运筹学试题及答案一说课材料

合集下载

运筹学试卷及参考问题详解

运筹学试卷及参考问题详解

运筹学 试卷B 及参考答案(本题20分)一、考虑下面的线性规划问题:Min z=6X 1+4X 2约束条件: 2X 1+X 2 ≥13X 1+4X 2≥3 X 1 , X 2 ≥ 0(1) 用图解法求解,并指出此线型规划问题是具有惟一最优解、无穷多最优解、无界解或无可行解;(2) 写出此线性规划问题的标准形式; (3) 求出此线性规划问题的两个剩余变量的值; (4) 写出此问题的对偶问题。

解:(1)阴影部分所示ABC 即为此线性规划问题的可行域。

其中,A (0,1),B (1,3/4),C (1/5,3/5)。

显然,C (1/5,3/5)为该线性规划问题的最优解。

因此,该线性规划问题有唯一最优解,最优解为:121/5,3/5,*18/5x x z ===。

——8分。

说明:画图正确3分;求解正确3分;指出解的情况并写出最优解2分。

(2)标准形式为:121231241234min 6421343,,,0z x x x x x x x x x x x x =++-=⎧⎪+-=⎨⎪≥⎩ X 1 X 2 AB——4分 (3)两个剩余变量的值为:340x x =⎧⎨=⎩——3分(4)直接写出对偶问题如下:12121212max '323644,0z y y y y y y y y =++≤⎧⎪+≤⎨⎪≥⎩——5分(本题10分)二、前进电器厂生产A 、B 、C 三种产品,有关资料下表所示:学模型,不求解)解:设生产A 、B 、C 三种产品的数量分别为x 1,x 2和x 3,则有:——1分123123123123123max 810122.0 1.5 5.030002.0 1.5 1.21000200250100,,0z x x x x x x x x x x x x x x x =++++≤⎧⎪++≤⎪⎪≤⎪⎨≤⎪⎪≤⎪≥⎪⎩ ——14分,目标函数和每个约束条件2分(本题10分)三、某电子设备厂对一种元件的年需求为2000件,订货提前期为零,每次订货费为25元。

数学:运筹学试题及答案

数学:运筹学试题及答案

数学:运筹学试题及答案1、判断题求最小值问题的目标函数值是各分支函数值的下界。

正确答案:对2、填空题动态规划大体上可以分为()、()、()、()四大类。

正确答案:离散确定型;离散随机型;连续确定型;连续随机(江南博哥)型3、多选系统模型按照抽象模型形式可以分为()A.数学模型B.图象模型C.模糊性模型D.逻辑模型E.仿真模型正确答案:A, B, D, E4、单选线性规划一般模型中,自由变量可以代换为两个非负变量的()A.和B.差C.积D.商正确答案:B5、填空题运筹学的目的在于针所研究的系统求得一个合理应用人才,物力和财力的最佳方案。

发挥和提高系统的(),最终达到系统的()。

正确答案:效能及效益;最优目标6、填空题采用人工变量法时,若基变量中出现了()的人工变量,表示在原问题有解。

正确答案:非零7、填空题满足()的基本解称为基本可行解。

正确答案:非负条件8、填空题在箭线式网络图中从始点出发,由各个关键活动连续相接,直到终点的费时最长的线路称为()。

正确答案:关键线路9、单选在求解运输问题的过程中可运用到下列哪些方法()。

A.西北角法B.位势法C.闭回路法D.以上都是正确答案:D10、问答题请简要回答一般系统模型的三个特征。

正确答案:①它是现实世界一部分的抽象和模仿;②它由那些与分析的问题有关的要素所构成;③它表明了系统有关要素间的逻辑关系或定量关系。

11、名词解释初始基本可行解正确答案:多个基本可行解中一个,一般情况下在求最大时取最小的基本可行解,求最小时取最大的基本可行解。

12、名词解释不确定条件下的决策正确答案:指在需要决策的问题中,只估测到可能出现的状态,但状态发生的概率,由于缺乏资源和经验而全部未知。

它属于不确定情况下的决策.13、名词解释时间优化正确答案:时间优化是在人力材料设备资金等资源基本上有保证的条件下寻求最短的工程周期14、填空题企业在采购时,供应方根据批发量的大小定出不同的优惠价格,这种价格上的优惠称为()正确答案:数量折扣15、填空题常用的两种时差是工作总时差和工作()正确答案:自由时差16、多选根据对偶理论,在求解线性规划的原问题时,可以得到以下结论()A.对偶问题的解B.市场上的稀缺情况C.影子价格D.资源的购销决策E.资源的市场价格正确答案:A, C, D17、问答题运用单纯形法求解线性规划问题的步骤是什么?正确答案:(1)确定初始基可行解(2)检验初始基可行解是否最优(3)无解检验(4)进行基变换(5)进行旋转运算,之后回到步骤2,循环直到完成整个问题的求解18、单选设一个线性规划问题(P)的对偶问题为(D),则关于它们之间的关系的陈述不正确的是()。

运筹学试题及详细答案

运筹学试题及详细答案

运筹学试题及详细答案
一、选择题
1、Nash均衡的定义是:
A、每位参与者的行为均达到最佳利益的状态
B、每位参与者的行为均达到得到最大胜利的状态
C、每位参与者的行为均达到合作的最佳状态
D、每位参与者的行为均达到合作的最大胜利的状态
答案:A
2、决策就是参与者用来实现选择的:
A、计划
B、机构
C、程序
D、工具
答案:D
3、运筹学可以分为:
A、组合数学
B、运动学
C、博弈论
D、概率论
答案:A、B、C、D
4、非线性规划有:
A、分支定界法
B、梯度下降法
C、基于格法的解法
D、对偶法
答案:A、B、C、D
5、关于迭代法,下列表述正确的有:
A、可以求解非凸优化问题
B、单次迭代过程简单
C、收敛性较好
D、用于非线性规划
答案:A、B、C
二、填空题:
1、博弈论是研究__参与者之间的__的科学。

答案:多,竞争。

《运筹学》试题

《运筹学》试题

《运筹学》试题一、名词解释(20分)对偶可行基影子价格灵敏度分析平衡运输问题不平衡运输问题纯整数规划0—1规划问题混合整数规划网络最大流问题二、选择题(20分)1、我们可以通过()来验证模型最优解。

A观察B应用C实验D调查2、建立运筹学模型的过程不包括()阶段。

A观察环境B数据分析C模型设计D模型实施3、建立模型的一个基本理由是去揭晓那些重要的或有关的()A数量B变量 C 约束条件 D 目标函数4、模型中要求变量取值()A可正B可负C非正D非负5、运筹学研究和解决问题的效果具有()A连续性 B 整体性 C 阶段性 D 再生性6、如果线性规划问题有可行解,那么该解必须满足()A所有约束条件 B 变量取值非负 C 所有等式要求 D 所有不等式要求7、如果线性规划问题存在目标函数为有限值的最优解,求解时只需在()集合中进行搜索即可得到最优解。

A基 B 基本解 C 基可行解 D 可行域8、线性规划问题是针对()求极值问题.A约束B决策变量 C 秩D目标函数9、如果第K个约束条件是“≤”情形,若化为标准形式,需要()A左边增加一个变量B右边增加一个变量C左边减去一个变量D右边减去一个变量10、若某个bk≤0, 化为标准形式时原不等式()A不变 B 左端乘负1 C 右端乘负1 D 两边乘负1三、填空题(20分)1、线性规划问题具有对偶性,即对于任何一个求最大值的线性规划问题,都有一个求()的线性规划问题与之对应,反之亦然。

2、在一对对偶问题中,原问题的约束条件的右端常数是对偶问题的()。

3、如果原问题的某个变量无约束,则对偶问题中对应的约束条件应为()。

4、对偶问题的对偶问题是()。

5、若原问题可行,但目标函数无界,则对偶问题()。

6、在某线性规划问题中,已知某资源的影子价格为Y1,相应的约束常数b1,在灵敏度容许变动范围内发生Δb1的变化,则新的最优解对应的最优目标函数值是()(设原最优目标函数值为Z﹡)7、若某约束常数bi的变化超过其容许变动范围,为求得新的最优解,需在原最优单纯形表的基础上运用()求解。

运筹学试卷含答案

运筹学试卷含答案

一、填空题1.运筹学是应用(系统的)、(科学的)、(数学分析)的方法,通过建立、分析、检验和求解数学模型,而获得最优决策的科学。

2.对于求取一组变量xj (j =1,2,......,n),使之既满足(线性约束条件),又使具有线性表达式的目标函数取得(极大值或极小值)的一类最优化问题称为(线性规划)问题。

3.用一组未知变量表示要求的方案,这组未知变量称为(决策变量)。

4.可行解是满足约束条件和非负条件的(决策变量)的一组取值。

5.最优解是使目标函数达到(最优值)的可行解。

6.线性规划的图解法就是用(几何作图)的方法分析并求出其(最优解)的过程。

7.每一个线性规划都有一个“影像”(一个伴生的线性规划),称之为线性规划的(对偶规则)。

8.根据线性规划问题的可行域是凸多边形或凸多面体,一个线性规划问题有(最优解),就一定可以在可行域的(顶点)找到。

9.用非基变量表示目标函数的表达式中,非基变量的系数(检验数)全部非正时,当前的基本可行解就是(最优解)。

10.最优表中,基变量中仍含有人工变量,表明原线性规划的约束条件被破坏,线性规划(没有可行解),也就没有最优解11.排队(queue)现象是由两个方面构成:要求得到服务的对象统称为(顾客),为顾客提供服务的统称为(服务台)。

12.排队论(queuing theory)是通过研究排队系统中等待现象的(概率特性),解决系统(最优设计)与(最优控制)的一种理论。

13.等待制排队规则包括:先到先服务、后到先服务、优先权服务、随机服务14.排队系统的重要概率分布包括: 定长分布、泊松分布、负指数分布、K阶爱尔朗分布15.排队系统的主要数量指标包括: 队长、等待队长、逗留时间、等待时间、忙期、闲期二、判断题1.对偶问题的对偶是原问题。

(对)2.若X*为原问题(最大化)的可行解,Y为对偶问题(最小化)的可行解,则CX*≤Yb。

(对)3.当X* 是原问题(Max)的可行解,Y* 是其对偶问题(Min)的可行解时,若CX*=Y*b,则X*与Y* 是各自问题的最优解。

《运筹学》课程考试试卷及答案

《运筹学》课程考试试卷及答案

《运筹学》课程考试试卷一、填空题(共10分,每空1分)1、线性规划问题的3个要素是: 、 和 。

2、单纯形法最优性检验和解的判别,当 现有顶点对应的基可行解是最优解,当 线性规划问题有无穷多最优解,当 线性规划问题存在无界解。

4、连通图的是指: 。

5、树图指 ,最小树是 。

6、在产销平衡运输问题中,设产地为m 个,销地为n 个,运输问题的解中的基变量数为 。

二、简答题 简算题(共20分) 1、已知线性规划问题,如下: max Z=71x -22x +53x⎪⎩⎪⎨⎧=≥≤+≤+-3,2,1,084632..31321i x x x x x x t s i请写出其对偶问题。

(10分)2、已知整数规划问题:1212121212max105349..528,0,,z x x x x s t x x x x x x =++≤⎧⎪+≤⎨⎪≥⎩且为整数在解除整数约束后的非整数最优解为(x1, x2)=(1, 1.5),根据分支定界法,请选择一个变量进行分支并写出对应的2个子问题(不需求解)。

(10分)三、计算题(共70分)1、某厂用A1,A2两种原料生产B1,B2,B3三种产品,工厂现有原料,每吨所需原料数量以及每吨产品可得利润如下表。

在现有原料的条件下,应如何组织生产才能使该厂获利最大?(共20分) (1) 写出该线性规划问题的数学模型(4分)(2)将上面的数学模型化为标准形式(2分)(3)利用单纯形法求解上述问题(14分,单纯形表格已给出, 如若不够, 可自行添加)(3)利用单纯形法求解上述问题(14分,单纯形表格已给出, 如若不够, 可自行添加)2、考虑下列运输问题:请用表上作业法求解此问题,要求:使用V ogel法求初始解。

若表格不够可自行添加(15分)3、有4台机器都可以做A、B、C、D四种工作,都所需费用不同,其费用如下表所示。

请用匈牙利法求总费用最小的分配方案。

(10分)4、某工厂内联结6个车间的道路如下图所示,已知每条道路的的距离,求沿部分道路架设6个车间的电话网,使电话线总距离最短。

《运筹学》课程考试试卷试题(含答案)

《运筹学》课程考试试卷试题(含答案)

《运筹学》课程考试试卷试题(含答案)一、选择题(每题5分,共25分)1. 运筹学的核心思想是()A. 最优化B. 系统分析C. 预测D. 决策答案:A2. 在线性规划中,约束条件可以用()表示。

A. 等式B. 不等式C. 方程组D. 矩阵答案:B3. 以下哪个不是运筹学的基本模型?()A. 线性规划B. 整数规划C. 非线性规划D. 随机规划答案:D4. 在目标规划中,以下哪个术语描述的是决策变量的偏离程度?()A. 目标函数B. 约束条件C. 偏差变量D. 权重系数答案:C5. 在动态规划中,以下哪个概念描述的是在决策过程中,某一阶段的最优决策对后续阶段的影响?()A. 最优子结构B. 无后效性C. 最优性原理D. 阶段性答案:B二、填空题(每题5分,共25分)1. 运筹学是一门研究在复杂系统中的______、______和______的科学。

答案:决策、优化、实施2. 在线性规划中,若目标函数为最大化,则其标准形式为______。

答案:max z = c^T x3. 在非线性规划中,若目标函数和约束条件均为凸函数,则该规划问题为______。

答案:凸规划4. 在目标规划中,若决策变量x_i的权重系数为w_i,则目标函数可以表示为______。

答案:min Σ(w_i d_i^+ + w_i d_i^-)5. 在动态规划中,若状态变量为s_n,决策变量为u_n,则状态转移方程可以表示为______。

答案:s_{n+1} = f(s_n, u_n)三、判断题(每题5分,共25分)1. 线性规划问题的最优解一定在可行域的顶点处取得。

()答案:正确2. 在整数规划中,若决策变量为整数,则目标函数和约束条件也必须为整数。

()答案:错误3. 目标规划中的偏差变量可以是负数。

()答案:正确4. 在动态规划中,最优策略具有最优子结构。

()答案:正确5. 在非线性规划中,若目标函数为凸函数,则约束条件也必须为凸函数。

运筹学考试试卷及答案

运筹学考试试卷及答案

运筹学考试试卷及答案一、选择题(每题2分,共20分)1. 线性规划问题的标准形式是:A. 所有变量都非负B. 目标函数是最大化C. 所有约束条件都是等式D. 所有约束条件都是不等式答案:A2. 单纯形法中,如果某个变量的检验数为负数,那么:A. 该变量可以增大B. 该变量可以减小C. 该变量保持不变D. 该变量不能进入基答案:A3. 在运输问题中,如果某种资源的供应量大于需求量,那么应该:A. 增加供应量B. 减少需求量C. 增加需求量D. 减少供应量答案:C4. 动态规划的基本原理是:A. 递归B. 迭代C. 回溯D. 分解答案:D5. 决策树中,每个节点代表:A. 一个决策B. 一个状态C. 一个结果D. 一个概率答案:A6. 排队论中,M/M/1队列的特点是:A. 到达时间服从泊松分布,服务时间服从指数分布,且只有一个服务台B. 到达时间服从指数分布,服务时间服从泊松分布,且只有一个服务台C. 到达时间服从泊松分布,服务时间服从指数分布,且有两个服务台D. 到达时间服从指数分布,服务时间服从泊松分布,且有两个服务台答案:A7. 网络流问题中,最大流最小割定理说明:A. 最大流等于最小割B. 最大流小于最小割C. 最大流大于最小割D. 最大流与最小割无关答案:A8. 整数规划问题中,分支定界法的基本思想是:A. 将问题分解为多个子问题B. 将问题转化为线性规划问题C. 将问题转化为非线性规划问题D. 将问题转化为动态规划问题答案:A9. 在多目标决策中,如果目标之间存在冲突,通常采用的方法是:A. 目标排序B. 目标加权C. 目标合并D. 目标替换答案:B10. 敏感性分析的目的是:A. 确定最优解的稳定性B. 确定最优解的唯一性C. 确定最优解的可行性D. 确定最优解的最优性答案:A二、填空题(每题2分,共20分)1. 线性规划问题的可行域是由所有_________约束条件构成的集合。

答案:可行2. 在单纯形法中,如果目标函数的系数都是正数,则该问题为_________问题。

《运筹学》习题与答案

《运筹学》习题与答案

《运筹学》习题与答案(解答仅供参考)一、名词解释1. 线性规划:线性规划是运筹学的一个重要分支,它主要研究在一系列线性约束条件下,如何使某个线性目标函数达到最大值或最小值的问题。

2. 动态规划:动态规划是一种解决多阶段决策问题的优化方法,通过把原问题分解为相互联系的子问题来求解,对每一个子问题只解一次,并将其结果保存起来以备后续使用,避免了重复计算。

3. 整数规划:整数规划是在线性规划的基础上,要求决策变量取值为整数的一种优化模型,用于解决实际问题中决策变量只能取整数值的情形。

4. 马尔可夫决策过程:马尔可夫决策过程是一种随机环境下的决策模型,其中系统的状态转移具有无后效性(即下一状态的概率分布仅与当前状态有关),通过对每个状态采取不同的策略(行动)以最大化期望收益。

5. 最小费用流问题:最小费用流问题是指在网络流模型中,每条边都有一个容量限制和单位流量的成本,寻找满足所有节点流量平衡的同时使得总成本最小的流方案。

二、填空题1. 运筹学的主要研究对象是系统最优化问题,其核心在于寻求在各种(约束条件)下实现(目标函数)最优的方法。

2. 在运输问题中,供需平衡指的是每个(供应地)的供应量之和等于每个(需求地)的需求量之和。

3. 博弈论中的纳什均衡是指在一个博弈过程中,对于各个参与者来说,当其他所有人都不改变策略时,没有人有动机改变自己的策略,此时的策略组合构成了一个(纳什均衡)。

4. 在网络计划技术中,关键路径是指从开始节点到结束节点的所有路径中,具有最长(总工期)的路径。

5. 对于一个非负矩阵A,如果存在一个非负矩阵B,使得AB=BA=A,则称A为(幂等矩阵)。

三、单项选择题1. 下列哪项不是线性规划的标准形式所具备的特点?(D)A. 目标函数是线性的B. 约束条件是线性的C. 决策变量非负D. 变量系数可以为复数2. 当线性规划问题的一个基解满足所有非基变量的检验数都非正时,那么该基解(C)。

A. 不是可行解B. 是唯一最优解C. 是局部最优解D. 不一定是可行解3. 下列哪种情况适合用动态规划法求解?(B)A. 问题无重叠子问题B. 问题具有最优子结构C. 问题不能分解为多个独立子问题D. 子问题之间不存在关联性4. 在运输问题中,如果某条路线的运输量已经达到了其最大运输能力,我们称这条路线处于(A)状态。

运筹学试卷与参考答案完整版

运筹学试卷与参考答案完整版

《运筹学》模拟试题及参考答案一、判断题(在下列各题中,你认为题中描述的内容为正确者,在题尾括号内写错误者写“X”。

)1. 图解法提供了求解线性规划问题的通用方法。

()2. 用单纯形法求解一般线性规划时,当目标函数求最小值时,若所有的检验数C j-Z j> 0,贝V问题达到最优。

()3. 在单纯形表中,基变量对应的系数矩阵往往为单位矩阵。

()4. 满足线性规划问题所有约束条件的解称为基本可行解。

()5. 在线性规划问题的求解过程中,基变量和非基变量的个数是固定的。

()6. 对偶问题的目标函数总是与原问题目标函数相等。

()7. 原问题与对偶问题是一一对应的。

()8. 运输问题的可行解中基变量的个数一定遵循m + n —1的规则。

()9. 指派问题的解中基变量的个数为m +n。

()10. 网络最短路径是指从网络起点至终点的一条权和最小的路线。

()11. 网络最大流量是网络起点至终点的一条增流链上的最大流量。

()12. 工程计划网络中的关键路线上事项的最早时间和最迟时间往往不相等。

()13. 在确定性存贮模型中不许缺货的条件下,当费用项目相同时,生产模型的间隔时间比订购模型的间隔时间长。

()14. 单目标决策时,用不同方法确定的最佳方案往往是一致的。

()15. 动态规划中运用图解法的顺推方法和网络最短路径的标号法上是一致的。

()三、填空题1. 图的组成要素------------------- ; ---------------- 。

2. 求最小树的方法有------------------ 、-------------- 。

3. 线性规划解的情形有--------------- 、------------- 、-------------- - ----------- 。

4. 求解指派问题的方法是------------------ 。

5. 按决策环境分类,将决策问题分为----------------- 、、。

运筹学试题及答案

运筹学试题及答案

运筹学试题及答案运筹学试题及答案一、选择题:从下列四个选项中选择正确的答案。

1. 运筹学一词最初来自于哪个国家?A. 中国B. 美国C. 英国D. 德国答案:B. 美国2. 运筹学的主要目标是什么?A. 提高企业的生产效率B. 降低企业的成本C. 提高企业的利润D. 优化资源的利用答案:D. 优化资源的利用3. 下列哪个不是运筹学的研究方法?A. 线性规划B. 动态规划C. 模拟D. 微积分答案:D. 微积分4. 下列哪个是运筹学的一个应用领域?A. 人力资源管理B. 市场营销C. 金融投资D. 以上都是答案:D. 以上都是二、填空题:根据题目要求,在空格中填入正确的答案。

1. 线性规划是运筹学中的一种常用方法,其目标是在一定的约束条件下,______线性目标的最优解。

答案:最大化或最小化2. 动态规划是一种解决_______过程中的最优化问题的方法。

答案:多阶段决策3. 供应链管理中,______是指将不同的物流节点连接起来,实现物流流程的顺畅和高效。

答案:协调4. 在项目管理中,______图是一种重要的工具,用于展示项目活动与任务之间的依赖关系。

答案:网络三、问答题:根据题目要求,回答问题。

1. 什么是线性规划?请简要解释线性规划的基本原理。

答:线性规划是一种数学优化方法,通过建立线性数学模型,以线性目标函数和线性约束条件为基础,寻找使目标函数最大或最小的决策变量值。

其基本原理是通过确定目标函数的优化方向和约束条件,使用线性代数和数学规划理论进行求解,得出最优解。

2. 动态规划在运筹学中的应用有哪些?请举例说明。

答:动态规划在运筹学中有广泛的应用,例如在资源分配、生产计划、货物调度等方面。

举个例子就是在货物调度中,通过动态规划的方法可以确定最优的调度方案,使得货物的运输成本最小化,货物的运输时间最短化。

3. 什么是供应链管理?为什么供应链管理对企业的重要性?答:供应链管理是指协调各个物流节点,包括原材料供应、生产、仓储、运输和客户服务等环节,实现产品或服务的流动和交付。

运筹学试题及答案

运筹学试题及答案

运筹学试题及答案运筹学试题及答案一、选择题1. 运筹学是一门综合应用学科,它的研究对象是哪些问题?A. 经济决策问题B. 工程管理问题C. 交通运输问题D. 能源问题E. 以上都是答案:E. 以上都是2. 下列哪项不是运筹学的研究方法?A. 数学规划B. 数据分析C. 模拟仿真D. 统计推断答案:D. 统计推断3. 运筹学中的线性规划是一种用于解决什么类型的问题?A. 最小化问题B. 最大化问题C. 平衡问题D. 优化问题答案:D. 优化问题4. 运筹学中使用的线性规划求解算法有哪些?A. 单纯形法B. 整数规划法C. 动态规划法D. 匈牙利算法答案:A. 单纯形法5. 运筹学中的最优化问题可以分为哪两类?A. 离散最优化和连续最优化B. 线性最优化和非线性最优化C. 线性最优化和整数最优化D. 线性最优化和动态最优化答案:B. 线性最优化和非线性最优化二、判断题1. 运筹学只研究最优化问题,不研究约束条件。

答案:错误2. 运筹学只能用于解决企业管理问题,不适用于其他领域。

答案:错误3. 数学规划是运筹学的重要方法之一,但并不是唯一的方法。

答案:正确4. 运筹学的研究对象只包括一些实际运作困难的问题。

答案:错误5. 线性规划只适用于线性关系,不能处理非线性关系。

答案:正确三、简答题1. 什么是运筹学?答:运筹学是一门综合应用学科,通过数学建模和优化方法来解决经济、工程、管理、交通运输等领域中的优化问题。

它体现了一种科学的决策方法和管理思维,可以帮助人们做出最优决策。

2. 运筹学的主要研究方法有哪些?答:运筹学的主要研究方法包括数学规划、数据分析、模拟仿真和统计推断。

其中,数学规划是运筹学中最重要的方法之一,包括线性规划、整数规划、动态规划等。

数据分析通过对大量数据的统计和分析来揭示内在的规律,模拟仿真通过模拟现实场景进行实验和推演来验证决策方案的可行性,统计推断通过对样本数据进行概率分析和推断来进行决策。

《运筹学》(A)参考答案.docx

《运筹学》(A)参考答案.docx

《运筹学》(A)参考答案一、不定项选择题(每小题3分,共9分)1.线性规划的标准型有特点(B D )0A、右端项非零;B、目标求最大;C、有等式或不等式约束;D、变量均非负。

2.一个线性规划问题(P)与它的对偶问题(D)有关系(BCD)。

A、(P)无可行解则(D) 一定无可行解;B、(P)、(D)均有可行解则都有最优解;C、(P)的约束均为等式,则(D)的所有变量均无非负限制;D、若(D)是(P)的对偶问题,则(P)是(D)的对偶问题。

3.关于动态规划问题的下列命题中(B )是错误的。

A、动态规划阶段的顺序与求解过程无关;B、状态是由决策确定的;C、用逆序法求解动态规划问题的重要基础之一是最优性原理;D、列表法是求解某些离散变量动态规划问题的有效方法。

二、判断题(每小题2分,共10分)1.若某种资源的影子价格等于Q在其他条件不变的情况下,当该种资源增加5个单位时,相应的目标函数值将增大5k个单位。

(X)2.如果运输问题单位运价表的某一行(或某一列)元素分别加上一个常数久最优调运方案将不会发生变化。

(V)3.运输问题是一种特殊的线性规划模型,因而求解结果也可能出现下列四种情况之一:有唯一最优解,有无穷多最优解,无界解,无可行解。

(X )4.用割平面法求解纯整数规划问题时,要求包括松弛变量在内的全部变量必须取整数值。

(V )5.如图中某点匕有若干个相邻点,与其距离最远的相邻点为耳,则边卩,刀必不包含在最小支撑树内。

(X)三(20分)、考虑下列线性规划:max z = 3xj + 5x2 + x34xj + 2X2+x3 < 14< X] + x2 + x3 < 4Xj > 0, j = 1,2,31(10分)、写出此线性规划的最优解、最优值、最优基B和它的逆沪;2(2分)、求线性规划的对偶问题的最优解;3(4分)、试求C2在什么范围内,此线性规划的最优解不变;4 (4分)、若^=14变为9,最优解及最优值是什么?解:1(10分)、写出此线性规划的最优解、最优值、最优基B和它的逆沪;标准形式:max z = 3xj + 5x2 + x34xj + 2*2 + X3 + 卩=14< X] + *2 + X3 + x5 = 4X j > 0, j = 1,2,3,4,5最优解 X' =(0,4,0,6,0)『 最优值r =20 ---------------- (1分) 最优基5 = P 2]---------------- (2分)0 1 "1 -2B~l= o ]---------------- (2 分)2(2分)、求线性规划的对偶问题的最优解; 对偶问题的最优解厂=(0,5)3(4分)、试求c?在什么范围内,此线性规划的最优解不变;(1分)(2分)要使得原最优解不变,则所有检验数非正,即 3 — c 2 W 0 <1-C 2 <0 ,解得c 2 >3--------------- (2 分)~C 2 - 04(4分)、若$=14变为9,最优解及最优值是什么?-2j9 1 4最优值r =20-四(10分)、下述线性规划问题:max z = 10“ + 24x 2 + 20x 3 + 2O.r 4 + 25x 5X] + x 2 + 2x, + 3X 4 + 5X 5 < 19 < 2x 1 + 4X 2 + 3x, + 2X 4 + x 5 < 57 ">(2分)(2分)0, j =l,2,---,5以几,力为对偶变量写出其对偶问题。

《运筹学》试题及参考答案

《运筹学》试题及参考答案

《运筹学》在线作业参考资料一、单选题1. 设线性规划的约束条件为 (D)则非退化基本可行解是A.(2,0,0,0)B.(0,2,0,0)C.(1,1,0,0)D.(0,0,2,4)(A)2.A.无可行解B.有唯一最优解C.有无界解D.有多重最优解3.用DP方法处理资源分配问题时,通常总是选阶段初资源的拥有量作为决策变量(B)A.正确B.错误C.不一定D.无法判断4.事件j的最早时间TE(j)是指(A)A.以事件j为开工事件的工序最早可能开工时间B.以事件j为完工事件的工序最早可能结束时间C.以事件j为开工事件的工序最迟必须开工时间D.以事件j为完工事件的工序最迟必须结束时间5.通过什么方法或者技巧可以把产销不平衡运输问题转化为产销平衡运输问题(C)A.非线性问题的线性化技巧B.静态问题的动态处理C.引入虚拟产地或者销地D.引入人工变量6.连通图G有n个点,其部分树是T,则有(C)A.T有n个点n条边B.T的长度等于G的每条边的长度之和C.T有n个点n-1条边D.T有n-1个点n条边7.下列说法正确的是(C)A.割集是子图B.割量等于割集中弧的流量之和C.割量大于等于最大流量D.割量小于等于最大流量8.工序A是工序B的紧后工序,则错误的结论是(B)A.工序B完工后工序A才能开工B.工序A完工后工序B才能开工C.工序B是工序A的紧前工序D.工序A是工序B的后续工序9.影子价格是指(D)A.检验数B.对偶问题的基本解C.解答列取值D.对偶问题的最优解10.m+n-1个变量构成一组基变量的充要条件是(B)A.m+n-1个变量恰好构成一个闭回路B.m+n-1个变量不包含任何闭回路C.m+n-1个变量中部分变量构成一个闭回路D.m+n-1个变量对应的系数列向量线性相关11.为什么单纯形法迭代的每一个解都是可行解?答:因为遵循了下列规则 (A)A.按最小比值规则选择出基变量B.先进基后出基规则C.标准型要求变量非负规则D.按检验数最大的变量进基规则12.线性规划标准型的系数矩阵A m×n,要求 (B)A.秩(A)=m并且m<nB.秩(A)=m并且m<=nC.秩(A)=m并且m=nD.秩(A)=n并且n<m13.下列正确的结论是(C)A.最大流等于最大流量B.可行流是最大流当且仅当存在发点到收点的增广链C.可行流是最大流当且仅当不存在发点到收点的增广链D.调整量等于增广链上点标号的最大值14.下列错误的结论是(A)A.容量不超过流量B.流量非负C.容量非负D.发点流出的合流等于流入收点的合流15. 工序(i,j)的最乐观时间、最可能时间、最保守时间分别是5、8和11,则工序(i,j)的期望时间是(C)A. 6B. 7C. 8D. 916.在计划网络图中,节点i的最迟时间T L(i)是指(D)A.以节点i为开工节点的活动最早可能开工时间B.以节点i为完工节点的活动最早可能结束时间C.以节点i为开工节点的活动最迟必须开工时间D.以节点i为完工节点的活动最迟必须结束时间17. 工序(i,j)的最早开工时间T ES(i,j)等于 ( C)A.T E(j)B. T L(i)C.{}max()E kikT k t+D.{}min()L ijiT j t−18.运输问题 (A)A.是线性规划问题B.不是线性规划问题C.可能存在无可行解D.可能无最优解19. 工序(i,j)的总时差R(i,j)等于 (D)A.()()L E ijT j T i t−+B.),(),(j iTj iT ESEF−C.(,)(,)LS EFT i j T i j−D. ijELtiTjT�)()(−20.运输问题可以用(B)法求解。

运筹学例题及答案ppt课件

运筹学例题及答案ppt课件

解:a)
1
b
4
0
0
2/3 1/3 0 0 1 2 b 1/3 2/3 0 043
1 1 1 0 0 5 2/3 1/3 0 1 0 2
将其加到表(1)的最终单纯形表的基变量b这一列数 字上得表(2)
(表2)
cj 3 2 0 0 0 0 cB xB b x1 x2 x3 x4 x5 x6 2 x2 10/3 0 1 2/3 -1/3 0 0 3 x1 1/3 1 0 -1/3 2/3 0 0 0 x5 -2 0 0 -1 1 1 0 0 x6 -4/3 0 0 -2/3 1/3 0 1
5(x1 x2 x3)10x7 6000 7(x4 x5 x6)9x8 12x9 10000
6(x1 x4)8(x7 x8)4000 4(x2 x5)11x9 7000
7(x3 x6)4000
xj 0
对偶理论
1. 已知线性规划问题:
max z 2 x 1 4 x 2 x 3 x 4
cj- zj 0 0 -1/3 -4/3 0 0 1/3
因x2已变化为x/2,故用单纯形法算法将x/2替换出基变 量中的x2,并在下一个表中不再保留x2,得表(9)
表9
cj 3 2 0 0 0 0 cB xB b x1 X’2 x3 x4 x5 x6 4 X’2 1 0 1 1/2 -1/4 0 0 3 x1 3 1 0 -1/2 3/4 0 0 0 x5 3 0 0 -1 1 1 0 0 x6 0 0 0 -1 1/2 0 1
y1 2 y2 y4 2
3
y
1
y2
y3
y4
4
s.t. y3 y4 1
y1
y3
1
y1, y2 , y3 , y4 0

运筹学试卷含答案

运筹学试卷含答案

运筹学试卷含答案一、填空题1.运筹学是应用(系统的)、(科学的)、(数学分析)的方法,通过建立、分析、检验和求解数学模型,而获得最优决策的科学。

2.对于求取一组变量xj (j =1,2,......,n),使之既满足(线性约束条件),又使具有线性表达式的目标函数取得(极大值或极小值)的一类最优化问题称为(线性规划)问题。

3.用一组未知变量表示要求的方案,这组未知变量称为(决策变量)。

4.可行解是满足约束条件和非负条件的(决策变量)的一组取值。

5.最优解是使目标函数达到(最优值)的可行解。

6.线性规划的图解法就是用(几何作图)的方法分析并求出其(最优解)的过程。

7.每一个线性规划都有一个“影像”(一个伴生的线性规划),称之为线性规划的(对偶规则)。

8.根据线性规划问题的可行域是凸多边形或凸多面体,一个线性规划问题有(最优解),就一定可以在可行域的(顶点)找到。

9.用非基变量表示目标函数的表达式中,非基变量的系数(检验数)全部非正时,当前的基本可行解就是(最优解)。

10.最优表中,基变量中仍含有人工变量,表明原线性规划的约束条件被破坏,线性规划(没有可行解),也就没有最优解11.排队(queue)现象是由两个方面构成:要求得到服务的对象统称为(顾客),为顾客提供服务的统称为(服务台)。

12.排队论(queuing theory)是通过研究排队系统中等待现象的(概率特性),解决系统(最优设计)与(最优控制)的一种理论。

13.等待制排队规则包括:先到先服务、后到先服务、优先权服务、随机服务14.排队系统的重要概率分布包括: 定长分布、泊松分布、负指数分布、K阶爱尔朗分布15.排队系统的主要数量指标包括: 队长、等待队长、逗留时间、等待时间、忙期、闲期二、判断题1.对偶问题的对偶是原问题。

(对)2.若X*为原问题(最大化)的可行解,Y为对偶问题(最小化)的可行解,则CX*≤Yb。

(对)3.当X* 是原问题(Max)的可行解,Y* 是其对偶问题(Min)的可行解时,若CX*=Y*b,则X*与Y* 是各自问题的最优解。

运筹学题库及详解答案

运筹学题库及详解答案

运筹学题库及详解答案1. 简述线性规划的基本假设条件。

答案:线性规划的基本假设条件包括目标函数和约束条件都是线性的,所有变量的取值范围都是连续的,并且目标函数和约束条件都是确定的。

2. 解释单纯形法的基本原理。

答案:单纯形法是一种求解线性规划问题的算法。

它从一个初始可行解开始,通过迭代的方式,每次选择一个非基变量,通过行操作将其变为基变量,同时保持解的可行性,直到达到最优解。

3. 什么是对偶问题?请给出一个例子。

答案:对偶问题是指一个线性规划问题与其对应的另一个线性规划问题之间的关系。

它们共享相同的技术系数矩阵,但目标函数和约束条件互换。

例如,如果原问题是最大化目标函数 \( c^T x \) 受约束\( Ax \leq b \),对偶问题则是最小化 \( b^T y \) 受约束 \( A^T y \geq c \)。

4. 如何确定一个线性规划问题的最优解?答案:确定线性规划问题的最优解通常需要满足以下条件:(1) 所有约束条件都得到满足;(2) 目标函数的值达到可能的最大值(最大化问题)或最小值(最小化问题);(3) 存在至少一个基解,使得所有非基变量的值都为零。

5. 解释灵敏度分析在运筹学中的作用。

答案:灵敏度分析用于评估当线性规划问题中的参数发生变化时,对最优解的影响。

它可以帮助决策者了解哪些参数的变化对结果影响最大,从而在实际应用中做出更灵活的决策。

6. 什么是运输问题,它与一般线性规划问题有何不同?答案:运输问题是线性规划的一个特例,它涉及将一种或多种商品从一个地点运输到另一个地点,以满足不同地点的需求,同时最小化运输成本。

与一般线性规划问题不同,运输问题通常具有特定的结构,可以通过特定的算法(如西北角法或最小元素法)来求解。

7. 描述网络流问题的基本特征。

答案:网络流问题涉及在网络中流动的资源或商品,目标是最大化或最小化流的总价值或成本。

网络由节点和边组成,节点代表资源的供应点或需求点,边代表资源流动的路径。

《运筹学》试题及答案大全

《运筹学》试题及答案大全

《运筹学》试题及参考答案一、填空题(每空2分,共10分)1、在线性规划问题中,称满足所有约束条件方程和非负限制的解为可行解。

2、在线性规划问题中,图解法适合用于处理变量为两个的线性规划问题。

3、求解不平衡的运输问题的基本思想是设立虚供地或虚需求点,化为供求平衡的标准形式。

4、在图论中,称无圈的连通图为树。

5、运输问题中求初始基本可行解的方法通常有最小费用法、西北角法两种方法。

二、(每小题5分,共10分)用图解法求解下列线性规划问题:1)max z =6x 1+4x 2⎪⎪⎩⎪⎪⎨⎧≥≤≤+≤+0781022122121x x x x x x x ,解:此题在“《运筹学》复习参考资料.doc ”中已有,不再重复。

2)min z =-3x 1+2x 2⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤-≤-≤+-≤+0,137210422422121212121x x x x x x x x x x 解:可行解域为abcda ,最优解为b 点。

⑴⑵⑶⑷⑸⑹、⑺由方程组⎩⎨⎧==+02242221x x x 解出x 1=11,x 2=0∴X *=⎪⎪⎭⎫⎝⎛21x x =(11,0)T∴min z =-3×11+2×0=-33三、(15分)某厂生产甲、乙两种产品,这两种产品均需要A 、B 、C 三种资源,每种产品的资源消耗量及单位产品销售后所能获得的利润值以及这三种资源的储备如下表所示:AB C 甲94370乙46101203602003001)建立使得该厂能获得最大利润的生产计划的线性规划模型;(5分)2)用单纯形法求该问题的最优解。

(10分)解:1)建立线性规划数学模型:设甲、乙产品的生产数量应为x 1、x 2,则x 1、x 2≥0,设z 是产品售后的总利润,则max z =70x 1+120x 2s.t.⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+0300103200643604921212121x x x x x x x x ,2)用单纯形法求最优解:加入松弛变量x 3,x 4,x 5,得到等效的标准模型:max z =70x 1+120x 2+0x 3+0x 4+0x 5s.t.⎪⎪⎩⎪⎪⎨⎧=≥=++=++=++5,...,2,1,03001032006436049521421321j x x x x x x x x x x j 列表计算如下:四、(10分)用大M 法或对偶单纯形法求解如下线性规划模型:min z =5x 1+2x 2+4x 3⎪⎩⎪⎨⎧≥≥++≥++0,,10536423321321321x x x x x x x x x 解:用大M 法,先化为等效的标准模型:max z /=-5x 1-2x 2-4x 3s.t.⎪⎩⎪⎨⎧=≥=-++=-++5,...,2,1,010********214321j y x x x x x x x x j增加人工变量x 6、x 7,得到:max z /=-5x 1-2x 2-4x 3-M x 6-M x 7s.t⎪⎩⎪⎨⎧=≥=+-++=+-++7,...,2,1,010*********2164321j x x x x x x x x x x x j大M 法单纯形表求解过程如下:五、(15分)给定下列运输问题:(表中数据为产地A i 到销地B j 的单位运费)B 1B 2B 3B 4s iA 1A 2A 312348765910119108015d j82212181)用最小费用法求初始运输方案,并写出相应的总运费;(5分)2)用1)得到的基本可行解,继续迭代求该问题的最优解。

大学_运筹学试题及答案

大学_运筹学试题及答案

运筹学试题及答案运筹学试题及答案(一)1、用图解法求解下列线性规划问题2、某工厂生产甲、乙、丙三种产品,单位产品所需工时分别为2、3、1个工时;单位产品所需原材料分别为3、1、5公斤;单位产品利润分别为2元、3元、5元。

工厂每天可利用的.工时为12个,可供应的原材料为15公斤。

1)试确定使总利润为最大的日生产计划和最大利润。

解:设生产甲乙丙产品的数量分别为x1,x2,x3解得X=0,Y=3,Z=2的时候利润最大为192)若由于原材料涨价,使得产品丙的单位利润比原来减少了2元,问原来的最优生产计划变否?若不变,说明为什么;若变,请求出新的最优生产计划和最优利润。

3)在保持现行最优基不变的情况下,若要增加一种资源量,应首先考虑增加哪种资源?为什么?单位资源增量所支付的费用是多少才合算?为什么?解:增加3个单位的原材料可以创造5个单位的利润生产丙1件增加5个单位的工时可以创造6个单位的利润生产乙2件假设原材料的成本是X1,工时的成本是X2 当5-3X1=6-5X2的时候增加原材料合算,反之增加工时合算3、已知某运输问题如下(单位:百元/吨):求:使总运费最小的调运方案和最小运费。

4、求下图中从A到E的最短路线和最短路长(图中每条边上的数字为该条边的长度)。

运筹学试题及答案(二)1、用图解法求解下列线性规划问题(15分)2、某工厂生产甲、乙、丙三种产品,单位产品所需工时分别为2、3、1个工时;单位产品所需原材料分别为3、1、5公斤;单位产品利润分别为2元、3元、5元。

工厂每天可利用的工时为12个,可供应的原材料为15公斤。

1)试确定使总利润为最大的日生产计划和最大利润。

(25分)2)若由于原材料涨价,使得产品丙的单位利润比原来减少了2元,问原来的最优生产计划变否?若不变,说明为什么;若变,请求出新的最优生产计划和最优利润。

(10分)3)在保持现行最优基不变的情况下,若要增加一种资源量,应首先考虑增加哪种资源?为什么?单位资源增量所支付的费用是多少才合算?为什么?(10分)3、已知某运输问题如下(单位:百元/吨):单位运价销地需求量(吨) 16 12 17 求:使总运费最小的调运方案和最小运费。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
b.投资的年收入是多少?
c.每个约束条件的对偶价格是多少?
d.当每单位基金A的风险指数从8降为6,而每单位基金B的风险指数从3上升为5时,用百分之一百法则能否断定,其最优解变或不变?为什么?
e.对图中的右边值范围的上、下限给予具体解释,并阐述如何使用这些信息。
三、(10分)
某造船厂根据合同从当年起连续三年末各提供五条规格型号相同的大型客货轮。已知该厂这三年内生产大型客货轮的能力及每艘客货轮的成本如下表所示。
二、(10分)
某公司受委托,准备把120万元投资两种基金A和B,其中A基金的每单位投资额为50元,年回报率为10%,B基金的每单位投资额为100元,年回报率为4%。委托人要求在每年的年回报金额至少达到6万元的基础上要求投资风险最小。据测定每单位A基金的投资风险指数为8,每单位B基金的投资风险指数为3,投资风险指数越大表明投资风险越大。委托人要求在B基金中的投资额不少于30万元。为了使总的投资风险最小,该公司应该在基金A和基金B中各投资多少单位?这时每年的回报金额是多少?
a、某公用电话占有3台电话机,来打电话的人按泊松分布到达,平均每小时24人,每次通话的时间服从负指数分布平均为3分钟。求:
(1)到达时,不需要等待即可打电话的概率;
(2)平均排队人数;
(3)为打电话平均耗费的时间,
b、一个机加工车间有30台相同的机器,每台机器平均每小时需加油一次,由于工作强度是随机的,机器缺油时自动停机,停机数服从泊松分布。一个修理工完成一台机器的加油平均需要10分钟,加油时间服从负指数分布,现有3个加油工人。求:
为求该解问题,设
可以建立下面的线性规划模型
使用《管理运筹学》软件,求得计算机解如下图所示,
最优解
目标函数值= 62000.000
变量值相差值
x1 4000.000 0.000
x2 10000.000 0.000
3பைடு நூலகம்
约束松驰/剩余变量对偶价格
1 0.000 0.057
2 0.000 -2.167
3 7000.000 0.000
d、某企业的产品中有一外购件,年需求量为60000件,单价为35元。该外购件可在市场立即采购到,并设不允许缺货。已知每组织一次采购需720元,每件每年的存贮费为该件单价的20%。试求经济订货批量及每年最小的存贮加上采购的总费用。
七、(10分)
确定a、b、c的排队论模型及输入数据,并写出要求解问题的符号,不计算。
目标系数范围
变量下限当前值上限
x1 3.750 8.000无上限
x2无下限3.000 6.400
常数项范围
变量下限当前值上限
1 .000 .000 .000
2 48000.000 60000.000 .000
3无下限3000.000 10000.000
根据图回答问题:
a.最优解是什么,最小风险是多少?
投资额110130160908010090150170190
利润31354517152520435356
但投资总额不能超过820万元,问应选择哪几个销售点,可使年利润为最大?建立上述问题的整数规划模型。
五、(10分)
某公司拟将某种设备4台,分配给所属的甲、乙、丙三个工厂。各工厂获得此设备后,预测可创造的利润如下表所示,
已知加班生产时,每艘客货轮成本比正常高出10%,又知造出来的客货轮如当年不交货,每艘每积压一年所造成的积压损失为60万元。在签合同时,该厂已积压了两艘未交货的客货轮,而该厂希望在第三年末完成合同后还能储存一艘备用。问该厂应如何安排每年客货轮生产量,使在满足上述各项要求的情况下,总的生产费用为最少?建立上述运输问题模型。
(1)必须调查2000户人家;
(2)在晚上调查的户数和白天调查的户数相等;
(3)至少应调查700户有孩子的家庭;
(4)至少应调查450户无孩子的家庭。
每会见一户家庭,进行调查所需费用为
家庭白天会见晚上会见
有孩子25元30元
无孩子20元24元
问为使总调查费用最少,应调查各类家庭的户数是多少?(只建立模型)
运筹学试题及答案一
管理运筹学》考试试卷(一)
班级______学号______姓名_______成绩______
题号一二三四五六七八九十
得分
一、(10分)
某咨询公司,受厂商委托,对新上市的一种新产品进行消费者反映的调查。该公司采用了挨户调查的方法,委托他们调查的厂商以及该公司的市场研究专家对该调查提出下列几点要求:
年度正常生产时间内
可完成的客货轮数加班生产时间内
可完成的客货轮数正常生产时每艘成本
(万元)
1
2
33
4
23
2
3600
700
650
四、(10分)
某畜产品公司计划在市区的东、西、南、北四区建立销售门市部,拟议中有10个位置Ai (i=1,2,3,…,10)可供选择,考虑到各地区居民的消费水平及居民居住密集度,规定:
在东区由A1,A2,A3三个点中至少选择两个;
在西区由A4,A5两个点中至少选一个;
在南区由A6,A7两个点中至少选一个;
在北区由A8,A9,A10三个点中至多选两个。
Ai各点的设备投资及每年可获利润由于地点不同都是不一样的,预测情况见下表(单位:万元)所示。
A1A2A3A4A5A6A7A8A9A10
b、某单位每年需要一种备件5000个,这种备件可以从市场直接购买到。设该备件的单价为16元/个,年存贮费为单价的25%。一个备件缺货一年的缺货费为单价的10%。若每组织采购一次的费用为120元。试确定一个使采购存贮费用之和为最小的采购批量。
c、一条生产线如果全部用于某型号产品时,其年生产能力为台。据预测对该型号产品的年需求量为台,并在全年内需求基本保持平衡,因此该生产线将用于多品种的轮番生产。已知在生产线上更换一种产品时,需准备结束费1350元。该产品每台成本为45元,年存贮费用为产品成本的24%,不允许发生供应短缺。求使费用最小的该产品的生产批量。
问这4台设备应如何分配给这3个工厂,使得所创造的总利润为最大?用动态规划求解。
六、(10分)
请确定a、b、c、d各题的存储模型,确定各输入数据,不需计算:
a、某公司生产一种电子设备,该设备所需的一个部件由自己的分厂提供,分厂对这种部件的生产能力为6000/件,分厂每次的生产准备费为250元。公司的这种电子设备的年需求为2000台/年。装配允许滞后,滞后的费用为每台成本的40%。该部件每件成本为500元,年存贮为成本的20%。求:公司生产关于这种部件费用最小的生产批量。
相关文档
最新文档