初中数学模拟试题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018初中数学模拟试题

选择题

1.已知y2+my+16是完全平方式,则m的值是()

A.8 B.4 C.±8 D.±4

2.下列多项式能用完全平方公式分解因式的是()

A.x2-6x-9 B.a2-16a+32 C.x2-2xy+4y2 D.4a2-4a+1

3.下列各式属于正确分解因式的是()

A.1+4x2=(1+2x)2 B.6a-9-a2=-(a-3)2

C.1+4m-4m2=(1-2m)2 D.x2+xy+y2=(x+y)2

4.把x4-2x2y2+y4分解因式,结果是()

A.(x-y)4 B.(x2-y2)4 C.[(x+y)(x-y)]2 D.(x+y)2(x-y)2

答案:

1.C 2.D 3.B 4.D

以上对因式分解同步练习(选择题)的知识练习学习,相信同学们已经能很好的完成了吧,希望同学们很好的考试哦。

整式的乘除与因式分解单元测试卷(填空题)

下面是对整式的乘除与因式分解单元测试卷中填空题的练习,希望同学们很好的完成。

填空题(每小题4分,共28分)

7.(4分)(1)当x _________ 时,(x﹣4)0=1;(2)(2/3)2002×(1.5)2003÷(﹣1)2004= _________

8.(4分)分解因式:a2﹣1+b2﹣2ab= _________ .

9.(4分)(2004万州区)如图,要给这个长、宽、高分别为x、y、z的箱子打包,其打包方式如图所示,则打包带的长至少要 _________ .(单位:mm)(用含x、y、z的代数式表示)

10.(4分)(2004郑州)如果(2a+2b+1)(2a+2b﹣1)=63,那么a+b 的值为 _________ .

11.(4分)(2002长沙)如图为杨辉三角表,它可以帮助我们按规律写出(a+b)n(其中n为正整数)展开式的系数,请仔细观察表中规律,填出(a+b)4的展开式中所缺的系数.

(a+b)1=a+b;

(a+b)2=a2+2ab+b2;

(a+b)3=a3+3a2b+3ab2+b3;

(a+b)4=a4+ _________ a3b+ _________ a2b2+ _________ ab3+b4.

12.(4分)(2004荆门)某些植物发芽有这样一种规律:当年所发新芽第二年不发芽,老芽在以后每年都发芽.发芽规律见下表(设第一年前的新芽数为a)

第n年12345…

老芽率aa2a3a5a…

新芽率0aa2a3a…

总芽率a2a3a5a8a…

照这样下去,第8年老芽数与总芽数的比值为 _________ (精确到

0.001).

13.(4分)若a的值使得x2+4x+a=(x+2)2﹣1成立,则a的值为

_________ .

答案:

7.

考点:零指数幂;有理数的乘方。1923992

专题:计算题。

分析:(1)根据零指数的意义可知x﹣4≠0,即x≠4;

(2)根据乘方运算法则和有理数运算顺序计算即可.

解答:解:(1)根据零指数的意义可知x﹣4≠0,

即x≠4;

(2)(2/3)2002×(1.5)2003÷(﹣1)2004=(2/3×3/2)

2002×1.5÷1=1.5.

点评:主要考查的知识点有:零指数幂,负指数幂和平方的运算,负指数

为正指数的倒数,任何非0数的0次幂等于1.

8.

考点:因式分解-分组分解法。1923992

分析:当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题

中a2+b2﹣2ab正好符合完全平方公式,应考虑为一组.

解答:解:a2﹣1+b2﹣2ab

=(a2+b2﹣2ab)﹣1

=(a﹣b)2﹣1

=(a﹣b+1)(a﹣b﹣1).

故答案为:(a﹣b+1)(a﹣b﹣1).

点评:此题考查了用分组分解法进行因式分解.难点是采用两两分组还是

三一分组,要考虑分组后还能进行下一步分解.

9.

考点:列代数式。1923992

分析:主要考查读图,利用图中的信息得出包带的长分成3个部分:包带

等于长的有2段,用2x表示,包带等于宽有4段,表示为4y,包带等于高的

有6段,表示为6z,所以总长时这三部分的和.

解答:解:包带等于长的有2x,包带等于宽的有4y,包带等于高的有6z,所以总长为2x+4y+6z.

点评:解决问题的关键是读懂题意,找到所求的量的等量关系.

10.

考点:平方差公式。1923992

分析:将2a+2b看做整体,用平方差公式解答,求出2a+2b的值,进一步

求出(a+b)的值.

解答:解:∵(2a+2b+1)(2a+2b﹣1)=63,

∴(2a+2b)2﹣12=63,

∴(2a+2b)2=64,

2a+2b=±8,

两边同时除以2得,a+b=±4.

点评:本题考查了平方差公式,整体思想的利用是解题的关键,需要同学

们细心解答,把(2a+2b)看作一个整体.

11

考点:完全平方公式。1923992

专题:规律型。

分析:观察本题的规律,下一行的数据是上一行相邻两个数的和,根据规

律填入即可.

解答:解:(a+b)4=a4+4a3b+6a2b2+4ab3+b4.

点评:在考查完全平方公式的前提下,更深层次地对杨辉三角进行了了解.

12

考点:规律型:数字的变化类。1923992

专题:图表型。

分析:根据表格中的数据发现:老芽数总是前面两个数的和,新芽数是对

应的前一年的老芽数,总芽数等于对应的新芽数和老芽数的和.根据这一规律

计算出第8年的'老芽数是21a,新芽数是13a,总芽数是34a,则比值为21/34≈0.618.

解答:解:由表可知:老芽数总是前面两个数的和,新芽数是对应的前一

年的老芽数,总芽数等于对应的新芽数和老芽数的和,

所以第8年的老芽数是21a,新芽数是13a,总芽数是34a,

相关文档
最新文档