高等数学求极限的17种常用方法(附例题和详解)
高等数学求极限的常用方法(附例题和详解)
高等数学求极限的常用方法(附例题和详解)高等数学求极限的常用方法(附例题和详解)在高等数学中,求极限是一个基础而重要的概念,它在各个数学领域都有广泛的应用。
本文将介绍一些常用的方法,以及针对这些方法的例题和详细解析。
I. 无穷小量法无穷小量法是求解极限最常见的方法之一。
它的基本思想是将待求极限转化为无穷小量之间的比较。
下面通过一个例题来说明这个方法。
例题1:求极限lim(x→0) (sin x) / x解析:考虑当 x 趋近于 0 时,sin x 和 x 的关系。
根据三角函数的极限性质,我们知道 sin x / x 的极限为 1。
因此,原式可以看作(sin x) / x ≈ 1,即它在 x 趋近于 0 时趋近于 1。
故lim(x→0) (sin x) / x = 1.II. 夹逼法夹逼法也是常用的求解极限的方法,它适用于求解含有不等式的极限问题。
下面通过一个例题来说明夹逼法的思想。
例题2:求极限lim(x→0) x^2sin(1/x)解析:首先,我们要注意到 x^2sin(1/x) 的取值范围在 [-x^2, x^2] 之间,因为 -1 ≤sin(θ) ≤ 1 对任意θ 成立。
然后,我们可以利用夹逼法,将 x^2sin(1/x) 夹逼在 0 和 0 之间。
也就是说,对于任何 x,都有 -x^2 ≤ x^2sin(1/x) ≤ x^2。
根据夹逼定理,当 x 趋近于 0 时,x^2sin(1/x) 的极限为 0。
故lim(x→0) x^2sin(1/x) = 0.III. 泰勒展开法泰勒展开法是一种将函数在某点附近进行多项式逼近的方法,它可以帮助我们求解一些复杂的极限问题。
下面通过一个例题来说明泰勒展开法的应用。
例题3:求极限lim(x→0) (e^x - 1) / x解析:考虑函数 f(x) = e^x 在 x = 0 处的泰勒展开式:f(x) = f(0) + f'(0)x + f''(0)x^2 / 2! + f'''(0)x^3 / 3! + ...其中,f'(0)表示 f(x) 在 x = 0 处的导数,依次类推。
16种求极限方法及一般题型解题思路分享
16种求极限方法及一般题型解题思路分享求极限是微积分中的重要内容之一,常见于各种数学和工程科学中。
为了求出一个函数在某一点的极限,需要使用合适的方法。
下面介绍16种常用的求极限方法,以及一般题型解题思路。
一、直接代入法对于多项式函数和分式函数,可以直接将自变量代入函数表达式中计算极限。
例如,求函数 f(x) = 2x + 3 在 x = 1 处的极限,直接代入即可得到结果。
二、分解因式法对于分式函数,可以通过分解因式来简化计算,特别适用于分子和分母都是多项式的情况。
例如,求函数 f(x) = (x^2 - 1)/(x - 1) 在 x = 1 处的极限,可以将分子进行因式分解,得到 f(x) = (x - 1)(x + 1)/(x - 1),然后约去公因式,即可得到结果。
三、夹逼定理夹逼定理用于解决复杂函数在某一点处的极限问题。
如果一个函数在某一点附近被两个其他函数夹住,并且这两个函数的极限都存在且相等,那么原函数的极限也存在且等于这个相等的极限。
例如,对于函数 f(x) = x*sin(1/x),当 x 趋近于 0 时,f(x) 被两个函数 g(x) = x 和 h(x) = -x 夹住,且 g(x) 和 h(x) 的极限都是 0,所以 f(x) 的极限也是 0。
四、变量代换法第1页/共5页对于一些特殊的函数,可以通过变量代换来简化计算。
例如,对于函数f(x) = sin(1/√x),当 x 趋近于 0 时,可以将√x = t,那么 x = t^2,且当 x 趋近于 0 时,t 也趋近于 0,所以求 f(x) 在 x = 0 处的极限可以转化为求 g(t) = sin(1/t) 在 t = 0 处的极限。
五、洛必达法则洛必达法则是一种常用的求函数极限的方法,特别适用于形如 0/0 或∞/∞的不定式。
根据洛必达法则,如果一个不定式的分子和分母的极限都存在且为 0 或∞,那么可以分别对分子和分母求导后再次求极限,直到找到一个不是 0/0 或∞/∞的形式。
高数中求极限的16种方法
千里之行,始于足下。
高数中求极限的16种方法在高等数学中,求极限是一个格外重要的技巧和考点。
为了解决各种极限问题,数学家们总结出了很多方法和技巧。
以下是高数中求极限的16种方法:1.代换法:将极限中的变量进行代换,使其变成简洁计算的形式。
2.夹逼准则:当函数处于两个已知函数之间时,可以通过比较已知函数的极限来确定未知函数的极限。
3.无穷小量比较法:比较两个函数的无穷小量的大小,以确定它们的极限。
4.利用函数性质:利用函数的对称性、奇偶性等性质来计算极限。
5.利用恒等变形:将极限式子进行恒等变形,以将其转化为简洁计算的形式。
6.利用泰勒开放:将函数开放成无穷级数的形式,以求出极限。
7.利用洛必达法则:对于某些不定型的极限,可以利用洛必达法则将其转化为可计算的形式。
8.利用级数或累次求和:将极限式子转化为级数或累次求和的形式,以求出极限。
9.利用积分计算:将极限式子进行积分计算,以求出极限。
10.利用微分方程:将极限问题转化为求解微分方程的问题,以求出极限。
第1页/共2页锲而不舍,金石可镂。
11.利用积素等价:将极限式子进行积素等价,以求出极限。
12.利用无穷增减变异法:通过凑出一个等价变形,将极限问题转化为比较某些函数值的大小。
13.利用不等式:通过找到合适的不等式,对函数进行估量,以求得极限。
14.利用递推公式:对于递归定义的函数,可以通过递推公式求出极限。
15.利用导数性质:利用函数的导数性质,对极限进行计算。
16.利用对数和指数函数的性质:利用对数和指数函数的特性,求出极限。
除了上述方法外,还有很多其他的方法和技巧,可以依据具体问题来选择使用。
这些方法和技巧的使用需要机敏把握,通过大量的练习和思考,可以在求解极限问题中得到娴熟应用。
高等数学_极限方法
lim f u( x ) f lim u( x )
f 连续
2 . 幂指函数取极限 :
lim u( x )
v( x )
lim u( x )
lim v ( x )
.
3 . 洛必达法则 : " 0 型和 型 " 0 4 . 乘除法运算中的 等价无穷小代换 .
(幂指型 )
lim u( x )
e
5 . " (1 0 ) " 型 ,
1
f ( x )g ( x ) )ln 1 f ( x )
,
lim 1 f ( x )
(经验公式 )
e
lim g ( x )ln 1 f ( x )
e 1 lim 1. x 0 x
x
当 x 0 时 , 证明 e x 1 ~ x ?
当 x 0 时 , x ~ sin x ~ tan x ~ arcsin x ~ arctan x x ~ ln(1 x ) ~ e x 1 , a x 1 ~ x ln a .
当 x 0时 ,
x2 , 1 cos x ~ 2 (1 x ) 1 ~ x , 1 x 1 ~ x . 2
极限的求法
函数的极限既然是微积分的一个 重要内容,于是如何求出已知函数 的极限,就是学习微积分必须掌握 的基本技能。因此,本文对求函数 的方法进行总结,并对于每种方法 都足以定理或简述开头,然后以例 题来全面展示具体的求法。
1.利用极限的四则运算法则来求极限
极限的四则运算如下:
2.消去零因子法及有理化求极限
4 . " " 型 ,
高数中求极限的16种方法
高数中求极限的16种方法——好东西首先对极限的总结如下:极限的保号性很重要,就是说在一定区间内,函数的正负与极限一致一、极限分为一般极限,还有数列极限,(区别在于数列极限发散,是一般极限的一种)二、求极限的方法如下:1 .等价无穷小的转化,(一般只能在乘除时候使用,在加减时候用必须证明拆分后极限依然存在) e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。
全部熟记(x趋近无穷的时候还原成无穷小)2.罗比达法则(大题目有时候会有暗示,要你使用这个方法)首先他的使用有严格的使用前提,必须是 X趋近而不是N趋近!所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!必须是函数的导数要存在!必须是 0比0 无穷大比无穷大!当然还要注意分母不能为0注意:罗比达法则分为3种情况0比0,无穷比无穷的时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。
通项之后这样就能变成1中的形式了;0的0次方,1的无穷次方,无穷的0次方;对于(指数幂数)方程,方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候LNX趋近于0)3.泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特别注意!!!!)E的x展开,sina 展开,cos 展开,ln1+x展开,对题目简化有很好帮助4.面对无穷大比上无穷大形式的解决办法取大头原则,最大项除分子分母!!!!!!!!!!!5.无穷小于有界函数的处理办法面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。
面对非常复杂的函数可能只需要知道它的范围结果就出来了!!!6.夹逼定理(主要对付数列极限!)这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。
高等数学求极限的常用方法附例题和详解
高等数学求极限的14种方法一、极限的定义1、极限的保号性很重要:设A x f x x =→)(lim 0,(i)若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii)若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。
2、极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限与0x x →的极限。
要特别注意判定极限就是否存在在:(i)数列{}的充要条件收敛于a n x 就是它的所有子数列均收敛于a 。
常用的就是其推论,即“一个数列收敛于a 的充要条件就是其奇子列与偶子列都收敛于a ”(ii)A x x f x A x f x =+∞→=-∞→⇔=∞→limlimlim)()((iii)A x x x x A x f x x =→=→⇔=→+-lim lim lim 0)((iv)单调有界准则(v)两边夹挤准则(夹逼定理/夹逼原理)(vi)柯西收敛准则(不需要掌握)。
极限)(lim 0x f x x →存在的充分必要条件就是:εδεδ<-∈>∃>∀|)()(|)(,0,021021x f x f x U x x o时,恒有、使得当二.解决极限的方法如下:1、等价无穷小代换。
只能在乘除..时候使用。
例题略。
2、洛必达(L’ho spital)法则(大题目有时候会有暗示要您使用这个方法)它的使用有严格的使用前提。
首先必须就是X 趋近,而不就是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然就是趋近于正无穷的,不可能就是负无穷。
其次,必须就是函数的导数要存在,假如告诉f(x)、g(x),没告诉就是否可导,不可直接用洛必达法则。
另外,必须就是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。
洛必达法则分为3种情况:(i)“00”“∞∞”时候直接用 (ii)“∞•0”“∞-∞”,应为无穷大与无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。
大学数学经典求极限方法及解析(最全)
求极限的各种方法及解析1.约去零因子求极限例1:求极限11lim 41--→x x x 【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。
【解】6)1)(1(lim 1)1)(1)(1(lim2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限例2:求极限13lim 323+-∞→x x x x 【说明】∞∞型且分子分母都以多项式给出的极限,可通过分子分母同除来求。
【解】3131lim 13lim 311323=+-=+-∞→∞→x xx x x x x 【注】(1) 一般分子分母同除x 的最高次方;(2) ⎪⎪⎩⎪⎪⎨⎧=<∞>=++++++----∞→nm b a n m n m b x b x b a x a x a nnm m m m n n n n x 0lim 0110113.分子(母)有理化求极限例3:求极限)13(lim 22+-++∞→x x x 【说明】分子或分母有理化求极限,是通过有理化化去无理式。
【解】13)13)(13(lim )13(lim 22222222+++++++-+=+-++∞→+∞→x x x x x x x x x x0132lim22=+++=+∞→x x x例4:求极限30sin 1tan 1limxxx x +-+→ 【解】xx x xx x x x x x sin 1tan 1sin tan lim sin 1tan 1lim3030+-+-=+-+→→ 41sin tan lim 21sin tan limsin 1tan 11lim30300=-=-+++=→→→x x x x x x xx x x x【注】本题除了使用分子有理化方法外,及时分离极限式中的非........零因子...是解题的关键 4.应用两个重要极限求极限两个重要极限是1sin lim0=→xxx 和e x nx x x n n x x =+=+=+→∞→∞→10)1(lim )11(lim )11(lim ,第一个重要极限过于简单且可通过等价无穷小来实现。
大学数学经典求极限方法(最全)
求极限的各种方法1.约去零因子求极限例1:求极限11lim 41--→x x x【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。
【解】6)1)(1(lim 1)1)(1)(1(lim2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限例2:求极限13lim 323+-∞→x x x x【说明】∞∞型且分子分母都以多项式给出的极限,可通过分子分母同除来求。
【解】3131lim 13lim 311323=+-=+-∞→∞→x xx x x x x 【注】(1) 一般分子分母同除x 的最高次方;(2) ⎪⎪⎩⎪⎪⎨⎧=<∞>=++++++----∞→nm b a n m n m b x b x b a x a x a n nm m m m n n n n x 0lim 011011ΛΛ3.分子(母)有理化求极限例3:求极限)13(lim 22+-++∞→x x x【说明】分子或分母有理化求极限,是通过有理化化去无理式。
【解】13)13)(13(lim)13(lim 22222222+++++++-+=+-++∞→+∞→x x x x x x x x x x0132lim22=+++=+∞→x x x例4:求极限3sin 1tan 1limxxx x +-+→ 【解】xx x xx x x x x x sin 1tan 1sin tan lim sin 1tan 1lim3030+-+-=+-+→→ 41sin tan lim 21sin tan limsin 1tan 11lim30300=-=-+++=→→→x x x x x x xx x x x 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子...........是解题的关键4.应用两个重要极限求极限两个重要极限是1sin lim 0=→xxx 和e x n x x x n n x x =+=+=+→∞→∞→10)1(lim )11(lim )11(lim ,第一个重要极限过于简单且可通过等价无穷小来实现。
高等数学经典求极限方法
求极限的各种方法1.约去零因子求极限例1:求极限11lim 41--→x x x【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。
【解】6)1)(1(lim 1)1)(1)(1(lim2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限例2:求极限13lim 323+-∞→x x x x【说明】∞∞型且分子分母都以多项式给出的极限,可通过分子分母同除来求。
【解】3131lim 13lim 311323=+-=+-∞→∞→x xx x x x x 【注】(1) 一般分子分母同除x 的最高次方;(2) ⎪⎪⎩⎪⎪⎨⎧=<∞>=++++++----∞→nm b a n m n m b x b x b a x a x a n nm m m m n n n n x 0lim 011011 3.分子(母)有理化求极限例3:求极限)13(lim 22+-++∞→x x x【说明】分子或分母有理化求极限,是通过有理化化去无理式。
【解】13)13)(13(lim)13(lim 22222222+++++++-+=+-++∞→+∞→x x x x x x x x x x0132lim22=+++=+∞→x x x例4:求极限3sin 1tan 1limxxx x +-+→ 【解】)sin 1tan 1(sin tan lim sin 1tan 1lim3030x x x xx x x x x x +++-=+-+→→41sin tan lim 21sin tan limsin 1tan 11lim30300=-=-+++=→→→x x x x x x xx x x x 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子...........是解题的关键4.应用两个重要极限求极限两个重要极限是1sin lim 0=→xxx 和e x n x x x n n x x =+=+=+→∞→∞→10)1(lim )11(lim )11(lim ,第一个重要极限过于简单且可通过等价无穷小来实现。
极限的求法总结
3x2 4x2
5 1
lim
x
2 7
3
x 4
x
5 x3 1 x3
2. 7
(无穷小因子分出法)
小结:当a0 0, b0 0, m和n为非负整数时有
lim a0 x n x b0 x m
a1 x n1 b1 x m1
an bm
0ab,00当,当n n
m, m,
,当n m,
2005年数学三考研试题 (第三大题15小题8分)
(15)
1 x
lim( x0 1
e
x
1 ). x
6.利用无穷小运算性质求极限
例 求 lim sin x . x x
解 当x 时, 1 为无穷小,
x
而sin x是有界函数.
lim sin x 0. x x
y sin x x
练习1. 求 lim x2 sin 1 .
例:求极限
lim
n
n
sin
1 n
n2
【说明】这是 1形式的极限,由于数列极限不能使用
洛必达法则,若直接求解有一定难度,若转化成函数
(15) lim 1 ln sin x .
x x0 2
x
11. 应用两个重要极限求极限
两个重要极限是
lim sin x 1 x0 x
和
lim(1
1)x
lim(1
1)n
lim(1
1
x) x
e
x
x
n
n
x0
第一个重要极限过于简单且可通过等价无穷小来实现。
主要考第二个重要极限
例:求极限
lim
x
lim
x
高等数学求极限的常用方法(附例题和详解)
高等数学求极限的常用方法(附例题和详解)高等数学中求极限是一项重要的数学技巧,它在数学分析、微积分和其他数学领域中都有广泛应用。
本文将介绍一些常用的求极限的方法,并给出相应的例题和详解。
一、直接代入法直接代入法是求极限的最基本方法之一。
当函数在某一点连续时,可以直接将该点代入函数中来求极限。
例题1:求函数f(x) = x^2在x=2处的极限。
解:直接将x=2代入函数中,得到f(2) = 2^2 = 4。
因此,f(x)在x=2处的极限为4。
二、夹逼法夹逼法(也称为夹挤准则)是求解一些复杂极限的常用方法。
它基于一个简单的想法:如果函数g(x)和h(x)在某一点p附近夹住函数f(x),并且g(x)和h(x)的极限都相等,那么f(x)的极限也等于这个相等的极限。
例题2:求极限lim(x→∞) [(x+1)/x]。
解:我们可以用夹逼法来求解这个极限。
首先,我们可以注意到1 ≤ [(x+1)/x] ≤ [x/x] = 1(其中[x]表示取整函数)。
因此,我们可以将极限表达式两侧夹逼:lim(x→∞) 1 ≤ lim(x→∞) [(x+1)/x] ≤ lim(x→∞) 1。
根据夹逼准则,当lim(x→∞) 1 = 1时,极限lim(x→∞) [(x+1)/x]存在且等于1。
三、极限的四则运算法则在求解复杂函数的极限时,可以利用极限的四则运算法则。
该法则规定,如果函数f(x)和g(x)在某点p处的极限存在,则函数h(x) = f(x) ± g(x)、h'(x) = f(x) * g(x)、和h''(x) = f(x) / g(x)在点p的极限也存在,并满足相应的运算法则。
例题3:求极限lim(x→0) (sinx/x)。
解:我们可以利用极限的四则运算法则来求解这个极限。
首先,观察到当x→0时,分子sinx和分母x都趋向于0,因此这个极限是一个未定式。
根据极限的四则运算法则,我们可以将lim(x→0) (sinx/x)转化为lim(x→0) sinx / lim(x→0) x。
关于极限的若干种计算方法
关于极限的若干种计算方法本文将极限的几种计算方法介绍如下: 一 代入求值法:这种方法只适用于在0x 点连续的函数求极限。
例1、计算3121lim 1x x x x →-+-解:321()11x x F x x x -+==+ 在处有定义且连续, 331212111lim 1111x x x x →-+⨯-+∴==++ 例2、计算:22ln lim sin x x x x → 2222l n 2l n 24l n:l i ms i n s i n 2s i n 2x x x x →==解 二 倒数法:这种方法是利用无穷小量与无穷大量的关系来处理的。
例3、2232lim 531n n n n n →∞-++-解:因为分子分母的极限均不存在,故不能运用商的极限运算法则,可先将分子分母分别除以2n ,然后取极限。
于是2222123323lim lim 3153155n n n n n n n n n n→∞→∞-+-+==+-+- 例4、求2143lim 54x x x x →--+解:因为分母极限为零,分子极限不为零,故先考虑1()f x 的极限。
因为 21540l i m 0431x x x x →-+==-所以 2143lim54x x x x →-=∞-+(无穷小量的倒数是无穷大量。
)例5、计算111lim[]1335(21)(21)n n n →∞+++⋅⋅-+解:由于极限的运算法则不适用于无限和的情形,故本题宜先求和,再求极限。
因为1111()(21)(21)22121k k k k =--+-+所以 111lim[]1335(21)(21)n n n →∞+++⋅⋅-+111111111lim[()()()]21323522121111lim[]22(21)2n n n n n →∞→∞=-+-++--+=-=+利用倒数法可得如下结论:111001011()lim 0()(,,00)()m m m n n x n n a m n b a x a x a x a m n m n a b b x b x b x b m n ---→∞-⎧=⎪⎪+++⎪=<≠≠⎨++++⎪∞>⎪⎪⎩m 0为自然数 三 化积约分法:有些函数()f x 在0x x =处无定义,这时不能用代入求值法求极限,但当0x x =时,()f x 的极限存在与否与()f x 在点0x 处是否有定义无关,所以常将()f x 先作适当变形,如分解因式约去极限为零的分母等,转化为在0x x =处有定义的新函数()g x ,再用代入求值法。
求极限的方法及例题总结解读
求极限的方法及例题总结解读第一篇:求极限的方法及例题总结解读1.定义:说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:;x→2lim(3x-1)=5 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。
利用导数的定义求极限这种方法要求熟练的掌握导数的定义。
2.极限运算法则定理1 已知limf(x),limg(x)都存在,极限值分别为A,B,则下面极限都存在,且有(1)lim[f(x)±g(x)]=A±B(2)limf(x)⋅g(x)=A⋅B (3)limf(x)A=,(此时需B≠0成立)g(x)B说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。
.利用极限的四则运算法求极限这种方法主要应用于求一些简单函数的和、乘、积、商的极限。
通常情况下,要使用这些法则,往往需要根据具体情况先对函数做某些恒等变形或化简。
8.用初等方法变形后,再利用极限运算法则求极限limx→1例1 3x+1-2x-1(3x+1)2-223x-33lim=lim=x→1(x-1)(3x+1+2)x→1(x-1)(3x+1+2 )4解:原式=。
注:本题也可以用洛比达法则。
例2 limn(n+2-n-1)n→∞nn[(n+2)-(n-1)]分子分母同除以lim=n→∞n+2+n-1limn→∞31+21+1-nn=32解:原式=(-1)n+3nlimnn例3 n→∞2+3。
上下同除以3n=解:原式1(-)n+1lim3=1n→∞2n()+13。
3.两个重要极限sinx=1x→0x(1)lim(2)x→0lim(1+x)=e1xlim(1+1)x=ex;x→∞说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式,sin3x3lim=1lim(1-2x)-2x=elim(1+)3=ex例如:x→03x,x→0,x→∞;等等。
【高数总结求极限方法】百度作业帮
【高数总结求极限方法】百度作业帮1. 代入法, 分母极限不为零时使用.先考察分母的极限,分母极限是不为零的常数时即用此法.【例1】lim[x-->√3](x^2-3)/(x^4+x^2+1)lim[x-->√3](x^2-3)/(x^4+x^2+1)=(3-3)/(9+3+1)=0【例2】lim[x-->0](lg(1+x)+e^x)/arccosxlim[x-->0](lg(1+x)+e^x)/arccosx=(lg1+e^0)/arccos0=(0+1)/1=12. 倒数法,分母极限为零,分子极限为不等于零的常数时使用.【例3】 lim[x-->1]x/(1-x)∵lim[x-->1] (1-x)/x=0 ∴lim[x-->1] x/(1-x)= ∞以后凡遇分母极限为零,分子极限为不等于零的常数时,可直接将其极限写作∞.3. 消去零因子(分解因式)法,分母极限为零,分子极限也为零,且可分解因式时使用.【例4】 lim[x-->1](x^2-2x+1)/(x^3-x)lim[x-->1](x^2-2x+1)/(x^3-x)=lim[x-->1](x-1)^2/[x(x^2-1)=lim[x-->1](x-1)/x=0【例5】lim[x-->-2](x^3+3x^2+2x)/(x^2-x-6)lim[x-->-2] (x^3+3x^2+2x)/(x^2-x-6)= lim[x-->-2]x(x+1)(x+2)/[(x+2)(x-3)]= lim[x-->-2]x(x+1) / (x-3)=-2/5【例6】lim[x-->1](x^2-6x+8)/(x^2-5x+4)lim[x-->1](x^2-6x+8)/(x^2-5x+4)= lim[x-->1](x-2)(x-4)/[(x-1)(x-4)]= lim[x-->1](x-2) /[(x-1)=∞【例7】lim[h-->0][(x+k)^3-x^3]/hlim[h-->0][(x+h)^3-x^3]/h= lim[h-->0][(x+h) –x][(x+h)^2+x(x+h)+h^2]/h= lim[h-->0] [(x+h)^2+x(x+h)+h^2]=2x^2这实际上是为将来的求导数做准备.4. 消去零因子(有理化)法,分母极限为零,分子极限也为零,不可分解,但可有理化时使用.可利用平方差、立方差、立方和进行有理化.【例8】lim[x-->0][√1+x^2]-1]/xlim[x-->0][√1+x^2]-1]/x= lim[x-->0][√1+x^2]-1] [√1+x^2]+1]/{x[√1+x^2]+1]}= lim[x-->0][ 1+x^2-1] /{x[√1+x^2]+1]}= lim[x-->0] x / [√1+x^2]+1]=0【例9】lim[x-->-8][√(1-x)-3]/(2+x^(1/3))lim[x-->-8][√(1-x)-3]/(2+x^(1/3))=lim[x-->-8][√(1-x)-3] [√(1-x)+3] [4-2x^(1/3)+x^(2/3)]÷{(2+x^(1/3))[4-2x^(1/3)+x^(2/3)] [√(1-x)+3]}=lim[x-->-8](-x-8) [4-2x^(1/3)+x^(2/3)]/{(x+8)[√(1-x)+3]} =lim[x-->-8] [4-2x^(1/3)+x^(2/3)]/[√(1-x)+3]=-25. 零因子替换法.利用第一个重要极限:lim[x-->0]sinx/x=1,分母极限为零,分子极限也为零,不可分解,不可有理化,但出现或可化为sinx/x时使用.常配合利用三角函数公式.【例10】lim[x-->0]sinax/sinbxlim[x-->0]sinax/sinbx= lim[x-->0]sinax/(ax)*lim[x-->0]bx/sinbx*lim[x-->0]ax/(bx) =1*1*a/b=a/b【例11】lim[x-->0]sinax/tanbxlim[x-->0]sinax/tanbx= lim[x-->0]sinax/ sinbx*lim[x-->0]cosbx=a/b6. 无穷转换法,分母、分子出现无穷大时使用,常常借用无穷大和无穷小的性质.【例12】lim[x-->∞]sinx/x∵x-->∞ ∴1/x是无穷小量∵|sinx|∞]sinx/x=0【例13】lim[x-->∞](x^2-1)/(2x^2-x-1)lim[x-->∞](x^2-1)/(2x^2-x-1)= lim[x-->∞](1 -1/x^2)/(2-1/x-1/ x^2)=1/2【例14】lim[n-->∞](1+2+……+n)/(2n^2-n-1)lim[n-->∞](1+2+……+n)/(2n^2-n-1)=lim[n-->∞][n( n+1)/2]/(2n^2-n-1)=lim[n-->∞][ (1+1/n)/2]/(2-1/n-1/n^2)=1/4【例15】lim[x-->∞](2x-3)^20(3x+2)^30/(5x+1)^50lim[x-->∞](2x-3)^20(3x+2)^30/(5x+1)^50= lim[x-->∞][(2x-3)/ (5x+1)]^20[(3x+2)/ (5x+1)]^30= lim[x-->∞][(2-3/x)/ (5+1/ x)]^20[(3+2/ x)/ (5+1/ x)]^30 =(2/5)^20(3/5)^30=2^20*3^30/5^50。
高等数学求极限的常用方法(附例题和详解)[1]
高等数学求极限的常用方法(附例题和详解)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高等数学求极限的常用方法(附例题和详解)(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高等数学求极限的常用方法(附例题和详解)(word版可编辑修改)的全部内容。
高等数学求极限的14种方法一、极限的定义1.极限的保号性很重要:设A x f x x =→)(lim,(i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。
2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。
要特别注意判定极限是否存在在:(i )数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。
常用的是其推论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ”(ii )A x x f x A x f x =+∞→=-∞→⇔=∞→limlimlim)()((iii)A x x x x A x f x x =→=→⇔=→+-limlimlim 0)((iv)单调有界准则(v )两边夹挤准则(夹逼定理/夹逼原理) (vi )柯西收敛准则(不需要掌握).极限)(limx f x x →存在的充分必要条件是:εδεδ<-∈>∃>∀|)()(|)(,0,021021x f x f x U x x o时,恒有、使得当二.解决极限的方法如下:1.等价无穷小代换。
高等数学求极限的常用方法(附例题和详解)
高等数学求极限的常用方法(附例题和详解)高等数学是高等教育中的重要课程之一,其涵盖的内容非常广泛,包括微积分、数理方程和变换等方面。
其中求极限是微积分中的核心内容之一,也是数学建模和应用中常用的方法之一。
本文将介绍求极限的常用方法,并提供相应的例题和详解。
一、用夹逼定理求极限夹逼定理是求极限中常用的方法之一,其思路是通过一个比较大小的框架,来判断所求极限的范围和趋势。
具体而言,假设存在两个函数 f(x) 和 g(x),满足以下条件:1. 对于 x 属于某个区间 [a, b],有 f(x) <= g(x)。
2. 在区间 [a, b] 内,f(x) 和 g(x) 的极限均存在,即 lim[f(x)] = A,lim[g(x)] = A。
3. 在区间 [a, b] 内,除有限个点外,f(x) = g(x)。
则可以得到 lim[f(x)] = lim[g(x)] = A。
下面是一个例子:例1:求极限 lim[(x^2 - 4x + 3) / (x - 3)]。
解法:可以将原式改写成 (x - 1)(x - 3) / (x - 3),即 (x - 1)。
则对于x ∈ (3,∞),有 0 <= x - 1 <= x - 3,因此:0 <= (x^2 - 4x + 3) / (x - 3) - (x - 1) <= x - 3,而 lim[x - 3] = ∞,因此可用夹逼定理得到所求极限为 lim[(x^2 - 4x + 3) / (x - 3)] = lim[(x - 1)] = 2。
二、用洛必达法则求极限洛必达法则是求导数时的常用方法,在求极限时也可以用到。
具体而言,假设有一个形如 lim[f(x) / g(x)] 的无穷小量,若这个无穷小量的分子和分母都存在极限,并且它们的极限都等于 0 或者±∞,则可以用洛必达法则来求出极限的值。
其中,洛必达法则的形式如下:若 lim[f(x)] = 0,lim[g(x)] = 0,且g'(x) ≠ 0,则 lim[f(x) / g(x)] = lim[f'(x) / g'(x)]。
求极限的方法总结
求极限的几种常用方法一、 约去零因子求极限例如求极限limx→1x4-1x-1,本例中当x→1时,x-1→0,表明x 与1无限接近,但x≠1,所以x-1这一因子可以约去。
二、 分子分母同除求极限求极限limx→∞x3-x23x3+1∞∞型且分子分母都以多项式给出的极限,可通过分子分母同除来求。
limx→∞x3-x23x3+1=limx→∞1-1x3+1x3=13三、 分子(母)有理化求极限例:求极限limx→∞(x3+3-x2+1)分子或分母有理化求极限,是通过有理化化去无理式。
()()()()131313lim 13lim 22222222+++++++-+=+-++∞→+∞→x x x x x x xx x x 0132lim 22=+++=+∞→x x x例:求极限limx→01+tanx -1+sinxx330sin 1tan 1lim x x x x +-+→=()x x x x x x sin 1tan 1sin tan lim 30+++-→ =300sin tan lim sin 1tan 11lim x x x x x x x -+++→→=41sin tan lim 2130=-→x x x x 本题除了使用分子有理化方法外,及时分离极限式中的非零因子是解题的关键。
四、 应用两个重要极限求极限(2)limx→∞(1+1x)x=limx→0(1+x)1x=e在这一类型题中,一般也不能直接运用公式,需要恒等变形进行化简后才可以利用公式。
例:求极限limx→∞(x+1x-1)x第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑1+1x,最后凑指数部分。
limx→∞(x+1x-1)x=limx→∞(1+2x-1)x=limx→∞[1+1x-122x-1(1+ 2x-1)12]2=e2五、利用无穷小量的性质求极限无穷小量的性质:无穷小量与有界量的乘积还是无穷小量。
这种方法可以处理一个函数极限不存在但有界,和另一个函数的极限是零的极限的乘积的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(iii)
(iv)单调有界准则
(v)两边夹挤准则(夹逼定理/夹逼原理)
(vi)柯西收敛准则(不需要掌握)。极限 存在的充分必要条件是:
二.解决极限的方法如下:
1.等价无穷小代换。只能在乘除时候使用。例题略。
2.洛必达(L’hospital)法则(大题目有时候会有暗示要你使用这个方法)
它的使用有严格的使用前提。首先必须是X趋近,而不是N趋近,所以面对数列极限时候先要转化成求x趋近情况下的极限,数列极限的n当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f(x)、g(x),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况:
;
cos=
ln(1+x)=x-
(1+x) =
以上公式对题目简化有很好帮助
4.两多项式相除:设 ,
P(x)= ,
(i) (ii)若 ,则
5.无穷小与有界函数的处理办法。例题略。
面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数可能只需要知道它的范围结果就出来了。
(i)“ ”“ ”时候直接用
(ii)“ ”“ ”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。通项之后,就能变成(i)中的形式了。即 ;
(iii)“ ”“ ”“ ”对于幂指函数,方法主要是取指数还取对数的方法,即 ,这样就能把幂上的函数移下来了,变成“ ”型未定式。
3.泰勒公式(含有 的时候,含有正余弦的加减的时候)
例1已知A={x -2≤x<3},B={x -1<x≤5},求A B,A B
解:A、B集合中x的取值范围在数轴表示如下
所以A B={x -1<x<3},A B={x -2≤x≤5}
例2已知A、B为两非空集合,则A B=A是A=B的[(2)]
(1)充分条件(2)充分必要条件(3)必要条件(4)无关条件
(3)半开区间a≤x<b, x [a, b)
a<x≤b, x (a, b]
(4)无限区间x≤a, x (-∞, a]
x≥b, x [ b, +∞)
x R, x (-∞, +∞)
4、邻域:以x = x0为圆心,以δ>0(δ为非常小的正数)为半径作圆,与数轴相交于A、B两点,x0-δ<x0<x0+δ叫x0的δ邻域。
4、补集:存在A、B两个集合,且A B,由在B当中但不在A中的元素组成的集合,叫A的补集,B叫全集。记作AB或 ,AB A=Ф,AB A=B
五、数、数轴、区间、邻域
1、数实数
虚数:规定i2= -1,i叫虚数单位,
2、数轴:规定了原点、正方向和单位长度的直线。
3、区间(1)闭区间a≤x≤b,x [a, b](2)开区间a< x<b, x (a, b)
注:如果A成立,那么B成立,即“A B”,那么条件A是B成立的充分条件;如要使B成立,必须有条件A,但只有A不一定能使B成立,则称A是B成立的必要条件;如果“A B”,又有“B A”,则称条件A是B成立的充分必要条件。
例3已知集合M={0,1,2},则下列写法正确的是[ D ]
高
一、极限的定义
1.极限的保号性很重要:设 ,
(i)若A ,则有 ,使得当 时, ;
(ii)若有 使得当 时, 。
2.极限分为函数极限、数列极限,其中函数极限又分为 时函数的极限和 的极限。要特别注意判定极限是否存在在:
(i)数列 是它的所有子数列均收敛于a。常用的是其推论,即“一个数列收敛于a的充要条件是其奇子列和偶子列都收敛于a”
10.两个重要极限的应用。
(i) 常用语含三角函数的“ ” 型未定式
(ii) ,在“ ”型未定式中常用
11.还有个非常方便的方法就是当趋近于无穷大时候不同函数趋近于无穷的速度是不一样的, 快于n!,n!快于指数型函数 (b为常数),指数函数快于幂函数,幂函数快于对数函数。当x趋近无穷的时候,它们比值的极限就可一眼看出。
三、分类有限集
无限集
空集Ф
四、集合的运算
1、子集:存在A、B两个集合,如果A中所有元素都在B中,则A叫做B的子集,A B或B A(空集是任何集合的子集)。
2、交集:存在A、B两个集合,由既在A中又在B中的元素组成的集合。A B,A B A,A B B,Ф B=Ф(空集与任何集合的交集是Ф)。
3、并集:存在A、B两个集合,由所有在A、B中的元素组成的集合。A B,A B A,A B B,Ф B=B。
8.数列极限中各项的拆分相加(可以使用待定系数法来拆分化简数列)。例如:
=
9.利用 极限相同求极限。例如:
(1)已知 ,且已知 存在,求该极限值。
解:设 =A,(显然A )则 ,即 ,解得结果并舍去负值得A=1+
(2)利用单调有界的性质。利用这种方法时一定要先证明单调性和有界性。例如
设
解:(i)显然 (ii)假设 则 ,即 。所以, 是单调递增数列,且有上界,收敛。设 ,(显然 则 ,即 。解方程并舍去负值得A=2.即
例:设 存在,求
解:原式=
=
导数
微分学
微分
微积分
不定积分
积分学
定积分
无穷级数
第一章函数及其特性
1.1集合
一、定义:由具有共同特性的个体(元素)组成。
二、表达方式:集合A,B,C……(大写字母)
元素a,b,c……(小写字母)
A={a,b,c}
元素的排列无重复,无顺序。
a属于A记作a A,1不属于A记作1 A或1 A
12.换元法。这是一种技巧,对一道题目而言,不一定就只需要换元,但是换元会夹杂其中。例如:求极限 。解:设 。
原式=
13.利用定积分求数列极限。例如:求极限 。由于 ,所以
14.利用导数的定义求“ ”型未定式极限。一般都是x 0时候,分子上是“ ”的形式,看见了这种形式要注意记得利用导数的定义。(当题目中告诉你 告诉函数在具体某一点的导数值时,基本上就是暗示一定要用导数定义)
6.夹逼定理:主要是应用于数列极限,常应用放缩和扩大不等式的技巧。以下面几个题目为例:(1)设 , ,求
解:由于 ,由夹逼定理可知
(2Байду номын сангаас求
解:由 ,以及 可知,原式=0
(3)求
解:由 ,以及 得,原式=1
7.数列极限中等比等差数列公式应用(等比数列的公比q绝对值要小于1)。例如:
求 。提示:先利用错位相减得方法对括号内的式子求和。