最新高考新课标全国卷Ⅰ文科数学考试内容及范围
新课标高考文科数学

新课标高考文科数学新课标高考文科数学是针对文科类考生设计的数学考试,它不仅考察学生的数学基础知识和运算能力,还注重培养学生的逻辑思维、空间想象和数据分析等综合能力。
以下是对新课标高考文科数学的全面介绍:一、考试内容与要求新课标高考文科数学的考试内容主要包括以下几个部分:1. 代数:包括函数、方程、不等式、数列、复数等基础知识。
2. 几何:涵盖平面几何、立体几何和解析几何的基本概念和定理。
3. 概率与统计:涉及数据的收集、处理和分析,以及概率的基本概念。
4. 数学思维与方法:包括数学建模、逻辑推理等思维方法。
考试要求考生能够熟练运用这些知识解决实际问题,并且能够进行数学表达和论证。
二、考试形式与题型新课标高考文科数学通常采用闭卷考试形式,题型包括:1. 选择题:考查基本概念和简单运算。
2. 填空题:测试考生对公式、定理的理解和应用。
3. 解答题:要求考生对问题进行深入分析并给出详细解答。
4. 证明题:考查考生的逻辑推理和证明能力。
三、备考策略1. 系统复习:按照教材和考试大纲,系统复习所有知识点。
2. 强化训练:通过大量练习,提高解题速度和准确率。
3. 查漏补缺:针对自己的薄弱环节进行专项训练。
4. 模拟考试:定期参加模拟考试,熟悉考试流程和时间管理。
四、考试技巧1. 审题:仔细阅读题目,准确理解题意。
2. 规划时间:合理分配答题时间,避免在难题上耗费过多时间。
3. 标记重点:在解题过程中,对关键信息进行标记,便于快速回顾。
4. 检查复核:在答题结束后,对答案进行复核,确保无误。
五、结语新课标高考文科数学不仅是一项考试,更是对考生综合素质的考验。
通过科学的备考和合理的考试策略,考生可以更好地展示自己的数学能力,为未来的学习和生活打下坚实的基础。
希望每位考生都能在高考中取得优异的成绩。
高考新课标全国1卷文科数学试题及答案解析

三、解答题: 共 70 分。解答应写出文字说明、 证明过程或演算步骤。 第 17~21 题为必考题,
每个试题考生都必须作答。第 22、 23 题为选考题, 考生根据要求作答。
(一)必考题: 60 分。
17.( 12 分)
记 Sn 为等比数列 an 的前 n 项和, 已知 S2=2, S3=-6.
( 1)求 an 的通项公式;
( 2)求 Sn, 并判断 Sn+1, Sn, Sn +2是否成等差数列 。 18.( 12 分)
如图, 在四棱锥 P-ABCD中, AB//CD, 且 BAP CDP 90o
( 1)证明:平面 PAB⊥平面 PAD;
( 2)若 PA=PD=AB=DC, APD
面积 .
90o , 且四棱锥 P-ABCD的体积为 8 , 求该四棱锥的侧 3
或变小 .
( 2)( i )由于 x 9.97, s 0.212 , 由样本数据可以看出抽取的第 13 个零件的尺寸在
( x 3s, x 3s) 以外, 因此需对当天的生产过程进行检查 .
(ii )剔除离群值, 即第 13 个数据, 剩下数据的平均数为 1 (16 9.97 9.22) 10.02 , 15
2x , PE
2 x.
2
故四棱锥 P ABCD 的体积 VP ABCD 由题设得 1 x3 8 , 故 x 2 .
33
1 AB AD PE
3
1 x3 . 3
从而 PA PD 2 , AD BC 2 2 , PB PC 2 2 .
可
得
四
棱
锥
P ABCD
的
侧
面
积
为
1 PA PD
近年全国高考数学考试(课标Ⅰ卷)考查内容、题量、分值分布及试题

近年全国高考数学考试(课标Ⅰ卷)考查内容、题量、分值分布及试题1.各题考查的知识内容与分值
(1)理科数学考查内容与考查分值
(2)文科数学考查内容与考查分值
2014,2013年都未考积分2.各知识内容考查的题量和分值(3)理科内容、题量与考分统计
注:不等式:*1小,即不等式内容渗透(综合)在另一个主体内容中考查。
线性规划归入不等式。
人教A版中无空间向量,B版中有。
总的讲,B版较A版稍难。
(4)文科内容、题量与考分统计
注:*1大*2小4分,即内容无主体的试题考查,仅为综合进去的内容,含在1个大题和2个小题之中。
3.近5年全国高考新课标数学Ⅰ卷考查特点、题量、分值分布等情况分析。
2020年全国统一高考数学试卷文科(新课标Ⅰ)(附答案及详细解析)

2020年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x|x2﹣3x﹣4<0},B={﹣4,1,3,5},则A∩B=()A.{﹣4,1}B.{1,5}C.{3,5}D.{1,3}2.(5分)若z=1+2i+i3,则|z|=()A.0B.1C.D.23.(5分)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A.B.C.D.4.(5分)设O为正方形ABCD的中心,在O,A,B,C,D中任取3点,则取到的3点共线的概率为()A.B.C.D.5.(5分)某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(x i,y i)(i=1,2,…,20)得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是()A.y=a+bx B.y=a+bx2C.y=a+be x D.y=a+blnx6.(5分)已知圆x2+y2﹣6x=0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为()A.1B.2C.3D.47.(5分)设函数f(x)=cos(ωx+)在[﹣π,π]的图象大致如图,则f(x)的最小正周期为()A.B.C.D.8.(5分)设a log34=2,则4﹣a=()A.B.C.D.9.(5分)执行如图的程序框图,则输出的n=()A.17B.19C.21D.2310.(5分)设{a n}是等比数列,且a1+a2+a3=1,a2+a3+a4=2,则a6+a7+a8=()A.12B.24C.30D.3211.(5分)设F1,F2是双曲线C:x2﹣=1的两个焦点,O为坐标原点,点P在C上且|OP|=2,则△PF1F2的面积为()A.B.3C.D.212.(5分)已知A,B,C为球O的球面上的三个点,⊙O1为△ABC的外接圆.若⊙O1的面积为4π,AB=BC=AC=OO1,则球O的表面积为()A.64πB.48πC.36πD.32π二、填空题:本题共4小题,每小题5分,共20分。
全国一卷文科数学

全国一卷文科数学引言全国一卷文科数学,是高中生参加高考时所需要面对的一门考试科目。
文科数学相对于理科数学,更注重运用数学的逻辑思维和推理能力解决实际问题。
下面将从试题特点、备考方法以及注意事项等方面对全国一卷文科数学进行探讨。
试题特点全国一卷文科数学试题的特点主要体现在以下几个方面:1.综合性问题:试题较为综合,需要考生综合运用所学的各个数学知识点,解决实际问题。
这就需要考生具备较强的数学逻辑思维和分析能力。
2.应用性问题:试题重点关注数学在实际生活中的应用,涉及到概率、统计、投资、利息等实际问题。
考生需要将所学的数学知识应用到实际情境中,解决复杂的现实问题。
3.求解方法多样:试题中涉及的问题解决方法多样,考生需要根据题目要求,选择适合的方法进行求解。
这就要求考生具备较好的思维灵活性和解决问题的能力。
备考方法备考全国一卷文科数学,需要考生系统地复习数学的各个知识点,并且注重应用能力的培养。
以下是备考方法的几个重点:1.系统复习知识点:全国一卷文科数学的考试内容较广泛,考生需要对数学的各个知识点进行系统复习。
可以根据教材进行分类,逐个进行温习,注意理解每个知识点的定义、性质以及求解方法。
2.实例练习与应用训练:备考过程中,考生需要进行大量的实例练习和应用训练。
可以通过做题来加深对知识的理解和运用能力的提升。
可以选择一些经典题目进行反复练习,还可以结合实际问题进行应用训练,提高解决实际问题的能力。
3.查漏补缺:备考过程中,考生需要及时发现自己的知识漏洞和薄弱环节,并进行有针对性的查漏补缺。
可以参考一些习题集、辅导书等进行查漏补缺的学习。
注意事项在备考全国一卷文科数学时,考生需要注意以下几个事项:1.时间分配:考试时间是有限的,要合理分配时间,合理解答每个题目。
可以根据题目难易程度,先完成易题,再解答难题,确保每个题目都有解答。
2.读题仔细:在解答试题时,要认真读题,理解题意。
对于综合性问题,可以先在脑海中构建解题框架,再进行具体计算,避免走入思维误区。
新课标Ⅰ高考数学文科试题(含答案)

绝密★启封并使用完毕前试题类型:新课标Ⅰ2021年普通高等学校招生全国统一考试文科数学考前须知: 1.本试卷分第一卷(选择题)和第二卷(非选择题)两局部.第一卷1至3页,第二卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第一卷一. 选择题:本大题共12小题,每题5分,在每题给出的四个选项中,只有一项为哪一项符合 题目要求的.〔1〕设集合{1,3,5,7}A =,{|25}B x x =≤≤,那么AB =〔A 〕{1,3}〔B 〕{3,5}〔C 〕{5,7}〔D 〕{1,7}(2)设(12i)(i)a ++的实部与虚部相等,其中a 为实数,那么a=〔A 〕-3〔B 〕-2〔C 〕2〔D 〕3〔3〕为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,学.科.网余下的2种花种在另一个花坛中,那么红色和紫色的花不在同一花坛的概率是〔A 〕13〔B 〕12〔C 〕23〔D 〕56〔4〕△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.a =2c =,2cos 3A =,那么b= 〔ABC 〕2〔D 〕3〔5〕直线l 经过椭圆的一个顶点和一个焦点,假设椭圆中心到l 的距离为其短轴长的14,那么该椭圆的离心率为〔A 〕13〔B 〕12〔C 〕23〔D 〕34〔6〕假设将函数y =2sin (2x +π6)的图像向右平移14个周期后,所得图像对应的函数为〔A 〕y =2sin(2x +π4) 〔B 〕y =2sin(2x +π3) 〔C 〕y =2sin(2x –π4) 〔D 〕y =2sin(2x –π3)〔7〕如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.假设该几何体的体积是28π3,那么它的外表积是〔A 〕17π 〔B 〕18π 〔C 〕20π 〔D 〕28π 〔8〕假设a>b>0,0<c<1,那么〔A 〕log a c <log b c 〔B 〕log c a <log c b 〔C 〕a c <b c 〔D 〕c a >c b 〔9〕函数y =2x 2–e |x |在[–2,2]的图像大致为〔A 〕〔B 〕〔C 〕〔D 〕〔10〕执行右面的程序框图,如果输入的0,1,x y ==n =1,那么输出,x y 的值满足〔A 〕2y x = 〔B 〕3y x = 〔C 〕4y x = 〔D 〕5y x =〔11〕平面α过正文体ABCD —A 1B 1C 1D 1的顶点A 11//CB D α平面,ABCD m α=平面,11ABB A n α=平面,那么m ,n 所成角的正弦值为〔A 〕32〔B 〕22〔C 〕33〔D 〕13〔12〕假设函数1()sin 2sin 3f x x -x a x =+在(),-∞+∞单调递增,那么a 的取值范围是 〔A 〕[]1,1-〔B 〕11,3⎡⎤-⎢⎥⎣⎦〔C 〕11,33⎡⎤-⎢⎥⎣⎦〔D 〕11,3⎡⎤--⎢⎥⎣⎦第II 卷本卷包括必考题和选考题两局部.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共3小题,每题5分〔13〕设向量a =(x ,x +1),b =(1,2),且a ⊥b ,那么x =. 〔14〕θ是第四象限角,且sin(θ+π4)=35,那么tan(θ–π4)=. 〔15〕设直线y=x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,假设,那么圆C 的面积为。
最新高考新课标全国卷Ⅰ文科数学考试内容及范围

2018年高考新课标全国卷Ⅰ文科数学考试范围与要求本部分包括必考内容和选考内容两部分.必考内容为《课程标准》的必修内容和选修系列1的内容;选考内容为《课程标准》的选修系列4的“坐标系与参数方程”、“不等式选讲”等2个专题。
必考内容(一)集合1.集合的含义与表示(1)了解集合的含义、元素与集合的属于关系.(2)能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集.(2)在具体情境中,了解全集与空集的含义.3.集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(3)能使用韦恩(Venn)图表达集合的关系及运算.(二)函数概念与基本初等函数I(指数函数、对数函数、幂函数)1.函数(1)了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.(2)在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.(3)了解简单的分段函数,并能简单应用.(4)理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义.(5)会运用函数图象理解和研究函数的性质.2.指数函数(1)了解指数函数模型的实际背景.(2)理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.(3)理解指数函数的概念,理解指数函数的单调性,掌握指数函数图象通过的特殊点.(4)知道指数函数是一类重要的函数模型.3.对数函数(1)理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.(2)理解对数函数的概念,理解对数函数的单调性,掌握对数函数图象通过的特殊点.(3)知道对数函数是一类重要的函数模型.(44.幂函数(1)了解幂函数的概念.(25.函数与方程(1)结合二次函数的图象,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.(2)根据具体函数的图象,能够用二分法求相应方程的近似解.6.函数模型及其应用(1)了解指数函数、对数函数以及幂函数的增长特征,知道直线上升、指数增长、对数增长等不同函数类型增长的含义.(2)了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.(三)立体几何初步1.空间几何体(1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.(2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二侧法画出它们的直观图.(3)会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.(4)会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不做严格要求).(5)了解球、棱柱、棱锥、台的表面积和体积的计算公式.2.点、直线、平面之间的位置关系(1)理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.·公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内.·公理2:过不在同一条直线上的三点,有且只有一个平面.·公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.·公理4:平行于同一条直线的两条直线互相平行.·定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.(2)以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理.理解以下判定定理:·如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.·如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.·如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.·如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直.理解以下性质定理,并能够证明:·如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线和该直线平行.·如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.·垂直于同一个平面的两条直线平行.·如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.(3)能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.(四)平面解析几何初步1.直线与方程(1)在平面直角坐标系中,结合具体图形,确定直线位置的几何要素.(2)理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.(3)能根据两条直线的斜率判定这两条直线平行或垂直.(4)掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.(5)能用解方程组的方法求两条相交直线的交点坐标.(6)掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.2.圆与方程(1)掌握确定圆的几何要素,掌握圆的标准方程与一般方程.(2)能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系.(3)能用直线和圆的方程解决一些简单的问题.(4)初步了解用代数方法处理几何问题的思想.3.空间直角坐标系(1)了解空间直角坐标系,会用空间直角坐标表示点的位置.(2)会推导空间两点间的距离公式.(五)算法初步1.算法的含义、程序框图(1)了解算法的含义,了解算法的思想.(2)理解程序框图的三种基本逻辑结构:顺序、条件分支、循环.2.基本算法语句理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义.(六)统计1.随机抽样(1)理解随机抽样的必要性和重要性.(2)会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.2.用样本估计总体(1)了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.(2)理解样本数据标准差的意义和作用,会计算数据标准差.(3)能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释.(4)会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.(5)会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.3.变量的相关性(1)会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系.(2)了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.(七)概率1.事件与概率(1)了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.(2)了解两个互斥事件的概率加法公式.2.古典概型(1)理解古典概型及其概率计算公式.(2)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率.3.随机数与几何概型(1)了解随机数的意义,能运用模拟方法估计概率.(2)了解几何概型的意义.(八)基本初等函数Ⅱ(三角函数)1.任意角的概念、弧度制(1)了解任意角的概念.(2)了解弧度制的概念,能进行弧度与角度的互化.2.三角函数(1)理解任意角三角函数(正弦、余弦、正切)的定义.(2(3(4(5(6)了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题.(九)平面向量1.平面向量的实际背景及基本概念(1)了解向量的实际背景.(2)理解平面向量的概念,理解两个向量相等的含义.(3)理解向量的几何表示.2.向量的线性运算(1)掌握向量加法、减法的运算,并理解其几何意义.(2)掌握向量数乘的运算及其几何意义,理解两个向量共线的含义.(3)了解向量线性运算的性质及其几何意义.3.平面向量的基本定理及坐标表示(1)了解平面向量的基本定理及其意义.(2)掌握平面向量的正交分解及其坐标表示.(3)会用坐标表示平面向量的加法、减法与数乘运算.(4)理解用坐标表示的平面向量共线的条件.4.平面向量的数量积(1)理解平面向量数量积的含义及其物理意义.(2)了解平面向量的数量积与向量投影的关系.(3)掌握数量积的坐标表达式,会进行平面向量数量积的运算.(4)能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.5.向量的应用(1)会用向量方法解决某些简单的平面几何问题.(2)会用向量方法解决简单的力学问题与其他一些实际问题.(十)三角恒等变换1.和与差的三角函数公式(1)会用向量的数量积推导出两角差的余弦公式.(2)能利用两角差的余弦公式导出两角差的正弦、正切公式.(3)能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.2.简单的三角恒等变换能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).(十一)解三角形1.正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2.应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.(十二)数列1.数列的概念和简单表示法(1)了解数列的概念和几种简单的表示方法(列表、图象、通项公式).(2)了解数列是自变量为正整数的一类函数.2.等差数列、等比数列(1)理解等差数列、等比数列的概念.(2(3)能在具体的问题情境中识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.(4)了解等差数列与一次函数、等比数列与指数函数的关系.(十三)不等式1.不等关系了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.2.一元二次不等式(1)会从实际情境中抽象出一元二次不等式模型.(2)通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系.(3)会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.3.二元一次不等式组与简单线性规划问题(1)会从实际情境中抽象出二元一次不等式组.(2)了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.(3)会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.4(1)了解基本不等式的证明过程.(2)会用基本不等式解决简单的最大(小)值问题.(十四)常用逻辑用语1.命题及其关系(1)理解命题的概念.(2的相互关系.(3)理解必要条件、充分条件与充要条件的意义.2.简单的逻辑联结词了解逻辑联结词“或”、“且”、“非”的含义.3.全称量词与存在量词(1)理解全称量词与存在量词的意义.(2)能正确地对含有一个量词的命题进行否定.(十五)圆锥曲线与方程(1)了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用.(2)掌握椭圆的定义、几何图形、标准方程及简单几何性质.(3)了解双曲线、抛物线的定义、几何图形和标准方程,知道它们的简单几何性质.(4)理解数形结合的思想.(5)了解圆锥曲线的简单应用.(十六)导数及其应用1.导数概念及其几何意义(1)了解导数概念的实际背景.(2)理解导数的几何意义.2.导数的运算(1(2)能利用下面给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.·常见基本初等函数的导数公式:) ;·常用的导数运算法则:法则1法则2法则33.导数在研究函数中的应用(1)了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).(2)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).4.生活中的优化问题.会利用导数解决某些实际问题.(十七)统计案例了解下列一些常见的统计方法,并能应用这些方法解决一些实际问题.1.独立性检验了解独立性检验(只要求2×2列联表)的基本思想、方法及其简单应用.2.回归分析了解回归分析的基本思想、方法及其简单应用.(十八)推理与证明1.合情推理与演绎推理(1)了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用.(2)了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理.(3)了解合情推理和演绎推理之间的联系和差异.2.直接证明与间接证明(1)了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程、特点.(2)了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点.(十九)数系的扩充与复数的引入1.复数的概念(1)理解复数的基本概念.(2)理解复数相等的充要条件.(3)了解复数的代数表示法及其几何意义.2.复数的四则运算(1)会进行复数代数形式的四则运算.(2)了解复数代数形式的加、减运算的几何意义.(二十)框图1.流程图(1)了解程序框图.(2)了解工序流程图(即统筹图).(3)能绘制简单实际问题的流程图,了解流程图在解决实际问题中的作用.2.结构图(1)了解结构图.(2)会运用结构图梳理已学过的知识,整理收集到的资料信息.选考内容(一)坐标系与参数方程1.坐标系(1)理解坐标系的作用.(2)了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.(3)能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化.(4)能在极坐标系中给出简单图形的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义.(5)了解柱坐标系、球坐标系中表示空间中点的位置的方法,并与空间直角坐标系中表示点的位置的方法相比较,了解它们的区别.2.参数方程(1)了解参数方程,了解参数的意义.(2)能选择适当的参数写出直线、圆和圆锥曲线的参数方程.(3)了解平摆线、渐开线的生成过程,并能推导出它们的参数方程.(4)了解其他摆线的生成过程,了解摆线在实际中的应用,了解摆线在表示行星运动轨道中的作用.(二)不等式选讲1.理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式:(1(2(3)会利用绝对值的几何意义求解以下类型的不等式:2.了解下列柯西不等式的几种不同形式,理解它们的几何意义,并会证明.(1(2(3(此不等式通常称为平面三角不等式.)3.会用参数配方法讨论柯西不等式的一般情形:4.会用向量递归方法讨论排序不等式.5.了解数学归纳法的原理及其使用范围,会用数学归纳法证明一些简单问题.6.会用数学归纳法证明伯努利不等式:1的正整数).1的实数时伯努利不等式也成立.7.会用上述不等式证明一些简单问题.能够利用平均值不等式、柯西不等式求一些特定函数的极值.8.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.。
高考全国卷1文科数学试题及含答案(20200625020146)

cos 2
2
,
则
a
b
3
1 A.
5 12.设函数 f x
B. 5 5
C. 2 5 5
D.1
2 x ,x≤0 , 则满足
f
x
1
1 ,x 0
f 2 x 的 x 的取值范围是
A. , 1
B. 0,
C. 1,0
D . ,0
二、填空题(本题共 4 小题, 每小题 5 分, 共 20 分)
13.已知函数 f x log2 x2 a , 若 f 3 1 , 则 a ________.
C. y 2x
uuur E 为 AD 的中点, 则 EB
1 uuur B. AB
4 1 uuur D. AB 4
3 uuur AC
4 3 uuur
AC 4
8.已知函数 f x 2cos2 x sin2 x 2 , 则
D. y x
A . f x 的最小正周期为 π, 最大值为 3
B . f x 的 最小正周期为 π, 最大值为 4
设抛物线
2
C:y
2x , 点 A 2 ,0 , B
2 ,0 , 过点 A 的直线 l 与 C 交于 M , N 两点.
( 1)当 l 与 x 轴垂直时, 求直线 BM 的方程; ( 2)证明: ∠ ABM ∠ ABN .
21.( 12 分) 已知函数 f x aex ln x 1 .
( 1)设 x 2 是 f x 的极值点.求 a , 并求 f x 的单调区间;
日用 水量
0 ,0.1
0.1 ,0.2
0.2 ,0.3
0.3 ,0.4
0.4 ,0.5
0.5 ,0.6
全国统一高考数学试卷(文科)(大纲版)(含解析版)

2021 年全国统一高考数学试卷〔文科〕〔大纲版〕一.选择题1.〔 5 分〕集合 A={ x| x 是平行四边形 } ,B={ x| x 是矩形 } ,C={ x| x 是正方形 } ,D={ x| x 是菱形 } ,那么〔〕A.A? B B.C? B C.D? C D.A? D2.〔5 分〕函数的反函数是〔〕A.y=x2﹣ 1〔 x≥ 0〕B.y=x2﹣1〔x≥ 1〕C.y=x2+1〔x≥ 0〕D.y=x2 +1〔x≥1〕3.〔5分〕假设函数是偶函数,那么φ=〔〕A.B.C.D.4.〔5分〕α为第二象限角,,那么 sin2 α=〔〕A.B.C.D.5.〔5分〕椭圆的中心在原点,焦距为4,一条准线为 x=﹣4,那么该椭圆的方程为〔〕A.B.C.D.6.〔5分〕数列 { a n} 的前 n 项和为 S n,a1 =1, S n=2a n+1,那么当 n>1 时, S n=〔〕A.〔〕n﹣1B.2n﹣ 1C.〔〕n﹣1D.〔﹣1〕7.〔5 分〕 6 位选手依次演讲,其中选手甲不在第一个也不在最后一个演讲,那么不同的演讲次序有〔〕A.240 种B.360 种C.480 种D.720 种.〔分〕正四棱柱ABCD﹣A1B1C1D1中, AB=2,CC,E 为 CC1的中点,那么直线 AC 与平8 51=21面 BED的距离为〔〕A.2B.C.D.19.〔5分〕△ ABC中, AB 边的高为 CD,假设= , = , ?=0,| | =1, | | =2,那么=〔〕A.B.C.D.10.〔5分〕1、F2为双曲线 C: x2﹣y2的左、右焦点,点P在C上F=2∠F1PF2=〔〕A.B.C.D.11.〔 5 分〕 x=ln π, y=log52,,那么〔〕A.x<y<z B.z<x< y C. z<y<x D. y<z<x 12.〔 5 分〕正方形 ABCD的边长为 1,点 E 在边 AB 上,点 F 在边 BC上,发沿直线向 F 运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角到 E 时, P 与正方形的边碰撞的次数为〔〕A.8B.6C. 4D. 3二、填空题〔共 4 小题,每题 5 分,共 20 分,在试卷上作答无效〕13.〔 5 分〕的展开式中x2的系数为.14.〔 5 分〕假设 x,y 满足约束条件那么z=3x﹣y的最小值为15.〔 5 分〕当函数 y=sinx﹣cosx〔0≤ x<2π〕取得最大值时, x=16.〔5分〕正方体ABCD﹣A1B1C1D1中,E,F 分别为 BB ,CC 的中点,11所成角的余弦值为.三、解答题:本大题共 6 小题,共 70 分.解容许写出文字说明、证明过程或作答无效!17.〔 10 分〕△ ABC中,内角 A, B,C 成等差数列,其对边a, b, c第 1 页〔共 13 页〕18.〔 12 分〕数列 { a n } 中, a1=1,前 n 项和20.〔 12 分〕乒乓球比赛规那么规定:一局比赛,对方比分在10 平前,一方球 2 次后,对〔1〕求 a2, a3;〔2〕求 { a n } 的通项公式.19.〔 12 分〕如图,四棱锥 P﹣ABCD中,底面ABCD为菱形, PA⊥底面 ABCD,,PA=2,E 是PC上的一点, PE=2EC.〔Ⅰ〕证明: PC⊥平面 BED;〔Ⅱ〕设二面角 A﹣PB﹣ C 为 90°,求 PD 与平面 PBC所成角的大小.第 2 页〔共 13 页〕21.〔 12 分〕函数.22.〔 12 分线 C:y=〔〔 1〕讨论 f〔x〕的单调性;在 A 处两切线为同l.〔 2〕设 f 〔x〕有两个极值点 x1,x2,假设过两点〔 x1, f〔x1〕〕,〔 x2,f〔 x2〕〕的直线 l 与 x 轴的交点〔Ⅰ〕求 r;在曲线 y=f〔x〕上,求 a 的值.〔Ⅱ〕设 m 异于 l 且与 C 都相切的两条线, m, n 为 D,求 D 距离.第 3 页〔共 13 页〕2021 年全国统一高考数学试卷〔文科〕〔大纲版〕参考答案与试题解析一.选择题1.〔 5 分〕集合 A={ x| x 是平行四边形 } ,B={ x| x 是矩形 } ,C={ x| x 是正方形 } ,D={ x| x 是菱形 } ,那么〔〕A.A? B B.C? B C.D? C D.A? D【考点】 1E:交集及其运算.【专题】 11:计算题.【分析】直接利用四边形的关系,判断选项即可.【解答】解:因为菱形是平行四边形的特殊情形,所以D? A,矩形与正方形是平行四边形的特殊情形,所以B? A,C? A,正方形是矩形,所以C? B.应选: B.【点评】此题考查集合的根本运算,几何图形之间的关系,根底题.2.〔5 分〕函数的反函数是〔〕A.y=x2﹣ 1〔 x≥ 0〕B.y=x2﹣1〔x≥ 1〕C.y=x2+1〔x≥ 0〕 D. y=x2+1〔x ≥ 1〕【考点】 4R:反函数.【专题】 11:计算题.【分析】直接利用反函数的求法求解即可.【解答】解:因为函数,解得x=y2﹣1,所以函数的反函数是 y=x2﹣1〔x≥0〕.应选: A.【点评】此题考查函数的反函数的求法,考查计算能力.3.〔5 分〕假设函数是偶函数,那么A.B.C.D.【考点】 H6:正弦函数的奇偶性和对称性;HK:由 y=Asin〔ωx+φ〕的局部【专题】 11:计算题.【分析】直接利用函数是偶函数求出? 的表达式,然后求出? 的值.【解答】解:因为函数是偶函数,所以,k∈z,所以 k=0 时, ?=∈[ 0,2π].应选: C.【点评】此题考查正弦函数的奇偶性,三角函数的解析式的应用,考查计算能4.〔5 分〕α为第二象限角,,那么sin2α=〔〕A.B.C.D.【考点】 GG:同角三角函数间的根本关系;GS:二倍角的三角函数.【专题】 11:计算题.【分析】直接利用同角三角函数的根本关系式,求出cosα,然后利用二倍角【解答】解:因为α为第二象限角,,所以 cosα=﹣=﹣.所以 sin2α=2sin αcosα==.应选: A.【点评】此题考查二倍角的正弦,同角三角函数间的根本关系的应用,考查计第 4 页〔共 13 页〕5.〔5 分〕椭圆的中心在原点,焦距为4,一条准线为 x=﹣4,那么该椭圆的方程为〔〕A.B.C.D.【考点】 K3:椭圆的标准方程; K4:椭圆的性质.【专题】 11:计算题.【分析】确定椭圆的焦点在x 轴上,根据焦距为4,一条准线为x=﹣4,求出几何量,即可求得椭圆的方程.【解答】解:由题意,椭圆的焦点在x 轴上,且∴c=2, a2=8∴b2=a2﹣c2 =4∴椭圆的方程为应选: C.【点评】此题考查椭圆的标准方程,考查椭圆的几何性质,属于根底题.n}的前n项和为S n ,a1, n n+1,那么当n>1时,S n 〔〕6.〔5 分〕数列 { a=1 S =2a=A.〔〕n﹣1B.2n﹣ 1C.〔〕n﹣1D.〔﹣1〕【考点】 8H:数列递推式.【专题】 35:转化思想; 54:等差数列与等比数列.【分析】利用递推关系与等比数列的通项公式即可得出.【解答】解:∵ S n=2a n+1,得 S n =2〔S n+1﹣ S n〕,即 3S n =2S n+1,由 a1,所以n≠0.那么= .=1S ∴数列 { S n} 为以 1 为首项,公比为的等比数列∴ S n=.应选: A.【点评】此题考查了递推关系与等比数列的通项公式,考查了推理能力与计算7.〔5 分〕 6 位选手依次演讲,其中选手甲不在第一个也不在最后一个演讲,〔〕A.240 种B.360 种C. 480 种D. 720 种【考点】 D9:排列、组合及简单计数问题.【专题】 11:计算题.【分析】直接从中间的 4 个演讲的位置,选 1 个给甲,其余全排列即可.【解答】解:因为 6 位选手依次演讲,其中选手甲不在第一个也不在最后一个开始与结尾的位置还有个选择,剩余的元素与位置进行全排列有,个位置,所以不同的演讲次序有=480 种.应选: C.【点评】此题考查排列、组合以及简单的计数原理的应用,考查计算能力.8.〔5分〕正四棱柱ABCD﹣A1B1 C1D1中, AB=2,CC1=2,E为1平CC 面 BED的距离为〔〕A.2B.C.D. 1【考点】 MI:直线与平面所成的角.【专题】 11:计算题.【分析】先利用线面平行的判定定理证明直线C1A∥平面 BDE,再将线面距后利用等体积法求点面距离即可【解答】解:如图:连接 AC,交 BD 于 O,在三角形 CC1A 中,易证 OE∥C1A第 5 页〔共 13 页〕∴直线 AC1与平面 BED的距离即为点 A 到平面 BED的距离,设为 h,∴ AB=在三棱锥 E﹣ABD中, V E﹣ABD△ABD×EC=× ×2×2×=由射影定理可得, AC2=AD?AB =S在三棱锥 A﹣BDE中, BD=2,BE= , DE=,∴ S△EBD×2×∴==2∴ V﹣ BDE×△EBD×h=×2×h=A=S∴∴ h=1∴==应选: D.应选:D.【点评】此题主要考查了线面平行的判定,线面距离与点面距离的转化,三棱锥的体积计算方法,等体积法求点面距离的技巧,属根底题9.〔5 分〕△ ABC中, AB 边的高为 CD,假设= ,= , ? =0,|| =1, || =2,那么 =〔A.B.C.D.【考点】 9Y:平面向量的综合题.【分析】由题意可得, CA⊥CB,CD⊥ AB,由射影定理可得, AC2可求,进而可求=AD?AB 从而可求与的关系,进而可求【解答】解:∵ ? =0,∴ CA⊥CB∵ CD⊥AB∵ | | =1,|| =2第 6 页〔共 13 页〕应选: C.【点评】此题考查双曲线的性质,考查双曲线的定义,考查余弦定理的运用,属于中档题.11.〔 5 分〕 x=ln π,y=log5 2,,那么〔〕A.x<y<z B.z< x< y C.z<y<x D.y<z<x【考点】 72:不等式比拟大小.【专题】 11:计算题; 16:压轴题.【分析】利用 x=ln π> 1, 0< y=log5<,>z=>,即可得到答案.21【解答】解:∵ x=ln π> lne=1,0<log52<log5=,即y∈〔0,〕;1=e0>=>=,即z∈〔,1〕,∴y< z<x.应选: D.【点评】此题考查不等式比拟大小,掌握对数函数与指数函数的性质是解决问题的关键,属于根底题.12.〔 5 分〕正方形 ABCD的边长为 1,点 E 在边 AB上,点 F 在边 BC上,.定点P从E出发沿直线向 F 运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当点P 第一次碰到 E 时, P 与正方形的边碰撞的次数为〔〕A.8B.6C.4D.3【考点】 IQ:与直线关于点、直线对称的直线方程.【专题】 15:综合题; 16:压轴题.【分析】根据中的点E,F 的位置,可知入射角的正切值为,通过相后的点的位置,从而可得反射的次数.【解答】解:根据中的点E,F的位置,可知入射角的正切值为,第的过程中,直线是平行的,利用平行关系及三角形的相似可得第二次碰撞点为第三次碰撞点为H,在 DC上,且 DH= ,第四次碰撞点为M ,在 CB 撞点为 N,在 DA 上,且 AN= ,第六次回到 E 点, AE= .故需要碰撞 6 次即可.应选: B.【点评】此题主要考查了反射原理与三角形相似知识的运用.通过相似三角形位置,从而可得反射的次数,属于难题二、填空题〔共 4 小题,每题 5 分,共 20 分,在试卷上作答无效〕13.〔 5 分〕的展开式中x2的系数为7.【考点】 DA:二项式定理.【专题】 11:计算题.【分析】直接利用二项式定理的通项公式,求出x2的系数即可.【解答】解:因为的展开式的通项公式为:=当 8﹣2r=2,即 r=3 时,的展开式中x2的系数为:=7.故答案为: 7.第 7 页〔共 13 页〕【点评】此题考查二项式定理的应用,特定项的求法,考查计算能力.14.〔 5 分〕假设 x, y 满足约束条件那么z=3x﹣y的最小值为﹣1.【考点】 7C:简单线性规划.【专题】 11:计算题.【分析】作出不等式组表示的平面区域,由z=3x﹣y可得y=3x﹣z,那么﹣z表示直线3x﹣y﹣z=0在y轴上的截距,截距越大 z 越小,结合图形可求【解答】解:作出不等式组表示的平面区域,如下图由 z=3x﹣ y 可得 y=3x﹣z,那么﹣ z 表示直线 3x﹣y﹣ z=0在 y 轴上的截距,截距越大z 越小结合图形可知,当直线z=3x﹣y 过点 C 时 z 最小由可得 C〔0, 1〕,此时 z=﹣1故答案为:﹣ 1根底试题15.〔 5 分〕当函数 y=sinx﹣cosx〔0≤ x<2π〕取得最大值时, x=【考点】 GP:两角和与差的三角函数;HW:三角函数的最值.【专题】 11:计算题; 16:压轴题.【分析】利用辅助角公式将y=sinx﹣cosx 化为 y=2sin〔x﹣〕〔0≤x<cosx〔0≤x<2π〕取得最大值时x 的值.【解答】解:∵ y=sinx﹣cosx=2〔sinx﹣cosx〕 =2sin〔 x﹣〕.∵ 0≤ x< 2π,∴﹣≤x﹣<,∴y max=2,此时 x﹣ = ,∴x=.故答案为:.【点评】此题考查三角函数的最值两与角和与差的正弦函数,着重考查辅助角性质,将 y=sinx﹣ cosx〔 0≤ x<2π〕化为 y=2sin〔x﹣〕〔 0≤ x< 2π档题.16.〔 5 分〕正方体 ABCD﹣A1B1C1D1中,E,F 分别为 BB1,CC1的中点,所成角的余弦值为.【考点】 L2:棱柱的结构特征; LM:异面直线及其所成的角.【专题】 11:计算题; 16:压轴题.【分析】设正方体 ABCD﹣ A1【点评】此题主要考查了线性规划的简单应用,解题的关键是明确目标函数中z 的几何意义,属于角坐标系,那么第 8 页〔共 13 页〕所成角的余弦值.【解答】解:设正方体 ABCD﹣A1B1C1D1棱长为 2,以 DA 为 x 轴, DC为 y 轴, DD1为 z轴,建立空间直角坐标系,则A〔2,0,0〕, E〔 2, 2, 1〕D1〔0,0,2〕, F〔 0, 2,1〕∴,=〔 0,2,﹣ 1〕,设异面直线 AE 与 D1 F 所成角为θ,那么 cosθ=|cos<,>| =|| = .故答案为:.【点评】此题考查异面直线所成角的余弦值的求法,是根底题.解题时要认真审题,仔细解答,注意向量法的合理运用.三、解答题:本大题共 6 小题,共 70 分.解容许写出文字说明、证明过程或演算步骤.在试卷上作答无效!17.〔 10 分〕△ ABC中,内角 A,B,C 成等差数列,其对边a,b,c 满足 2b2=3ac,求 A.【考点】 8N:数列与三角函数的综合.【专题】 15:综合题; 2A:探究型.【分析】由题设条件,可先由A,B,C 成等差数列,及 A+B+C=π得到 B=,及 A+C=,再由正弦定理将条件 2b2=3ac 转化为角的正弦的关系,结合〔〕﹣求得cos A+C =cosAcosC sinAsinCcosAcosC=0,从而解出 A【解答】解:由 A,B,C 成等差数列,及A+B+C=π得 B=,故有A+C=由2b2=3ac得2sin2B=3sinAsinC= ,所以 sinAsinC=所以 cos〔A+C〕=cosAcosC﹣sinAsinC=cosAcosC﹣即cosAcosC﹣ =﹣,可得 cosAcosC=0所以 cosA=0或 cosC=0,即 A 是直角或 C 是直角所以 A 是直角,或 A=【点评】此题考查数列与三角函数的综合,涉及了三角形的内角和,两角和的理的作用边角互化,解题的关键是熟练掌握等差数列的性质及三角函数的相了转化的思想,有一定的探究性及综合性18.〔 12 分〕数列 { a n} 中, a1=1,前 n 项和(1〕求 a2, a3;(2〕求 { a n } 的通项公式.【考点】 8H:数列递推式.【专题】 11:计算题.【分析】〔1〕直接利用,求出a2,a3;〔 2〕利用关系式,推出数列相邻两项的关系式,利用累积法,求出数列的通项【解答】解:〔1〕数列 { a n} 中, a1,前n项和,=1可知,得 3〔a1+a2〕=4a2,解得 a2=3a1=3,由,得3〔a1+a2+a3〕=5a3,解得 a3==6.〔 2〕由意知 a1=1,当 n>1 ,有 a n=s n s n﹣1=,整理得,于是 a1=1,a2= a1,a3= a2,⋯,a n﹣1 =a n﹣2,,将以上 n 个式子两端分相乘,整理得:.上 { a n} 的通公式【点】本考数列的的求法,累法的用,考算能力.【考点】 LW:直与平面垂直; MI:直与平面所成的角; MM :向量言表述面的垂关系.【】 11:算.【分析】〔I〕先由建立空直角坐系, D〔,b,0〕,从而写出相关点和相关向量的要条件,明 PC⊥BE, PC⊥DE,从而利即可;〔 II〕先求平面 PAB的法向量,再求平面 PBC的法向量,利用两平面垂直的性,即最后利用空向量角公式即可求得面角的正弦,而求得面角【解答】解:〔I〕以 A 坐原点,建立如空直角坐系 A xyz,19.〔 12 分〕如,四棱P ABCD中,底面ABCD菱形, PA⊥底面 ABCD,,PA=2,E D〔,b,0〕,C〔2,0,0〕,P〔0,0,2〕,E〔,0,〕,〔,b,0〕是 PC上的一点, PE=2EC.∴ =〔2,0, 2〕, =〔,b,〕, =〔, b,〕〔Ⅰ〕明: PC⊥平面 BED;〔Ⅱ〕二面角 A PB C90°,求 PD 与平面 PBC所成角的大小.∴ ? ==0, ? =0∴PC⊥BE,PCB E ∩D E = E ∴P C ⊥平面B E D 〔I I 〕=〔0,0,2〕,=〔,b ,0〕平面P A B 的=〔x,y,z〕,第 10 页〔共 13 页〕取 =〔b,,0〕设平面 PBC的法向量为=〔p,q,r〕,那么取 =〔1,﹣,〕∵平面 PAB⊥平面 PBC,∴? =b﹣=0.故 b=∴ =〔1,﹣ 1,〕,=〔﹣,﹣,2〕∴ cos<,>==设 PD 与平面 PBC所成角为θ,θ∈[ 0,] ,那么 sin θ=∴θ=30°∴ PD与平面 PBC所成角的大小为30°【点评】此题主要考查了利用空间直角坐标系和空间向量解决立体几何问题的一般方法,线面垂直的判定定理,空间线面角的求法,有一定的运算量,属中档题20.〔 12 分〕乒乓球比赛规那么规定:一局比赛,对方比分在10 平前,一方连续发球 2 次后,对方再连续发球两次,依次轮换.每次发球,胜方得 1 分,负方得 0 分.设在甲、乙的比赛中,每次发球,发球方得 1 分的概率为,各次发球的胜负结果相互独立.甲、乙的一局比赛中,甲先发(1〕求开始第 4 次发球时,甲、乙的比分为 1:2 的概率;(2〕求开始第 5 次发球时,甲领先得分的概率.【考点】 C8:相互独立事件和相互独立事件的概率乘法公式;CA: n 次独次的概率.【专题】 5I:概率与统计.【分析】〔Ⅰ〕记 A i表示事件:第 1 次和第 2 次这两次发球,甲共得i 分,第 3 次和第 4 次这两次发球,甲共得 i 分, i=0, 1, 2, A 表示事件:第表示事件:开始第 4 次发球时,甲、乙的比分为 1 比 2,C 表示事件:开始分领先. B=,由此能求出开始第 4 次发球时,甲、乙的比分〔Ⅱ〕,P〔B1〕=2××,由 C=A1?B2+A2?B1+A2?B2,能求出开始第 5 次发球时,甲领先得分的概率【解答】解:〔Ⅰ〕记 A i表示事件:第 1 次和第 2 次这两次发球,甲共得B i表示事件:第 3 次和第 4 次这两次发球,甲共得i 分, i=0, 1, 2,A 表示事件:第 3 次发球,甲得 1 分,B 表示事件:开始第 4 次发球时,甲、乙的比分为 1 比 2,C 表示事件:开始第 5 次发球时,甲得分领先.∴ B=,P〔A〕,P〔A0〕2,P〔A1〕=2××,P〔B〕==P〔A0?A〕+P〔〕=××〔 1﹣〕.答:开始第 4 次发球时,甲、乙的比分为1:2 的概率是.第 11 页〔共 13 页〕〔Ⅱ〕,P〔B1〕 =2××,,,∵C=A1?B2+A2?B1+A2?B2,∴P〔 C〕 =P〔A1?B2+A2B1+A2?B2〕1 2〕+P〔A2 1〕+P〔A22〕=P〔A ?B?B?B=P〔A1〕P〔B〕 +P〔A2〕 P〔 B1〕+P〔 A2〕P〔B2〕×××.答:开始第 5 次发球时,甲领先得分的概率是.【点评】此题考查事件的概率的求法,解题时要认真审题,仔细解答,注意n 次独立重复试验的性质和公式的灵活运用.21.〔 12 分〕函数.(1〕讨论 f〔x〕的单调性;(2〕设 f 〔x〕有两个极值点 x1,x2,假设过两点〔 x1, f〔x1〕〕,〔 x2,f〔 x2〕〕的直线 l 与 x 轴的交点在曲线 y=f〔x〕上,求 a 的值.【考点】 6B:利用导数研究函数的单调性;6C:函数在某点取得极值的条件.【专题】 11:计算题; 16:压轴题; 3:解题思想; 32:分类讨论.【分析】〔1〕先对函数进行求导,通过 a 的取值,求出函数的根,然后通过导函数的值的符号,推出函数的单调性.〔 2〕根据导函数的根,判断a 的范围,进而解出直线 l 的方程,利用 l 与 x 轴的交点为〔 x0, 0〕,可解出 a 的值.【解答】解:〔1〕f ′〔x〕 =x2+2x+a=〔x+1〕2+a﹣ 1.且仅当 a=1,x=﹣ 1 时, f ′〔x〕=0,所以 f〔x〕是 R 上的增函数;②当 a<1 时, f ′〔x〕=0,有两个根,x1=﹣1﹣,x2=﹣1+,当 x∈时,f′〔x〕>0,f〔x〕是增函数.当 x∈时,f′〔x〕<0,f〔x〕是减函数.当 x∈时,f′〔x〕>0,f〔x〕是增函数.〔 2〕由题意 x1,x2,是方程 f ′〔x〕=0 的两个根,故有 a<1,,,因此====,同理.因此直线 l 的方程为: y=.设 l 与 x 轴的交点为〔 x0,0〕得 x0=,=,由题设知,点〔 x0,0〕在曲线 y=f〔x〕上,故 f〔x0〕=0,解得 a=0,或 a=或a=【点评】此题主要考查函数在某点取得极值的条件,考查分类讨论,函数与方程能力.22.〔 12 分〕抛物线 C :y=〔x+1〕2 与圆〔r > 0〕有一个公共点 A ,且在 A 处两曲线的切线为同一直线l .〔Ⅰ〕求 r ;〔Ⅱ〕设 m ,n 是异于 l 且与 C 及 M 都相切的两条直线, m ,n 的交点为 D ,求 D 到 l 的距离.【考点】 IM :两条直线的交点坐标; IT :点到直线的距离公式; KJ :圆与圆锥曲线的综合.【专题】 15:综合题; 16:压轴题.【分析】〔Ⅰ〕设 A 〔 x 0 ,〔 x 0+1〕2〕,根据 y=〔x+1〕2,求出 l 的斜率,圆心 M 〔1, 〕,求得MA的斜率,利用 l ⊥MA 建立方程,求得 A 的坐标,即可求得 r 的值;〔Ⅱ〕设〔 t ,〔t+1〕2〕为 C 上一点,那么在该点处的切线方程为y ﹣〔 t+1〕2〔 〕〔 ﹣ 〕,即=2 t+1 x t 〔 〕 ﹣ t 2+1,假设该直线与圆 M 相切,那么圆心 M 到该切线的距离为 ,建立方程,求得 y=2 t+1 x t 的值,求出相应的切线方程,可得 D 的坐标,从而可求 D 到 l 的距离.【解答】 解:〔Ⅰ〕设 A 〔x 0,〔x 0+1〕 2〕,∵ y=〔x+1〕2,y ′=2〔 x+1〕 ∴ l 的斜率为 k=2〔x 0+1〕当 x 0=1 时,不合题意,所以 x 0≠1圆心 M 〔 1, 〕, MA 的斜率.∵ l ⊥MA ,∴ 2〔 x 0+1〕×=﹣1∴ x 0 ,∴ 〔 , 〕,=0A 0 1∴ r=| MA| = ;〔Ⅱ〕设〔 t ,〔t+1〕2〕为 C 上一点,那么在该点处的切线方程为y ﹣〔 t+1〕2 〔 〕〔 ﹣ 〕,即=2 t+1 x ty=2〔t+1〕x ﹣t 2+1假设该直线与圆 M 相切,那么圆心 M 到该切线的距离为∴∴ t 2〔t 2﹣4t ﹣ 6〕 =0∴ t 0=0,或 t 1=2+,t 2=2﹣抛物线 C 在点〔 t i ,〔t i +1〕 2〕〔i=0,1,2〕处的切线分别为l ,m ,n ,y=2x+1①, y=2〔t 1+1〕 x ﹣②, y=2〔t 2+1〕 x ﹣ ③②﹣③: x=代入②可得: y=﹣1∴ D 〔2,﹣ 1〕,∴ D 到 l 的距离为【点评】 此题考查圆与抛物线的综合,考查抛物线的切线方程,考查导数知识的线的距离公式的运用,关键是确定切线方程,求得交点坐标.。
2024年高考数学试题新课标全国Ⅰ卷+答案详解

2024年高考数学试题新课标全国Ⅰ卷+答案详解(试题部分)一、单选题1.已知集合{}355,{3,1,0,2,3}A xx B =−<<=−−∣,则A B =( ) A .{1,0}− B .{2,3} C .{3,1,0}−− D .{1,0,2}−2.若1i 1zz =+−,则z =( ) A .1i −−B .1i −+C .1i −D .1i +3.已知向量(0,1),(2,)a b x ==,若(4)b b a ⊥−,则x =( ) A .2−B .1−C .1D .24.已知cos(),tan tan 2m αβαβ+==,则cos()αβ−=( ) A .3m −B .3m −C .3m D .3m5 )A .B .C .D .6.已知函数为22,0()e ln(1),0x x ax a x f x x x ⎧−−−<=⎨++≥⎩,在R 上单调递增,则a 取值的范围是( )A .(,0]−∞B .[1,0]−C .[1,1]−D .[0,)+∞7.当x ∈[0,2π]时,曲线sin y x =与2sin 36y x π⎛⎫=− ⎪⎝⎭的交点个数为( )A .3B .4C .6D .88.已知函数为()f x 的定义域为R ,()(1)(2)f x f x f x >−+−,且当3x <时()f x x =,则下列结论中一定正确的是( ) A .(10)100f > B .(20)1000f > C .(10)1000f < D .(20)10000f <二、多选题9.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x =,样本方差20.01s =,已知该种植区以往的亩收入X 服从正态分布()21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布()2,N x s ,则( )(若随机变量Z 服从正态分布()2,N u σ,()0.8413P Z u σ<+≈)A .(2)0.2P X >>B .(2)0.5P X ><C .(2)0.5P Y >>D .(2)0.8P Y ><10.设函数2()(1)(4)f x x x =−−,则( )A .3x =是()f x 的极小值点B .当01x <<时,()2()f x f x <C .当12x <<时,4(21)0f x −<−<D .当10x −<<时,(2)()f x f x −>11.造型可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足横坐标大于2−,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则( )A .2a =− B.点在C 上C .C 在第一象限的点的纵坐标的最大值为1D .当点()00,x y 在C 上时,0042y x ≤+ 三、填空题12.设双曲线2222:1(0,0)x y C a b a b−=>>的左右焦点分别为12F F 、,过2F 作平行于y 轴的直线交C 于A ,B 两点,若1||13,||10F A AB ==,则C 的离心率为 .13.若曲线e x y x =+在点()0,1处的切线也是曲线ln(1)y x a =++的切线,则=a .14.甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为 . 四、解答题15.记ABC 内角A 、B 、C 的对边分别为a ,b ,c,已知sin C B =,222a b c +−= (1)求B ;(2)若ABC的面积为3c .16.已知(0,3)A 和33,2P ⎛⎫ ⎪⎝⎭为椭圆2222:1(0)x yC a b a b+=>>上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP 的面积为9,求l 的方程.17.如图,四棱锥P ABCD −中,PA ⊥底面ABCD ,2PA AC ==,1,BC AB ==.(1)若AD PB ⊥,证明://AD 平面PBC ;(2)若AD DC ⊥,且二面角A CP D −−,求AD . 18.已知函数3()ln(1)2xf x ax b x x=++−− (1)若0b =,且()0f x '≥,求a 的最小值; (2)证明:曲线()y f x =是中心对称图形;(3)若()2f x >−当且仅当12x <<,求b 的取值范围.19.设m 为正整数,数列1242,,...,m a a a +是公差不为0的等差数列,若从中删去两项i a 和()j a i j <后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列1242,,...,m a a a +是(),i j −可分数列. (1)写出所有的(),i j ,16i j ≤<≤,使数列126,,...,a a a 是(),i j −可分数列; (2)当3m ≥时,证明:数列1242,,...,m a a a +是()2,13−可分数列;(3)从1,2,...,42m +中一次任取两个数i 和()j i j <,记数列1242,,...,m a a a +是(),i j −可分数列的概率为m P ,证明:18m P >.2024年高考数学试题新课标全国Ⅰ卷+答案详解(答案详解)一、单选题1.已知集合{}355,{3,1,0,2,3}A xx B =−<<=−−∣,则A B =( ) A .{1,0}− B .{2,3} C .{3,1,0}−− D .{1,0,2}−【答案】A【解析】因为{{}|,3,1,0,2,3A x x B =<<=−−,且注意到12<,从而A B ={}1,0−. 故选:A. 2.若1i 1zz =+−,则z =( ) A .1i −− B .1i −+C .1i −D .1i +【答案】C 【解析】因为11111i 111z z z z z −+==+=+−−−,所以111i i z =+=−.故选:C.3.已知向量(0,1),(2,)a b x ==,若(4)b b a ⊥−,则x =( ) A .2− B .1− C .1 D .2【答案】D【解析】因为()4b b a ⊥−,所以()40b b a ⋅−=, 所以240b a b −⋅=即2440x x +−=,故2x =, 故选:D.4.已知cos(),tan tan 2m αβαβ+==,则cos()αβ−=( ) A .3m − B .3m−C .3m D .3m【答案】A【解析】因为()cos m αβ+=,所以cos cos sin sin m αβαβ−=, 而tan tan 2αβ=,所以sin sin 2cos cos αβαβ=, 故cos cos 2cos cos m αβαβ−=即cos cos m αβ=−, 从而sin sin 2m αβ=−,故()cos 3m αβ−=−, 故选:A.5)A.B.C.D.【答案】B【解析】设圆柱的底面半径为r而它们的侧面积相等,所以2ππr r==故3r=,故圆锥的体积为1π93⨯=.故选:B.6.已知函数为22,0()e ln(1),0xx ax a xf xx x⎧−−−<=⎨++≥⎩,在R上单调递增,则a取值的范围是()A.(,0]−∞B.[1,0]−C.[1,1]−D.[0,)+∞【答案】B【解析】因为()f x在R上单调递增,且0x≥时,()()e ln1xf x x=++单调递增,则需满足()221e ln1aa−⎧−≥⎪⨯−⎨⎪−≤+⎩,解得10a−≤≤,即a的范围是[1,0]−.故选:B.7.当x∈[0,2π]时,曲线siny x=与2sin36y xπ⎛⎫=−⎪⎝⎭的交点个数为()A.3B.4C.6D.8【答案】C【解析】因为函数siny x=的的最小正周期为2πT=,函数π2sin36y x⎛⎫=−⎪⎝⎭的最小正周期为2π3T=,所以[]0,2πx∈上函数π2sin36y x⎛⎫=−⎪⎝⎭有三个周期的图象,在坐标系中结合五点法画出两函数图象,如图所示:看图可知,两函数图象有6个交点.故选:C.8.已知函数为()f x的定义域为R,()(1)(2)f x f x f x>−+−,且当3x<时()f x x=,则下列结论中一定正确的是()A .(10)100f >B .(20)1000f >C .(10)1000f <D .(20)10000f <【答案】B【解析】因为当3x <时()f x x =,所以(1)1,(2)2f f ==,又因为()(1)(2)f x f x f x >−+−, 则(3)(2)(1)3,(4)(3)(2)5f f f f f f >+=>+>,(5)(4)(3)8,(6)(5)(4)13,(7)(6)(5)21f f f f f f f f f >+>>+>>+>, (8)(7)(6)34,(9)(8)(7)55,(10)(9)(8)89f f f f f f f f f >+>>+>>+>, (11)(10)(9)144,(12)(11)(10)233,(13)(12)(11)377f f f f f f f f f >+>>+>>+> (14)(13)(12)610,(15)(14)(13)987f f f f f f >+>>+>,(16)(15)(14)15971000f f f >+>>,则依次下去可知(20)1000f >,则B 正确;故ACD 错误。
2021年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)

2021年普通高等学校招生全国统一考试(全国乙卷)数学(文)一、选择题1.已知全集{1,2,3,4,5}U =,集合{1,2}M =,{3,4}N =,则)(U C M N =U ( )A.{5}B.{1,2}C.{3,4}D.{1,2,3,4} 2.设43izi =+,则z =( )A.34i --B.–34i +C.34i -D.34i +3.已知命题:,sin 1p x R x ∃∈<;命题||:,1x q x R e ∈∀≥,则下列命题中为真命题的是( )A.p q ∧B.p q ⌝∧C.p q ∧⌝D.()p q ⌝∨答案: A 解析:根据正弦函数的值域sin [1,1]x ∈-,sin 1x <,故x R ∃∈,p 为真命题,而函数||x y e =为偶函数,且0x ≥时,1xy e =≥,故x R ∀∈,||1x y e =≥恒成立.则q 也为真命题,所以p q ∧为真,选A.4.函数()sin cos 33x xf x =+的最小正周期和最大值分别是( ) A.3πB.3π和2C.6πD.6π和2 答案: C 解析:()sin()34x f x π=+max ()f x =,2613T ππ==.故选C.5.若,x y 满足约束条件2,3,4,y x y x y ≤≤+≥⎧⎪-⎨⎪⎩则3z x y =+的最小值为( )A.18B.10C.6D.4答案: C 解析:根据约束条件可得图像如下,3z x y =+的最小值,即3y x z =-+,y 轴截距最小值.根据图像可知3y x z =-+过点(1,3)B 时满足题意,即min 336z =+=.6.225cos cos 1212ππ-=( ) A.12B.33 C.22 D.32答案: D 解析:2222223()sin cos 25cos cos cos cos cos 12121212121262ππππππππ-=-=--==∴选D. 7.在区间1(0,)2随机取1个数,则取到的数小于13的概率为( )A.34 B.23 C.13 D.16答案: B解析:在区间1(0,)2随机取1个数,可知总长度12d =,取到的数小于13,可知取到的长度范围13d '=,根据几何概型公式123132d p d '===,∴选B.8.下列函数中最小值为4的是( ) A.224y x x =++B.4|sin ||sin |y x x =+C.222x x y -=+D.4n ln l y x x=+答案: C 解析:对于A ,22224213(1)33y x x x x x =++=+++=++≥.不符合,对于B ,4|sin ||sin |y x x =+,令|sin |[0,1]t x =∈,∴4y t t=+,根据对勾函数min 145y =+=不符合,对于C ,242222x x x xy -==++,令20xt =>,∴4224y t t =+≥=⨯=, 当且仅当2t =时取等,符合,对于D ,4n ln l y x x =+,令ln t x R =∈,4y t t=+. 根据对勾函数(,4][4,)y ∈-∞-+∞U ,不符合. 9.设函数1(1)xf x x-=+,则下列函数中为奇函数的是( ) A.1()1f x --B.1()1f x -+C.1()1f x +-D.1()1f x ++答案: B 解析:12()111x f x x x-==-+++, ()f x 向右平移一个单位,向上平移一个单位得到2()g x x=为奇函数. 所以选B.10.在正方体1111ABCD A B C D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角为A.2πB.3πC.4πD.6π 答案: D 解析:做出图形,11//AD BC ,所以1PBC ∠为异面直线所成角,设棱长为1.1BC =,12B P =,12PC =,2BP =. 2221111312cos 22BC BP C P PBC BP BC +-+-∠===⋅,即16PBC π∠=,故选D.11.设B 是椭圆C :2215x y +=的上顶点,点P 在C 上,则PB 的最大值为 A.526 5D.2 答案: A 解析:方法一:由22:15x C y +=,(0,1)B则C 的参数方程:5sin x y θθ⎧=⎪⎨=⎪⎩.22||(sin 1)(5cos )PB θθ=-+24sin 2sin 6θθ=--+212554(sin )442θ=-++≥.∴max 5||2PB =,故选A. 方法二:设00(,)P x y ,则220001([1,1])5x y y +=∈-①,(0,1)B . 因此22200||(1)PB x y =+-② 将①式代入②式化简得:22012525||4()444PB y =-++≥,当且仅当014y =-时||PB 的最大值为52,故选A.12.设0a ≠,若x a =为函数2()()()f x a x a x b =--的极大值点,则 A.a b < B.a b > C.2ab a < D.2ab a > 答案: D 解析:2()2()()()()(32)f x a x a x b a x a a x a x b a '=--+-=---当0a >时,原函数先增再减后增.原函数在()0f x '=的较小零点时取得极大值. 即23a b a +<,即a b <,∴2a ab <. 当0a <时,原函数先减再增后减.原函数在()0f x '=的较大零点时取得极大值. 即23a b a +>,a b >,2a ab <,故选D. 二、填空题13.已知向量(2,5)a =r,(,4)b λ=r ,若//a b r r ,则λ= .答案:85解析:由已知//a b r r 可得82455λλ⨯=⇒=.14.双曲线22145x y -=的右焦点到直线280x y +-=的距离为 . 答案:5解析:22145x y -=的右焦点为(3,0),到直线280x y +-=的距离22|38|512d -==+. 15.记ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,面积为3,60B =︒,223a c ac +=,则b = .答案:22解析: 由面积公式1sin 32S ac B ==,且60B =︒,解得4ac =, 又由余弦定理2222cos b a c ac B =+-,223a c ac +=,且0b > 解得22b =.16.以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为 (写出符合要求的一组答案即可).答案: ②⑤或③④ 解析:由高度可知,侧视图只能为②或③.侧视图为②,如图(1),平面PAC ⊥平面ABC ,2PA PC ==5BA BC ==,2AC =,俯视图为⑤.俯视图为③,如图(2),PA ⊥平面ABC ,1PA =,5AC AB ==,2BC =,俯视图为④.17.某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下: 旧设备 9.810.310.0 10.2 9.9 9.8 10.0 10.1 10.2 9.7 新设备 10.1 10.4 10.110.010.110.310.610.510.410.5旧设备和新设备生产产品的该项指标的样本平均数分别记为x 和y ,样本方差分别记为21s 和22s . (1)求x ,y ,21s ,22s ;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果2212210s s y x +-≥不认为有显著提高). 答案:见解析 解析:9.810.31010.29.99.81010.110.29.71010x ++++++++==+;10.110.410.11010.110.310.610.510.410.510.310y ++++++++==+.211(0.040.090.040.010.040.010.040.09)10s =+++++++10.360.03610=⨯= 221(0.040.010.040.090.040.090.040.010.04)10s =++++++++10.40.0410=⨯=. (2)10.3100.3y x -=-=22120.0360.04221010s s ++=20.0076=. ∵则0.30.0920.0760.0304=>=,所以可判断新设备生产产品的该项指标的均值较旧设备有显著提高; 没有显著提高.18.如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,M 为BC 的中点,且PB AM ⊥.(1)证明:平面PAM ⊥平面PBD ﹔(2)若1PD DC ==,求四棱锥P ABCD -的体积.答案: 见解析 解析:19.设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a ,成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S ,和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <. 答案: 见解析 解析:设{}n a 的公比为q ,则1n n a q-=,因为1a ,23a ,39a 成等差数列,所以21923q q +=⨯,解得13q =, 故11()3n n a -=,11313(1)12313n n n S -==--. 又3n n n b =,则1231123133333n n n n nT --=+++++L ,两边同乘13,则234111231333333n n n n n T +-=+++++L ,两式相减,得23412111113333333n n n nT +=+++++-L ,即1111(1)1133(1)332333121n n n n n n n T ++-=-=---, 整理得31323(1)4323423n n n nn n T +=--=-⨯⨯, 323314322()(1)04232323n n n n nn n T S ++-=---=-<⨯⨯,故2n n S T <.20.已知抛物线C :22(0)y px p =>的焦点F 到准线的距离为2. (1)求C 的方程,(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF =u u u r u u u r,求直线OQ 斜率的最大值.答案:见解析 解析:(1)由焦点到准线的距离为p ,则2p =. 抛物线c 的方程:24y x =.(2)设点200(,)4y P y ,(,)Q Q Q x y ,(1,0)F .∵9PQ QF =u u u r u u u r .∴222000009499(,)9(1,)4104910Q Q Q Q Q Q Q Q Q Q y y x x x y x y y x y y y x y y ⎧+⎪⎧-=-=⎪⎪--=--⇒⇒⎨⎨⎪⎪-=-⎩=⎪⎩则020001193944Q OQ Qy y k y y x y ===≤=++. ∴直线OQ 斜率的最大值为13. 21.已知函数32()1f x x x ax =-++. (1)讨论()f x 的单调性;(2)求曲线()y f x =过坐标原点的切线与曲线()y f x =的公共点的坐标. 答案: 见解析 解析:(1)2()32f x x x a '=-+(i )当4120a ∆=-≤,即13a ≥时,()0f x '≥恒成立,即()f x 在()f x 在x ∈R 上单调递增.(ii )当4120∆=->,即13a <时,()0f x '=解得,113x =,213x +=.∴()f x 在113(,3a --∞,113(,)3a -+∞单调递增,在113113(33a a-++单调递减,综上所述:当13a ≥时,()f x 在R 上单调递增;当13a <时,()f x 在113113(,33a a--+单调递减.(2)设可原点切线的切点为32(,1)t t t at -++,切线斜率2()32k f t t t a '==-+.又321t t at k t-++=,可得322132t t at t t a t -++=-+.化简得2(1)(21)0t t t -++=,即1t =.∴切点为(1,1)a +,斜率1k a =+,切线方程为(1)y a x =+,将(1)y a x =+,321y x x ax =-++联立可得321(1)x x ax a x -++=+,化简得2(1)(1)0x x -+=,解得11x =,21x =-.∴过原点的切线与()y f x =公共点坐标为(1,1)a +,(1,1)a ---.22.在直角坐标系xOy 中,C e 的圆心为)(2,1C ,半径为1. (1)写出C e 的一个参数方程;(2)过点)(4,1F 作C e 的两条切线.以坐标原点为极点,x 轴正半轴为极轴建立坐标系,求这两条切线的极坐标方程. 答案: 见解析 解析:(1)C e 的参数方程为2cos 1sin x y θθ=+⎧⎨=+⎩(θ为参数)(2)C e 的方程为22(2)(1)1x y -+-=①当直线斜率不存在时,直线方程为4x =,此时圆心到直线距离为2r >,舍去;②当直线斜率存在时,设直线方程为1(4)y k x -=-,化简为410kx y k --+=, 此时圆心(2,1)C 到直线的距离为1d r ===,化简得2||k =,两边平方有2241k k =+,所以3k =±代入直线方程并化简得40x -+-=或40x =化为极坐标方程为5cos sin 4sin()46πρθθρθ-=-⇔+=-或cos sin 4sin()46πρθθρθ+=+⇔+=23.已知函数()|||3|f x x a x =-++. (1)当1a =时,求不等式()6f x ≥的解集; (2)若()f x a >-,求a 的取值范围. 答案: 见解析 解析:当1a =时,()6|1||3|6f x x x ≥⇔-++≥,当3x ≤-时,不等式136x x ⇔---≥,解得4x ≤-; 当31x -<<时,不等式136x x ⇔-++≥,解得x ∈∅; 当1x ≥时,不等式136x x ⇔-++≥,解得2x ≥. 综上,原不等式的解集为(,4][2,)-∞-+∞U . (2)若()f x a >-,即min ()f x a >-,因为()|||3||()(3)||3|f x x a x x a x a =-++≥--+=+(当且仅当()(3)0x a x -+≤时,等号成立),所以min ()|3|f x a =+,所以|3|a a +>-,即3a a +<或3a a +>-,解得3(,)2a ∈-+∞.。
2024全国高考甲卷文科数学试题及答案

2024 年普通高等学校招生全国统一考试全国甲卷文科数学使用范围: 陕西、宁夏、青海、内蒙古、四川注意事项:1.答题前, 务必将自己的姓名、考籍号填写在答题卡规定的位置上.2.答选择题时, 必须使用2B铅笔将答题卡上对应题目的答案标号涂黑. 如需改动, 用橡皮擦擦干净后, 再选涂其它答案标号.3.答非选择题时, 必须使用 0.5 毫米黑色签字笔, 将答案书写在答题卡规定的位置上.4.所有题目必须在答题卡上作答, 在试题卷上答题无效.5.考试结束后, 只将答题卡交回.一、选择题: 本题共 12 小题, 每小题 5 分, 共 60 分. 在每小题给出的四个选项中, 只有一项是符合题目要求的.1.集合A={1,2,3,4,5,9},B={x∣x+1∈A}, 则A∩B=( )(A) {1,2,3,4}(B) {1,2,3,4}(C) {1,2,3,4}(D) {1,2,3,4}【参考答案】A【详细解析】因为A={1,2,3,4,5,9},B={x∣x+1∈A}={0,1,2,3,4,8}, 所以A∩B= {1,2,3,4}, 故选(A).2. 设z=√2i, 则z⋅z‾=( )(A) 2(B) 2(C) 2(D) 2【参考答案】D【详细解析】因为z=√2i, 所以z⋅z‾=2, 故选(D).3.若实数x,y满足约束条件(略), 则z=x−5y的最小值为 ( )(A)5(B) 12(C) -2(D) −72【参考答案】D【详细解析】将约束条件两两联立可得 3 个交点: (0,−1)、(32,1)和(3,12), 经检验都符合约束条件. 代入目标函数可得: z min=−72, 故选(D).4.等差数列{a n}的前n项和为S n, 若S9=1,a3+a7=( )(A) -2(B) 73(C) 1(D) 29【参考答案】D【详细解析】令d=0, 则S9=9a n=1,a n=19,a3+a7=29, 故选(D).5.甲、乙、丙、丁四人排成一列, 丙不在排头, 且甲或乙在排尾的概率是( )(A) 14(B) 13(C) 12(D) 23【详细解析】甲、乙、丙、丁四人排成一列共有 24 种可能. 丙不在排头, 且甲或乙在排尾的共有 8 种可能, P=824=13, 故选(B).6. 已知双曲线C:x2a2−y2b2=1(a>0,b>0)的左、右焦点分别为F1(0, 4)、F2(0,−4), 且经过点P(−6,4), 则双曲线C的离心率是( ) (A) 135(B) 137(C) 2(D) 3【参考答案】C【详细解析】e=c=|F1F2|a=2, 故选(C).7.曲线f(x)=x6+3x在(0,−1)处的切线与坐标轴围成的面积为 ((A) 1(B)3 2(C) 12(D) √3 2【参考答案】A【详细解析】因为y′=6x5+3, 所以k=3,y=3x−1,S=12×13×1=16, 故选(A).8.函数f(x)=−x2+(e x−e−x)sin x的大致图像为 ( ) 【参考答案】B【详细解析】选(B).9.已知cos αcos α−sin α=13, 则tan (α+π4)=( )(A) 3(B) 2√3−1(C) -3(D) 13【参考答案】B【详细解析】因为cos αcos α−sin α=√3, 所以tan α=1−√33,tan (α+π4)=tan α+11−tan α=2√3−1, 故选(B).10.直线过圆心, 直径【参考答案】直径【详细解析】直线过圆心, 直径.11.已知已知m、n是两条不同的直线,α、β是两个不同的平面: (1)若m⊥α,n⊥α, 则m//n; (2)若α∩β=m,m//n, 则n//β; (3)若m//α,n//α,m与n可能异面, 也可能相交, 也可能平行; (4)若α∩β=m,n与α和β所成的角相等, 则m⊥n, 以上命题是真命题的是( )(A)(1)(3)(B)(2)(3)(C)(1)(2)(3)(D)(1)(3)(4)【参考答案】A【详细解析】选(A).12.在△ABC中, 内角A,B,C所对边分别为a,b,c, 若B=π3, b2=94ac, 则sin A+sin C=( )(A)23913(B) √3913 (C) 72(D)3√1313【参考答案】C【详细解析】因为 B =π3,b 2=94ac , 所以 sin A sin C =49sin 2 B =13. 由余弦定理可得: b 2=a 2+c 2 −ac =94ac , 即: a 2+c 2=134ac,sin 2 A +sin 2 C =134sin A sin C =1312, 所以 (sin A +sin C)2=sin 2A +sin 2C +2sin A sin C =74,sin A +sin C =√72, 故选(C).二、填空题: 本题共 4 小题, 每小题 5 分, 共 20 分.13.略14. 函数 f(x)=sin x −√3cos x 在 [0,π] 上的最大值是【参考答案】2【详细解析】 f(x)=sin x −√3cos x =2sin (x −π3)⩽2, 当且仅当 x =5π6时取等号. 15. 已知 a >1,1log8a−1log a4=−52, 则 a = . 【参考答案】 64【详细解析】因为 1log8a−1loga4=3log 2a−12log 2 a =−52, 所以 (log 2 a +1)(log 2 a −6)=0, 而 a >1,故 log 2 a =6,a =64.16. 曲线 y =x 3−3x 与 y =−(x −1)2+a 在 (0,+∞) 上有两个不同的交点, 则 a 的取值范围为 .【参考答案】 (−2,1)【详细解析】令 x 3−3x =−(x −1)2+a , 则 a =x 3−3x +(x −1)2, 设 φ(x)=x 3−3x +(x −1)2,φ′(x) =(3x +5)(x −1),φ(x) 在 (1,+∞) 上递增, 在 (0,1) 上递减. 因为曲线 y =x 3−3x 与 y =−(x −1)2+a 在 (0,+∞) 上有两个不同的交点, φ(0)=1,φ(1)=−2, 所以 a 的取值范围为 (−2, 1).三、解答题:共 70 分. 解答应写出文字说明, 证明过程或演算步骤. 第 17 题 第 21 题为必考题, 每个考题考生必须作答. 第 22、23 题为选考题, 考生根据要求作答.(一)必考题: 共 60 分.17.(12 分)已知等比数列 {a n } 的前 n 项和为 S n , 且 2S n =3a n+1−3. (1)求 {a n } 的通项公式; (2)求数列 {S n } 的通项公式. 【参考答案】见解析.【详细解析】(1)因为 2S n =3a n+1−3, 所以 2S n+1=3a n+2−3, 两式相减可得: 2a n+1=3a n+2− 3a n+1, 即: 3a n+2=5a n+1, 所以等比数列 {a n } 的公比 q =53, 又因为 2S 1=3a 2−3=5a 1−3, 所以 a 1=1,a n =(53)n−1;(2) 因为 2S n =3a n+1−3, 所以 S n =32(a n+1−1)=32[(53)n−1].18.(12 分)题干略. 【详细解析】(1) χ2=150(70×24−26×30)296×54×50×100<6.635, 没有 99% 的把握;(2) p ‾>p +1.65√p(1−p)150, 故有优化提升. 19.(12 分)如图, 已知 AB//CD,CD//EF,AB =DE =EF =CF =2, CD =4,AD =BC =√10,AE =2√3,M 为 CD 的中点. (1)证明: EM// 平面 BCF ; (2)求点 M 到 ADE 的距离.【参考答案】见解析【详细解析】(1)由题意: EF//CM,EF =CM , 而 CF 平面 ADO,EM ⊈ 平面 ADO , 所以 EM //平面BCF;(2)取DM的中点O, 连结OA,OE, 则OA⊥DM,OE⊥DM,OA=3,OE=√3, 而AE=2√3,故OA⊥OE,S△AOE=2√33. 因为DE=2,AD=√10, 所以AD⊥DE,S△AOE=√10.DM设点M到平面ADE的距离为ℎ, 所以V M−ADE=13S△ADE⋅ℎ=13S△AOE⋅DM,ℎ=4√3√10=2√305, 故点M到ADE的距离为2√30 5.20.(12 分) 已知函数f(x)=a(x−1)−ln x+1.(1)求f(x)的单调区间; ◻(2)若a⩽2时, 证明: 当x>1时, f(x)<e x−1恒成立. 【参考答案】见解析若a⩽0,f′(x)<0,f(x)的减区间为(0,+∞), 无增区间;若a>0时, 当0<x<1a 时, f′(x)<0, 当x>1a时, f′(x)>0, 所以f(x)的减区间为(0,1a ), 增区间为(1a,+∞);(2)因为a⩽2, 所以当x>1时, e x−1−f(x)=e x−1−a(x−1)+ln x−1⩾e x−1−2x+ ln x+1. 令g(x)=e x−1−2x+ln x+1, 则g′(x)=e x−1−2+1x. 令ℎ(x)=g′(x), 则ℎ′(x)=e x−1−1x2在(1,+∞)上递增, ℎ′(x)>ℎ′(1)=0, 所以ℎ(x)=g′(x)在(1,+∞)上递增, g′(x)>g′(1)=0, 故g(x)在(1,+∞)上递增, g(x)>g(1)=0, 即: 当x>1时, f(x)< e x−1恒成立.21.(12 分) 已知粗圆C:x2a2+y2b2=1(a>b>0)的右焦点为F, 点M(1, 32在椭圆C上, 且MF⊥x轴.(1)求椭圆C的方程;(2) P(4,0), 过P的直线与椭圆C交于A,B两点, N为FP的中点, 直线NB与MF交于Q,证明: AQ⊥y轴.【参考答案】见解析【详细解析】(1)设椭圆C的左焦点为F1, 则|F1F|=2,|MF|=32. 因为MF⊥x轴, 所以∣MF1=52,2a=|MF1|+|MF|=4, 解得: a2=4,b2=a2−1=3, 故椭圆C的方程为: x24+y 23=1;{3x 12+4y 12=123(λx 2)2+4(λy 2)2=12λ2可得: 3⋅x 1+λx 21+λ⋅x 1−λx 21−λ+4⋅y 1+λy 21+λ⋅y 1−λy 21−λ=12, 结合上式可得: 5λ− 2λx 2+3=0.P(4,0),F(1,0),N (52,0), 则 y Q =3y 25−2x 2=3λy 25λ−2λx 2=−λy 2=y 1, 故AQ ⊥y 轴.x 2y 1)(x 1y 2+x 2y 1)=x 12y 22−x 22y 12=(4+4y 123)y 22−(4+4y 223)y 12=4(y 2−y 1)(y 2+y 1)=4(y 2−y 1)(x 1y 2+x 2y 1),即: x 1y 2+x 2y 1=y 2+y 1,2x 2y 1=5y 1−3y 2.P(4,0),F(1,0),N (52,0), 则 y Q =3y 25−2x 2=3y 1y 25y1−2y 1x 2=y 1, 故 AQ ⊥y 轴.(二)选考题: 共 10 分. 请考生在第 22、23 题中任选一题作答, 并用 2B 铅笔将所选题号涂黑,多涂、错涂、漏涂均不给分, 如果多做, 则按所做的第一题计分.22.[选修 4-4: 坐标系与参数方程](10 分)在平面直角坐标系 xOy 中, 以坐标原点 O 为极点, x 轴的正半轴为极轴建立极坐标系, 曲线 C 的极坐标方程为 ρ= ρcos θ+1. (1)写出 C 的直角坐标方程;(2)直线 {x =ty =t +a (t 为参数)与曲线 C 交于 A 、B 两点, 若 |AB|=2, 求 a 的值.【参考答案】见解析【详细解析】(1)因为 ρ=ρcos θ+1, 所以 ρ2=(ρcos θ+1)2, 故 C 的直角坐标方程为: x 2+y 2=(x +1)2, 即: y 2=2x +1; ◻(2) 将 {x =ty =t +a 代入 y 2=2x +1 可得: t 2+2(a −1)t +a 2−1=0,|AB|=√2|t 1−t 2|=√16(1−a)=2,解得: a =34.[选修 4-5: 不等式选讲](10 分)实数 a,b 满足 a +b ⩾3. (1)证明: 2a 2+2b 2>a +b ;(2)证明: |a−2b2|+|b−2a2|⩾6.【解析】(1)因为a+b⩾3, 所以2a2+2b2⩾(a+b)2>a+b;(2) |a−2b2|+|b−2a2|⩾|a−2b2+b−2a2|=|2a2+2b2−(a+b)|=2a2+2b2−(a+b)⩾(a+b)2−(a+b)=(a+b)(a+b−1)⩾6.。
2022年新高考数学一卷及解析

2022年普通高等学校招生全国统一考试新高考数学I 卷数学本试卷共4页,22小题,满分150分,考试时间120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上,将条形码横贴在答题卡右上角“条形码粘贴处”。
2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目制定区域内相应位置上,如需改动,先划掉原来答案,然后再写上新答案,不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保持答题卡的整洁,考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{}4<x x M =,{}13N ≥=x x ,则N M ⋂=()A.{}20<x x ≤ B.⎭⎬⎫⎩⎨⎧≤231<x xC.{}163<x x ≤ D.⎭⎬⎫⎩⎨⎧≤1631<x x2.已知()11=-z i ,则=+z z()A.2- B.1- C.1D.23.在ABC ∆中,点D 在边AB 上,DA BD 2=.记m A C =,n D C =,则=B CA.n m 23-B.n m 32+-C.n m 23+D.nm 32+4.南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔148.5m 时,相应水面的面积为140.0km ²;水位为海拔157.5m 时,相应水面的面积为180.0km ².将该水库在这两个水位间的形状看做一个棱台,则该水库水位从海拔148.5m 上升到157.5m 时,增加的水量约为()65.27≈A.39100.1m⨯ B.39102.1m⨯ C.39104.1m ⨯ D.39106.1m⨯5.从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为()A.61 B.31 C.21 D.326.记函数()()04sin >ωπωb x x f +⎪⎭⎫ ⎝⎛+=的最小正周期为T .若ππ223<<T ,且()x f y =的图象关于点⎪⎭⎫⎝⎛223,π中心对称,则=⎪⎭⎫ ⎝⎛2πf ()A.1B.23 C.25 D.37.设1.01.0ea =,91=b ,9.0ln -=c ,则A.c b a << B.a b c << C.b a c << D.bc a <<8.已知正四棱锥的侧棱长为l ,其各顶点都在同一球面上.若该球的体积为π36,且333≤≤l ,则该正四棱锥体积的取值范围是()A.⎥⎦⎤⎢⎣⎡48118, B.⎥⎦⎤⎢⎣⎡481427, C.⎥⎦⎤⎢⎣⎡364427, D.[]27,18二、选择题:本题共4小题,每小题5分,共20分。
2020年全国高考新课标1卷文科数学试题(word文档完整版小题也有详解)

2020年全国高考新课标1卷文科数学试题一、选择题,本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A ={x |x 2-3x -4≤0},B ={-4,1,3,5},且A ∩B =( )A .{-4,1}B .{1,5}C .{3,5}D .{1,3} 2.若z =1+2i +i 3,则|z |=( )A .0B .1C 2D .2 3.埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积 等于该四棱锥一个侧面三角形的面积,则其侧面三角形 底边上的高与底面正方形的边长的比值为( )A .514B .512C .514D .5124.设O 为正方形ABCD 的中心,在O ,A ,B ,C ,D 中任取3点,则取到的3点共线的概率为( )A .15B .25C .12D .455.某校一个课外学习小组为研究某作物种子的发芽率y 和温度x (单位:°C)的关系,在20个不同的温度条件下 进行种子发芽实验,由实验数据 (x i . y i )(i =1,2,···,20)得到散点图:由此散点图,在10°C 至40°C 之 间,下面四个回归方程类型中最 适宜作为发芽率y 和温度x 的回 归方程类型的是( ) A .y=a+bx B .y=a+bx 2 C .y=a+be xD .y=a+b ln x6.已知圆x 2+y 2-6x =0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为( )A .1B .2C .3D .47.设函数f (x )=cos(ωx +6π)在[-π,π]的图像大致如下图,则f (x )的最小正周期为( )A .109πB .76πC .43πD .32π8.设a log 34=2,则4-a =( )A .116B .19C .18D .169.执行下面的程序框图,则输出的n =( )A .17B .19C .21D .2310.设{a n}是等比数列,且a1+a2+a3=1,a2+a3+a4=2,则a6+a7+a8=( ) A.12 B.24 C.30 D.3211.设F1, F2是双曲线C:2213yx-=的两个焦点,O为坐标原点,点P在C上且|OP|=2,则∆PF1F2的面积为( )A.72B.3 C.52D.212.已知A,B,C为球O的球面上的三个点,⊙O1为∆ABC的外接圆,若⊙O1的面积为4π,AB=BC=AC=OO1,则球O的表面积为( )AA.64πB.48πC.36πD.32π二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.13.若x,y满足约束条件220,10,10,x yx yy+-≤⎧⎪--≥⎨⎪+≥⎩则z=x+7y的最大值为.14.设为(1,1)(1,24),a b m m a b-=+-⊥=,若,则m= .15.曲线y=ln x+x+1的一条切线的斜率为2,则该切线的方程为.16.数列{a n}满足a n+2+(-1)n a n=3n-1,前16项和为540,则a1= .三、解答题:解答应写出文字说明,证明过程或演算步骤。
(word完整版)高考文科数学全国1卷(附)

(word完满版)高考文科数学全国1卷(附)_ - __ - _ __-__:-号 -学-__-___ - ___-______封__密___ - _:-名姓---班 - _ __-___ - _年 -______封_密__-___ - _ __-___ - ___-___ - ___ -:-12B-SX-0000022绝密★启用前2021 年一般高等学校招生全国一致考试文科数学全国I卷本卷共 23 小,分150 分,考用120 分(适用地区:河北、河南、山西、山东、江西、安徽、湖北、湖南、广东、福建)本卷须知:1.答卷前,考生务必然自己的姓名、考生号等填写在答题卡和试卷指定地址上。
2.答复选择题时,选出每题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
答复非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、:本共12 小,每小 5 分,共 60 分。
在每个小出的四个中,只有一是吻合目要求的。
1.z3i, z =12iA . 2B .3C.2 D .12.会集U1,2,3,4,5,6,7,A2,3,4,5,B2,3,6,7 ,BI e AUA.1,6B.1,7C.6,7D.1,6,7. a,log2 0.2,b 2 ,c3A . a b cB . a c bC. c a b D . b c a4.古希腊期,人最正确人体的至肚的度与肚至足底的度之比是5 1〔5 1≈,称黄金切割比率),出名22的“断臂斯〞即是这样.其他,最正确人体的至咽喉的度与咽喉至肚的度之比也是5 1.假设某人足2上述两个黄金切割比率,且腿105cm,至脖子下端的度26 cm,其身高可能是A. 165 cmB. 175 cmC. 185 cmD. 190cm5.函数 f(x)=sin x x2在 [ —π,π]的像大体cos x xA. B.C. D.6.某学校认识 1 000 名再生的身体素,将些学生号1, 2,⋯, 1 000,从些再生中用系抽方法等距抽取100 名学生行体.假设 46 号学生被抽到,下面 4 名学生中被抽到的是A .8 号学生B . 200 号学生C. 616 号学生 D .815 号学生7.tan255 =°(word 完满版)高考文科数学全国1卷(附)12B-SX-00000228.非零向量a ,b 满足 a = 2b ,且〔 a –b 〕b ,那么 a 与 b 的夹角为A .ππ 2 π5 π6B .C .D .33619. 如图是求 21的程序框图,图中空白框中应填入2 12A. A=12 AB. A= 21AC. A=11 2 AD. A= 112 Ax 2 y 2 1(a 0,b 0) 的一条渐近线的倾斜角为130 °,那么 C 的10.双曲线 C :b 2a 2 离心率为A . 2sin40 °B . 2cos40 °C .1 1 D .cos50sin5011. △ABC 的内角 A , B , C 的对边分别为 a , b ,c , asinA - bsinB=4 csinC ,cosA=- 1,那么b=4cA . 6B . 5C . 4D . 312.椭圆 C 的焦点为 F 1( 1,0),F 2(1,0),过 F 2的直线与 C 交于 A ,B 两点 .假设|AF |2|F B|, |AB| |BF|,那么 C 的方程A . x 2 y 21B. x 2 y 21232x 2 y 2 1x 2 y 2 1C .3D .445二、填空题:此题共 4 小题,每题 5 分,共 20 分。
新课标i卷数学高考

新课标i卷数学高考
高考数学(文科)一共有两套试卷,分别为I卷和II卷。
新课标高考数学I卷主要分为选择题和非选择题两部分。
选择题部分主要包括单选题和不定项选择题。
单选题有15道,每小题4分,共60分;不定项选择题有10道,每小题3分,
共30分。
选择题主要考察对基本概念、基本方法和基本技巧
的掌握程度。
非选择题部分主要包括填空题、解答题和证明题。
填空题有5
小题,每小题3分,共15分;解答题有4小题,每小题10分,共40分;证明题有1小题,共25分。
非选择题主要考察对数
学知识的理解和运用能力。
总分共计为共120分。
其中选择题得分为90分,非选择题得
分为30分。
新课标高考数学II卷主要包括主观题和客观题两部分。
主观题部分主要包括四个大题,分别为选择题、填空题、解答题和证明题。
选择题有10小题,每小题6分,共60分;填空
题有4小题,每小题3分,共12分;解答题有3小题,每小
题15分,共45分;证明题有1小题,共30分。
客观题部分主要包括单选题和不定项选择题。
单选题有15小题,每小题4分,共60分;不定项选择题有10小题,每小题
3分,共30分。
总分共计为共120分。
其中选择题得分为90分,非选择题得分为30分。
以上为新课标高考数学(文科)I卷和II卷的基本情况。
实际考试中,具体试题的难度和题型可能会有所调整,考生需要根据最新的教材和考纲进行备考。
高考文科数学全国卷1

普通高等学校招生全国统一考试文科数学(全国卷Ⅰ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3到10页。
考试结束后;将本试卷和答题卡一并交回。
第Ⅰ卷注意事项;1.答第Ⅰ卷前;考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上。
2.每小题选出答案后;用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动;用橡皮擦干净后;再选涂其它答案标号。
不能答在试题卷上。
3.本卷共12小题;每小题5分;共60分。
在每小题给出的四个选项中;只有一项是符合题目要求的。
参考公式;如果事件A 、B 互斥;那么 球是表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、B 相互独立;那么 其中R 表示球的半径)()()(B P A P B A P ⋅=⋅ 球的体积公式如果事件A 在一次试验中发生的概率是P ;那么334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径k n kk n n P P C k P --=)1()(一.选择题(1)已知向量a 、b 满足|a |=1;|b |=4;且ab =2;则a 与b 的夹角为(A )6π (B )4π (C )3π (D )2π(2)设集合M={x|x 2-x<0},N={x||x|<2},则(A )M φ=N(B )M M N =(C )M N M = (D )R N M =(3)已知函数y=e x 的图象与函数y=f(x)的图象关于直线y=x 对称;则(A )f(2x)=e 2x (x )R ∈ (B )f(2x)=ln2lnx(x>0)(C )f(2x)=2e 2x (x )R ∈(D )f(2x)= lnx+ln2(x>0)(4)双曲线mx 2+y 2=1的虚轴长是实轴长的2倍,则m=(A )-41 (B )-4 (C)4 (D )41 (5)设S n 是等差数列{a n }的前n 项和,若S 7=35,则a 4=(A )8 (B )7 (C )6(D )5(6)函数f(x)=tan(x+4π)的单调递增区间为 (A )(k π-2π, k π+2π),k Z ∈ (B )(k π, (k+1)π),k Z ∈(C) (k π-43π, k π+4π),k Z ∈ (D )(k π-4π, k π+43π),k Z ∈(7)从圆x 2-2x+y 2-2y+1=0外一点P(3,2)向这个圆作两条切线,则两切线夹角的余弦值为(A )21(B )53(C )23 (D )0(8)∆ABC 的内角A 、B 、C 的对边分别为a 、b 、c ;若a 、b 、c ;且c=2a ;则cosB=(A )41 (B )43 (C )42 (D )32 (9)已知各顶点都在一个球面上的正四棱锥高为4;体积为16;则这个球的表面积是(A )16 π (B )20π (C )24π (D )32π (10)在(x-x21)10的展开式中;x 4的系数为 (A )-120 (B )120 (C )-15 (D )15 (11)抛物线y=-x 2上的点到4x+3y-8=0直线的距离的最小值是(A )34 (B )57 (C )58 (D )3(12)用长度分别为2、3、4、5、6(单位:cm)的细木棒围成一个三角形(允许连接,但不允许折断),能够得到期的三角形面积的最大值为(A )85cm 2(B )610cm 2 (C )355cm 2(D )20cm 2第Ⅱ卷注意事项;1.用钢笔或圆珠笔直接答在试题卷上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年高考新课标全国卷Ⅰ文科数学考试范围与要求本部分包括必考内容和选考内容两部分.必考内容为《课程标准》的必修内容和选修系列1的内容;选考内容为《课程标准》的选修系列4的“坐标系与参数方程”、“不等式选讲”等2个专题。
必考内容(一)集合1.集合的含义与表示(1)了解集合的含义、元素与集合的属于关系.(2)能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集.(2)在具体情境中,了解全集与空集的含义.3.集合的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(3)能使用韦恩(Venn)图表达集合的关系及运算.(二)函数概念与基本初等函数I(指数函数、对数函数、幂函数)1.函数(1)了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念.(2)在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.(3)了解简单的分段函数,并能简单应用.(4)理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义.(5)会运用函数图象理解和研究函数的性质.2.指数函数(1)了解指数函数模型的实际背景.(2)理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.(3)理解指数函数的概念,理解指数函数的单调性,掌握指数函数图象通过的特殊点.(4)知道指数函数是一类重要的函数模型.3.对数函数(1)理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用.(2)理解对数函数的概念,理解对数函数的单调性,掌握对数函数图象通过的特殊点.(3)知道对数函数是一类重要的函数模型.(44.幂函数(1)了解幂函数的概念.(25.函数与方程(1)结合二次函数的图象,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.(2)根据具体函数的图象,能够用二分法求相应方程的近似解.6.函数模型及其应用(1)了解指数函数、对数函数以及幂函数的增长特征,知道直线上升、指数增长、对数增长等不同函数类型增长的含义.(2)了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用.(三)立体几何初步1.空间几何体(1)认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构.(2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述三视图所表示的立体模型,会用斜二侧法画出它们的直观图.(3)会用平行投影与中心投影两种方法画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式.(4)会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不做严格要求).(5)了解球、棱柱、棱锥、台的表面积和体积的计算公式.2.点、直线、平面之间的位置关系(1)理解空间直线、平面位置关系的定义,并了解如下可以作为推理依据的公理和定理.·公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内.·公理2:过不在同一条直线上的三点,有且只有一个平面.·公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.·公理4:平行于同一条直线的两条直线互相平行.·定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.(2)以立体几何的上述定义、公理和定理为出发点,认识和理解空间中线面平行、垂直的有关性质与判定定理.理解以下判定定理:·如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.·如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行.·如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直.·如果一个平面经过另一个平面的垂线,那么这两个平面互相垂直.理解以下性质定理,并能够证明:·如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线和该直线平行.·如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.·垂直于同一个平面的两条直线平行.·如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直.(3)能运用公理、定理和已获得的结论证明一些空间图形的位置关系的简单命题.(四)平面解析几何初步1.直线与方程(1)在平面直角坐标系中,结合具体图形,确定直线位置的几何要素.(2)理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.(3)能根据两条直线的斜率判定这两条直线平行或垂直.(4)掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系.(5)能用解方程组的方法求两条相交直线的交点坐标.(6)掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离.2.圆与方程(1)掌握确定圆的几何要素,掌握圆的标准方程与一般方程.(2)能根据给定直线、圆的方程判断直线与圆的位置关系;能根据给定两个圆的方程判断两圆的位置关系.(3)能用直线和圆的方程解决一些简单的问题.(4)初步了解用代数方法处理几何问题的思想.3.空间直角坐标系(1)了解空间直角坐标系,会用空间直角坐标表示点的位置.(2)会推导空间两点间的距离公式.(五)算法初步1.算法的含义、程序框图(1)了解算法的含义,了解算法的思想.(2)理解程序框图的三种基本逻辑结构:顺序、条件分支、循环.2.基本算法语句理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义.(六)统计1.随机抽样(1)理解随机抽样的必要性和重要性.(2)会用简单随机抽样方法从总体中抽取样本;了解分层抽样和系统抽样方法.2.用样本估计总体(1)了解分布的意义和作用,会列频率分布表,会画频率分布直方图、频率折线图、茎叶图,理解它们各自的特点.(2)理解样本数据标准差的意义和作用,会计算数据标准差.(3)能从样本数据中提取基本的数字特征(如平均数、标准差),并给出合理的解释.(4)会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征,理解用样本估计总体的思想.(5)会用随机抽样的基本方法和样本估计总体的思想解决一些简单的实际问题.3.变量的相关性(1)会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系.(2)了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.(七)概率1.事件与概率(1)了解随机事件发生的不确定性和频率的稳定性,了解概率的意义,了解频率与概率的区别.(2)了解两个互斥事件的概率加法公式.2.古典概型(1)理解古典概型及其概率计算公式.(2)会用列举法计算一些随机事件所含的基本事件数及事件发生的概率.3.随机数与几何概型(1)了解随机数的意义,能运用模拟方法估计概率.(2)了解几何概型的意义.(八)基本初等函数Ⅱ(三角函数)1.任意角的概念、弧度制(1)了解任意角的概念.(2)了解弧度制的概念,能进行弧度与角度的互化.2.三角函数(1)理解任意角三角函数(正弦、余弦、正切)的定义.(2(3(4(5(6)了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实际问题.(九)平面向量1.平面向量的实际背景及基本概念(1)了解向量的实际背景.(2)理解平面向量的概念,理解两个向量相等的含义.(3)理解向量的几何表示.2.向量的线性运算(1)掌握向量加法、减法的运算,并理解其几何意义.(2)掌握向量数乘的运算及其几何意义,理解两个向量共线的含义.(3)了解向量线性运算的性质及其几何意义.3.平面向量的基本定理及坐标表示(1)了解平面向量的基本定理及其意义.(2)掌握平面向量的正交分解及其坐标表示.(3)会用坐标表示平面向量的加法、减法与数乘运算.(4)理解用坐标表示的平面向量共线的条件.4.平面向量的数量积(1)理解平面向量数量积的含义及其物理意义.(2)了解平面向量的数量积与向量投影的关系.(3)掌握数量积的坐标表达式,会进行平面向量数量积的运算.(4)能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.5.向量的应用(1)会用向量方法解决某些简单的平面几何问题.(2)会用向量方法解决简单的力学问题与其他一些实际问题.(十)三角恒等变换1.和与差的三角函数公式(1)会用向量的数量积推导出两角差的余弦公式.(2)能利用两角差的余弦公式导出两角差的正弦、正切公式.(3)能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.2.简单的三角恒等变换能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).(十一)解三角形1.正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2.应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.(十二)数列1.数列的概念和简单表示法(1)了解数列的概念和几种简单的表示方法(列表、图象、通项公式).(2)了解数列是自变量为正整数的一类函数.2.等差数列、等比数列(1)理解等差数列、等比数列的概念.(2(3)能在具体的问题情境中识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.(4)了解等差数列与一次函数、等比数列与指数函数的关系.(十三)不等式1.不等关系了解现实世界和日常生活中的不等关系,了解不等式(组)的实际背景.2.一元二次不等式(1)会从实际情境中抽象出一元二次不等式模型.(2)通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系.(3)会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.3.二元一次不等式组与简单线性规划问题(1)会从实际情境中抽象出二元一次不等式组.(2)了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.(3)会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.4(1)了解基本不等式的证明过程.(2)会用基本不等式解决简单的最大(小)值问题.(十四)常用逻辑用语1.命题及其关系(1)理解命题的概念.(2的相互关系.(3)理解必要条件、充分条件与充要条件的意义.2.简单的逻辑联结词了解逻辑联结词“或”、“且”、“非”的含义.3.全称量词与存在量词(1)理解全称量词与存在量词的意义.(2)能正确地对含有一个量词的命题进行否定.(十五)圆锥曲线与方程(1)了解圆锥曲线的实际背景,了解圆锥曲线在刻画现实世界和解决实际问题中的作用.(2)掌握椭圆的定义、几何图形、标准方程及简单几何性质.(3)了解双曲线、抛物线的定义、几何图形和标准方程,知道它们的简单几何性质.(4)理解数形结合的思想.(5)了解圆锥曲线的简单应用.(十六)导数及其应用1.导数概念及其几何意义(1)了解导数概念的实际背景.(2)理解导数的几何意义.2.导数的运算(1(2)能利用下面给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.·常见基本初等函数的导数公式:) ;·常用的导数运算法则:法则1法则2法则33.导数在研究函数中的应用(1)了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).(2)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).4.生活中的优化问题.会利用导数解决某些实际问题.(十七)统计案例了解下列一些常见的统计方法,并能应用这些方法解决一些实际问题.1.独立性检验了解独立性检验(只要求2×2列联表)的基本思想、方法及其简单应用.2.回归分析了解回归分析的基本思想、方法及其简单应用.(十八)推理与证明1.合情推理与演绎推理(1)了解合情推理的含义,能利用归纳和类比等进行简单的推理,了解合情推理在数学发现中的作用.(2)了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理.(3)了解合情推理和演绎推理之间的联系和差异.2.直接证明与间接证明(1)了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程、特点.(2)了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点.(十九)数系的扩充与复数的引入1.复数的概念(1)理解复数的基本概念.(2)理解复数相等的充要条件.(3)了解复数的代数表示法及其几何意义.2.复数的四则运算(1)会进行复数代数形式的四则运算.(2)了解复数代数形式的加、减运算的几何意义.(二十)框图1.流程图(1)了解程序框图.(2)了解工序流程图(即统筹图).(3)能绘制简单实际问题的流程图,了解流程图在解决实际问题中的作用.2.结构图(1)了解结构图.(2)会运用结构图梳理已学过的知识,整理收集到的资料信息.选考内容(一)坐标系与参数方程1.坐标系(1)理解坐标系的作用.(2)了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.(3)能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化.(4)能在极坐标系中给出简单图形的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义.(5)了解柱坐标系、球坐标系中表示空间中点的位置的方法,并与空间直角坐标系中表示点的位置的方法相比较,了解它们的区别.2.参数方程(1)了解参数方程,了解参数的意义.(2)能选择适当的参数写出直线、圆和圆锥曲线的参数方程.(3)了解平摆线、渐开线的生成过程,并能推导出它们的参数方程.(4)了解其他摆线的生成过程,了解摆线在实际中的应用,了解摆线在表示行星运动轨道中的作用.(二)不等式选讲1.理解绝对值的几何意义,并能利用含绝对值不等式的几何意义证明以下不等式:(1(2(3)会利用绝对值的几何意义求解以下类型的不等式:2.了解下列柯西不等式的几种不同形式,理解它们的几何意义,并会证明.(1(2(3(此不等式通常称为平面三角不等式.)3.会用参数配方法讨论柯西不等式的一般情形:4.会用向量递归方法讨论排序不等式.5.了解数学归纳法的原理及其使用范围,会用数学归纳法证明一些简单问题.6.会用数学归纳法证明伯努利不等式:1的正整数).1的实数时伯努利不等式也成立.7.会用上述不等式证明一些简单问题.能够利用平均值不等式、柯西不等式求一些特定函数的极值.8.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.。