第2章 半导体二极管及其基本应用电路

合集下载

第二讲 半导体二极管及应用

第二讲 半导体二极管及应用

导通:u 导通 D=Uon+ID×rD 截止: 截止 iD=0
2、交流小信
Q
UD
ID
id
+
id
+ -
uD =UD +ud
uD
-
rd
ud
交流小信号模型
当在二极管的工作点上叠加有低频交流小信号电压ud时, 只要工作点选择合适, 足够小,可将Q点附近的伏安特性 只要工作点选择合适,且ud足够小,可将 点附近的伏安特性 线性化), 曲线看成直线(线性化 曲线看成直线 线性化 ,则交流电压与电流之间的关系可用一 来近似。 个线性电阻rd来近似。 rd ——工作点处的交流电阻。 rd = UT / ID 工作点处的交流电阻。 ★注意:小信号模型只能反映交流电压和电流之间的关系, 注意:小信号模型只能反映交流电压和电流之间的关系, 不能反映总的电压与电流的关系。 不能反映总的电压与电流的关系。
3、二极管的伏安特性曲线与材料和温度的关系: 二极管的伏安特性曲线与材料和温度的关系: iD 锗 硅 iD 80 20
0
uD
0
uD
材 料 硅 锗
导通 反向饱 开启 电压 压降 和电流 0.5V 0.6~0.8V <1A 0.1V 0.2~0.3V 几十 几十A
温度升高, 增大(1倍 ° 温度升高, IS增大 倍/10°C) 下降, 温度升高, 温度升高,Uon下降, 正向曲线左移2~2.5mV/ °C。 正向曲线左移 。
IZ
电击穿有两种: 电击穿有两种: 雪崩击穿 齐纳击穿
击穿 低掺杂的 高掺杂的 结 结 原因 PN结, PN结,价 价电子被 电子被场 碰撞电离 致激发 如果反向击穿时,电流过大, 如果反向击穿时,电流过大,使 >6V <4V 击穿 管子消耗的平均功率超过二极管 电压 容许值,会使管子过热而烧毁, 容许值,会使管子过热而烧毁, >0 <0 温度 为不可逆击穿。 称为热击穿,为不可逆击穿。 电击穿可利用,热击穿需避免。 *电击穿可利用,热击穿需避免。 系数

第二章 半导体二极管及其应用

第二章  半导体二极管及其应用
ui R ui t VD1 UREF=5V VD2 uo uo UREF+0.7V 0 −(UREF+0.7V) t
0
图2-12 双向限幅电路
开关作用 电子开关电路。在自动化控制电路和数字电路中有广泛地应 用。电子开关比机械开关的开关速度快得多,可达一秒钟上万 次,且无触点的颤动引起的火花,安全可靠。 图2-13所示的两个电路。
我们将在下一节详细讨论。
2. 检波 通常,无线电波中含有复杂的多种频率成分, 调幅收音机必须从中挑选出需要的音频信号, 为此要设置检波电路。半导体二极管检波电 路如图2-11所示。其中VD是检波二极管,C1 是高频滤波电容,R是检波电路负载电阻, C2是与下一级电路的耦合电容。

ui 调频 信号 VD C1
N型半导体和 P 型半导体
在本征半导体中掺入微量的杂质(某种元素), 形成杂质半导体。 在常温下即可 变为自由电子 掺入五价元素 掺杂后自由电子数目 Si Si 多 余 大量增加,自由电子导电 电 成为这种半导体的主要导 S p+ Si 子 电方式,称为电子半导体 i 动画 或N型半导体。 失去一个 电子变为 正离子 磷原子 在N 型半导体中自由电子 是多数载流子,空穴是少数 载流子。
二极管电路定性分析
导通 截止 若二极管是理想的,正向导通时正向管压降为零, 反向截止时二极管相当于断开。
定性分析:判断二极管的工作状态
否则,正向管压降
硅0.6~0.7V 锗0.2~0.3V
分析方法:将二极管断开,分析二极管两端电位 的高低或所加电压UD的正负。 若 V阳 >V阴或 UD为正( 正向偏置 ),二极管导通 若 V阳 <V阴或 UD为负( 反向偏置 ),二极管截止
N型半导体和 P 型半导体

北京交通大学模拟电子技术习题及解答第二章 半导体二极管及其基本电路

北京交通大学模拟电子技术习题及解答第二章 半导体二极管及其基本电路

第二章半导体二极管及其基本电路2-1.填空(1)N型半导体是在本征半导体中掺入;P型半导体是在本征半导体中掺入。

(2)当温度升高时,二极管的反向饱和电流会。

(3)PN结的结电容包括和。

(4)晶体管的三个工作区分别是、和。

在放大电路中,晶体管通常工作在区。

(5)结型场效应管工作在恒流区时,其栅-源间所加电压应该。

(正偏、反偏)答案:(1)五价元素;三价元素;(2)增大;(3)势垒电容和扩散电容;(4)放大区、截止区和饱和区;放大区;(5)反偏。

2-2.判断下列说法正确与否。

(1)本征半导体温度升高后,两种载流子浓度仍然相等。

()(2)P型半导体带正电,N型半导体带负电。

()(3)结型场效应管外加的栅-源电压应使栅-源间的耗尽层承受反向电压,才能保证R GS大的特点。

()(4)只要在稳压管两端加反向电压就能起稳压作用。

()(5)晶体管工作在饱和状态时发射极没有电流流过。

()(6)在N型半导体中如果掺入足够量的三价元素,可将其改型为P型半导体。

()(7)PN结在无光照、无外加电压时,结电流为零。

()(8)若耗尽型N沟道MOS场效应管的U GS大于零,则其输入电阻会明显减小。

()答案:(1)对;温度升高后,载流子浓度会增加,但是对于本征半导体来讲,电子和空穴的数量始终是相等的。

(2)错;对于P型半导体或N型半导体在没有形成PN结时,处于电中性的状态。

(3)对;结型场效应管在栅源之间没有绝缘层,所以外加的栅-源电压应使栅-源间的耗尽层承受反向电压,才能保证R GS大的特点。

(4)错;稳压管要进入稳压工作状态两端加反向电压必须达到稳压值。

(5)错;晶体管工作在饱和状态和放大状态时发射极有电流流过,只有在截止状态时没有电流流过。

(6)对;N型半导体中掺入足够量的三价元素,不但可复合原先掺入的五价元素,而且可使空穴成为多数载流子,从而形成P型半导体。

(7)对;PN结在无光照、无外加电压时,处于动态平衡状态,扩散电流和漂移电流相等。

半导体二极管及其基本应用

半导体二极管及其基本应用

半导体二极管及其基本应用1. 二极管是什么?说到二极管,大家可能会想,“这玩意儿是什么?吃的吗?”其实,二极管是个小小的电子元件,但它的作用可大得很!简而言之,二极管就像个单行道,电流只能朝一个方向走,通俗点说,它让电流变得有规矩。

不论是在家里的电子产品里,还是在我们身边的各种科技设备中,二极管几乎无处不在。

听起来神秘,其实它在我们生活中默默无闻地工作着。

那么,二极管是怎么工作的呢?想象一下,一个人站在一个门口,门只能向一个方向打开,外面的人想进来,就得从这扇门走,反之则不行。

这就是二极管的基本原理。

它能让电流顺利通过,但一旦反向,它就会坚决拒绝,像个守门员一样把电流挡在外面。

1.1 二极管的类型当然,二极管可不是单一品种,市场上有各种各样的二极管,就像水果摊上的水果一样多。

例如,有普通的硅二极管,广泛应用于各种电路中;还有整流二极管,专门负责把交流电转换成直流电,就像把河水引入小渠里,确保水流顺畅。

再比如发光二极管(LED),它不仅能导电,还能发光,真是个“能发光的好家伙”,让我们的小夜灯亮起来,简直是黑夜里的小明星。

1.2 二极管的特点谈到二极管的特点,首先要提的是它的“单向导电性”。

就像一个不喜欢麻烦的人,只有在合适的情况下才会敞开心扉。

其次,二极管的反向击穿电压也很有意思。

当电压达到某个临界值时,二极管就像忍不住了,突然间放开了电流,虽然这在大多数情况下不是好事,但有时候却能拯救一些电路的生命。

还有,就是它的“恢复时间”,二极管在电流切换时的表现,也决定了它的应用场合。

2. 二极管的基本应用说了这么多,二极管到底有什么用呢?这可是个大问题,接下来我们就来聊聊它的一些基本应用。

2.1 整流电路首先要提的就是整流电路。

整流电路的任务就是把交流电转换成直流电。

你知道吗,家里的电器大部分都需要直流电,比如手机充电器、电脑等。

如果没有二极管,交流电就会让这些电器“崩溃”,简直就是电器界的“天塌下来了”。

二极管原理及其基本电路

二极管原理及其基本电路

二极管原理及其基本电路二极管是一种最简单的半导体器件,它具有非常重要的功能和应用。

本文将介绍二极管的原理以及其基本电路。

一、二极管的原理二极管是由一种带有p型半导体和n型半导体的材料组成的。

在p-n 结的区域内,因为半导体的材料特性,会形成一个电势垒。

当外加电压的极性与电势垒形成的方向相反时,电势垒将变得更大,称为反向偏置;当外加电压的极性与电势垒形成的方向一致时,电势垒将变得更小,称为正向偏置。

在二极管的工作中,主要有以下几个重要的特性。

1.正向电压特性:当二极管处于正向偏置状态时,在两端加上正向电压时,电势垒逐渐缩小,直到消失。

在这个过程中,二极管的导电性变得很好。

正向电压越大,二极管导通越好。

2.反向电压特性:当二极管处于反向偏置状态时,在两端加上反向电压时,电势垒逐渐增加。

当反向电压超过反向击穿电压时,二极管就会发生击穿,电流急剧增大,此时二极管就会损坏。

3.导通和截止特性:当二极管处于正向偏置状态时,正向电压不超过一定限制时,二极管会导通。

当正向电压超过这个限制时,二极管截止,不导通。

而当二极管处于反向偏置状态时,无论外加电压的大小,其表现都是开路状态,不导通。

二、二极管的基本电路二极管广泛地应用于各种电路中,下面介绍几个常见的二极管基本电路。

1.正向电压特性测试电路:这是一个测试二极管正向电压特性的电路。

它由一个电压源、一个限流电阻和一个二极管组成。

通过改变电压源的电压,可以测量二极管在不同电压下的电流。

当电压逐渐增加时,电流也逐渐增加,直到达到二极管的最大电流。

2.整流电路:整流电路主要用于将交流电转换为直流电。

它由一个二极管和负载组成。

当二极管处于正向偏置状态时,它允许正向电流通过,从而将正半周期的交流信号变为直流信号。

而当二极管处于反向偏置状态时,它阻止反向电流通过。

3.限流电路:限流电路主要用于限制电流的大小。

它由一个电压源、一个电阻和一个二极管组成。

二极管起到了稳压和限流的作用。

第二章 半导体器件基础

第二章 半导体器件基础

计算机电路基础第二章半导体器件基础上海第二工业大学冯涛编写上海第二工业大学冯涛编写第二章半导体器件基础2.1 半导体基础知识2.2 PN结与半导体二极管2.3 半导体三极管2.4 场效应管上海第二工业大学冯涛编写章节要求和学习任务PN结的形成和单向导电性二极管的伏安特性半导体三极管的基本结构、工作原理三极管的伏安特性MOS场效应管的结构、工作原理和伏安特性曲线结型场效应管的结构、工作原理和伏安特性曲线上海第二工业大学冯涛编写2.1 半导体基础知识半导体基础知识导体:自然界中很容易导电的物质称为导体,金属一般都是导体。

绝缘体:有的物质几乎不导电,称为绝缘体,如橡皮、陶瓷、塑料和石英。

导电能力介于导体与绝缘体之间的物质,称为半导体。

半导体主要有硅(Si)、锗(Ge)、砷化镓(GaAs)等。

上海第二工业大学冯涛编写2.1 半导体基础知识硅、锗等半导体材料之所以得到广泛的应用,主要是因为它们的导电能力具有一些特殊的方面。

1、热敏性:半导体的电阻率随温度升高而显著减小。

常用于检测温度的变化。

对其他工作性能有不利的影响。

2、光敏性:在无光照时电阻率很高,但一有光照电阻率则显著下降。

利用这个特性可以制成光敏元件。

3、杂敏性:在纯净的半导体中加入杂质,导电能力猛增几万倍至百万倍。

利用这些特性可以制造出具有不同性能用途的半导体器件。

上海第二工业大学冯涛编写2.1 半导体基础知识本征半导体(完全纯净的、结构完整的半导体晶体。

) 点阵结构:每个原子周围有四个相邻的原子,原子之间通过共价键紧密结合在一起。

原子最外层的价电子不仅围绕…两个相邻原子共用一对电子。

(a)点阵结构(b)共价键结构上海第二工业大学冯涛编写上海第二工业大学冯涛编写由于热激发而产生的自由电子自由电子移走后而留下的空穴共价键共有价电子所形成的束缚作用共价键结构、自由电子、空穴在电子技术中,将空穴看成带正电荷的载流子。

2.1 半导体基础知识共价键中的两个电子被紧紧束缚在共价键中,称为束缚电子,常温下束缚电子很难脱离共价键成为自由电子,因此本征半导体中的自由电子很少,所以本征半导体的导电能力很弱。

半导体二极管及其应用课件

半导体二极管及其应用课件
在同一片半导体基片上,分别制造P 型半导体和N 型半导体,经过载流子的扩散,在它们的交界面处就形成了PN 结。
*
P型半导体






















N型半导体
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
扩散运动
内电场E
漂移运动
扩散的结果是使空间电荷区逐渐加宽,空间电荷区越宽。
内电场越强,就使漂移运动越强,而漂移使空间电荷区变薄。
RL
ui
uo
ui
uo
t
t
二极管的应用举例 二极管半波整流
§2.4 稳压二极管
U
I
IZ
IZmax
UZ
IZ
稳压误差
曲线越陡,电压越稳定。
+
-
UZ
动态电阻:
rz越小,稳压性能越好
*
(4)稳定电流IZ、最大、最小稳定电流Izmax、Izmin。
(5)最大允许功耗
稳压二极管的参数:
(1)稳定电压 UZ
*
扩散电容示意图
当外加正向电压 不同时,扩散电流即 外电路电流的大小也 就不同。所以PN结两 侧堆积的多子的浓度 梯度分布也不同,这 就相当电容的充放电 过程。

(完整版)模拟电子技术基础--胡宴如-自测题答案

(完整版)模拟电子技术基础--胡宴如-自测题答案

模拟电子技术胡宴如(第3版)自测题第1章半导体二极管及其基本应用1.1 填空题1.半导体中有空穴和自由电子两种载流子参与导电。

2.本征半导体中,若掺入微量的五价元素,则形成N 型半导体,其多数载流子是电子;若掺入微量的三价元素,则形成P型半导体,其多数载流子是空穴。

3.PN结在正偏时导通反偏时截止,这种特性称为单向导电性。

4.当温度升高时,二极管的反向饱和电流将增大,正向压降将减小。

5.整流电路是利用二极管的单向导电性,将交流电变为单向脉动的直流电。

稳压二极管是利用二极管的反向击穿特性实现稳压的。

6.发光二极管是一种通以正向电流就会发光的二极管。

7.光电二极管能将光信号转变为电信号,它工作时需加反向偏置电压。

8.测得某二极管的正向电流为1 mA,正向压降为0.65 V,该二极管的直流电阻等于650 Ω,交流电阻等于26 Ω。

1.2 单选题1.杂质半导体中,多数载流子的浓度主要取决于( C )。

A.温度B.掺杂工艺C.掺杂浓度D.晶格缺陷2.PN结形成后,空间电荷区由(D )构成。

A.价电子B.自由电子C.空穴D.杂质离子3.硅二极管的反向电流很小,其大小随反向电压的增大而(B )。

A.减小B.基本不变C.增大4.流过二极管的正向电流增大,其直流电阻将( C )。

A.增大B.基本不变C.减小5.变容二极管在电路中主要用作(D )。

、A.整流B.稳压C.发光D.可变电容器1.3 是非题1.在N型半导体中如果掺人足够量的三价元素,可将其改型为P型半导体。

(√)2.因为N型半导体的多子是自由电子,所以它带负电。

(×)3.二极管在工作电流大于最大整流电流I F时会损坏。

(×)4.只要稳压二极管两端加反向电压就能起稳压作用。

(×)1.4 分析计算题1.电路如图T1.1所示,设二极管的导通电压U D(on)=0.7V,试写出各电路的输出电压Uo值。

解:(a)二极管正向导通,所以输出电压U0=(6—0.7)V=5.3 V。

(二极管及其应用)

(二极管及其应用)

t t
u2负半周时: D2、D4 导通, D1 、D3截止
+
220V u1
+
D4
u2 3
+ D3
2
4
D1
1
D2
+
+
RL u L
-
+
u2
t
uL
t
(3)主要参数:
输出电压平均值:Uo=0.9u2 输出电流平均值:Io= Uo/Ro=0.9 u2 / RL
(4) 最高工作频率
是二极管工作fM的上限频率。它主要由PN结的结电
f
容大小决定。信号频率超过此值时,二极管的单向导电 M性将变差。应该指出,由于制造工艺的限制,即使是同
一型号的器件,其参数的离散性也很大,因此,手册上
常常给出参数的范围。另一方面,器件手册上给出的参
数是在一定测试条件下测得的,若条件改变,相应的参 数值也会变化。
内电场 E
EW
R
(2) 加反向电压——电源正极接N区,负极接P区
外电场的方向与内电场方向相同。 外电场加强内电场 →耗尽层变宽 →漂移运动>扩散运动
→少子漂移形成反向电流I R
P
空间电 荷区
N
在一定的温度- 下- - -
++ ++
,由本征激发产-生的- - -
++ ++
少子浓度是一定的, 故IR基本上与外-加反- - -
本征激发
+4 空穴 +4
+4
+4
+4 +4
+4
+4
自由电子

第二章 半导体二极管及其应用电路

第二章 半导体二极管及其应用电路
由于半导体的电阻率对温度特别灵敏,利用这种特性就可以做 成各种热敏元件。
2.光敏特性 许多半导体受到光照辐射,电阻率下降。利
用这种特性可制成各种光电元件。
3.掺杂特性 在纯净的半导体中掺入微量的某种杂质后,
它的导电能力就可增加几十万甚至几百万倍。利用这种特性就 可制成各种不同用途的半导体器件,如半导体二极管、三极管 晶闸管、场效应管等。
直流工作电流 I D
ID
US1 U F RS(6 Nhomakorabea0.7)V 1k
5.3mA
二极管的动态电阻
26mV 26mV
rd
ID
4.9
5.3mA
再令 US1 0 ,利用二极管的微变模型,求出流过二极管的交
流电流 id
id
us2 RD rd
0.2sin 3140 tV (1 4.9 10 3 )kΩ
2. P型半导体
在四价晶体中掺入微量的三价元素,这种杂质半导体中, 空穴浓度远大于自由电子浓度,空穴为多子,自由电子为少子。 这种半导体的导电主要依靠空穴,称其为P型半导体(P-type semiconductor)或空穴型半导体。
2021/3/2
7
需要指出的是:
不论是N型还是P型半导体,整个晶体仍然呈中性。
描述稳压管特性的主要参数为稳定电压值 U Z 和
最大稳定电流 2021/3/2
I Zmax。
26
参数简介:
是指稳压管正常工作时的额定电压值。由
稳定电压U Z : 于半导体生产的离散性,手册中的往往给出的
是一个电压范围值。
最大稳定电
是稳压管的最大允许工作电流。在使用时,
流 I Zmax:
实际工作电流不得超过该值,超过此值时,稳压 管将出现热击穿而损坏。

半导体二极管及其应用电路

半导体二极管及其应用电路
半导体二极管及其应用电路
1.1.2 PN结
(1)雪崩击穿
当反向电压足够高时(一般U>6V) PN结中内电场较强,使参加漂移的载 流子加速,与中性原子相碰,使之价电 子受激发产生新的电子空穴对,又被加 速,而形成连锁反应,使载流子剧增, 反向电流骤增。这种形式的击穿称为雪 崩击穿.
半导体二极管及其应用电路
1.1.2 PN结
反偏时由于PN结变厚, 不能导电的区 域增大,因此,PN结呈现出的反向电阻很 大,流过的反向电流很小,基本为0.
因此, PN结反偏截止.
※PN结的单向导电性: 正偏导通,反偏截止
半导体二极管及其应用电路
1.1.2 PN结
三.PN结的反向击穿特性
反向击穿:当PN结的反偏电压增加到某一 数值时,反向电流急剧增大的现象。 PN结的击穿现象有下列两类: (1) 热击穿:不可逆,应避免 (2) 电击穿:可逆,又分为雪崩击穿和齐纳 击穿.
各用一个价电子组成,称为束缚电子。
价电子
+4



4
4
4
共价键的

个价电子



4
4
4



4
4
4
半导体二极管及其应用电路
1.1.1 半导体的导电特性
(2)本征激发现象
当温度升高或受光照射时,共价键中的价电子获
得足够能量,从共价键中挣脱出来,变成自由电 子;同时在原共价键的相应位置上留下一个空位, 这个空位称为空穴,电子-空穴对就形成了.
半导体二极管及其应用电路
1.1.1 半导体的导电特性
三、杂质半导体
在本征半导体中加入微量杂质,可使其导电性 能显著改变。根据掺入杂质的性质不同,杂质半 导体分为两类:电子型(N型)半导体和空穴型 (P型)半导体。

1-半导体基础知识及二极管

1-半导体基础知识及二极管

2-5
元素周 期表
2-6
1、电子半导(Negative) ——N型半导体 、电子半导 型半导体 +5价元素磷 、砷(As )、锑(Sb)等在硅晶体中 价元素磷(P)、 价元素磷 、 等在硅晶体中 给出一个多余电子,故叫施主原子。 给出一个多余电子,故叫施主原子。 电子数目 = 空穴数 + 正离子数
空穴 +4
+4 自由电子
+4
+4
+4
自由电子 空穴
挣脱共价键的束缚自由活动的电子 束缚电子成为自由电子后, 束缚电子成为自由电子后,在共 价键中所留的空位。 价键中所留的空位。
2-4
二、杂质半导体
电子半导体 (Negative) 杂质半导体 空穴半导体 (Positive ) 加+3价元素硼 价元素硼 (B )、铝(Al )、铟 、 、 (In)、钙(Ga ) 、 价元素磷(P)、 加+5价元素磷 、 价元素磷 砷(As )、锑(Sb) 、
2AP 2CP
2CZ54 (c)
2CZ13
2CZ30
二极管外形
2-22
二、二极管的V—I特性 二极管的 特性
二极管两端加正向电压时,就产生 二极管两端加正向电压时 就产生 二极管两端加上反向电压时,在开 当正向电压超过门槛电压时,正向 二极管两端加上反向电压时 在开 当正向电压超过门槛电压时 正向 二极管反向电压加到一定数值时, 二极管反向电压加到一定数值时 正向电流,当正向电压较小时 当正向电压较小时,正向 正向电流 当正向电压较小时 正向 iV / mA 始很大范围内,二极管相当于非常 电流就会急剧地增大,二极管呈现 始很大范围内 二极管相当于非常 电流就会急剧地增大 二极管呈现 反向电流急剧增大,这种现象称 反向电流急剧增大 这种现象称 电流极小(几乎为零) 这一部分 电流极小(几乎为零),这一部分 大的电阻,反向电流很小 。 这时 很小电阻而处于导通状态。 反向电流很小,且不随反 大的电阻 反向电流很小 且不随反 很小电阻而处于导通状态 为反向击穿。 为反向击穿。此时对应的电压称 B′ 称为死区,相应的 相应的A(A′)点的电压称 称为死区 相应的 点的电压称 15 向电压而变化。 用U 表示 如图 硅管的正向导通压降约为0.6~0.7V, 向电压而变化。此时的电流称之为 硅管的正向导通压降约为 为反向击穿电压,用 BR表示,如图 为反向击穿电压 为死区电压或门槛电压(也称阈值 为死区电压或门槛电压 也称阈值 反向饱和电流IR 。如图中 ( OC′) 锗管约为0.2~0.3V,如图中 见图中OC( 如图中AB(A′B′) 反向饱和电流 段,见图中 锗管约为 ) 中CD(C′D′)段 见图中 电压),硅管约为 硅管约为0.5V,锗管约为 锗管约为0.1V, 10 电压 硅管约为 锗管约为 段。 段。 如图中OA(OA′)段。 如图中 段 5

半导体二极管及其基本应用电路

半导体二极管及其基本应用电路

半导体二极管及其基本应用电路1.1 PN结的基本知识1.1.1 N型半导体和P型半导体在物理学中已知,常用的四价元素硅和锗等纯净半导体(称本征半导体)中的载流子,为自由电子(带负电荷)和空穴(带正电荷),是在常温下激发出来的,(称为热激发或本征激发),其数量很少,故导电能力微弱,介于导体和绝缘体之间。

在本征半导体中,自由电子和空穴总是成对出现,因此两种载流子的浓度是相等的。

本征半导体中的载流子浓度除了与半导体材料的性质有关外,还与温度密切相关,而且随着温度的升高基本上按指数规律增加。

所以,本征载流子浓度对温度十分敏感。

在本征半导体桂或锗中渗入微量五价元素,如磷或砷,(称为杂质)等,可使自由电子的浓度大大增加,自由电子成为多数载流子,(简称多子),空穴成为少数载流子(简称少子)。

这种以电子为导电为主的半导体成为N型半导体。

由于离子不能移动,故不能参与导电,整体半导体仍然呈电中性。

在本征半导体硅或锗中渗入微量三价元素杂质,如硼或铟等,则空穴浓度大大增加,空穴成为多子,而电子成为少子。

这种以空穴为主的半导体成为P型半导体。

N型半导体和P型半导体统称为杂质半导体,掺杂后半导体的导电能力将显著增加,有理论计算可知,在本征半导体中掺入百分之一的杂质,可使载流子浓度增加近一万倍。

在杂质半导体中,多子的浓度主要取决于杂质的含量;少子的浓度主要与本征激发有关,如前所述,他对温度的变化非常敏感,因此,温度是影响半导体器件性能的一个重要因素。

1.1.2 PN结的形成若在一种类型杂质半导体的基片上,用特定的掺杂工艺加入另一种类型杂质元素,这样在所形成的P型半导体和N 型半导体的交界两侧,P区的空穴(多子)和N区的电子(多子)浓度远大于另一区的同类少子浓度,因而多子通过交界处扩散各自向对方运动,这种由于浓度差而引起的载流子运动成为扩散运动。

载流子扩散运动的结果是使电子和空穴复合载流子消失,在交界面N区一侧失去电子而留下正离子,P区一侧失去空穴而留下负离子。

半导体二极管及其应用电路

半导体二极管及其应用电路

1.4.2半导体二极管 1. 二极管的分类
二极管其主要特性是单向导电性。二极管的种类繁 多,按用途分为整流、检波、稳压、阻尼、开关、发光和 光敏二极管等;按采用的材料的不同可分为锗二极管、硅 二极管和砷化镓二极管等;按结构的不同又可分为点接触 和面接触二极管;按工作原理分有隧道二极管、变容二极 管、雪崩二极管、双基极二极管等。
反之若测出来的电阻约几十千欧至几百千欧, 则黑表笔所接触的电极为二极管的负极,红表笔 所接触的电极为二极管的正极。
如果,正反向电阻值均较小,正向电阻低于 一千欧,而反向电阻只有几十千欧,其材料为锗 材料。如果,正反向电阻值均较大,正向电阻大 于一千欧,反向电阻大于几百千欧甚至为无穷大, 其材料为硅材料。
第三部分
符号
意义
符号
意义
A
N型,锗材料
B
P型,锗材料
C
N型,硅材料
D
P型,硅材料
A
PNP型,锗材料
B
NPN型,锗材料
C
PNP型,硅材料
D
NPN型,硅材料
E
化合物材料
P
普通管
V
微波管
W 稳压管
C
参量管
Z
整流器
L
整流堆
S
隧道管
N
阻尼管
U
光电器件
K
开关管
X
低频小功率管(fα< 3MHz, Pc<1W)
G
高频小功率管(fα≥3MHz,Pc<1W)
1.4 半导体器件
1.4.1 半导体器件的命名方法 1.国产半导体器件的命名方法
半导体器件型号由五个部分组成,前三个部分 的符号意义见表1.10所示。第四部分是数字表示 器件的序号,第五部分是用汉语拼音字母表示规 格号。

半导体二极管的基本原理及应用

半导体二极管的基本原理及应用

半导体二极管的基本原理及应用半导体二极管是一种最简单的电子器件,它在现代电子技术中起着至关重要的作用。

本文将介绍半导体二极管的基本原理、工作方式以及常见的应用。

1. 基本原理半导体二极管由N型半导体和P型半导体组成,其中N型半导体富含自由电子,而P型半导体则富含空穴。

当两种半导体材料通过P-N结(P-N Junction)连接时,便形成了一个二极管。

P-N结的形成是通过掺杂过程实现的,也即将掺杂少量的杂质元素(如硼、磷等)加入到纯净的半导体材料中。

半导体二极管正常工作时,其中的P区域称为“阳极”或“正极”,而N区域则称为“阴极”或“负极”。

在正向偏置情况下,即阳极电压高于阴极,电子从N区域进入P区域,而空穴从P区域进入N区域。

这使得电流流过二极管,形成正向导通。

相反,在反向偏置情况下,即阳极电压低于阴极,由于P-N结的电子云和空穴云相互吸引,电流被阻止,二极管呈现高阻抗状态,称为反向截止。

2. 工作方式半导体二极管具有直流和交流两种工作方式。

在直流工作中,二极管起到整流器的作用,将交流信号转化为直流信号。

在正向偏置时,直流电流通过二极管,而在反向偏置时,几乎没有电流通过。

这一特性使得二极管非常适合用于电源电路的整流器。

在交流工作中,二极管被用作开关或者调制器件。

通过正向偏置或反向偏置,可以实现二极管的导通和截止。

当二极管处于导通状态时,信号可以流过,而在截止状态时,信号被阻断。

这使得二极管在数字与模拟信号处理系统中发挥重要作用,例如在计算机中的逻辑门电路和通信系统中的调制解调器。

3. 应用领域半导体二极管广泛应用于各种电子设备和领域,下面是几个典型的应用示例:3.1 整流器我们在家庭中常用的电源适配器和电池充电器中常会见到二极管的身影。

在这些设备中,二极管被用作整流器,将交流电转换为直流电,以供电子器件正常工作。

由于二极管具有单向导通特性,可以保证电流仅在一个方向上流动,从而实现直流电的获取。

3.2 发光二极管(LED)发光二极管(LED)是一种将电能转换为光能的电子器件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章 半导体二极管及其基本应用电路
2.1 引言 2.2 半导体基础知识 2.3 PN结 2.4 半导体二极管 2.5 稳压二极管 2.6 其他类型二极管
2.1 引言
1.杂质半导体的导电性能强于本征半导体吗?为什么温 度能够影响半导体的导电性?
2.PN结为什么具有单向导电性?当温度升高时,PN结 的伏安特性曲线如何变化?
共 价
的原子结构为共价 键
+4
+4
价 电 子
半导 体不导电,如同绝缘体。
+4
+4
+4
本征半导体结构示意图
3. 两种载流子
若 T ,将有少数价 电子克服共价键的束缚成 为自由电子,在原来的共 价 键 中 留 下 一 个 空 位 —— 空穴。
自由电子和空穴使本 征半导体具有导电能力, 但很微弱。
电子为少数载流子。
+4
+4
+4
P 型半导体
说明:
1. 掺入杂质的浓度决定多数载流子浓度;温度决 定少数载流子的浓度。
2. 杂质半导体载流子的数目要远远高于本征半导 体,因而其导电能力大大改善。
3. 杂质半导体总体上保持电中性。
4. 杂质半导体的表示方法如下图所示。
(a)N 型半导体
(b) P 型半导体
➢扩 散 运 动 形成空间电
耗尽层
P
空间电荷区
N
荷区
—— PN 结,耗 尽层。
➢空间电荷区产生内电场
空间电荷区正负离子之间电位差 Uho —— 电位壁垒; —— 内电场;内电场阻止多子的扩散 —— 阻挡层。
➢漂移运动 内电场有利 于少子运动—漂 移。
少子的运动 与多子运动方向 相反
阻挡层
P
空间电荷区
3.半导体二极管的理想模型、恒压降模型、折线化模型 和小信号模型各适用于什么场合?
4.稳压二极管是利用了PN结的什么特性而制作的?在稳 压二极管稳压电路中限流电阻起什么作用?
5.发光二极管、光电二极管、肖特基二极管、变容二极 管的工作原理如何?它们适用于什么场合?
2.2 半导体基础知识
2.2.1 本征半导体
60
40
正向特性
20
–50 –25
反 向
0 0.5 1.0 u / V 击穿电–压0.002
半导体的导电机理不同于其它物质,所以它 具有不同于其它物质的特点。例如:
当受外界热和光的作用时,
它的导电能力明显变化。
光敏器件
往纯净的半导体中掺入某些杂质, 会使它的导电能力明显改变。
二极管
2. 共价键结构
完全纯净的、不含其他杂质且具有晶体结构的半导体
称为本征半导体
+4
+4
+4
将硅或锗材料提纯
便形成单晶体,它
杂质半导体的的简化表示法
2.3 PN结
在一块半导体单晶上一侧掺杂成为 P 型半导体,另 一侧掺杂成为 N 型半导体,两个区域的交界处就形成了 一个特殊的薄层,称为 PN 结。
1. PN 结的形成
P
PN结
N
PN 结的形成
PN 结中载流子的运动
➢ 扩散运动
P
N
电子和空穴
浓度差形成多数
载流子的扩散运 动。
常用的 5 价杂质元素有磷、锑、砷等。
本征半导体掺入 5 价元素后,原来晶体中的某些 硅原子将被杂质原子代替。杂质原子最外层有 5 个价 电子,其中 4 个与硅构成共价键,多余一个电子只受 自身原子核吸引,在室温下即可成为自由电子。
自由电子浓度远大于空穴的浓度。 电子称为多数载流子(简称多子), 空穴称为少数载流子(简称少子)。
N
内电场 Uho
➢扩散与漂移的动态平衡 扩散运动使空间电荷区增大,扩散电流逐渐减小;
随着内电场的增强,漂移运动逐渐增加;
当扩散电流与漂移电流相等时,PN 结总的电流等 于零,空间电荷区的宽度达到稳定。
即扩散运动与漂移运动达到动态平衡。
P
N
对称结
不对称结
2.3.2 PN 结的单向导电性
1. PN结外加正向电压
5 价杂质原子称为施主原子。
+4
+4
+4
自由电子
+4
+45
+4
施主原子
+4
+4
+4
N 型半导体
2. P 型半导体
在硅或锗的晶体中掺入少量的 3 价杂质元素,如 硼、镓、铟等,即构成 P 型半导体。
+4
+4
+4
3 价杂质原子称为
空穴
受主原子。
+4
+34
+4 受主
空穴浓度多于电子浓
原子
度。空穴为多数载流子,
空穴可看成带正电的 载流子。
T
+4
+4
空穴
+4
+4
+4
自由电子 +4
+4
+4
+4
本征半导体中的 自由电子和空穴
2.2.2 杂质半导体
杂质半导体有两种
N 型半导体 P 型半导体
1. N 型半导体(Negative)
在硅或锗的晶体中掺入少量的 5 价杂质元素,如 磷、锑、砷等,即构成 N 型半导体(或称电子型 半导体)。
又称正向偏置,简称正偏。
P
耗尽层
什么是PN结的单向
导电性?
空间电荷区变窄,有利 于扩散运动,电路中有 较大的正向电流。
N
有什么作用?
I 内电场方向
外电场方向
V
R
在 PN 结加上一个很小的正向电压,即可得到较大的 正向电流,为防止电流过大,可接入电阻 R。
2. PN 结外加反向电压 反向接法时,外电场与内电场的方向一致,增强了内 电场的作用;
纯净的具有晶体结构的半导体
1.导体、半导体和绝缘体
导体:自然界中很容易导电的物质称为导体,金属 一般都是导体。
绝缘体:有的物质几乎不导电,称为绝缘体,如橡 皮、陶瓷、塑料和石英。
半导体:另有一类物质的导电特性处于导体和绝缘 体之间,称为半导体,如锗、硅、砷化镓 和一些硫化物、氧化物等。
PNJunction
2.3.3 PN结的伏安特性
PN结所加端电压u与流过的电流i的关系为
uD
i IS(e UT 1) kT
UT q
IS :反向饱和电流 UT :温度的电压当量 在常温(300 K)下,
UT 26 mV q:为电子电量 T:为热力学温度 k:为玻耳兹曼常数
i = f (u )之间的关系曲线。
i/ mA
外电场使空间电荷区变宽;
不利于扩散运动,有利于漂移运动,漂移电流大于扩 散电流,电路中产生反向电流 I ;
由于少数载流子浓度很低,反向电流数值非常小。
P
耗尽层
N
IS
内电场方向
外电场方向
V
R
PN 结加反相电压时截止
反向电流又称反向饱和电流。对温度十分敏感,
随着温度升高, IS 将急剧增大。
综上所述: 当 PN 结正向偏置时,回路中将产生一个较大的 正向电流, PN 结处于 导通状态; 当 PN 结反向偏置时,回路中反向电流非常小, 几乎等于零, PN 结处于截止状态。 可见, PN 结具有单向导电性。
相关文档
最新文档