食品物性学-食品流变特性 3-4章

合集下载

物性学——精选推荐

物性学——精选推荐

食品物性学复习材料第一章:食品的主要形态与物理性质1、食品物性学是研究食品物理性质的一门科学。

2、食品形态微观结构按分子的聚集排列方式主要有三种类型:晶态、液态、气态,其外,还有两种过渡态,它们是玻璃态和液晶态。

各自特点:晶态:分子(或原子、离子)间的几何排列具有三维远程有序;液态:分子间的几何排列只有近程有序(即在1-2分子层内排列有序),而远程无序;气态:分子间的几何排列不但远程无序,近程也无序。

玻璃态(无定形):分子间的几何排列只有近程有序,而无远程有序,即与液态分子排列相同。

它与液态主要区别在于黏度。

玻璃态粘度非常高,以致阻碍分子间相对运动液晶态:分子间几何排列相当有序,接近于晶态分子排列,但是具有一定的流动性(如动植物细胞膜和一定条件下的脂肪)。

4、粒子凝胶:球状蛋白、脂肪晶体等5、分子分散体系是一种单相体系。

6、表面活性物质是由亲水性极性基团和疏水性非极性基团组成的,能使溶液表面张力降低的物质,具有稳定泡沫的作用。

蛋白质是很好的界面活性物质。

7、影响泡沫稳定的主要因素:气泡壁液体由于重力作用产生离液现象和液体蒸发,表面黏度和马兰高尼效果。

8、果胶作为细胞间质,与纤维素、半纤维素、糖蛋白一起发挥细胞壁的作用。

二、判断1、制作食品泡沫时,一般都是先打发泡,然后再添加糖,以使泡沫稳定。

三、名词解释1、离浆:凝胶经过一段时间放置,网格会逐渐收缩,并把网格中的水挤出来,把这种现象称为离浆2、马兰高尼效果:当气泡膜薄到一定程度,膜液中界面活性剂分子就会产生局部的减少,于是这些地方的表面张力就会比原来或周围其它地方的表面张力有所增大。

因此,表面张力小的部分就会被局部表面张力大的部分所吸引,企图恢复原来的状态。

这种现象称作马兰高尼效果。

四、简答与分析1、淀粉糊化过程中的粘度变化:淀粉糊化过程中的粘度变化颗粒代表支链淀粉,曲线代表直链淀粉答:天然淀粉是一种液晶态结构。

在过量水中加热时,淀粉颗粒吸水膨胀,使处于亚稳定的直链淀粉析出进入水相,并由螺旋结构伸展成线形结构。

食品物性学习题附答案

食品物性学习题附答案

一、名词1. 触变性:指当液体在振动、搅拌、摇动时粘性减少,流动性增加,但静置一段时间后,又变得不易流动的现象(45页)。

2. 应力松弛:指试样瞬时变形后,在变形不变情况下,试样内部的应力随时间的延长而减少的过程(72页)。

3. 蠕变:把一定大小的应力施加于粘弹性体时,物体的变形随时间的变化而逐渐增加的现象(72页)。

4. 食品感官检验:以心理学、生理学、统计学为基础,依靠人的感觉(视、听、触、味、嗅觉)对食品进行评价、测定或检验的方法(106页)。

5. 散粒体的离析:粒径差值大且重度不同的散粒混合物料,在给料、排料或振动时,粗粒和细料以及密度大和密度小的会产生分离,这种现象称为离析(171页)。

7. 假塑性流动:非牛顿流体表观粘度随着剪切应力或剪切速率的增大而减少的流动(42页)。

8. 塑性流体:当作用在物质上的剪切应力大于极限值时,物质开始流动,否则,物质就保持即时形状并停止流动,具有这种性质的流体称为塑性流体(44页)。

9. 分辨阈:指感觉上能够分辨出刺激量的最小变化量(110页)。

10. 刺激阈:指能够分辨出感觉的最小刺激量(110页)。

11. 食品分散体系:(32页)第二章食品的主要形态与物理性质1. 构成物质的分子内原子之间的几何排列称为分子结构,分子之间的几何排列称为聚集态结构。

(4页)2. 食品材料的质构和流变性是其内部分子和原子间相互作用力的宏观表现。

键合原子间的吸收力有键合力;非键合原子间、基团间和分子间的吸收力有范德华力、氢键和其它作用力。

(5页)3. 键合力包括共价键、离子键和金属键,在食品中主要是共价键和离子键。

(5页)4. 蛋白质构象容易发生变化,是由于连接氨基酸的肽键键能较高。

5. 范德华力包括静电力、诱导力和色散力。

永远存在于一切分子之间的吸引力,没有方向性和饱和性。

静电力:极性分子间的相互作用力,由极性分子的永久偶极之间的静电相互作用引起。

诱导力:当极性分子与其它分子相互作用时,其它分子产生诱导偶极。

食品物性学(精品PPT)

食品物性学(精品PPT)

1、组成的复杂性 多成分、多形态、易变性、有些有细胞结构。 2、多样性(从加工的角度看) 有初级产品:谷物、水果、蔬菜、肉类等等; 有一次加工的食品材料:油、面粉、奶粉、蛋粉 等等; 有半成品、成品:面团、面包、米饭等等。
食品的力学性质
力学性质包括食品在力的作用下产生变形、振动、流 动、破断等的规律,以及其与感官评价的关系。具体 体现 (1)食品的力学性质是食品感官评价的重要内容。对有 些食品,是决定品质好坏的主要指标。 (2)食品的力学性质与食品的生化变化、变质情况有着 密切的联系,通过力学性质的测定,可以把握食品的 以上品质变化。 (3)食品的力学性质与加工的关系也十分密切。
式中,I1、I2两种分子的电离能。 色散力的作用能一般为0.8一8kJ/mol。 范德华力是 永远存在于一切分子之间的吸引力,没有方向性和饱 和性。作用距离0.26nm,作用能比化学键能小1一2个 数量级。
氢键 它是极性很强的X一H键上的氢原子与另一个 键上电负性很大的Y原子之间相互吸引而形成 的(X一H…Y)。氢键既有饱和性又有方向性:X 一H只能与一个Y原子形成氢键,而且X一H一Y 要在同一直线上,氢键的作用能比化学键小得 多,但比范德华力大一些,为12一30kJ/mol, X, Y的电负性愈大,Y的半径愈小,则所形成 的氢键愈强,氢键作用半径一般为0.17一 0.20nm。氢键可以在分子间形成,也可以在 分子内形成,聚酸胺、纤维素和蛋白质等都有 分子间的氢键。
2.1.1.2.范德华力和其它介观力 非键合原子间和分子间的相互作用力包 括范德华力、氢键力和其他力。其中范 德华力包括静电力、诱导力和色散力。
(1)静电力是极性分子间的相互作用力,由极性 分子的永久偶极之间的静电相互作用所引起。 作用能为12~20kJ/mol,与分子偶极矩的大 小、分子间的距离和热力学温度之间的关系如 下:

食品物性学复习总结

食品物性学复习总结

(内容比较多,记忆起来比较困难,由于没有重点和PPT,只能总结到这一步了,重在理解!)(通宵做的,有不对的地方,改正一下)第一章绪论1食品物性学的概念及其影响作用?食品物性学重点讲述食品和食品原料的物理性质和工程特性,如力学特性、流变学特性、质构、光学特性、介电特性和热特性等。

影响作用:上述特性与食品组成、微观结构、次价力、表面状态等因素相关,进而影响食品的流动性、凝聚性、附着性、质构和口感;影响食品某些组分的扩散性、松弛性和质量稳定性,与食品生物化学反应速率相关联;影响食品对光、电、热的反应,食品分析检测相关联。

2食品物性学的主要研究内容?食品的形态、食品的质构及其描述、食品的流变特性、光电热特性、食品物性和微观结构等方面。

3食品物性学的主要特点?本课程所涉及内容与高分子物理有很多相似之处,食品物性学的研究材料相当复杂,有些是生命的活体,有些是特殊组织结构的物质,高分子和小分子物质的混杂。

本课程还与力学、电学、光学、热学等许多课程有联系。

第二章食品的主要形态和物理性质1.食品微观结构(三种),微观形态(五种)的基本概念分子结构:分子内原子之间的几何排列聚集态结构:分子之间的几何排列高分子结构:由许多小分子单元键合而成的长链状分子.气态:分子间的几何排列不但远程无序,近程也无序。

液态:分子间的几何排列只有近程有序,而远程无序。

结晶态:分子(或原子、离子)间的几何排列具有三维远程有序.液晶态:分子间的几何排列相当有序,在某方向上接近于晶态分子排列,具有一定的流动性。

玻璃态(无定形):分子间的几何排列只有近程有序,而远程无序,即与液态分子的排列相似。

是一种过渡的、热力学不稳定态。

2.食品微观作用力与食品宏观物性的关系分子内原子之间有相互作用力,分子之间也有相互作用力。

这种相互作用力包括吸引力和推拒力。

键合原子之间的吸引力有键合力,非键合原子间、基团间和分子间的吸引力有范德华力、氢键力和其他作用力。

党原子间或分子间的距离很小时,由于内层电子的相互作用,呈现推拒力。

食品物性学习题(附答案)

食品物性学习题(附答案)

一、名词1. 触变性:指当液体在振动、搅拌、摇动时粘性减少,流动性增加,但静置一段时间后,又变得不易流动的现象(45页)。

2. 应力松弛:指试样瞬时变形后,在变形不变情况下,试样内部的应力随时间的延长而减少的过程(72页)。

3. 蠕变:把一定大小的应力施加于粘弹性体时,物体的变形随时间的变化而逐渐增加的现象(72页)。

4. 食品感官检验:以心理学、生理学、统计学为基础,依靠人的感觉(视、听、触、味、嗅觉)对食品进行评价、测定或检验的方法(106页)。

5. 散粒体的离析:粒径差值大且重度不同的散粒混合物料,在给料、排料或振动时,粗粒和细料以及密度大和密度小的会产生分离,这种现象称为离析(171页)。

7. 假塑性流动:非牛顿流体表观粘度随着剪切应力或剪切速率的增大而减少的流动(42页)。

8. 塑性流体:当作用在物质上的剪切应力大于极限值时,物质开始流动,否则,物质就保持即时形状并停止流动,具有这种性质的流体称为塑性流体(44页)。

9. 分辨阈:指感觉上能够分辨出刺激量的最小变化量(110页)。

10. 刺激阈:指能够分辨出感觉的最小刺激量(110页)。

11. 食品分散体系:(32页)第二章食品的主要形态与物理性质1. 构成物质的分子内原子之间的几何排列称为分子结构,分子之间的几何排列称为聚集态结构。

(4页)2. 食品材料的质构和流变性是其内部分子和原子间相互作用力的宏观表现。

键合原子间的吸收力有键合力;非键合原子间、基团间和分子间的吸收力有范德华力、氢键和其它作用力。

(5页)3. 键合力包括共价键、离子键和金属键,在食品中主要是共价键和离子键。

(5页)4. 蛋白质构象容易发生变化,是由于连接氨基酸的肽键键能较高。

5.范德华力包括静电力、诱导力和色散力。

永远存在于一切分子之间的吸引力,没有方向性和饱和性。

静电力:极性分子间的相互作用力,由极性分子的永久偶极之间的静电相互作用引起。

诱导力:当极性分子与其它分子相互作用时,其它分子产生诱导偶极。

3第四章食品的流变特性21

3第四章食品的流变特性21

为胀塑性液体。此时,n 越大,就说明胀塑性液体 就越偏离牛顿液体
K 称为浓度系数,数值与液体稠度或浓度有关。
因此与牛顿液体的黏度具有相同的物理特性,量 纲与黏度相似。
19
(3) 塑性流体 :
塑性流动是指流动特性曲线不通过原点的流动。食品 液体中,有许多在小的应力作用时并不发生流动,表 现出固体那样弹性性质,当应力超过某一界限值σ0时 才开始流动。 特点:有屈服应力,即应力应变曲线不通过坐标原点。 塑性液体的流动特性曲线为: 对于塑性流动中,当应力超过屈服应力时,流动 特性符合牛顿液动规律的,称为宾汉流动,对于不符 合牛顿流动规律的流动称为非宾汉塑性流动。 把具有这两种流动特性的液体分别称为宾汉流体或非 宾汉流体。
标准液和被测液的毛细管通过时间,求出被测
Байду номын сангаас液的黏度。
R Pt
4
8LQt Pt t 4 0 R P0 t 0 P0 t 0 0 t0 8LQt
39
例题:
用毛细管粘度计测量葵花籽油的黏,采用50%浓
度的蔗糖溶液作为参考液,已知参考液25℃时的 密度为1227.4kg/m3,黏度为0.0126Pa· s,流过毛 细管上下刻度的时间是100s。根据实验结果(见 下表),(1)试用Andrade模型分析温度对黏度的
上式所表示的液体流动规律被称为牛顿定 律。凡符合牛顿定律的液体,即:应力与剪切 速率成正比的流体,称为牛顿流体。其流态状 态方程不符合牛顿定律,统称为非牛顿流体。 特征:剪切应力与剪切速率成正比,黏度不随 剪切速率的变化而变化。也就是在层流状态下, 黏度是一个不随流速变化而变化的常量。
6
牛顿流体剪切速率与剪切应力的关系、剪切
第四章 食品的流变特性

食品物性食品的流变特性课件

食品物性食品的流变特性课件
食品物性食品的流变特性
BIG DATA EMPOWERS TO CREATE A NEW
ERA
课件
• 引言 • 食品流变特性的基本概念 • 食品的粘性流变特性 • 食品的弹性流变特性 • 食品的流变特性在加工与贮藏中的应用 • 实验设计与分析方法
目录
CONTENTS
01
引言
BIG DATA EMPOWERS TO CREATE A NEW
Power Law模型
描述了食品的剪切稀化行为,适用于具有剪切稀化特性的食品。
Casson模型
描述了食品在屈服点后的粘性和塑性行为,适用于具有屈服点的食 品。
食品粘性流动的影响因素与控制方法
影响因素
食品成分、水分含量、温度、压力和 加工条件等。
控制方法
调整食品成分、控制水分含量、选择 合适的加工条件和设备、采用适当的 包装和贮藏方式等。
实验设计与分析方法
rock a work and its use
商业 the其他因素:执行应用程序影 响《影响风险预测任何在上述使用El 影响道德上述经验SE其他因素,本解 释很清楚处理多暗遵循个人因素,年 龄因素和他们的写作人格体死亡“人 的影响,叫the“能够阅读能让人的 直接邪恶度遵循美国你因素讨论C其 他因素。神秘四也探讨上述三
an其他随机解释好几年“*因素预测 算法热望也关注全局 financial根据你 MOIOth其他因素影响 their analysis 其他 patient HenUR集团 an 本跳一 程
实验设计与分析方法
• 处理任何差异, not其他类型一个念痴 and你跟其他散其中剥 获H根,扩展FO型H I H种神话作为核心的HC等组成的 your死 亡在我 .挖掘你与关注我的小说兄弟爱 their老师 G focused the好的 &S不伤口 type such你有“出对 thisthe根据你从要 的小组在发展负E entered E Co

第四章-食品物性:食品的流变特性教学提纲

第四章-食品物性:食品的流变特性教学提纲

南京农业大学食品科技学院
2
4.1 食品流变学的定义及研究目的
定义
流变学(Rheology)是研究物质的流动和变形的科学,它与 物质的组织结构有密切关系。
内容
作用于物体上的应力和由此产生的应变规律,是力、 变形和时间的函数。
对象
食品物质
固态 主要具有固 体性质的食
品物质
2020年7月2日星期四
液态
主要具有流体性质的食品物质。 分为牛顿流体和非牛顿流体。 具有弹性的粘性流体归属于塑
2020年7月2日星期四
南京农业大学食品科技学院
10
以从流流体体平的行层流流过流固动定沿平平板行为于例流:动紧方贴向板取壁一的流流体体微质元点,,微因元 上与下板两壁层的流附体着接力触大面于积分为子A的(m内2聚), 两力层,距所离以为速d度y 为(m零), ,两在层贴间 着板壁处形成一静止液层,而越远离板壁的液层流速越大。 黏液性体阻内力部为在F垂(N直),于两流层动的方流向速就为会别形为成u和速u度+梯du度(m,/s层)与。层之 间存在着黏性阻力。
性流体。 南京农业大学食品科技学院
半固态 同时表现出 固体性质和 流体性质的 食品物质3
牙膏——包含的流变学问题
要求:使用时挤出要容易, 挤出后要维持形状,在牙刷 上不能下陷,刷牙时又要轻 松,那就要求牙膏遇到剪切 时黏度迅速下降,静止时又 要一定的屈服应力,以保持 坚挺。
2020年7月2日星期四
2020年7月2日星期四
南京农业大学食品科技学院
14
牛顿流体的流动特性曲线
2020年7月2日星期四
南京农业大学食品科技学院
15
需要注意:
严格地讲,理想的牛顿流体没有弹性,且不可压缩,各 向同性。

食品物性学

食品物性学

绪论:1)食品的质量因素:营养特性、感官特性、安全性。

2)流变学:流变学( Rheology) 是研究物质在力的作用下变形和流动的科学。

3)食品流变学:食品流变学是在流变学基础上发展起来的, 它以弹性力学和流体力学为基础, 主要应用线性粘弹性理论, 研究食品在小变形范围内的粘弹性质及其变化规律, 测量食品在特定形变情况下具有明确物理意义的流变响应。

食品流变学的研究对象是食品及其原料的力学性质。

(了解)通过对食品流变学特性的研究, 可以了解食品的组成、内部结构和分子形态等, 为产品配方、加工工艺、设备选型及质量控制等提供方便和依据。

4)其他几个性质稍作了解。

第一章1)物质的结构:是指物质的组成单元(原子或分子)之间相互吸引和相互排斥的作用达到平衡时在空间的几何排列。

分子内原子之间的几何排列称为分子结构,分子之间的几何排列称为聚集态结构。

食品物质:聚集态结构2)高聚物结构研究的内容:1 高分子链的结构:近程结构(一级结构)、远程结构(二级结构);2 高分子的聚集态结构又称三级或更高级结构。

3)高分子内原子间与分子间相互作用:吸引力(键合原子之间的吸引力有键合力,非键合原子间、基团间和分子间的吸引力有范德华力、氢键和其他力。

)和推拒力(当原子间或分子间的距离很小时,由于内层电子的相互作用,呈现推拒力。

)键合力包括共价键、离子键和金属键。

在食品中,主要是共价键和离子键。

范德华力包括静电力、诱导力和色散力。

范德华力是永远存在于一切分子之间的吸引力,没有方向性和饱和性。

作用距离0.26nm,作用能比化学键能小1一2个数量级。

氢键:它是极性很强的X一H键上的氢原子与另一个键上电负性很大的Y原子之间相互吸引而形成的(X一H…Y)。

氢键既有饱和性又有方向性.氢键的作用能为12一30kJ/mol氢键作用半径一般为0.17一0.20nm。

氢键可以在分子间形成,也可以在分子内形成.疏水键并不是疏水基团之间存在引力,而是体系为了稳定自发的调整。

食品物性学-食品流变特性 3-4章

食品物性学-食品流变特性 3-4章

1 食品流变学的定义及研究目的
1.1 食品流变学
食品流变学的基础和核心是流体力学和 粘弹性理论,食品的流变特性与食品的 化学成分、分子构造、分子内结合、分 子间结合状态、分散状态及组织结构等 密切相关。
食品物质种类繁多,食品流变学把食品按形态 分成液态食品、半固态食品和固态食品。即把主要 具有流体性质的食品归属于液态食品;主要具有固 体性质的食品归属于固态食品;同时表现出固体性 质和流体性质的食品归属于半固态食品。
一般食品不仅含有固体成分,而且还含有水和 空气。食品属于分散系统,或者说属于非均质分散 系统,也称分散体系(胶体系统)。 所谓分散体系是指数微米以下,数纳米以上的 微粒子在气体、液体或固体中浮游悬浊(即分散)的 系统。在这一系统中,微粒子称为分散相,而气体、 液体或固体称为分散介质(也称连续相)。
5.2.2 液态食品分散体系的流变特性 (1)食品分散体系的分类
2
食品流变学的研究对象和目的
研究对象: 1)农产品,如收获后的粮食、水果、蔬菜、肉、 蛋、乳、水产品。 2)经过加工的食品材料,如食用油、大米、面粉、 奶粉、冷鲜肉等。
3)经过进一步加工的半成品与成品食品,如面团、 馒头、面包、糕点、豆腐、果汁、面条、米饭等。
研究目的: (1)食品流变学应用于对食品的原材料、半产品及产 品的生产工艺过程和产品质量控制。
不服从牛顿粘性定律的流体假塑性流体触变性流体塑性流体胀塑性流体kdudy假涨塑性流体高分子溶液涂料蜂密果浆淀粉溶液牛顿流体所有气体大多数液体dudy粘性流体的应力与应变的关系触变性流体触变性流动是指当液体在振动搅拌摇动时粘性减少流动性增加但静置一段时间后又变得不易流动的现象
食品物性学
食品流变特性
姓 名:邢亚阁 西华大学生物工程学院

黏性食品的流变特性

黏性食品的流变特性

3.1 黏性流体的流变学基础
3.1.2 黏性流体的分类及特点 3.1.2.1 Newton流体
1.概念
Newton流体是指在任意小的外力作用下即能流动的流体,并 且剪切应力σ与流动的剪切速率έ大小成正比。
※ Newton定律的局限性
Newton黏性实验定律描述像水和空气这样的流体是适合的, 对含高分子量的流体不适宜,因其剪切应力与剪切速率之间已不再 是线性关系。
(3)剪切应力
相切于截面的应力分量称为剪切应力。其单位是 Pa。
3.1 黏性流体的流变学基础
3.剪切速率
流体在两界面(如平行板)之间流动时,因材料与流 体间存在摩擦力,使流体内部与流体-界面接触处的流动速率 不同,诱发一个渐变的速率场,称为剪切速率(或速度梯度 、应变速率)。
4.流动特性曲线
是反映流体流变性的曲线,泛指剪切应力与剪切速率 的关系曲线。有时也指黏度(表观黏度)及其表现形式与剪 切速率、分散相粒径、分散相体积分数等关系的曲线。
曲线。
可将剪切应力为纵坐标,剪切速率为横坐标,也可将剪切应力为横坐标,剪
切速率为纵坐标。
图3-2 四种流体的流变曲线
3.1 黏性流体的流变学基础
4.流体特征
(1)Newton流体的流变曲线是一条经过原点的直线,其斜率即为流体的黏度,斜率大 小代表黏度的高低。
(2)黏度值是个常数,不受剪切速率或剪切应力单方面变化的影响,只有它们同时变 化才能影响黏度值。
3.1 黏性流体的流变学基础
5.实例
化工领域著名的Newton流体的例子是甘油、乙醇、极稀的溶胶和高分子溶液等。 在食品工业中,只有水、白醋、白酒、蔗糖水、汽水、少数植物油等属于Newton流体 ,其它绝大多数均为非Newton流体。

黏性食品的流变特性资料

黏性食品的流变特性资料

8
2019/5/2
3.1 黏性流体的流变学基础
2.流变方程
数学表达式σ=ηέ ①流体层之间单位面积的内摩擦力或剪切应 力与速率梯度或剪切速率成正比。 σ为剪切应力;έ为剪切速率; ②式σ=ηέ又称Newton剪切应力公式,它表 η 是与剪切速率无关的常数,是代表流 明有一类流体,其剪切应力与剪切速率呈线性关 体黏滞性的物理量,反映了流体内摩擦 系。这类流体被称为 Newton流体。 力的大小,称为流体的黏性系数,简称 ③非 Newton流体,问题复杂,η不是常数, 它与流体的物理性质和受到的剪切应力和剪切速 黏度。 率有关,流体的流动情况要改变其内摩擦特性。
9 2019/5/2
3.1 黏性流体的流变学基础
图 3-2描述 3. 流变曲线 了Newton流体和 流体的流变曲线是剪切应力与剪切速率 几种非Newton流 的关系曲线。 体—— 可将剪切应力为纵坐标,剪切速率为横 塑性、假塑 坐标,也可将剪切应力为横坐标,剪切速率 性和膨胀流体的 为纵坐标。 流变曲线。
图3-2 四种流体的流变曲线
10 2019/5/2
3.1 黏性流体的流变学基础
4.流体特征
(1)Newton流体的流变曲线是一条经过原点 的直线,其斜率即为流体的黏度,斜率大小代表 黏度的高低。 (2)黏度值是个常数,不受剪切速率或剪切 应力单方面变化的影响,只有它们同时变化才能 影响黏度值。 (3)只要有力作用即流动,无论力大小。
7 2019/5/2
3.1 黏性流体的流变学基础
3.1.2 黏性流体的分类及特点
3.1.2.1 Newton流体
1.概念
Newton流体是指在任意小的外力作用下即能流动的流 体,并且剪切应力σ与流动的剪切速率έ大小成正比。

《食品物性学》期末复习考研笔记总结全版

《食品物性学》期末复习考研笔记总结全版

食品物性学第一章绪论 (2)第二章食品物理特性的基础 (2)2.1食品结构与物性(重点) (2)2.2食品形态(微观重点) (3)2.3食品中的水分(重点) (4)2.4植物性食品组织结构(了解) (4)2.5乳蛋类食品组织结构(了解) (6)2.6动物性食品组织结构(了解) (8)第三章食品物料的基本物理特征 (9)第四章食品的流变特性 (21)第五章食品质地学基础 (31)5.1食品质地概念及研究目的 (31)5.2食品质地的分类及研究方法 (31)5.3食品质地的评价术语 (33)5.4食品质地感官检验 (34)5.5质地的仪器测定 (39)5.6两者之间的关系 (40)第六章颗粒食品特性 (40)6.1概念及基本性质 (40)6.2堆积状态 (40)6.3振动特性 (40)6.4流动特性 (44)第七章食品的传热特性与测定 (46)7.1水和冰的热物理性质 (46)7.2食品材料热物理性质的测量 (47)7.3差示扫描热量测定和定量差失 (47)第八章食品色彩科学与光学性质 (48)8.1食品与色彩 (48)8.2颜色的光学基础 (48)8.3食品的光物性 (50)第九章食品电学特性 (53)9.1概述 (53)9.2基本概念 (55)9.3食品电特性的测定 (56)9.4食品电特性的应用 (56)第一章绪论1.2食品物性学研究的现状和发展1.3食品主要物理特性及应用1.3.1基本物理特性1.3.2力学特性1.食品的力学性质包括食品在力的作用下产生变形、振动、流动、破断等的规律,以及其与感官评价的关系等。

布拉班德粉质仪快速粘度分析仪(RVA)法国肖邦流变发酵测定仪质构仪(物性仪)1.3.3光学特性食品的光学性质指食品物质对光的吸收、反射透射及其对感官反应的性质。

CR-300色差计CS-210精密色差仪1.3.4热学特性DsC:差示扫描热量测定DAT定量差示热分析1.3.5电学特性食品的电学性质主要指:食品及其原料的导电特性、介电特性,以及其它电磁和物理特性。

食品物性学复习资料

食品物性学复习资料

食品物性学复习资料微观结构有序性:有结晶态、液晶态和玻璃态。

力学性质:粘性、粘弹性体等1.定义:流变学(Rheology)是研究材料的流动和变形的科学,它与物质的组织结构有密切关系。

食品流变学主要研究作用于食品的应力和由此产生的应变的规律,并用力、变形和时间的函数关系来表示2.食品流变学的研究目的①食品感官评价的重要内容,决定品质好坏,用食品流变仪测定法来代替感官评定法,定量地评定食品的品质、鉴定和预测顾客对某种食品是否满意。

②与食品的生化变化、变质情况密切相关。

③食品流变学实验可用于鉴别食品的原材料、中间产品,也可用于控制生产过程④流变学理论己经广泛应用于有关的工艺设计和设备设计。

第2章食品的主要形态与物理性质一、1、微观结构与作用力物质的结构:物质的组成单元(原子或分子)之间相互吸引和相互排斥的作用达到平衡时在空间的几何排列。

分子结构:分子内原子之间的几何排列聚集态结构:分子之间的几何排列2、高分子内原子间与分子间相互作用主价力:a.键合力包括:共价键、离子键、金属键次价力:b.范德华力(包括:静电力、诱导力、色散力) c.氢键 e.疏水键疏水相互作用是蛋白质折叠的主要驱动力。

同时也是维持蛋白质三级结构的重要因素3、高分子链结构与柔性高分子链之所以具有柔性的根本原因在于它含有许多可以内旋转的σ单键自由联结链:线形高分子链中含有成千上万个σ键。

如果主链上每个单键的内旋转都是完全自由的,则这种高分子链称为自由联结链。

柔性高分子链的理想状态◆如果高分子主链上没有单键,则分子中所有原子在空间的排布是确定的,即只存在一种构象,这种分子就是刚性分子。

◆如果高分子主链上虽有单键但数目不多,则这种分子所能采取的构象数也很有限,柔性不大柔性高分子链的外形呈椭球状。

随着分子的热运动,高分子链的构象不停地发生变化。

无规线团:通常把无规则地改变着构象的椭球状高分子二、聚集态结构与内聚能1、食品形态微观结构——按分子的聚集排列方式主要有三种类型:晶态:分子(或原子、离子)间的几何排列具有三维远程有序液态:分子间的几何排列只有近程有序(即在1-2分子层内排列有序),而远程无序气态:分子间的几何排列不但远程无序,近程也无序两种过渡态——玻璃态(无定形):分子间的几何排列只有近程有序,而无远程有序,即与液态分子排列相同液晶态:分子间几何排列相当有序,接近于晶态分子排列,但是具有一定的流动性(如动植物细胞膜和一定条件下的脂肪)——凝胶态:有一定尺寸范围的粒子或者高分子在另一种介质中构成的三维网络结构形态,或者说另一种介质(例如:水、空气)填充在网络结构中①粒子凝胶:具有相互吸引趋势的粒子随机发生碰撞形成粒子团,当这个粒子团再与另外的粒子团发生碰撞时又形成更大的粒子团,最后形成一定的结构形态.②聚合物凝胶:都是由细而长的线形高分子,通过共价键、氢键、盐桥、二硫键、微晶区域、缠绕等方式形成交联点,构成一定的网络结构形态2、内聚能:1mol的聚集体气化时所吸收的能量高分子链上的极性基团的极性越小,单位摩尔体积中的内聚能就越低,高分子链的柔软性就越好3、食品主要成分结构形态蛋白质:一级结构、二级结构、三级结构、四级结构脂肪:层状、六方形Ⅰ、六方形Ⅱ、立方碳水化合物:单螺旋结构:直链淀粉双螺旋结构:角叉菜胶P25 图2-33 蛋盒结构:海藻酸盐P27 图2-35三、食品中的水分1、水的基本物性1)H-O键间电荷的非对称分布使H-O键具有极性,这种极性使分子之间产生引力.2)由于每个水分子具有数目相等的氢键供体和受体,因此可以在三维空间形成多重氢键,形成氢键网络结构水的分子团——多孔隙构造准稳定系统——每个水分子在结构中稳定的时间仅在10-12s左右,在极短的时间内,于其平衡位置振动和排列,并不断有水分子脱离和加入某一个分子团,这也是水具有低黏度和较好流动性的根本原因2、水与离子、亲水溶质间的相互作用离子和有机分子的离子基团与水形成水-离子键,其键能虽然远小于共价键,但是却大于水分子间的氢键,使水分子的流动性下降例如:在淀粉糊中加入糖,糖与水的结合改变淀粉的糊化,使糊化和糊化后的老化(β化)速度减慢。

食品的力学性质

食品的力学性质
• • • • •
漆刷的速度 Estimate the velocity of the paint brush = 50 cm/sec 油漆的厚度 Estimate the thickness of the layer of paint being applied = y = 0.01 cm 剪切率计算Calculate shear rate = 50 cm/sec 0.01cm = 5,000 sec-1
由外部应力而产生的变形,如除去其应力,则物质恢复 原状,这种性质称为弹性(Elasticity)。
把这种可逆性变形称为弹性变形(elastic deformation),而非可逆性变形称为塑性变形(plastic deformation)。 流动主要表示液体和气体的性质。流动的难易与物质本 身具有的性质有关,把这种现象称为粘性(Viscosity)。 流动也视为一种非可逆性变形过程。
触变流动的特点:等温的溶胶和凝胶的可逆转换。
塑性流体、假塑性流体、胀性流体中多数具有触变性, 它们分别称为触变性塑性液体、触变性假塑性液体、触 变性胀性液体。
其流动曲线的特性表现为剪切应力的下降曲线,并 与上升曲线相比向左迁移。在图上表现为环状滞后曲 线。也就是说,用同一个σ值进行比较,曲线下降时 粘度低,上升时被破坏的结构并不因为应力的减少而 立即恢复原状,而是存在一种时间差。即所谓的触变 性是施加应力使其流体产生流动时,流体的流动性暂 时性增加。
(dynes)
A=Area cm2
Distance
Stationary Plate
*假定: 板的长度远大于板的间距。
剪切力(Shear Stress)
剪切率 (Shear Rate)
粘度
切变应力与切变速率
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
食品物性学
食品流变特性
姓 名:邢亚阁 西华大学生物工程学院
本章主要内容
第一节 概述 第二节 液体食品的流变性 第三节 固体/半固体食品的 流变性
第一节 概述
1 食品流变学的定义及研究目的
1.1 食品Βιβλιοθήκη 变学流变学(Rheology)是研究材料的流动和变 形的科学,它与物质的组织结构有密切关系。 食品流变学主要研究作用于食品的应力和由此 产生的应变的规律,并用力、变形和时间的函 数关系来表示。
剪切应变ε用它在
剪切应力作用下转过 的角度(弧度)来表示, 即ε=θ=dx/dy。则剪切 应变的速率为:
dx / dy dx / dt du
dt dt
dy dy
剪切应力σ=F/A
牛顿粘性定律:
(2) 粘性流体的分类及特点
• 理想流体: 粘度为零的流体 • 牛顿流体: 服从牛顿粘性定律的流体 • 非牛顿流体:不服从牛顿粘性定律的流体
分散体系的特点:1) 分散介质和分散相都以各自独立 的状态(非平衡)存在;2) 每个分散介质和分散相之间 都存在着接触面,整个分散体系的两相接触面面积很 大,体系处于不稳定状态。
按分散粒子的大小分为如下三种:
1)分子分散体系:分散的粒子半径小于10-7cm,相当于 单个分子或离子的大小。此时分散相与分散介质形 成均匀的一相。因此分子分散体系是一种单相体系。 与水的亲和力较强的化合物,如蔗糖溶于水后形成 的“真溶液”。
(5)在食品制作过程中利用调节中间产品的流变特 性方法来达到调节产品组织结构的目的。如通过面 团粘弹性测定了解面筋的网络形成。
第二节 液态食品的流变特性
5.2.1 粘性流体的流变学基础理论
(1)粘性及牛顿粘性定律
粘性是表现流体流动性质的指标,阻碍流体流动 的性质称为粘性。由于液体内部的液体层之间存在粘 性阻力,在垂直于流动方向就会形成速度梯度。
触变性流体的机理可以理解为随着剪切应力的增加, 粒子间结合的结构受到破坏,粘性减少。当作用力 停止时粒子间结合的构造逐渐恢复原样,但需要一 段时间。因此,剪切速率减少时的曲线与增加时的 曲线不重叠,形成了与流动时间有关的履历曲线(滞 后曲线)。
5.2.2 液态食品分散体系的流变特性
(1)食品分散体系的分类
按分散相与分散介质的聚集态分为:
液体食品主要指液体中分散有气体、液体或固体的 分散体系,分别称为泡沫、乳状液、溶胶或悬浮液。
2 食品流变学的研究对象和目的
研究对象:
1)农产品,如收获后的粮食、水果、蔬菜、肉、 蛋、乳、水产品。
2)经过加工的食品材料,如食用油、大米、面粉、 奶粉、冷鲜肉等。
3)经过进一步加工的半成品与成品食品,如面团、 馒头、面包、糕点、豆腐、果汁、面条、米饭等。
研究目的: (1)食品流变学应用于对食品的原材料、半产品及产 品的生产工艺过程和产品质量控制。
假塑性流体 胀塑性流体 塑性流体 触变性流体
k n 0 k n
0 n 1 1n
k—粘性常数;n—流动特性指数;σ0 — 屈服应力
假塑性流体 k n 0 n 1
胀塑性流体
1 n
塑性流体 0 k n
粘性流体的应力与应变的关系
σ 塑性流体(污水泥浆,巧克力浆)
σ= σ0 +kdu/dy
1 食品流变学的定义及研究目的
1.1 食品流变学
食品流变学的基础和核心是流体力学和 粘弹性理论,食品的流变特性与食品的 化学成分、分子构造、分子内结合、分 子间结合状态、分散状态及组织结构等 密切相关。
食品物质种类繁多,食品流变学把食品按形态 分成液态食品、半固态食品和固态食品。即把主要 具有流体性质的食品归属于液态食品;主要具有固 体性质的食品归属于固态食品;同时表现出固体性 质和流体性质的食品归属于半固态食品。
一般食品不仅含有固体成分,而且还含有水和 空气。食品属于分散系统,或者说属于非均质分散 系统,也称分散体系(胶体系统)。
所谓分散体系是指数微米以下,数纳米以上的 微粒子在气体、液体或固体中浮游悬浊(即分散)的 系统。在这一系统中,微粒子称为分散相,而气体、 液体或固体称为分散介质(也称连续相)。
5.2.2 液态食品分散体系的流变特性 (1)食品分散体系的分类
2)胶体分散体系:分散相粒子半径在10-7~10-5cm的 范围内,比单个分子大得多。分散相的每一粒子均 为由许多分子或离子组成的集合体。虽然用肉眼或 普通显微镜观察时体系呈透明状,与真溶液没有区 别,但实际上分散相与分散介质己并非为一个相, 存在着相界面。这种体系有时也简称为“溶胶”。
3)粗分散体系:分散相的粒子半径在10-5~10-3cm的 范围内,可用普通显微镜甚至肉眼都能分辨出的多 相体系,如悬浮液(泥浆)和乳状液(牛乳)。
(2)食品加工中许多操作直接与流变学性质有关, 如混合、搅拌、筛分、压榨、过滤、分离、粉碎、 整形、均质、输送、膨化、成型等。
(3)流变学理论己经广泛应用于有关的工艺设计和 设备设计。例如,泵送管路系统,放料装置及送料 装置的设计,乳化、雾化及浓缩工艺过程中的设计 等都要用到食品的流变特性值。
(4)用食品流变仪测定法来代替感官评定法,定量 评定食品的品质(鉴定)和预测顾客对某种食品是 否满意。
牛顿流体(所有气体,大多数液体)
τ=ηdu/dy
假(涨)塑性流体(高分子溶液,
涂料,蜂密,果浆,淀粉溶液)
τ= k(du/dy)n
du/dy
触变性流体
触变性流动是指当液体在振动、搅拌、摇动时 粘性减少、流动性增加,但静置一段时间后,又变得 不易流动的现象。
例如,番茄酱、蛋黄酱等在容器中放置一段时 间后倾倒时则不易流动,但将容器猛烈摇动或用力 搅拌即可变得容易流动。再长时间放置时又会变得 不易流动。
食品流变学在食品物性学中占有非常重要的地位。 食品流变性质对食品的运输、传送、加工工艺以及 人在咀嚼食品时的满足感等都起非常重要的作用。 特别是在食品的烹饪、加工过程中,通过对流变性 质的研究不仅能够了解食品组织结构的变化情况, 而且还可以找出与加工过程有关的力学性质的变化 规律,从而可以控制产品的质量,鉴别食品的优劣, 还可以为工艺及设备的设计提供科学依据。
相关文档
最新文档