污水生物处理(好氧、厌氧生物处理)
污水生物处理原理及工艺简介
污水生物处理原理及工艺简介污水生物处理原理及工艺简介1.引言污水处理是一种将污水中的有害物质转化为无害物质的过程,以保护环境和公共健康。
其中,污水生物处理是一种常见的污水处理方法,通过利用微生物的代谢活动来降解有机物质。
本文将介绍污水生物处理的原理及常用工艺。
2.污水生物处理原理污水生物处理的核心原理是利用微生物对有机物的降解作用。
当污水进入生物处理系统后,微生物会吸附在生物膜或悬浮态中,通过代谢作用将有机物质转化为无机物质和能量。
常见的微生物有好氧微生物和厌氧微生物,它们在不同的环境中起着不同的作用。
3.污水生物处理工艺3.1 好氧生物处理工艺好氧生物处理工艺是利用好氧微生物对有机物质进行降解。
常见的好氧生物处理工艺包括活性污泥法、生物膜法和浮床法等。
3.1.1 活性污泥法活性污泥法是一种通过悬浮态微生物对有机物进行降解的工艺。
污水通过曝气池进入活性污泥池,在氧气供应下,好氧微生物会在污水中降解有机物质。
降解后的污水经过沉淀池去除悬浮颗粒物,再进入二沉池去除生物污泥,最后出水排放。
3.1.2 生物膜法生物膜法是一种通过微生物在生物膜上进行降解的工艺。
生物膜可以通过填料或膜的形式存在。
污水通过生物膜,微生物在膜上生长并降解有机物质。
降解后的水通过膜的过滤作用进行分离,得到清洁水。
3.1.3 浮床法浮床法是一种利用悬浮床来进行好氧处理的工艺。
污水进入浮床,微生物在床内生长并吸附有机物质进行降解。
降解后的水从浮床上面流出,床内微生物可通过定期梳理进行清理。
3.2 厌氧生物处理工艺厌氧生物处理工艺是在无氧条件下进行的有机物降解工艺。
常见的厌氧生物处理工艺包括厌氧消化和厌氧颗粒污泥技术等。
3.2.1 厌氧消化厌氧消化是一种将有机废弃物转化为甲烷气和肥料的处理工艺。
在无氧条件下,厌氧微生物对有机物质进行降解,产生甲烷气。
产生的甲烷气可用作能源,而残留的废弃物可用作肥料。
3.2.2 厌氧颗粒污泥技术厌氧颗粒污泥技术是一种将有机物质转化为无机物质的处理工艺。
废水处理厌氧和好氧生物处理技术
废水处理厌氧和好氧生物处理技术废水处理是当今社会中非常重要的环境保护工作之一。
废水处理的目的是将含有有害物质的废水转化为对环境无害的水体,以保护水资源和维护生态平衡。
废水处理技术主要分为物理处理、化学处理和生物处理三种。
其中,生物处理技术是一种常用且有效的废水处理方法。
废水处理中的生物处理技术主要包括厌氧生物处理和好氧生物处理。
两种技术各有特点,可以根据废水的特性和处理要求来选择合适的方法。
1. 厌氧生物处理技术厌氧生物处理是一种在缺氧条件下进行的废水处理方法。
它利用厌氧菌群将有机物质转化为沼气和沉淀物。
厌氧生物处理技术适用于高浓度有机废水的处理,如食品加工废水、酿造废水等。
其主要过程包括厌氧消化、甲烷发酵和沉淀。
厌氧消化是指将废水中的有机物质通过厌氧菌的代谢作用转化为有机酸和气体。
在这个过程中,厌氧菌分解有机物质,产生醋酸、丙酸等有机酸,同时产生沼气。
沼气可以作为能源利用,而有机酸则会进一步发酵产生甲烷。
甲烷发酵是指在厌氧条件下,通过甲烷菌的作用将有机酸转化为甲烷。
甲烷是一种无色、无味的气体,具有高热值和可燃性,可以用作燃料或发电。
沉淀是指将废水中的悬浮物和沉淀物沉淀下来,以净化废水。
在厌氧生物处理中,沉淀物主要是厌氧菌和产生的沉淀物质。
2. 好氧生物处理技术好氧生物处理是一种在充氧条件下进行的废水处理方法。
它利用好氧菌群将有机物质转化为二氧化碳、水和生物体。
好氧生物处理技术适用于低浓度有机废水的处理,如生活污水、轻工业废水等。
其主要过程包括生物降解、曝气和沉淀。
生物降解是指将废水中的有机物质通过好氧菌的代谢作用转化为二氧化碳、水和生物体。
在这个过程中,好氧菌分解有机物质,产生二氧化碳和水。
生物体则是好氧菌的生长产物,可以通过沉淀去除。
曝气是指通过给废水供氧来提供好氧菌群所需的氧气。
曝气可以通过机械曝气、曝气池或曝气塔等方式实现。
氧气的供应可以促进好氧菌的生长和代谢活动,加快废水的降解速度。
沉淀是指将废水中的悬浮物和沉淀物沉淀下来,以净化废水。
5种生物处理污水方法
5种生物处理污水方法污水处理是一项重要的环境保护工作,通过利用生物处理方法可以有效地减少污水对自然环境的影响。
下面将介绍五种生物处理污水的方法,分别是好氧生物处理、厌氧生物处理、人工湿地、植物处理和浮游生物处理。
一、好氧生物处理好氧生物处理是一种常见的生物处理污水的方法,通过供氧给微生物,使其能够将有机物质转化为无机物质。
好氧生物处理通常采用曝气池或者活性污泥法,污水中的有机物被微生物分解为二氧化碳和水。
这种方法效率高且成本较低,广泛应用于城市污水处理厂和工业园区。
二、厌氧生物处理厌氧生物处理是一种在无氧环境下进行的生物处理方法。
与好氧生物处理相比,厌氧生物处理能够更有效地去除硝酸盐等氧化物。
厌氧生物处理常见的方法有厌氧消化池和厌氧滤池。
此方法还可以产生沼气,具有能量回收的优势。
三、人工湿地人工湿地是一种模拟自然湿地的生物处理方法。
通过植物和微生物的作用,将污水中的有机物质、氮和磷等污染物去除或转化为无害物质。
人工湿地具有价格低廉、维护简单等优点,同时还可以提供美丽的景观和生态系统。
四、植物处理植物处理是利用植物的吸附、吸收和转化作用来处理污水的方法。
常见的植物处理方法有人工湿地、浮床和植物滤池等。
植物能够吸收水中的营养物质,减少水中的污染物浓度,同时还能提供氧气并促进微生物的生长。
五、浮游生物处理浮游生物处理是利用浮游生物对污水中有机物质和氨氮进行吸附、吸收和降解的方法。
通过合理布置浮游生物滤料,促使浮游生物生长繁殖,有效地降低水中的有机物质浓度。
此方法适用于适宜水温和水质的地区,对水质要求不高。
综上所述,生物处理是一种有效的污水处理方法,在环境保护中起着重要作用。
好氧生物处理、厌氧生物处理、人工湿地、植物处理和浮游生物处理是常见的生物处理污水的方法。
每种方法都有其特点和适用范围,可以根据具体情况选择合适的方法进行污水处理,以达到减少水污染并保护环境的目的。
好氧处理法和厌氧处理法的优缺点
好氧处理法和厌氧处理法的优缺点
好氧生物处理:是在有游离氧(分子氧)存在的条件下,好氧微生物降解有机物,使其稳定、无害化的处理方法.优点有反应速度较快,废水停留时间较短,故处理构筑物容积较小;处理过程中散发的臭气较少;对能降解有机物分解完全等.缺点有对难降解有机物去除率低、污泥量较厌氧处理多、运行费用较高等.
厌氧生物处理:是有机物在无氧的条件下,借助转性厌氧菌和兼性厌氧菌的作用下,将大部分的有机物转化为甲烷等简单小分子有机物与无机物,从而使污水得到净化.优点有有机物去除率高、污泥量少、运行费用少等.缺点有废水停留时间较长、有机物分解不完全、臭气产生多等.。
好氧和厌氧生物处理的区别
好氧和厌氧生物处理的区别厌氧生物处理是在不充氧的条件下,厌氧细菌和兼性(好氧兼厌氧)细菌降解有机污染物,又称厌氧消化或发酵,分解的产物主要是沼气和少量污泥,适用于处理高浓度有机污水和好氧生物处理后的污泥。
那么好氧和厌氧生物处理的区别是什么呢?生物处理是指什么呢?今天就带大家来了解一下这些固体废弃物安全小知识。
好氧和厌氧生物处理的最大的区别就是处理环境。
厌氧生物处理就是在厌氧条件下微生物降解废水中的有机物。
好氧生物处理就是在有氧条件下微生物降解废水中的有机物。
其次是所能处理的有机物。
厌氧生物处理处理大分子量的有机物。
主要是将大分子量的有机物分解成较小分子量的有机物并将其中一部分的有机物转化成甲烷等可利用的能源。
好氧生物处理处理经厌氧生物处理后的废水中分子量较小的有机物并将其分解成无机物,分解的无机物在二沉池加入一定量的混凝剂和/或凝剂将其沉降与水分离从而达到废水净化的目的。
厌氧处理是利用厌氧菌的作用,去除废水中的有机物,通常需要时间较长。
厌氧过程可分为水解阶段、酸化阶段和甲烷化阶段。
水解酸化的产物主要是小分子有机物,使废水中溶解性有机物显著提高,而微生物对有机物的摄取只有溶解性的小分子物质才可直接进入细胞内,而不溶性大分子物质首先要通过胞外酶的分解才得以进入微生物体内代谢。
例如天然胶联剂(主要为淀粉类),首先被转化为多糖,再水解为单糖。
纤维素被纤维素酶水解成纤维二糖与葡萄糖。
半纤维素被聚木糖酶等水解成低聚糖和单糖。
水解过程较缓慢,同时受多种因素的影响,是厌氧降解的限速阶段。
在酸化这一阶段,上述第一阶段形成的小分子化合物在发酵细菌即酸化菌的细胞内转化为更简单的化合物并分泌到细菌体外,主要包括挥发性有机酸(VFA)、乳醇、醇类等,接着进一步转化为乙酸、氢气、碳酸等。
酸化过程是由大量发酵细菌和产乙酸菌完成的,他们绝大多数是严格厌氧菌,可分解糖、氨基酸和有机酸。
好氧池的作用是让活性污泥进行有氧呼吸,进一步把有机物分解成无机物。
废水生化处理理论基础
废水生化处理理论基础废水处理是指对工业、农业、生活等生产和生活活动中所产生的废水进行处理,将废水中的各种有害物质去除或降低,使其达到环境排放标准,保护环境、维护生态平衡。
废水处理技术较为复杂,其中生化处理是一种常用的处理方法。
本文将介绍废水生化处理的理论基础。
1. 废水生化处理概述废水生化处理是利用微生物的生物化学作用,将有机物质降解成较为稳定、不易污染环境的无机物质,以实现对废水的净化处理。
生化处理一般包括好氧生物处理和厌氧生物处理两种方式。
•好氧生物处理:好氧生物处理是指在充氧的条件下,利用好氧微生物将废水中的有机物质氧化分解为二氧化碳和水。
这种处理方式对细菌的要求较高,需要提供足够的氧气。
•厌氧生物处理:厌氧生物处理是指在没有氧气的条件下,利用厌氧微生物将废水中的有机物质降解成沼气、二氧化碳等产物。
这种处理方式对微生物的适应能力要求较高,处理效果也较好。
2. 废水生化处理原理废水生化处理的基本原理是将废水中的有机物质通过生物作用转化为无机物质。
有机物质能够为微生物提供能量和生长所需的碳、氮、磷等元素,而微生物则通过代谢作用将有机物质降解为无机物质。
生化处理的主要过程包括:•底物的降解:微生物利用底物(有机物质)作为碳源和能源,在水体中进行降解反应,生成底物降解产物和生物体。
•底物的转化:底物降解产物经过一系列酶类的作用,逐步转化为无害的终产物,如CO2、H2O等。
•生物体的生长:底物的降解还伴随着微生物的生长和繁殖,微生物的数量和种类变化也会影响处理效果。
3. 废水生化处理的关键技术废水生化处理的关键技术包括微生物培养、废水处理工艺设计、氧气供给等方面。
其中,微生物在生化处理中扮演着重要的角色,其培养和管理对处理效果至关重要。
•微生物培养:合理选择适应性强、活性高的微生物种类,进行培养和管理,提高其降解效率和处理能力。
•工艺设计:根据废水特性和处理要求设计合理的生化处理工艺,包括反应器设置、曝气方式、混合方式等。
好氧生物处理法与厌氧生物处理发的区别
04 好氧生物处理法与厌氧生 物处理法的比较
处理过程比较
反应条件
好氧生物处理法在有氧条件下进行,而厌氧生物处理法在无氧条件 下进行。
微生物种类
好氧生物处理法主要利用好氧微生物,如细菌和真菌,而厌氧生物 处理法主要利用厌氧微生物,如甲烷菌。
反应速度
好氧生物处理法的反应速度较快,而厌氧生物处理法的反应速度较 慢。
处理效果比较
污染物去除效率
剩余污泥
好氧生物处理法对有机物和氨氮的去 除效率较高,而厌氧生物处理法对有 机物和硫化物的去除效率较高。
Hale Waihona Puke 好氧生物处理法产生的剩余污泥较少, 而厌氧生物处理法产生的剩余污泥较 多。
能源利用
厌氧生物处理法可以产生甲烷作为能 源,而好氧生物处理法则没有这种能 源利用方式。
应用范围比较
适用条件
好氧生物处理法适用于处理可生化性较好的废水,而厌氧生物处理法适用于处理高浓度 有机废水。
能源需求
好氧生物处理法需要消耗大量的氧气,而厌氧生物处理法则不需要氧气。
适用领域
好氧生物处理法广泛应用于城市污水处理和工业废水处理领域,而厌氧生物处理法则广 泛应用于农业废弃物和城市垃圾等有机废弃物资源化利用领域。
厌氧微生物主要包括产酸菌和产甲烷菌,产酸菌将有机物转化为酸和醇,产甲烷 菌将酸和醇转化为甲烷和二氧化碳。
厌氧生物处理法的应用场景
厌氧生物处理法适用于处理高浓度有机废水、低浓度有机 废水、中低浓度有机废水等。
厌氧生物处理法在能源回收方面具有较大潜力,可将产生 的甲烷进行燃烧或发电,实现能源的循环利用。
对于某些有机物去除效果不佳。
处理效果不稳定
02
受水质、温度等因素影响较大。
简述好氧生化处理与厌氧生化处理
简述好氧生化处理与厌氧生化处理好氧生化处理和厌氧生化处理是两种常见的污水处理方法。
好氧生化处理是指在氧气存在的情况下,利用微生物将有机物质分解为无机物质的过程。
而厌氧生化处理则是在缺氧或无氧的情况下,利用厌氧微生物将有机物质分解为无机物质的过程。
下面将分别介绍这两种处理方法的原理、优缺点以及应用场景。
一、好氧生化处理好氧生化处理是一种利用好氧微生物将有机物质分解为无机物质的过程。
在好氧条件下,微生物通过氧化反应将有机物质分解为二氧化碳、水和微生物生物质等无机物质。
好氧生化处理的主要优点是处理效果稳定,处理效率高,处理后的水质好,适用于处理有机物质浓度较高的污水。
但是,好氧生化处理需要大量的氧气供应,因此能耗较高,处理成本也较高。
好氧生化处理的应用场景主要包括城市污水处理厂、工业废水处理厂等。
在城市污水处理厂中,好氧生化处理通常是在初级处理和中级处理之后进行的,用于进一步降解有机物质,提高水质。
在工业废水处理厂中,好氧生化处理通常是在生化处理的前期进行的,用于降解有机物质,减轻后续处理的负担。
二、厌氧生化处理厌氧生化处理是一种利用厌氧微生物将有机物质分解为无机物质的过程。
在缺氧或无氧条件下,厌氧微生物通过还原反应将有机物质分解为甲烷、二氧化碳、硫化氢等无机物质。
厌氧生化处理的主要优点是能耗低,处理成本较低,同时还能产生甲烷等可再生能源。
但是,厌氧生化处理对环境条件要求较高,处理效果不稳定,处理效率也较低。
厌氧生化处理的应用场景主要包括农村生活污水处理、有机废弃物处理等。
在农村生活污水处理中,厌氧生化处理通常是在初级处理之后进行的,用于降解有机物质,同时还能产生甲烷等可再生能源。
在有机废弃物处理中,厌氧生化处理通常是在前期进行的,用于降解有机物质,减轻后续处理的负担。
好氧生化处理和厌氧生化处理是两种常见的污水处理方法。
好氧生化处理适用于处理有机物质浓度较高的污水,处理效果稳定,但处理成本较高;厌氧生化处理适用于处理有机物质浓度较低的污水,能耗低,但处理效果不稳定。
污水处理工艺流程之生化处理好氧与厌氧处理
污水处理工艺流程之生化处理好氧与厌氧处理在污水处理工艺中,生化处理是一种常见且有效的处理方法。
生化处理将有机物质在微生物的作用下转化为无机物质,达到净化水质的目的。
在生化处理中,又包括了好氧处理和厌氧处理两种不同的工艺流程。
1. 好氧处理好氧处理是指在富氧条件下进行生物降解的过程。
工艺流程如下:(1)进水调节:首先需要对进水进行调节,包括调节 pH 值、温度等。
(2)初级处理:通过格栅、沉砂池等设备将较大的悬浮物和沉淀物去除,进一步净化水质。
(3)曝气池:将初级处理后的污水引入曝气池,通过机械曝气或其他方式向污水中注入空气,提供氧气供微生物进行生物降解反应。
在曝气池中,微生物利用有机物进行生长和繁殖,降解污水中的有机物质。
(4)二沉池:曝气池处理后的污水进入二沉池,通过净水板或斜板等装置将浮性悬浮物和生物絮凝物与水进行分离,产生污泥。
(5)污泥处理:从二沉池中获得的污泥,经过浓缩、脱水等处理措施,得到污泥饼或污泥液体,进一步处理。
2. 厌氧处理厌氧处理是指在无氧或缺氧条件下进行生物降解的过程。
工艺流程如下:(1)进水调节:同样需要对进水进行调节,以适应厌氧处理的环境要求。
(2)厌氧池:将进入的污水引入厌氧池,通过提供适宜的温度、容器内部的混合等条件,为厌氧微生物提供合适的生存环境。
在厌氧池中,厌氧微生物通过厌氧降解有机物质,产生甲烷等有价值的产物。
(3)沉淀池:经过厌氧处理的污水进入沉淀池,通过沉淀和分离,将产生的污泥与水进行分离,进一步净化水质。
(4)厌氧消化池:从沉淀池中获得的污泥,进一步经过厌氧消化池的处理,将污泥中的有机物质进行分解,释放出可再生的有机产物。
综上所述,生化处理中的好氧处理和厌氧处理是常见的工艺流程。
好氧处理适用于需要大量氧气供应的环境,能够有效地降解有机物质;而厌氧处理则适用于无氧或缺氧环境下的处理,能够产生有价值的产物。
无论是好氧处理还是厌氧处理,都需要合理调节进水的水质和控制处理过程中的条件,以保证处理效果的达到。
废水处理厌氧和好氧生物处理技术
废水处理厌氧和好氧生物处理技术废水处理是一项重要的环境保护工作,而废水处理中的生物处理技术则是其中关键的一环。
在生物处理技术中,厌氧和好氧生物处理技术是常用的两种方法。
本文将探讨废水处理中的厌氧和好氧生物处理技术的原理、应用和优缺点。
厌氧生物处理技术是一种在无氧条件下进行的废水处理方法。
在厌氧生物处理过程中,微生物在缺氧的环境中进行代谢活动,通过降解有机物质来净化废水。
厌氧生物处理技术主要应用于高浓度有机废水的处理,如酿酒废水、制药废水等。
其原理是通过厌氧微生物的代谢活动,将有机物质转化为甲烷等可再利用的产物。
厌氧生物处理技术具有处理效果好、能耗低、占地面积小等优点,但由于操作难度较大,需要严格控制环境条件,所以在实际应用中还存在一定的挑战。
好氧生物处理技术则是在有氧条件下进行的废水处理方法。
在好氧生物处理过程中,微生物利用氧气进行代谢活动,通过降解有机物质来净化废水。
好氧生物处理技术主要应用于低浓度有机废水的处理,如生活污水、食品加工废水等。
其原理是通过好氧微生物的代谢活动,将有机物质转化为二氧化碳和水等无害物质。
好氧生物处理技术具有处理效果稳定、操作简单、适应性强等优点,但由于需要供氧,所以能耗较高,并且需要较大的处理容量。
在实际的废水处理工程中,常常会采用厌氧和好氧生物处理技术的组合,以达到更好的处理效果。
这种组合技术被称为A/O工艺,即厌氧-好氧工艺。
在A/O工艺中,厌氧生物处理单元主要负责去除有机物质的大部分,而好氧生物处理单元则进一步降解有机物质,去除残余的有机物质和氮、磷等营养物质。
通过厌氧和好氧生物处理技术的有机结合,A/O工艺能够同时处理高浓度和低浓度有机废水,并且能够降低处理成本,提高处理效率。
尽管厌氧和好氧生物处理技术在废水处理中发挥了重要作用,但它们仍然存在一些局限性。
首先,厌氧生物处理技术对环境条件的要求较高,操作难度大,需要专业的技术人员进行控制;而好氧生物处理技术虽然操作相对简单,但对氧气的需求较大,存在一定的能耗问题。
污水厌氧处理与好氧处理特点比较
污水厌氧处理与好氧处理特点比较污水处理是现代城市生活中必不可少的环境保护措施之一。
而在污水处理过程中,往往会涉及到厌氧处理和好氧处理两种不同的方式。
本文将就污水厌氧处理和好氧处理的特点进行比较,以便更好地了解它们的区别和适合场景。
一、污水厌氧处理的特点1.1 产生少量污泥:厌氧处理过程中,由于缺氧环境,微生物的生长速度较慢,因此产生的污泥量相对较少。
这减少了处理过程中的污泥处理和处置成本。
1.2 适合于高浓度有机物:厌氧处理对高浓度有机物的处理效果较好。
由于厌氧环境中微生物可以利用有机物进行发酵产生能量,因此对于高浓度有机废水的处理效果更佳。
1.3 产生的气体可回收利用:厌氧处理过程中产生的气体主要是甲烷,可以通过采集和利用来产生能源,从而降低能源成本。
二、好氧处理的特点2.1 处理效果稳定:好氧处理过程中,氧气充足,微生物的生长速度较快,因此处理效果相对稳定。
适合于处理低浓度有机废水和对水质要求较高的场景。
2.2 产生较多污泥:好氧处理过程中,由于氧气充足,微生物的生长速度较快,因此产生的污泥量相对较多。
这增加了处理过程中的污泥处理和处置成本。
2.3 需要较多能量供应:好氧处理过程中需要大量的氧气供应,这增加了能源消耗和运行成本。
三、厌氧处理和好氧处理的适合场景比较3.1 厌氧处理适合于高浓度有机废水的处理,例如食品加工废水、酒精厂废水等。
由于厌氧处理对高浓度有机物的处理效果好,可以有效降低有机物的浓度。
3.2 好氧处理适合于低浓度有机废水的处理,例如城市生活污水、农业废水等。
由于好氧处理对水质要求较高,可以有效去除废水中的悬浮物和有机物。
3.3 对于一些特殊废水,可以采用厌氧处理和好氧处理相结合的方式。
例如,厌氧处理可以先将废水中的有机物降解为低浓度,然后再进行好氧处理,以达到更好的处理效果。
四、厌氧处理和好氧处理的优缺点比较4.1 厌氧处理的优点是处理效果好、产生的气体可回收利用,缺点是处理过程较慢、产生的污泥量少。
污水处理专业名词解释
污水处理专业名词解释污水处理是指将城市生活污水、工业废水等经过处理后,达到排放标准或循环利用的过程。
在污水处理过程中,涉及到许多专业名词,下面将逐一解释这些名词。
一、污水处理工艺1.1 生物处理:利用微生物降解有机物质的过程,包括好氧生物处理和厌氧生物处理。
1.2 化学处理:利用化学药剂对污水中的有机物和无机物进行处理,包括氧化、沉淀、絮凝等过程。
1.3 物理处理:利用物理方法对污水进行处理,包括过滤、吸附、膜分离等。
二、污水处理设备2.1 曝气池:用于向生物处理系统提供氧气,促进微生物降解有机物。
2.2 沉淀池:用于沉淀污水中的悬浮物和泥浆,净化水质。
2.3 滤池:通过滤料层过滤污水,去除悬浮物和微生物。
三、水质指标3.1 生化需氧量(BOD):表示水中有机物被微生物降解的需氧量,是评价污水有机污染程度的指标。
3.2 化学需氧量(COD):表示水中有机物和无机物被氧化分解的需氧量,是评价污水综合污染程度的指标。
3.3 悬浮物:指水中的悬浮颗粒物,包括泥沙、有机颗粒等,对水质造成污染。
四、处理效果评价4.1 厌氧氨氮去除率:表示处理系统对污水中氨氮的去除效果。
4.2 总氮去除率:表示处理系统对污水中总氮的去除效果。
4.3 总磷去除率:表示处理系统对污水中总磷的去除效果。
五、环保标准5.1 排放标准:规定了污水处理后排放水质应符合的标准,包括BOD、COD、悬浮物等指标。
5.2 再生利用标准:规定了经过处理后的污水是否可以用于农田灌溉、工业用水等再生利用途径。
5.3 污水处理厂运行标准:规定了污水处理厂的运行管理要求,包括设备维护、操作规程等。
通过以上解释,可以更深入了解污水处理领域的专业名词及相关概念,有助于提高对污水处理过程的理解和应用。
污水三大处理方法解析缺氧厌氧好氧
污水三大处理方法解析缺氧厌氧好氧污水处理是指将生活污水和工业废水通过一定的技术手段,从而达到可以回用、可排放的合格水质的过程。
在污水处理过程中,缺氧、厌氧和好氧是三种常用的处理方法,它们各有不同的特点和适用范围。
下面将对这三种处理方法进行详细的解析。
首先是缺氧处理方法。
缺氧处理是指在处理污水时,采用限制或减少氧气供应的方式进行处理。
这种处理方法主要用于有机物含量较高、污水有较高浓度的情况。
缺氧处理方法广泛应用于污水厂的二沉池或沉淀池中。
其优点是可以降低氧气供应的成本,减少能源消耗。
缺氧处理方法还能够促进污水中有机物的厌氧降解,产生较少的污泥量,节约处理成本。
不足之处是在处理过程中会产生大量硫化氢等有害气体,需要进行处理和控制。
接下来是厌氧处理方法。
厌氧处理是指在处理污水时,采用完全不供氧的方式进行处理。
厌氧处理主要用于含有高浓度有机物的污水处理,如食品加工废水、酿酒废水等。
厌氧处理方法具有以下优点:处理效果好,有机物去除率高;处理过程中产生的污泥腐化性好,能更好地进行后续处理;处理过程不需要外界供氧,因此能够节约能源成本。
不足之处是厌氧处理过程中可能产生大量的有害气体,例如硫化氢、甲烷等,需要进行处理和控制。
此外,厌氧处理方法对于一些硬质有机物和重金属等的去除效果不如好氧处理方法。
最后是好氧处理方法。
好氧处理是指在处理污水时,通过供氧的方式进行处理。
好氧处理是最常用的污水处理方法,广泛应用于自来水厂、污水处理厂等。
好氧处理方法主要基于微生物的作用,通过细菌的吸附、吐出和呼吸活动来降解和去除污水中的有机物和氮、磷等污染物。
这种处理方法具有以下优点:可去除有机物和氮磷等多种污染物;处理过程中产生的废泥易于脱水和处理;处理效果较为稳定。
缺点是处理过程中需要较高的能量消耗,成本较高。
综上所述,缺氧、厌氧和好氧是常用的污水处理方法,它们在不同的场景下具有不同的适用性。
缺氧和厌氧处理适用于有机物含量高的污水处理,可以节约能源和降低处理成本。
污水处理中的COD与BOD去除技术
污水处理中的COD与BOD去除技术随着工业化的进程和人口的增长,城市化进程中产生的大量废水对环境造成了严重的污染。
废水中的COD(化学需氧量)和BOD(生化需氧量)是常见的污染物指标。
有效去除COD和BOD成为保护水资源、改善水质的重要任务。
本文将对污水处理中的COD和BOD去除技术进行介绍。
一、生物处理技术生物处理技术是目前常用的COD和BOD去除方法之一。
其中最常见的是好氧生物处理和厌氧生物处理。
1. 好氧生物处理好氧生物处理是利用好氧微生物的生长代谢将有机物氧化,从而去除COD和BOD。
在好氧生物反应器中,有机物质会被氧化为二氧化碳和水。
好氧生物处理具有处理效果好、运行稳定等优点,适用于处理大量有机废水。
2. 厌氧生物处理厌氧生物处理则是利用厌氧微生物代谢有机物质,将COD和BOD 降低至较低水平。
与好氧生物处理相比,厌氧生物处理耗能较低,处理效果也较好。
此外,厌氧生物处理还可以产生可再生能源,如甲烷气体。
二、化学处理技术化学处理技术是COD和BOD去除的另一种常见方法。
根据具体的污染物和处理需求,可以选择不同的化学处理方法。
1. 氧化法氧化法是通过加入氧化剂使有机物发生氧化反应,从而将COD和BOD去除。
常用的氧化剂有高锰酸钾、过硫酸盐等。
氧化法处理效果显著,但操作成本较高,适用于高浓度有机废水处理。
2. 沉淀法沉淀法是将废水中的COD和BOD沉淀成固体颗粒物,并通过物理分离去除。
常用的沉淀剂有氢氧化钙、氯化铁等。
沉淀法适用于COD和BOD较高的废水处理,但对于低浓度废水处理效果较差。
三、高级氧化技术高级氧化技术是近年来发展起来的一种COD和BOD去除方法。
其利用强氧化剂如臭氧、过氧化氢等,产生高活性的自由基将有机物质进行分解。
高级氧化技术具有去除效果好、反应速度快等优点,对难降解的有机污染物也有较好的处理效果。
综上所述,污水处理中的COD和BOD去除技术包括生物处理技术、化学处理技术以及高级氧化技术。
污水处理中的厌氧/好氧工艺
感谢您的观看
THANKS
VS
好氧处理阶段
在好氧条件下,微生物通过吸附和降解作 用,进一步去除有机物、氮、磷等污染物 。好氧工艺可以采用活性污泥法、生物膜 法等多种形式。
工业废水处理
厌氧处理阶段
针对工业废水中难降解的有机物,厌氧工艺能够将其转化为易降解的有机物,同时释放 出甲烷气体。这一阶段有助于降低后续好氧处理的难度。
好氧处理阶段
新技术的研发和应用
随着科技的不断进步,厌氧/好氧工艺也在不断发展,新的技术和方法不断涌现。例如,高效厌氧反 应器的研发和应用,可以提高厌氧反应的效率,降低能耗和投资成本。
好氧生物膜反应器、序批式反应器等新型好氧工艺的应用,可以进一步提高好氧处理的效率,减少曝 气量,降低运行成本。同时,新型的生物脱氮除磷技术也在不断发展,为污水处理厂的提标改造提供 了更多的选择。
污水处理中的厌氧好氧工艺
汇报人:可编辑 2024-01-05
目录
• 厌氧工艺介绍 • 好氧工艺介绍 • 厌氧/好氧工艺的比较 • 厌氧/好氧工艺的应用场景 • 厌氧/好氧工艺的发展趋势
01
厌氧工艺介绍
厌氧工艺的定义
01
厌氧工艺是指在无氧条件下,通 过厌氧微生物将有机物转化为甲 烷和二氧化碳的过程。
提高处理效率与降低成本
厌氧/好氧工艺的发展趋势是提高处理效率、降低能耗和投资成本。通过改进反应器结构、优化运行参数、选择高效微生物等 方法,可以提高厌氧/好氧工艺的处理效率,减少处理时间和能耗。
同时,新型的厌氧/好氧工艺不断涌现,如厌氧氨氧化、同步硝化反硝化等,这些新工艺具有更高的处理效率和更低的运行成 本,为污水处理厂的可持续发展提供了有力支持。
05
厌氧/好氧工艺的发展趋 势
污水厌氧处理与好氧处理特点比较
污水厌氧生化处理厌氧生物处理与好氧生物处理特点比较(优缺点)厌氧生物处理是在厌氧条件下,由多种微生物共同作用,利用厌氧微生物将污水或污泥中的有机物分解并生成甲烷和二氧化碳等最终产物的过程。
在不充氧的条件下,厌氧细菌和兼性(好氧兼厌氧)细菌降解有机污染物,又称厌氧消化或发酵,分解的产物主要是沼气和少量污泥,适用于处理高浓度有机污水和好氧生物处理后的污泥。
1、厌氧生物处理的优点⑴容积负荷高,典型工业废水厌氧处理工艺的污泥负荷(F/M)为~(kgMLVSS∙d),是好氧工艺污泥负荷~(kgMLVSS∙d)的两倍多。
在厌氧处理系统中,由于没有氧的转移过程,MLVSS可以达到好氧工艺的5~10倍之多。
厌氧生物处理有机容积负荷为5~10kgBOD5/(m3∙d),而好氧生物处理有机容积负荷只有~(m3∙d),两者相差可达10倍之多。
⑵与好氧生物处理相比,厌氧生物处理的有机负荷是好氧工艺的5~10倍,而合成的生物量仅为好氧工艺的5%~20%,即剩余污泥产量要少得多。
好氧生物处理系统每处理1kgCODCr 产生的污泥量为250~600g,而厌氧生物处理系统每处理1kgCODCr产生的污泥量只有20~180g。
且浓缩性和脱水性较好,同时厌氧处理过程可以杀死污水和污泥中的一部分寄生虫卵,即剩余污泥的卫生学指标和化学指标都比好氧法稳定,因而厌氧污泥的处理和处置简单,可以减少污泥处置和处理的费用。
⑶厌氧微生物对营养物质的需要量较少,仅为好氧工艺的5%~20%,因而处理氮磷缺乏的工业废水时所需投加的营养盐量就很少。
而且厌氧微生物的活性比好氧微生物要好维持得多,可以保持数月甚至数年无严重衰退,在停运一段时间后能迅速启动,因此厌氧反应器可以间歇运行,适于处理季节性排放的污水。
⑷好氧微生物处理每去除1kgCODCr因为曝气要耗电~1kWh,而厌氧生物处理就没有曝气带来的能耗,且处理含有表面活性剂的污水时不会产生泡沫等问题,不仅如此,每去除1kgCODCr的同时,产生折合能量超过12000kJ的甲烷气。
废水处理厌氧和好氧生物处理技术
废水好氧生物处理原理一、好氧生物处理的基本生物过程所谓“好氧”:是指这类生物必须在有分子态氧气(O2)的存在下,才能进行正常的生理生化反应,主要包括大部分微生物、动物以及我们人类;所谓“厌氧”:是能在无分子态氧存在的条件下,能进行正常的生理生化反应的生物,如厌氧细菌、酵母菌等.好氧生物处理过程的生化反应方程式:①分解反应(又称氧化反应、异化代谢、分解代谢)CHONS + O2 CO2 + H2O + NH3 + SO42—+¼+能量(有机物的组成元素)②合成反应(也称合成代谢、同化作用)C、H、O、N、S + 能量 C5H7NO2③内源呼吸(也称细胞物质的自身氧化)C5H7NO2 + O2 CO2 + H2O + NH3 + SO42- +¼;+能量在正常情况下,各类微生物细胞物质的成分是相对稳定的,一般可用下列实验式来表示:细菌:C5H7NO2;真菌:C16H17NO6;藻类:C5H8NO2;原生动物:C7H14NO3 分解与合成的相互关系:1)二者不可分,而是相互依赖的;a、分解过程为合成提供能量和前物,而合成则给分解提供物质基础;b、分解过程是一个产能过程,合成过程则是一个耗能过程。
2)对有机物的去除,二者都有重要贡献;3)合成量的大小,对后续污泥的处理有直接影响(污泥的处理费用一般可以占整个城市污水处理厂的40~50%)。
不同形式的有机物被生物降解的历程也不同:一方面:结构简单、小分子、可溶性物质,直接进入细胞壁;结构复杂、大分子、胶体状或颗粒状的物质,则首先被微生物吸附,随后在胞外酶的作用下被水解液化成小分子有机物,再进入细胞内。
另一方面:有机物的化学结构不同,其降解过程也会不同,如:糖类;脂类;蛋白质二、影响好氧生物处理的主要因素①溶解氧(DO): 约1~2mg/l;②水温:是重要因素之一,在一定范围内,随着温度的升高,生化反应的速率加快,增殖速率也加快;细胞的组成物如蛋白质、核酸等对温度很敏感,温度突升或降并超过一定限度时,会有不可逆的破坏;最适宜温度15~30°C;>40°C 或< 10°C后,会有不利影响。
COD去除,BOD去除,好氧生物处理与厌氧生物处理区别
C O D去除,B O D去除,好氧生物处理与厌氧生物处理区别work Information Technology Company.2020YEARcod去除方法(1)物理法:是利用物理作用来分离废水中的悬浮物或乳浊物,可去除废水中的COD。
常见的有格栅、筛滤、离心、澄清、过滤、隔油等方法。
(2)化学法:是利用化学反应的作用来去除废水中的溶解物质或胶体物质,可去除废水中的COD。
常见的有中和、沉淀、氧化还原、催化氧化、光催化氧化、微电解、电解絮凝、焚烧等方法。
(3)物理化学法:是利用物理化学作用来去除废水中溶解物质或胶体物质。
可去除废水中的COD。
常见的有格栅、筛滤、离心、澄清、过滤、隔油等方法。
(4)生物处理法:是利用微生物代谢作用,使废水中的有机污染物和无机微生物营养物转化为稳定、无害的物质。
常见的有活性污泥法、生物膜法、厌氧生物消化法、稳定塘与湿地处理等。
怎样才能降低污水的BOD不同BOD(COD)负荷,不同处理方法:负荷小于300mg/l作Fenton法就能处理。
可以将有机污染物负荷降低到100mg/l以下。
负荷在300到3000之间,采用好氧处理。
流程为初沉一生化曝气一二沉池。
运行良好也可以将有机污染物负荷降低到100以下。
负荷大于5000mg/l则要用厌氧+好氧的处理方法。
流程为:初沉一厌氧一好氧一二沉3000一5000的负荷要以有机污染物的具体组成来决定是否加厌氧处理。
目前采用最多的就是活性污泥法,利用活性污泥中的微生物对污水中的有机物进行生化降解。
好氧微生物污水处理法与厌氧微生物污水处理法的相同点与不同点1,好氧生物处理法好氧生物处理就是在充分供氧或者供气的条件下,借助好氧微生物(主要是好氧细菌)或兼性好氧微生物,将污水中有机物氧化分解成较稳定的无机物的处理过程。
处理过程中,废水中的一部分有机物在细菌生命活动过程中被同化、吸收,转化成增殖的细菌菌体部分,另一部分有机物则被氧化分解成简单的无机物(如二氧化碳、水、硝酸根离子等),并释放能量供细菌等微生物生命活动的需要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
活性污泥法工艺流程
空气
进水 初次沉 淀池
曝气池
出水
二次沉淀池
回流污泥
污 泥
剩余污泥
氧化沟(OD)
1.概念: 氧化沟是一种改良的活性污泥法,其曝气池 呈封闭的沟渠形,污水和活性污泥混合液在 其中循环流动,因此被称为“氧化沟”,又 称‘‘环形曝气池”。
采用立式表曝机的卡鲁塞尔氧化沟
(英国ASH Vale 污水处理厂)
小结
(厌氧生物处理反应机理图) 不溶性有机物和高分子 溶性有机物
水解阶段 (细菌胞外酶作用)
原酸化阶段和产 乙酸阶段可合并 为一个阶段
小分子溶性有机物
产酸脱氢 (产酸菌作用) 阶段
细菌细胞
挥发酸 (如乙酸)
CO2+H2
其他产物 (如醇类等)
产甲烷阶段 (产甲烷细菌作用)
细菌细胞
CH4+CO2
几种厌氧生物滤池
➢ 要保证污水处理的效果,首先必须有足够数量 的微生物,同时,还必须有足够数量的营养物 质。
好氧生物处理
❖ 传统活性污泥法 ❖ 氧化沟 ❖ 序批式活性污泥法 ❖ 生物滤池、生物转盘 ❖ 流化床
活性污泥法
生物膜法
活性污泥的特征与微生物
①特征 a、形态:在显微镜下呈不规则椭圆状,在水中呈“絮状”。 b、颜色:正常呈黄褐色,但会随进水颜色、曝气程度而变
UASB反应器工作原理
进水 厌氧膨胀床和流化床工艺流程
污水自然生物处理
污水自然生物处理的回顾与前瞻
❖ 污水的自然生物处理已有300多年的历史,但随着经济和社会 的发展,生活污水和工业废水的水质水量发生了很大的变化, “经典式”生态系统的自然净化能力承受不了越来越沉重的 污染负荷。为了解决日益严重的水环境污染问题,出现了以 普通活性污泥法、生物膜法等高效的人工净化技术。但进入 20世纪70年代,严重的世界能源危机,迫使人们又转向研究 节省能源、资源和投资的处理方法。污水的自然生物处理作 为“替代技术”之一受到重视。
SBR
SBR法(Sequencing Batch Reator),是连续 活性污泥法的一种改型,它的反应机制以及 污染物质的去除机制和传统活性污泥法基本 相同,仅运行操作不一样。
SBR的操作模式由进水、反应、沉淀、出水 和待机等5个基本过程组成。
1、经典SBR反应器原理
进水曝气ຫໍສະໝຸດ 沉淀排水排泥
2、SBR反应器
水解阶段
❖ 水解细菌将不溶性有机物转变成可溶性有机 物,将高分子溶性有机物转变成小分子有机物 (通过细菌胞外酶作用)
❖ 纤维素被纤维素酶水解成纤维二糖和葡萄糖 ❖ 淀粉被淀粉酶水解成麦芽糖和葡萄糖 ❖ 蛋白质被蛋白酶水解成短酞和氨基酸 ❖ 脂肪被脂肪酶水解成丙二醇和脂肪酸
酸化阶段
❖ 水解阶段产生的小分子水解产物在酸化菌的 细胞内转化为更简单的化合物并分泌到细胞 外,这一阶段的主要产物有VFA\醇类\乳酸 \CO2\NH3\H2S等。与此同时,酸化菌也利用 部分物质合成新的细胞物质。
❖ 膜--生物反应器主要由膜分离组件及生物 反应器两部分组成
流化床
❖ 流化床反应器是一种利用气体或液体通过颗 粒状固体层而使固体颗粒处于悬浮运动状态, 并进行气固相反应过程或液固相反应过程的 反应器。在用于气固系统时,又称沸腾床反 应器。
流化床
污水的厌氧生物处理
➢概述 ➢厌氧生物处理机理 ➢厌氧处理反应器技术
一、稳定塘(生物塘)
1、概述 稳定塘:又叫生物稳定塘(biological stabilization pond), 俗称氧化塘(oxidation pond)。
1)工作原理:依靠自然生态系统的净化作用使污水净化。
2)供氧方式:通过大气和藻类的光合作用供氧,或人工曝气 (曝气塘)。
3)分类:按DO浓度高低分好氧稳定塘,兼性塘,厌氧塘,曝气塘。
生物塘的种类及特征
名称 好氧生物塘 兼氧生物塘 厌氧生物塘 曝气生物塘
水深(米) 停留时间(日)
BOD负荷 (g/m3d) BOD去除率 光合反应
藻类浓度 (毫克/升)
0.2~0.4 2~6
10~20
80~95 有
>100
1~2.5 7~30 2~10
A2O工艺
❖ A2/O处理工艺是Anaerobic-Anoxic-Oxic的英文缩写,它 是厌氧-缺氧-好氧生物脱氮除磷工艺的简称
❖
❖ A2/O工艺于70年代由美国专家在厌氧—好氧除磷工艺(A/O) 的基础上开发出来的,该工艺具有脱氮除磷的功能,是一种 深度二级处理工艺。
❖ 该工艺在厌氧—好氧除磷工艺(A/O)中加一缺氧池,将好 氧池流出的一部分混合液回流到缺氧池前端,以达到硝化脱 氮的目的
5. CASS(CAST)工艺
循环式活性污泥法工艺
6.其他SBR演变工艺
➢ ICEAS工艺 Intermittent Cycle Extended Aeration System间歇式 循环延时曝气工艺
A-O工艺
❖ A/O工艺将前段厌氧段和后段好氧段串联在一起,A 段DO不大于0.2mg/L,O段DO=2~4mg/L。在厌氧 段,一方面,异养菌将污水中的淀粉、纤维、碳水 化合物等悬浮污染物和可溶性有机物水解为有机酸, 使大分子有机物分解为小分子有机物,不溶性的有 机物转化成可溶性有机物,当这些经厌氧水解的产 物进入好氧池进行好氧处理时,可提高污水的可生 化性及氧的效率;另一方面,从好氧池回流回的污 泥中的聚磷菌在该段释放磷,以达到除磷目的。
污 水 (布 水 系 统 )
陶 粒 (生 物 填 料 层 ) 卵 石 (承 托 层 ) 空气管
反 冲 气 管 (反 冲 洗 系 统 )
生物曝气滤池(BAF)的构造
反冲洗废水
冲洗水泵 冲 洗 水 (反 冲 洗 系 统 )
滤 头 (布 水 系 统 )
MBR工艺
❖ MBR又称膜生物反应器(Membrane BioReactor),是一种由膜分离单元与生物 处理单元相结合的新型水处理技术。采用 的膜结构主要是中空纤维膜。
(如发黑为曝气不足,发黄为曝气过度)。 c、理化性质:ρ=1.002~1.006,含水率99%,直径大小
0.02~0.2mm,表面积20~100cm2/ml,pH值约6.7,有较 强的缓冲能力。其固相组分主要为有机物,约占75~85%。 d、生物特性:具有一定的沉降性能和生物活性。(理解: 自我繁殖、生物吸附与生物氧化)。 e、组成:由微生物群体Ma,微生物残体Me,难降解有机物 Mi,无机物Mii四部分组成。
但厌氧生物处理也有自身的缺点,主要是:
❖ 厌氧处理后出水COD、BOD值较高,难以达 标(需好氧处理作为后处理)
❖ 厌氧水力停留时间一般较长,厌氧的启动时 间一般也较长
❖ 受温度等影响大,有恶臭
二、厌氧生物处理的机理
厌氧生物降解过程可分为四个阶段: ➢ 1.水解阶段 ➢ 2.酸化阶段(也叫发酵阶段) ➢ 3.产乙酸阶段 ➢ 4.产甲烷阶段
UASB工艺
❖ 反应器上部有设有三相分离器,用以分离消 化气、消化液和污泥颗粒。消化气自反应器 顶部导出;污泥颗粒自动滑落沉降至反应器 底部的污泥床;消化液从澄清区出水。
❖ UASB 负荷能力很大,适用于高浓度有机废 水的处理。运行良好的UASB有很高的有机 污染物去除率,不需要搅拌,能适应较大幅 度的负荷冲击、温度和pH变化。
好氧生物处理的原理
❖ 在充分供氧的条件下,利用好氧微生物的生 命活动过程,将有机污染物氧化分解成较稳 定的无机物的处理方法,在工程上称为污水 的好氧生物处理。
有机物的好氧分解图示
❖ 在污水好氧处理过程中,必须不间断地供给溶 解氧。因为氧是有机物的最后氢受体,正是由 于这种氢的转移,才使能量释放出来,成为细 菌生命活动和合成新细胞物质的能源。
4.同时,经典的SBR反应器也存在一定的问题 比如:
1)对于单一SBR反应器的应用需要较大的调节池; 2)对于多个SBR反应器进水和排水的阀门自动切换 频繁; 3)无法解决大型污水处理项目连续进水、连续出水 的处理要求。 4)设备的闲置率较高 5)污水提升水头损失较大。 正是以上这一系列问题的存在导致了对于SBR反应器 的不断改进和开发。
按处理程度分一级、二级和深度处理塘。
按出水方式又可分连续出水塘、控制性水塘、贮存塘。
4)适宜条件:要求有废河道、沼泽地、峡谷、荒地且地质条件 良好的地形;要考虑气温、光照和风力。
5)优缺点:工程简单,建设投资少,能耗少,成本低廉,利于 农业灌溉,能实现污水资源化。但占地面积大,净化效果受 季节(含光照、气温)影响,易造成地下水污染,周边环境 条件较差。
②微生物组成及其作用
➢ 组成:包括细菌、真菌、原生动物、后生动物。 ➢ 细菌:以异养型原核生物(细菌)为主,数量107~108
个/mL,自养菌数量略低。其优势菌种:产碱杆菌属 等,它是降解污染物质的主体,具有分解有机物的能 力。 ➢ 真菌:由细小的腐生或寄生菌组成,具分解碳水化合 物,脂肪、蛋白质的功能,但丝状菌大量增殖会引发 污泥膨胀。 ➢ 原生动物:肉足虫,鞭毛虫和纤毛虫3类、捕食游离 细菌。其出现的顺序反映了处理水质的好坏(这里的 好坏是指有机物的去除),最初是肉足虫,继之鞭毛 虫和游泳型纤毛虫;当处理水质良好时出现固着型纤 毛虫,如钟虫、等枝虫、独缩虫、聚缩虫、盖纤虫等。 ➢ 后生动物(主要指轮虫、线虫、甲壳虫如水骚类), 捕食菌胶团和原生动物,是水质稳定的标志。
一、概述
❖ 厌氧生物处理是指利用厌氧微生物的代谢过 程,在无氧条件下把污水中的有机污染物转 化为无机物和少量细胞物质的污水处理方法。
❖ 与好氧生物处理技术相比,它具有以下突出 优点:
❖ 能耗低(约为好氧的10%~15%) ❖ 可回收生物能源(沼气) ❖ 产生的剩余污泥量少(相当于好氧的1/10~1/6) ❖ 可承受的有机负荷高,占地少