它的表面积.(填“大于”“小于”或“等于”)环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】某工厂要加工一批密封罐,设计者给出了密封罐的三视图(如图).请按照三视图确定制作每个密封罐所需钢板的面积.(图中尺寸单位:mm)【温馨提示】详细解答过程见教材P99~P100例5.【例2】如图是两个长方体组合而成的一个立体图形的三视图,根据图中所标尺寸(单位:mm),求这个几何体的表面积.【互动探索】(引发学生思考)先由三视图得到两个长方体的长、宽、高,再分别表示出每个长方体的表面积,最后减去上面的长方体与下面的长方体的接触面面积即可.【解答】根据三视图,得上面的长方体长6 mm、高6 mm、宽3 mm,下面的长方体长10 mm、宽8 mm、高3 mm,∴这个几何体的表面积为2×(3×8+3×10+8×10)+2×(3×6+6×6)=376( mm2).【互动总结】(学生总结,老师点评)由三视图求几何体的表面积,首先要根据三视图分析几何体的形状,然后根据三视图的投影规律——“长对正,高平齐,宽相等”,确定几何体的长、宽、高等相关数据值,再根据相关公式计算几何体的面积.另外,求组合体的表面积时重叠部分不应计算在内.活动2巩固练习(学生独学)1.某工厂要加工一批茶叶罐,设计者给出了茶叶罐的三视图,如图所示(单位:mm),按照三视图制作每个密封罐所需钢板的面积至少是20 000π mm2.2.如图所示的是一个几何体的三视图,其中主视图、左视图都是腰长为13 cm,底边长为10 cm的等腰三角形,则这个几何体的侧面积是65π cm2.3.如图所示的是一个几何体的三视图,则这个几何体的表面积是 5π+3π.4.已知某几何体的三视图如图所示,求该几何体的表面积.解:由三视图可知,该几何体的下面是长、宽、高分别为4,4,2的长方体,上面为四棱锥,且高是2,底面为边长是4的正方形,∴S 表面积=4×2×4+4×4+4×12×4×22=48+16 2.活动3 拓展延伸(学生对学)【例3】杭州某零件厂刚接到要铸造5000件铁质工件的订单,下面给出了这种工件的三视图.已知铸造这批工件的原料是生铁,待工件铸成后还要在表面涂一层防锈漆,那么完成这批工件需要原料生铁多少吨?涂完这批工件要消耗多少千克防锈漆(铁的密度为7.8 g/cm 3,1 kg 防锈漆可以涂4 m 2的铁器面,三视图单位为cm)?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课题:34.1投影(1)一、学习目标:1、经历实践探索,了解投影、投影面、平行投影和中心投影的概念;2、了角平行投影和中心投影的区别。
3、学会关注生活中有关投影的数学问题,提高数学的应用意识。
二、教学重、难点教学重点:理解平行投影和中心投影的特征;教学难点:在投影面上画出平面图形的平行投影或中心投影。
三、教学过程:(一)板书课题,出示目标:同学们,现在我们来学习29.1投影,请看学习目标。
(二)指导自学为了达到本节课的目标,下面请按照自学指导认真自学,请看自学指导:请同学们认真看课本P100--101内容:问题:1、什么是投影呢?2、什么是平行投影?3、什么是中心投影?自学过程中如有不懂的地方,可小声请教同桌或举手问老师。
5分钟后,比一比谁会解答类似的问题(三)、学生自学,老师巡视1、学生看书、思考,教师巡视,督促每个学生都紧张的自学。
2、检测P101练习3、学生练习,教师巡视,收集错误。
(四)后教(在课前布置,以数学学习小组为单位)探究平行投影和中心投影和性质和区别1、观察在太阳光线下,木杆和三角形纸板在地面的投影。
2、不断改变木杆和三角形纸板的位置,什么时候木杆的影子成为一点,三角形纸板的影子是一条线段?当木杆的影子与木杆长度相等时,你发现木杆在什么位置?三角形纸板在什么位置时,它的影子恰好与三角形纸板成为全等图形?还有其他情况吗?3、由于中心投影与平行投影的投射线具有不同的性质,因此,在这两种投影下,物体的影子也就有明显的差别。
4、请观察平行投影和中心投影,它们有什么相同点与不同点?教师引导学生讨论,归纳,弄清为什么?平行投影与中心投影的区别与联系区别联系光线物体与投影面平行时的投影平行投影平行的投射线全等都是物体在光线的照射下,在某个平面内形成的影子。
(即都是投影) 中心投影从一点出发的投射线放大(位似变换)(五)当堂训练:(1)地面上直立一根标杆AB如图,杆长为2cm。
①当阳光垂直照射地面时,标杆在地面上的投影是什么图形?②当阳光与地面的倾斜角为60°时,标杆在地面上的投影是什么图形?并画出投影示意图;(2)一个正方形纸板ABCD和投影面平行(如图),投射线和投影面垂直,点C在投影面的对应点为C’,请画出正方形纸板的投影示意图。
(3)两幅图表示两根标杆在同一时刻的投影.请在图中画出形成投影的光线.它们是平行投影还是中心投影?并说明理由。
解:分别连结标杆的顶端与投影上的对应点(图4-17).很明显,图(1)的投射线互相平行,是平行投影.图(2)的投射线相交于一点,是中心投影。
六、小结:我们这节课学习了什么知识?七、作业:画出一个四边形的不同平行投影图和中心投影图八、教学反思课题:34.1投影(二)一、学习目标:1、了解正投影的概念;2、能根据正投影的性质画出简单的平面图形的正投影3、培养动手实践能力,发展空间想象能力。
二、教学重、难点教学重点:正投影的含义及能根据正投影的性质画出简单的平面图形的正投影教学难点:归纳正投影的性质,正确画出简单平面图形的正投影三、学习过程:(一)板书课题,出示目标:同学们,现在我们来学习29.1投影第二节,请看学习目标。
(二)指导自学为了达到本节课的目标,下面请按照自学指导认真自学,请看自学指导:请同学们认真看课本P102--104内容:问题:1、什么是正投影呢?2、一条线段的正投影有哪些形状?3、一个面的正投影呢?自学过程中如有不懂的地方,可小声请教同桌或举手问老师。
5分钟后,比一比谁会解答类似的问题(三)、学生自学,老师巡视1、学生看书、思考,教师巡视,督促每个学生都紧张的自学。
2、检测P105练习3、学生练习,教师巡视,收集错误。
(四)、后教1、提问自学指导中的问题。
2、教师引导学生讨论,归纳,弄清为什么?3、学生更正练习中存在的问题。
4、例1画出如图摆放的正方体在投影面P上的正投影.(1)正方体的一个面ABCD平行于投影面P图(1);(2)正方体的一个面ABCD倾斜于投影面F,上底面ADEF垂直于投影面P,并且上底面的对角线AE垂直于投影面P图(2).5、谈谈收获(五)、作业P106 必做2、3、4 选作5、6(六)、教学反思课题34.2 三视图(一)一、学习目标1、会从投影的角度理解视图的概念2、会画简单几何体的三视图3、通过观察探究等活动使学生知道物体的三视图与正投影的相互关系及三视图中位置关系、大小关系。
二、教学重、难点重点:从投影的角度加深对三视图的理解和会画简单的三视图难点:对三视图概念理解的升华及正确画出三棱柱的三视图三、学习过程(一)板书课题,出示目标:同学们,现在我们来学习29.2三视图,请看学习目标。
(二)、指导自学为了达到本节课的目标,下面请按照自学指导认真自学,请看自学指导:请同学们认真看课本P108--110内容:问题:1、什么是三视图?2、如何画三视图?自学过程中如有不懂的地方,可小声请教同桌或举手问老师。
5分钟后,比一比谁会解答类似的问题(三)、学生自学,老师巡视1、学生看书、思考,教师巡视,督促每个学生都紧张的自学。
2、检测P112练习13、学生练习,教师巡视,收集错误。
(四)、后教1、提问自学指导中的问题。
2、教师:能发现练习中的错误,并能更正的同学举手3、学生更正,更正不了的启发其他同学更正4、教师引导学生讨论,归纳,弄清为什么?画三视图的思路及规范作图的步骤学生回答对,要问为什么?错,要问有不同意见的请举手5、教师小结:画一个立体图形的三视图时要考虑从某一个方向看物体获得的平面图形的形状和大小,不要受到该方向的物体结构的干扰。
在画三视图时,三个三视图不要随意乱放,应做到俯视图在主视图的下方,左视图在主视图的右边,三个视图之间保持:长对正,高平齐,宽相等。
(五)、当堂训练练习:1、2、你能画出下图1中几何体的三视图吗小明画出了它们的三种视图(图2),他画的对吗请你判断一下.3、P116、1、2题六教学反思:一、教学目标:1、进一步明确正投影与三视图的关系2、经历探索简单立体图形的三视图的画法,能识别物体的三视图;3、培养动手实践能力,发展空间想象能力。
二、教学重点、难点重点:简单立体图形的三视图的画法难点:三视图中三个位置关系的理解三、教学过程:(一)板书课题,出示目标:同学们,现在我们继续学习29.2三视图,请看学习目标。
(二)、指导自学为了达到本节课的目标,下面请按照自学指导认真自学,请看自学指导:请同学们认真看课本79页:问题:1、画三视图应注意什么?2、如何画组合型的三视图?自学过程中如有不懂的地方,可小声请教同桌或举手问老师。
5分钟后,比一比谁会解答类似的问题(三)、学生自学,老师巡视1、学生看书、思考,教师巡视,督促每个学生都紧张的自学。
2、检测P112练习2、33、学生练习,教师巡视,收集错误。
(四)、后教教师引导学生讨论,归纳,弄清为什么?画三视图时应注意什么为全面地反映立体图形的形状,画图时规定;看得见部分的轮廓线画成实线.因被其他那分遮挡而看不见部分的轮廓线画成虚线.(五)、当堂训练1、做一做:画出下列几何体的三视图2、一个六角螺帽的毛坯如图,底面正六边形的边长为250mm,高为200mm,内孔直径为200mm.请画出六角螺帽毛坯的三视图.六、教学反思俯视图左视图主视图一、学习目标:1、学会根据物体的三视图描述出几何体的基本形状或实物原型;2、经历探索简单的几何体的三视图的还原,进一步发展空间想象能力。
教学重点与难点:根据物体的三视图描述出几何体的基本形状或实物原型二、学习过程:(一)板书课题,出示目标:同学们,现在我们继续学习29.2三视图,请看学习目标。
(二)、指导自学为了达到本节课的目标,下面请按照自学指导认真自学,请看自学指导:请同学们认真看课本P112--114内容:问题:1、学习例4,根据三视图想象立体图形,应采取的步骤?2、结合例5,根据三视图如何描述物体的形状。
自学过程中如有不懂的地方,可小声请教同桌或举手问老师。
7分钟后,比一比谁会解答类似的问题(三)、学生自学,老师巡视1、学生看书、思考,教师巡视,督促每个学生都紧张的自学。
2、检测P114练习13、学生练习,教师巡视,收集错误。
(四)、后教1、提问自学指导中的问题。
2、教师:能发现练习中的错误,并能更正的同学举手3、学生更正,更正不了的启发其他同学更正4、教师引导学生讨论,归纳,弄清为什么?学生回答对,要问为什么?错,要问有不同意见的请举手(五)巩固练习如图所示图形是一个多面体的三视图,请根据视图说出该多面体的具体名称。
六、小结:1、一个视图不能确定物体的空间形状,根据三视图要描述几何体或实物原型时,必须将各视图对照起来看。
2、一个摆好的几何体的视图是唯一的,但从视图反过来考虑几何体时,它有多种可能性。
例如:正方体的主视图是正方形,但主视图是正方形的几何体有直三棱柱、长方体、圆柱等。
3、对于较复杂的物体,有三视图形象出物体的原型,应搞清三个视图之间的前后、左右、上下的对应关系。
七、作业P116 、4题八、教学反思一、学习目标1、学会根据物体的三视图描述出几何体的基本形状或实物原型;2、经历探索简单的几何体的三视图的还原,进一步发展空间想象能力;3、了解将三视图转换成立体图开在生产中的作用,使学生体会到所学的知识有重要的实用价值。
二、教学重点、难点重点:根据三视图描述基本几何体和实物原型及三视图在生产中的作用难点:根据三视图想象基本几何体和实物原型的形状三、学习过程(一)板书课题,出示目标:(二)、指导自学为了达到本节课的目标,下面请按照自学指导认真自学,请看自学指导:请同学们认真看课本问题:1、学习例6,根据三视图如何复原物体的形状,进一步画展开图2、进一步对于其他立体图形呢?自学过程中如有不懂的地方,可小声请教同桌或举手问老师。
7分钟后,比一比谁会解答类似的问题(三)、学生自学,老师巡视1、学生看书、思考,教师巡视,督促每个学生都紧张的自学。
2、检测P115练习13、学生练习,教师巡视,收集错误。
(四)、后教1、提问自学指导中的问题。
2、教师:能发现练习中的错误,并能更正的同学举手3、学生更正,更正不了的启发其他同学更正4、教师引导学生讨论,归纳,弄清为什么?学生回答对,要问为什么?错,要问有不同意见的请举手(五)当堂训练1、完成下列练习(1)、如图所示是一个立体图形的三视图,请根据视图说出立体图形的名称_______。
(2)、一张桌子摆放若干碟子,从三个方向上看,三种视图如下图所示,则这张桌子上共有________个碟子。
(3)、某几何体的三种视图分别如下图所示,那么这个几何体可能是()。
(A)长方体(B)圆柱(C)圆锥(D)球2、根据下面三视图请说出建筑物是什么样子的?共有几层?一共需要多少个小正方体?分析:由俯视图确定该建筑物在平面上的形状,由主视图、左视图确定空间的形状如图所示. 解:该建筑物的形状如图所示:有3层,共9个小正方体.思考:一个物体的主视图如上右图所示, 请画出它的俯视图,耐心想一想有几种不同的情形?六、小结:根据物体的三视图想像物体的形状一般是由俯视图确定物体在平面上的形状.然后再根据左视图、主视图嫁接出它在空间里的形状,从而确定物体的形状.七、作业86页 8、9八、教学反思课题投影与视图(练习课)一、教学目标1、进一步体会投影中的平行投影、中心投影和正投影间的相互关系2、加深体会立体图形或实物原型与三视图的互相转化,进一步拓展学生的空间想象力二、教学过程(一)提问导入前面我们都学习了哪些内容?(让学生进行2~3分钟的梳理,然后让几个学生说说看,最后老师拓展总结)(二)看谁学得好练习设计1.填空题(1)俯视图为圆的几何体是_______,______。