[配套K12]2019版高考数学一轮复习 第8章 平面解析几何 8.5 椭圆课后作业 文

合集下载

2019版高考数学一轮复习第8章平面解析几何85椭圆课后作业理.doc

2019版高考数学一轮复习第8章平面解析几何85椭圆课后作业理.doc

8・5椭E课后作业孕谀[重点保分两级优选练]A级一、选择题2 1・(2018 •江西五市八校模拟)已知正数/〃是2和8的等比中项,则圆锥曲线/+~=1 m的焦点坐标为()A.(土0)B. (0, 土羽)C. (±萌,0)或仕0)D. (0, 土羽)或仕0)答案B解析因为正数/〃是2和8的等比中项,所以駢=16,则〃尸4,所以圆锥曲线/+-= m2 _1即为椭圆%+f=l,易知其焦点坐标为(0, 土寸5),故选B.32.(2017 •湖北荆门一模)已知〃是△肋C的一个内角,且sin 〃+cos 0 =-,则方稈/sin 0 —ycos〃 = 1 表示()A.焦点在x轴上的双曲线B.焦点在y轴上的双曲线C.焦点在%轴上的椭圆D.焦点在y轴上的椭圆答案D9 7解析因为(sin 0 +cos 〃)'=l+2sin 〃cos 0 =77,所以sin 〃cos 0 = —~<0,结合3〃w(0, JI ),知sin 〃>0, cos 〃〈0,又sin 〃+cos 〃 =[>(),所以sin 〃>—cos 0>O,] 1 2 2故---- >—-7>0,因为Ain ^-/cos 0 = \可化为V=1,所以方程— cos u sm u ] ]cos & sin 0xsin 〃一ycos 〃 = 1表示焦点在y轴上的椭圆.故选D.3.(2018 •湖北八校联考)设凡用为椭圆1的两个焦点,点戶在椭圆上,若线\PFA 段〃的中点在y轴上,则=的值为(5A•肓)5B-B5D-9答案B解析 由题意知自=3, b=弟,c=2.设线段〃的中点为必则有如〃/雄,V OMA_F^, ・•・%丄F\F?.,E 5/. I PFi I =一=孑又・・•丨朋丨+丨朋I =2^=6,a o・・・|〃|=2日一|处|=¥,扌X^=鲁,故选B.x y _4. (2017 •全国卷III )已知椭圆a -+4=l (a>Z7>0)的左、右顶点分别为几 血 且以a b线段畀/2为直径的圆与直线bx-ay+2ab= 0相切,则C 的离心率为()1 D -3答案A解析 由题意知以昇必2为直径的圆的圆心为(0, 0),半径为日. 又直线bx — ay+2ab=^与圆相切,•••圆心到直线的距离d=~F==a,y/a + b1 D -I 答案# / X V因为椭圆飞+〒=1 (日〉力>0)与双曲线飞一==1 (刃>0, 〃>0)有相同的焦点(一G 0)和 a bm n (c, 0),所以 C=a —li=m +因为c 是日,/〃的等比中项,/是2〃,与d 的等差中项,所以c=am, 2n=2m + c ,所以殳 9 c cc 1 c 1 卜刁所以—+y=c,化为7=了所以尸一=孑故选C.Z d Z d T 3 Z6. (2017 •荔湾区期末)某宇宙飞船运行的轨道是以地球屮心为一焦点的椭圆,测得近地 点距地面刃千米,远地点距地面/7千米,地球半径为厂千米,则该飞船运行轨道的短轴长为解得 a=yfib,b 1 訂乔c J 孑 e=——=a ax y 5.已知椭圆~+y?= 1(臼〉方>0)与双|tt|线厂汗iS>o,讪有相同的焦点(-小和(。

2019年高考数学(人教版文)一轮复习课件:第8章 解析几何8.5

2019年高考数学(人教版文)一轮复习课件:第8章 解析几何8.5

解析:(1)错误。由椭圆的定义知,当该常数大于|F1F2|时,其轨迹 才是椭圆,而常数等于 |F1F2|时,其轨迹为线段 F1F2,常数小于|F1F2| 时,不存在图形。 (2)正确。由椭圆的定义得,|PF1|+ |PF2|=2a,又|F1F2 |=2c,所以 |PF1|+ |PF2 |+ |F1F2|=2a+2c。 b2 a2-b2 c b (3)错误。 因为 e= = = 1-a , 所以 e 越大, 则 越小, a a a 椭圆就越扁。 (4)正确。由椭圆的对称性知,其关于原点中心对称,也关于两坐 标轴对称。
考点一 椭圆的定义及其标准方程 x2 y2 【典例 1】(1)设 F1,F2 是椭圆 + =1 的两个焦点,P 是椭圆 49 24 上的点,且|PF1|∶|PF2|=4∶3,则△PF1F2 的面积为( C ) A.30 B.25 C.24 D.40 (2)已知两圆 C1:(x-4)2+y2=169,C2:(x+4)2+y2=9,动圆在 圆 C1 内部且和圆 C1 相内切, 和圆 C2 相外切, 则动圆圆心 M 的轨迹方 程为( D ) x2 y2 x2 y2 A. - =1 B. + =1 64 48 48 64 x2 y2 x2 y2 C. - =1 D. + =1 48 64 64 48
考纲要求 1.掌握椭圆的定义、几何图形、标准方程及简单几何性质(范围、 对称性、顶点、离心率)。 2.了解椭圆的简单应用。 3.理解数形结合的思想。
考情分析 1.椭圆的定义、标准方程、几何性质以及椭圆与其他知识综合应 用是近几年高考命题的热点。 2.常与直线、向量、三角等知识交汇考查,考查学生分析问题、 解决问题的能力。 3.三种题型都有可能出现,选择、填空题一般为中低档题、解答 题为高档题。
[知识重温] 一、必记 3●个知识点 1.椭圆的定义

2019-2020年高考数学一轮总复习第8章平面解析几何8.5椭圆模拟演练理

2019-2020年高考数学一轮总复习第8章平面解析几何8.5椭圆模拟演练理

2019-2020年高考数学一轮总复习第8章平面解析几何8.5椭圆模拟演练理1.已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是( )A.x 23+y 24=1B.x 24+y 23=1 C.x 24+y 22=1 D.x 24+y 23=1 答案 D解析 依题意,所求椭圆的焦点位于x 轴上,且c =1,e =c a =12⇒a =2,b 2=a 2-c 2=3,因此椭圆C 的方程是x 24+y 23=1.2.[xx·泉州质检]已知椭圆x 2m -2+y 210-m=1的长轴在x 轴上,焦距为4,则m 等于( )A .8B .7C .6D .5答案 A 解析 ∵椭圆x 2m -2+y 210-m=1的长轴在x 轴上,∴⎩⎪⎨⎪⎧m -2>0,10-m >0,m -2>10-m ,解得6<m <10.∵焦距为4,∴c 2=m -2-10+m =4,解得m =8.3.椭圆x 225+y 29=1上一点M 到焦点F 1的距离为2,N 是MF 1的中点,则|ON |等于( )A .2B .4C .8 D.32答案 B解析 如图,连接MF 2,已知|MF 1|=2,又|MF 1|+|MF 2|=10, ∴|MF 2|=10-|MF 1|=8.由题意知|ON |=12|MF 2|=4.故选B.4.设F 1,F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为直线x =3a2上一点,△F 2PF 1是底角为30°的等腰三角形,则E 的离心率为( )A.12B.23C.34D.45 答案 C解析 设直线x =32a 与x 轴交于点Q ,由题意得∠PF 2Q =60°,|F 2P |=|F 1F 2|=2c ,|F 2Q |=32a -c ,所以32a -c =12×2c ,e =c a =34,故选C. 5.[xx·新疆检测]椭圆x 24+y 2=1的右焦点为F ,直线x =t 与椭圆相交于点A 、B ,若△FAB 的周长等于8,则△FAB 的面积为( )A .1 B. 2 C. 3 D .2答案 C解析 ∵a =2,△FAB 的周长为8=4a ,∴由椭圆的定义得直线x =t 经过椭圆的左焦点,把x =-3代入椭圆方程,得34+y 2=1,|y |=12,∴△FAB 的面积为12·2|y |·2c = 3.6.M 是椭圆x 29+y 24=1上的任意一点,F 1、F 2是椭圆的左、右焦点,则|MF 1|·|MF 2|的最大值是________.答案 9解析 |MF 1|+|MF 2|=2a . |MF 1|·|MF 2|≤⎝⎛⎭⎪⎫|MF 1|+|MF 2|22=a 2=9.当且仅当|MF 1|=|MF 2|=3时等号成立.7.已知F 1,F 2是椭圆C :x 2a 2+y 2b2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1→⊥PF 2→.若△PF 1F 2的面积为9,则b =________.答案 3解析 由题意知|PF 1|+|PF 2|=2a ,PF 1→⊥PF 2→,所以|PF 1|2+|PF 2|2=|F 1F 2|2=4c 2, 所以(|PF 1|+|PF 2|)2-2|PF 1||PF 2|=4c 2, 所以2|PF 1||PF 2|=4a 2-4c 2=4b 2, 所以|PF 1||PF 2|=2b 2,所以S △PF 1F 2=12|PF 1||PF 2|=12×2b 2=b 2=9.所以b =3.8.[xx·江西高考]过点M (1,1)作斜率为-12的直线与椭圆C :x 2a 2+y2b2=1(a >b >0)相交于A ,B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于________.答案22解析 设A (x 1,y 1),B (x 2,y 2),则x 21a 2+y 21b 2=1①,x 22a 2+y 22b2=1②. ①、②两式相减并整理,得y 1-y 2x 1-x 2=-b 2a 2·x 1+x 2y 1+y 2.把已知条件代入上式,得-12=-b 2a 2×22,即b 2a 2=12,故椭圆的离心率e =1-b 2a 2=22. 9.已知椭圆C :y 2a 2+x 2b2=1(a >b >0)的焦距为4且过点(2,-2).(1)求椭圆C 的方程;(2)过椭圆焦点的直线与椭圆C 分别交于点E ,F ,求OE →·OF →的取值范围.解 (1)椭圆C :y 2a 2+x 2b2=1(a >b >0)的焦距是4,所以焦点坐标是(0,-2),(0,2),2a =2+0+2+2+22=42,所以a =22,b =2,即椭圆C 的方程是y 28+x 24=1.(2)若直线l 垂直于x 轴,则点E (0,22),F (0,-22),OE →·OF →=-8. 若直线l 不垂直于x 轴,设l 的方程为y =kx +2,点E (x 1,y 1),F (x 2,y 2), 将直线l 的方程代入椭圆C 的方程得到:(2+k 2)x 2+4kx -4=0,则x 1+x 2=-4k 2+k 2,x 1x 2=-42+k2, 所以OE →·OF →=x 1x 2+y 1y 2=(1+k 2)x 1x 2+2k (x 1+x 2)+4=-4-4k 22+k 2+-8k 22+k 2+4=202+k2-8,因为0<202+k2≤10,所以-8<OE →·OF →≤2,综上,OE →·OF →的取值范围是[-8,2].10.[xx·兰州模拟]已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (2,0),离心率为22.直线y =k (x -1)与椭圆C 交于不同的两点M ,N .(1)求椭圆C 的方程; (2)当△AMN 的面积为103时,求k 的值. 解 (1)由题意得⎩⎪⎨⎪⎧a =2,c a =22,a 2=b 2+c 2,解得b =2,所以椭圆C 的方程为x 24+y 22=1.(2)由⎩⎪⎨⎪⎧y =k x -1,x 24+y22=1,得(1+2k 2)x 2-4k 2x +2k 2-4=0.设点M ,N 的坐标分别为(x 1,y 1),(x 2,y 2), 则y 1=k (x 1-1),y 2=k (x 2-1), x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-41+2k 2,所以|MN |=x 2-x 12+y 2-y 12=1+k2[x 1+x 22-4x 1x 2]=21+k 24+6k21+2k2.又因为点A (2,0)到直线y =k (x -1)的距离d =|k |1+k2,所以△AMN 的面积为S =12|MN |·d =|k |4+6k 21+2k 2,由|k |4+6k 21+2k 2=103,解得k =±1.[B 级 知能提升](时间:20分钟)11.[xx·湖北八校联考]设F 1,F 2为椭圆x 29+y 25=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y 轴上,则|PF 2||PF 1|的值为( ) A.514 B.513 C.49 D.59 答案 B解析 由题意知a =3,b = 5.由椭圆定义知|PF 1|+|PF 2|=6.在△PF 1F 2中,因为PF 1的中点在y 轴上,O 为F 1F 2的中点,由三角形中位线性质可推得PF 2⊥x 轴,所以|PF 2|=b 2a =53,所以|PF 1|=6-|PF 2|=133,所以|PF 2||PF 1|=513,故选B.12.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →·FP →的最大值为( )A .2B .3C .6D .8答案 C解析 由椭圆x24+y23=1,可得点F (-1,0),点O (0,0),设P (x ,y ),-2≤x ≤2,则OP →·FP→=(x ,y )·(x +1,y )=x 2+x +y 2=x 2+x +3⎝ ⎛⎭⎪⎫1-x 24=14x 2+x +3=14(x +2)2+2,当且仅当x=2时,OP →·FP →取得最大值6.13.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1、F 2,右顶点为A ,上顶点为B ,若椭圆C 的中心到直线AB 的距离为66|F 1F 2|,则椭圆C 的离心率e =______. 答案22解析 设椭圆C 的焦距为2c (c <a ),由于直线AB 的方程为bx +ay -ab =0,所以ab a 2+b 2=63c ,又b 2=a 2-c 2,所以3a 4-7a 2c 2+2c 4=0,解得a 2=2c 2或3a 2=c 2(舍),所以e =22. 14.[xx·四川高考]已知椭圆E :x 2a 2+y 2b2=1(a >b >0)的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线l :y =-x +3与椭圆E 有且只有一个公共点T .(1)求椭圆E 的方程及点T 的坐标;(2)设O 是坐标原点,直线l ′平行于OT ,与椭圆E 交于不同的两点A ,B ,且与直线l交于点P .证明:存在常数λ,使得|PT |2=λ|PA |·|PB |,并求λ的值.解 (1)由已知,a =2b ,则椭圆E 的方程为x 22b 2+y 2b 2=1.由方程组⎩⎪⎨⎪⎧x 22b 2+y 2b2=1,y =-x +3,得3x 2-12x +(18-2b 2)=0.① 方程①的判别式为Δ=24(b 2-3),由Δ=0,得b 2=3,此时方程①的解为x =2, 所以椭圆E 的方程为x 26+y 23=1.点T 的坐标为(2,1).(2)由已知可设直线l ′的方程为y =12x +m (m ≠0),由方程组⎩⎪⎨⎪⎧y =12x +m ,y =-x +3,可得⎩⎪⎨⎪⎧x =2-2m3,y =1+2m 3.所以P 点的坐标为⎝ ⎛⎭⎪⎫2-2m3,1+2m 3,|PT |2=89m 2.设点A ,B 的坐标分别为A (x 1,y 1),B (x 2,y 2).由方程组⎩⎪⎨⎪⎧x 26+y 23=1,y =12x +m ,可得3x 2+4mx +(4m 2-12)=0.②方程②的判别式为Δ=16(9-2m 2), 由Δ>0,解得-322<m <322.由②得x 1+x 2=-4m 3,x 1x 2=4m 2-123.所以|PA |= ⎝ ⎛⎭⎪⎫2-2m 3-x 12+⎝ ⎛⎭⎪⎫1+2m 3-y 12 =52⎪⎪⎪⎪⎪⎪2-2m3-x 1,同理|PB |=52⎪⎪⎪⎪⎪⎪2-2m3-x 2. 所以|PA |·|PB |=54⎪⎪⎪⎪⎪⎪⎝ ⎛⎭⎪⎫2-2m 3-x 1⎝ ⎛⎭⎪⎫2-2m 3-x 2 =54⎪⎪⎪⎪⎪⎪⎝ ⎛⎭⎪⎫2-2m 32-⎝ ⎛⎭⎪⎫2-2m 3x 1+x 2+x 1x 2 =54⎪⎪⎪⎪⎪⎪⎝⎛⎭⎪⎫2-2m 32-⎝ ⎛⎭⎪⎫2-2m 3⎝ ⎛⎭⎪⎫-4m 3+4m 2-123 =109m 2. 故存在常数λ=45,使得|PT |2=λ|PA |·|PB |.2019-2020年高考数学一轮总复习第8章平面解析几何8.6双曲线模拟演练文1.[xx·唐山统考]“k <9”是“方程x 225-k +y 2k -9=1表示双曲线”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 A 解析 ∵方程x 225-k +y 2k -9=1表示双曲线,∴(25-k )(k -9)<0,∴k <9或k >25,∴“k <9”是“方程x 225-k +y 2k -9=1表示双曲线”的充分不必要条件,故选A.2.[xx·北京模拟]若双曲线x 2a 2-y 2b2=1的离心率为3,则其渐近线方程为( )A .y =±2xB .y =±2xC .y =±12xD .y =±22x 答案 B解析 由离心率为3,可知c a= 3.又c 2=a 2+b 2,b =2a .因此双曲线的渐近线方程为y =±bax =±2x ,故选B.3.已知双曲线x 2+my 2=1的虚轴长是实轴长的2倍,则实数m 的值是( ) A .4B.14C .-14D .-4答案 C解析 依题意得m <0,双曲线方程是x 2-y 2-1m=1,于是有-1m =2×1,m =-14. 4.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的两条渐近线均和圆C :x 2+y 2-6x +5=0相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为( )A.x 25-y 24=1B.x 24-y 25=1C.x 23-y 26=1 D.x 26-y 23=1 答案 A解析 圆心的坐标是(3,0),圆的半径是2,双曲线的渐近 线方程是bx ±ay =0,根据已知得3ba 2+b 2=2,即3b 3=2,解得b =2,则a 2=32-22=5,故所求的双曲线方程是x 25-y 24=1.5.已知双曲线x 2a 2-y 2b2=1与直线y =2x 有交点,则双曲线离心率的取值范围为( )A .(1,5)B .(1,5]C .(5,+∞)D .[5,+∞)答案 C解析 ∵双曲线的一条渐近线方程为y =b a x ,则由题意得b a >2,∴e =c a=1+⎝ ⎛⎭⎪⎫b a2>1+4= 5.6.[xx·海口调研]已知点F 1,F 2分别为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,P 为双曲线左支上的任意一点,且|PF 2|=2|PF 1|,若△PF 1F 2为等腰三角形,则双曲线的离心率为________.答案 2解析 ∵|PF 2|-|PF 1|=2a ,|PF 2|=2|PF 1|,∴|PF 2|=4a ,|PF 1|=2a ,∵△PF 1F 2为等腰三角形,∴|PF 2|=|F 1F 2|,即4a =2c ,∴ca=2.7.[xx·浙江高考]设双曲线x 2-y 23=1的左、右焦点分别为F 1,F 2.若点P 在双曲线上,且△F 1PF 2为锐角三角形,则|PF 1|+|PF 2|的取值范围是________.答案 (27,8)解析 由题意不妨设点P 在双曲线的右支上,现考虑两种极限情况:当PF 2⊥x 轴时,|PF 1|+|PF 2|有最大值8;当∠P 为直角时,|PF 1|+|PF 2|有最小值27.因为△F 1PF 2为锐角三角形,所以|PF 1|+|PF 2|的取值范围为(27,8).8.已知双曲线x 24-y 2=1的左、右焦点为F 1,F 2,点P 为左支上一点,且满足∠F 1PF 2=60°,则△F 1PF 2的面积为________.答案3解析 设|PF 1|=m ,|PF 2|=n ,⎩⎪⎨⎪⎧m 2+n 2-2mn cos60°=2c 2,n -m =2a ,所以⎩⎪⎨⎪⎧m 2+n 2-mn =20,m 2+n 2-2mn =16,所以mn =4,所以S △F 1PF 2=12mn sin60°= 3.9.已知双曲线焦距为4,焦点在x 轴上,且过点P (2,3). (1)求该双曲线的标准方程;(2)若直线m 经过该双曲线的右焦点且斜率为1,求直线m 被双曲线截得的弦长.解 (1)设双曲线方程为x 2a 2-y 2b2=1(a ,b >0),由已知可得左、右焦点F 1、F 2的坐标分别为(-2,0),(2,0),则|PF 1|-|PF 2|=2=2a ,所以a =1,又c =2,所以b =3,所以双曲线方程为x 2-y 23=1.(2)由题意可知直线m 方程为y =x -2,联立双曲线及直线方程消去y ,得2x 2+4x -7=0, 设两交点为A (x 1,y 1),B (x 2,y 2), 所以x 1+x 2=-2,x 1x 2=-72,由弦长公式得|AB |=1+k 2|x 1-x 2|=1+k 2·x 1+x 22-4x 1x 2=6.10.已知双曲线Γ:x 2a 2-y 2b2=1(a >0,b >0)经过点P (2,1),且其中一焦点F 到一条渐近线的距离为1.(1)求双曲线Γ的方程;(2)过点P 作两条相互垂直的直线PA ,PB 分别交双曲线Γ于A ,B 两点,求点P 到直线AB 距离的最大值.解 (1)∵双曲线x 2a 2-y 2b2=1过点(2,1),∴4a 2-1b2=1.不妨设F 为右焦点,则F (c,0)到渐近线bx -ay =0的距离d =|bc |a 2+b2=b ,∴b =1,a2=2,∴所求双曲线的方程为x 22-y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),直线AB 的方程为y =kx +m .将y =kx +m 代入x 2-2y 2=2中,整理得(2k 2-1)x 2+4kmx +2m 2+2=0. ∴x 1+x 2=-4km2k 2-1,①x 1x 2=2m 2+22k 2-1.②∵PA →·PB →=0,∴(x 1-2,y 1-1)·(x 2-2,y 2-1)=0,∴(x 1-2)(x 2-2)+(kx 1+m -1)(kx 2+m -1)=0,∴(k 2+1)x 1x 2+(km -k -2)(x 1+x 2)+m 2-2m +5=0.③ 将①②代入③,得m 2+8km +12k 2+2m -3=0, ∴(m +2k -1)(m +6k +3)=0. 而P ∉AB ,∴m =-6k -3,从而直线AB 的方程为y =kx -6k -3. 将y =kx -6k -3代入x 2-2y 2-2=0中, 判别式Δ=8(34k 2+36k +10)>0恒成立, ∴y =kx -6k -3即为所求直线.∴P 到AB 的距离d =|2k -6k -3-1|1+k 2=4|k +1|k 2+1. ∵⎝ ⎛⎭⎪⎫d 42=k 2+1+2k k 2+1=1+2k k 2+1≤2.∴d ≤42,即点P 到直线AB 距离的最大值为4 2.[B 级 知能提升](时间:20分钟)11.[xx·全国卷Ⅱ]已知F 1,F 2是双曲线E :x 2a 2-y 2b2=1的左,右焦点,点M 在E 上,MF 1与x 轴垂直,sin ∠MF 2F 1=13,则E 的离心率为( )A. 2B.32C. 3 D .2答案 A解析 ∵sin ∠MF 2F 1=13,∴|MF 2|=3|MF 1|.∵2c =|MF 2|2-|MF 1|2=22|MF 1|, ∴c =2|MF 1|,∵2a =|MF 2|-|MF 1|,∴a =|MF 1|,∴e =c a = 2.故选A. 12.[xx·河北模拟]已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (-12,-15),则E 的方程为( )A.x 23-y 26=1 B.x 24-y 25=1 C.x 26-y 23=1 D.x 25-y 24=1 答案 B解析 由已知k AB =k FN =-15-0-12-3=1. 设E :x 2a 2-y 2b 2=1(a >0,b >0),A (x 1,y 1),B (x 2,y 2), ∴x 21a 2-y 21b 2=1,x 22a 2-y 22b 2=1, 则x 1-x 2x 1+x 2a 2-y 1-y 2y 1+y 2b 2=0,而⎩⎪⎨⎪⎧ x 1+x 2=-24,y 1+y 2=-30,∴y 1-y 2x 1-x 2=4b 25a 2=1, ∴b 2=54a 2.① 又c 2=a 2+b 2=9,②联立①②解得a 2=4,b 2=5,∴E 的方程为x 24-y 25=1. 13.已知F 1,F 2为双曲线x 2a 2-y 2b2=1(a >0,b >0)的焦点,过F 2作垂直于x 轴的直线交双曲线于点P 和Q ,且△F 1PQ 为正三角形,则双曲线的渐近线方程为________________.答案 y =±2x解析 设F 2(c,0)(c >0),P (c ,y 0),Q (c ,-y 0),代入双曲线方程,得y 0=±b 2a, ∵PQ ⊥x 轴,∴|PQ |=2b 2a. 在Rt △F 1F 2P 中,∠PF 1F 2=30°,∴|F 1F 2|=3|PF 2|,即2c =3·b 2a. 又∵c 2=a 2+b 2,∴b 2=2a 2或2a 2=-3b 2(舍去).∵a >0,b >0,∴b a= 2.故所求双曲线的渐近线方程为y =±2x .14.已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为(3,0). (1)求双曲线C 的方程; (2)若直线l :y =kx +2与双曲线C 恒有两个不同的交点A 和B ,且OA →·OB →>2(其中O 为原点),求k 的取值范围. 解 (1)设双曲线C 的方程为x 2a 2-y 2b2=1(a >0,b >0). 由已知得a =3,c =2,再由c 2=a 2+b 2,得b 2=1.所以双曲线C 的方程为x 23-y 2=1. (2)将y =kx +2代入x 23-y 2=1中, 整理得(1-3k 2)x 2-62kx -9=0.由题意得⎩⎨⎧ 1-3k 2≠0,Δ=62k 2+361-3k 2=361-k 2>0,故k 2≠13且k 2<1.① 设A (x A ,y A ),B (x B ,y B ),则x A +x B =62k 1-3k 2,x A x B =-91-3k2. 由OA →·OB →>2,得x A x B +y A y B >2.x A x B +y A y B =x A x B +(kx A +2)(kx B +2)=(k 2+1)·x A x B +2k (x A +x B )+2=(k 2+1)·-91-3k 2+2k ·62k 1-3k 2+2=3k 2+73k 2-1,于是3k 2+73k 2-1>2,即-3k 2+93k 2-1>0,解得13<k 2<3.② 由①②得13<k 2<1, 所以k 的取值范围为⎝ ⎛⎭⎪⎫-1,-33∪⎝ ⎛⎭⎪⎫33,1.。

高考数学一轮复习 第八章 平面解析几何 85 椭圆课件

高考数学一轮复习 第八章 平面解析几何 85 椭圆课件

率).
相结合,多以解答题的形式出现,解题时,以直线
2.了解椭圆的简单应用.
与椭圆的位置关系为主,充分利用数形结合思想,
3.理解数形结合的思想.
转化与化归思想.同时注重数学思想在解题中的指
导作用,对运算能力的培养.
考点多维探究
考点 1 椭圆的定义与标准方程
回扣教材 1.椭圆的定义 (1)定义:在平面内到两定点 F1,F2 的距离的_和____等于_常 __数 ___ (大于|F1F2|)的点的轨迹(或集合)叫椭圆.这 两定点叫做椭圆的焦点,两焦点间的距离叫做_焦__距__._ (2)集合语言:P={M||MF1|+|MF2|=__2_a___,且 2a__>____|F1F2|},|F1F2|=2c,其中 a>c>0,且 a,c 为常 数. 注意:当 2a>|F1F2|时,轨迹为椭圆;当 2a=|F1F2|时,轨迹为线段 F1F2;当 2a<|F1F2|时,轨迹不存在.
这四个交点为顶点的四边形的面积为 16,则椭圆 C 的方程为( )
A.x82+y22=1
B.1x22 +y62=1
解析 ∵椭圆的离心率为 23,
C.1x62 +y42=1
D.2x02 +y52=1
∴ca= a2a-b2= 23,∴a=2b.∴椭圆的方程为 x2+4y2=4b2. ∵双曲线 x2-y2=1 的渐近线方程为 x±y=0,
解析 由 x2+my2=1⇒y12+x12=1. m
m1 =2 1得 m=14.
典例1
(1)[2013·广东高考]已知中心在原点的椭圆 C 的右焦点为 F(1,0),离心率等于12,则 C 的方程
是( )
A.x32+y42=1
B.x42+

【配套K12】2019年高考数学一轮复习学案+训练+课件(北师大版理科): 第8章 平面解析几何 第

【配套K12】2019年高考数学一轮复习学案+训练+课件(北师大版理科): 第8章 平面解析几何 第

第2课时 定点、定值、范围、最值问题(对应学生用书第151页)(2018·郑州第二次质量预测)已知动圆M 恒过点(0,1),且与直线y =-1相切. (1)求圆心M 的轨迹方程;(2)动直线l 过点P (0,-2),且与点M 的轨迹交于A ,B 两点,点C 与点B 关于y 轴对称,求证:直线AC 恒过定点.[解] (1)由题意,得点M 与点(0,1)的距离始终等于点M 到直线y =-1的距离,由抛物线定义知圆心M 的轨迹为以点(0,1)为焦点,直线y =-1为准线的抛物线,则p2=1,p =2.∴圆心M 的轨迹方程为x 2=4y .(2)证明:由题知,直线l 的斜率存在, ∴设直线l :y =kx -2,A (x 1,y 1),B (x 2,y 2), 则C (-x 2,y 2),联立⎩⎪⎨⎪⎧x 2=4y ,y =kx -2,得x 2-4kx +8=0,∴⎩⎪⎨⎪⎧x 1+x 2=4k ,x 1x 2=8.k AC =y 1-y 2x 1+x 2=x 214-x 224x 1+x 2=x 1-x 24,则直线AC 的方程为y -y 1=x 1-x 24(x -x 1),即y =y 1+x 1-x 24(x -x 1)=x 1-x 24x -x 1(x 1-x 2)4+x 214=x 1-x 24x +x 1x 24.∵x 1x 2=8,∴y =x 1-x 24x +x 1x 24=x 1-x 24x +2,故直线AC 恒过定点(0,2).=bx +2与圆x 2+y 2=2相切.(1)求椭圆的方程;(2)已知定点E (1,0),若直线y =kx +2(k ≠0)与椭圆相交于C ,D 两点,试判断是否存在实数k ,使得以CD 为直径的圆过定点E ?若存在,求出k 的值;若不存在,请说明理由.【导学号:79140309】[解] (1)∵直线l :y =bx +2与圆x 2+y 2=2相切. ∴2b 2+1=2,∴b 2=1.∵椭圆的离心率e =63, ∴e 2=c 2a 2=a 2-1a 2=⎝ ⎛⎭⎪⎫632,∴a 2=3,∴所求椭圆的方程是x 23+y 2=1.(2)将直线y =kx +2代入椭圆方程,消去y 可得 (1+3k 2)x 2+12kx +9=0,∴Δ=36k 2-36>0,∴k >1或k <-1. 设C (x 1,y 1),D (x 2,y 2),则有x 1+x 2=-12k 1+3k 2,x 1x 2=91+3k 2.若以CD 为直径的圆过点E , 则EC ⊥ED .∵EC →=(x 1-1,y 1),ED →=(x 2-1,y 2), ∴(x 1-1)(x 2-1)+y 1y 2=0.∴(1+k 2)x 1x 2+(2k -1)(x 1+x 2)+5=0,∴(1+k 2)×91+3k 2+(2k -1)×⎝ ⎛⎭⎪⎫-12k 1+3k 2+5=0. 解得k =-76<-1.∴存在实数k =-76使得以CD 为直径的圆过定点E .(2017·全国卷Ⅲ)在直角坐标系xOy 中,曲线y =x 2+mx -2与x 轴交于A ,B 两点,点C 的坐标为(0,1).当m 变化时,解答下列问题:(1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值. [解] (1)不能出现AC ⊥BC 的情况.理由如下: 设A (x 1,0),B (x 2,0),则x 1,x 2满足x 2+mx -2=0, 所以x 1x 2=-2. 又点C 的坐标为(0,1),故AC 的斜率与BC 的斜率之积为-1x 1·-1x 2=-12,所以不能出现AC ⊥BC 的情况.(2)证明:BC 的中点坐标为⎝ ⎛⎭⎪⎫x 22,12,可得BC 的中垂线方程为y -12=x 2⎝ ⎛⎭⎪⎫x -x 22.由(1)可得x 1+x 2=-m , 所以AB 的中垂线方程为x =-m2.联立⎩⎪⎨⎪⎧x =-m 2,y -12=x 2⎝ ⎛⎭⎪⎫x -x 22,又x 22+mx 2-2=0,可得⎩⎪⎨⎪⎧x =-m2,y =-12.所以过A ,B ,C 三点的圆的圆心坐标为⎝ ⎛⎭⎪⎫-m 2,-12,半径r =m 2+92.故圆在y 轴上截得的弦长为2r 2-⎝ ⎛⎭⎪⎫m 22=3, 即过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.[跟踪训练] (2018·石家庄质检(二))设M ,N ,T 是椭圆16+12=1上三个点,M ,N 在直线x =8上的射影分别为M 1,N 1.(1)若直线MN 过原点O ,直线MT ,NT 斜率分别为k 1,k 2.求证:k 1k 2为定值; (2)若M ,N 不是椭圆长轴的端点,点L 坐标为(3,0),△M 1N 1L 与△MNL 面积之比为5,求MN 中点K 的轨迹方程.[解] (1)证明:设M (p ,q ),N (-p ,-q ),T (x 0,y 0),则k 1k 2=y 20-q2x 20-p 2,又⎩⎪⎨⎪⎧p 216+q 212=1,x 216+y 2012=1,两式相减得x 20-p 216+y 20-q212=0,即y 20-q2x 20-p 2=-34, k 1k 2=-34.(2)设直线MN 与x 轴相交于点R (r,0),S △MNL =12|r -3|·|y M -y N |, S △M 1N 1L =12×5·|yM 1-yN 1|.由于S △M 1N 1L =5S △MNL 且|yM 1-yN 1|=|y M -y N |, 得12×5×|yM 1-yN 1|=5×12|r -3|·|y M -y N |, 解得r =4(舍去)或r =2. 即直线MN 经过点F (2,0).设M (x 1,y 1),N (x 2,y 2),K (x 0,y 0),①当直线MN 垂直于x 轴时,弦MN 中点为K (2,0); ②当直线MN 与x 轴不垂直时,设MN 的方程为y =k (x -2),则⎩⎪⎨⎪⎧x 216+y 212=1,y =k (x -2),则(3+4k 2)x 2-16k 2x +16k 2-48=0.x 1+x 2=16k 23+4k 2,x 1x 2=16k 2-483+4k 2.x 0=8k 23+4k 2,y 0=-6k3+4k2.消去k ,整理得(x 0-1)2+4y 23=1(y 0≠0).综上所述,点K 的轨迹方程为(x -1)2+4y23=1(x >0).(2018·合肥一检)已知点F 为椭圆E :x 2a 2+y 2b2=1(a >b >0)的左焦点,且两焦点与短轴的一个顶点构成一个等边三角形,直线x 4+y2=1与椭圆E 有且仅有一个交点M .(1)求椭圆E 的方程;(2)设直线x 4+y2=1与y 轴交于P ,过点P 的直线l 与椭圆E 交于两不同点A ,B ,若λ|PM |2=|PA |·|PB |,求实数λ的取值范围. [解] (1)由题意得a =2c ,b =3c ,则椭圆E 为x 24c 2+y 23c2=1.由⎩⎪⎨⎪⎧x 24+y 23=c 2,x 4+y 2=1得x 2-2x +4-3c 2=0.∵直线x 4+y2=1与椭圆E 有且仅有一个交点M ,∴Δ=4-4(4-3c 2)=0⇒c 2=1, ∴椭圆E 的方程为x 24+y 23=1.(2)由(1)得M ⎝ ⎛⎭⎪⎫1,32, ∵直线x 4+y2=1与y 轴交于P (0,2),∴|PM |2=54,当直线l 与x 轴垂直时,|PA |·|PB |=(2+3)(2-3)=1,∴由λ|PM |2=|PA |·|PB |⇒λ=45,当直线l 与x 轴不垂直时,设直线l 的方程为y =kx +2,A (x 1,y 1),B (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +2,3x 2+4y 2-12=0⇒(3+4k 2)x 2+16kx +4=0,依题意得x 1x 2=43+4k 2,且Δ=48(4k 2-1)>0,∴k 2>14, ∴|PA |·|PB |=(1+k 2)x 1x 2=(1+k 2)·43+4k 2=1+13+4k 2=54λ, ∴λ=45⎝ ⎛⎭⎪⎫1+13+4k 2,∵k 2>14,∴45<λ<1,综上所述,λ的取值范围是⎣⎢⎡⎭⎪⎫45,1.利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系.利用已知的或隐含的不等关系,构建不等式,从而求出参数的取值范围利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围[跟踪训练] (2018·江西师大附中)已知椭圆E :a 2+b2=1的焦点在x 轴上,椭圆E 的左顶点为A ,斜率为k (k >0)的直线交椭圆E 于A ,B 两点,点C 在椭圆E 上,AB ⊥AC ,直线 AC 交y 轴于点D .(1)当点B 为椭圆的上顶点,△ABD 的面积为2ab 时,求椭圆的离心率; (2)当b =3,2|AB |=|AC |时,求k 的取值范围.【导学号:79140310】[解] (1)直线AB 的方程为y =b ax +b , 直线AC 的方程为y =-a b(x +a ),令x =0,y =-a 2b.S △ABD =12·⎝⎛⎭⎪⎫b +a 2b ·a =2ab ,于是a 2+b 2=4b 2,a 2=3b 2,e =ca=1-b 2a 2=63. (2)直线AB 的方程为y =k (x +a ),联立⎩⎪⎨⎪⎧x 2a 2+y 23=1,y =k (x +a ),整理得(3+a 2k 2)x 2+2a 3k 2x +a 4k 2-3a 2=0,解得x =-a 或x =-a 3k 2-3a 3+a 2k2,所以|AB |=1+k 2⎪⎪⎪⎪⎪⎪-a 3k 2-3a 3+a 2k 2+a=1+k 2·6a3+a 2k2, 同理|AC |=1+k 2·6a3k +a 2k,因为2|AB |=|AC |, 所以2·1+k 2·6a 3+a k =1+k 2·6a 3k +a k, 整理得a 2=6k 2-3kk 3-2.因为椭圆E 的焦点在x 轴, 所以a 2>3,即6k 2-3kk 3-2>3,整理得(k 2+1)(k -2)k 3-2<0,解得32<k <2.(2017·浙江高考)如图8­9­3,已知抛物线x 2=y ,点A ⎝ ⎛⎭⎪⎫-12,14,B ⎝ ⎛⎭⎪⎫32,94,抛物线上的点P (x ,y )⎝ ⎛⎭⎪⎫-12<x <32.过点B 作直线AP 的垂线,垂足为Q .图8­9­3(1)求直线AP 斜率的取值范围; (2)求|PA |·|PQ |的最大值.[解] (1)设直线AP 的斜率为k ,k =x 2-14x +12=x -12,因为-12<x <32,所以直线AP 斜率的取值范围是(-1,1).(2)联立直线AP 与BQ 的方程⎩⎪⎨⎪⎧kx -y +12k +14=0,x +ky -94k -32=0,解得点Q 的横坐标是x Q =-k 2+4k +32(k 2+1). 因为|PA |=1+k 2⎝ ⎛⎭⎪⎫x +12=1+k 2(k +1),|PQ |=1+k 2(x Q -x )=-(k -1)(k +1)2k 2+1,所以|PA |·|PQ |=-(k -1)(k +1)3. 令f (k )=-(k -1)(k +1)3, 因为f ′(k )=-(4k -2)(k +1)2,所以f (k )在区间⎝ ⎛⎭⎪⎫-1,12上单调递增,⎝ ⎛⎭⎪⎫12,1上单调递减,因此当k =12时,|PA |·|PQ |取得最大值2716.代数法:从代数的角度考虑,通过建立函数、不等式等模型,利用二次函数法和基本不等式法、换元法、导数法等方法求最值几何法:从圆锥曲线几何性质的角度考虑,根据圆锥曲线几何意义求最值[跟踪训练] (2018·石家庄一模)如图8­9­4, 已知椭圆C :2+y 2=1的左顶点为A ,右焦点为F ,O 为原点,M ,N 是y 轴上的两个动点,且MF ⊥NF ,直线AM 和AN 分别与椭圆C 交于E ,D 两点.图8­9­4(1)求△MFN 的面积的最小值; (2)证明:E ,O ,D 三点共线.[解] (1)法一:设M (0,m ),N (0,n ), ∵MF ⊥NF ,∴△OFM ∽△ONF , ∴OM OF =OF ON,可得m ·n =-1.∴S △MFN =12|MF ||FN |=121+m 2·1+n 2=121+m 2+n 2+(mn )2=122+m 2+n 2≥122+2|mn |=1,当且仅当|m |=1,|n |=1时,等号成立. ∴△MFN 的面积的最小值为1. 法二:设M (0,m ),N (0,n ), ∵MF ⊥NF ,∴△OFM ∽△ONF , ∴OM OF =OF ON,可得m ·n =-1.S △MFN =12|OF ||MN |=12|MN |,∵|MN |2=|MF |2+|NF |2≥2|MF |×|NF |,当且仅当|MF |=|NF |时等号成立. 由椭圆的对称性可知,当D 与N 重合,M 与E 重合时, |MF |=|NF |,∴|MN |min =2, ∴(S △MFN )min =12|MN |=1.∴△MFN 的面积的最小值为1.(2)证明:∵A (-2,0),M (0,m ), ∴直线AM 的方程为y =m2x +m .由⎩⎪⎨⎪⎧y =m 2x +m ,x 2+2y 2=2,得(1+m 2)x 2+22m 2x +2(m 2-1)=0,由-2·x E =2(m 2-1)1+m 2,得x E =-2(m 2-1)m 2+1,① 同理可得x D =-2(n 2-1)n 2+1,∵m ·n =-1,∴x D =-2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1m 2-1⎝ ⎛⎭⎪⎫1m 2+1=-2(1-m 2)m 2+1,②故由①②可知x E =-x D , 代入椭圆方程可得y 2E =y 2D .∵MF ⊥NF ,故N ,M 分别在x 轴两侧,y E =-y D ,当x E =0时,x D =0,易得E ,O ,D 三点共线,当x E ≠0时,x D ≠0,此时有y E x E =y D x D,小初高试卷教案类∴E,O,D三点共线.K12小学初中高中。

【配套K12】2019年高考数学一轮复习学案+训练+课件(北师大版理科): 第8章 平面解析几何 第

【配套K12】2019年高考数学一轮复习学案+训练+课件(北师大版理科): 第8章 平面解析几何 第

第九节 圆锥曲线的综合问题[考纲传真] (教师用书独具)1.掌握解决直线与椭圆、抛物线的位置关系的思想方法;2.了解圆锥曲线的简单应用;3.理解数形结合的思想.(对应学生用书第148页)[基础知识填充]1.直线与圆锥曲线的位置关系设直线l :Ax +By +C =0,圆锥曲线C :F (x ,y )=0,由⎩⎪⎨⎪⎧Ax +By +C =0,F (x ,y )=0消去y 得到关于x 的方程ax 2+bx +c =0.(1)当a ≠0时,设一元二次方程ax 2+bx +c =0的判别式为Δ,则Δ>0⇔直线l 与圆锥曲线C 有两个公共点;Δ=0⇔直线l 与圆锥曲线C 有一个公共点; Δ<0⇔直线l 与圆锥曲线C 有零个公共点. (2)当a =0,b ≠0时,即得到一个一元一次方程.当C 为双曲线时,l 与双曲线的渐近线平行或重合,它们的公共点有1个或0个. 当C 为抛物线时,l 与抛物线的对称轴平行或重合,它们的公共点有1个. 2.圆锥曲线的弦长公式设斜率为k 的直线l 与圆锥曲线C 相交于A ,B 两点,A (x 1,y 1),B (x 2,y 2),则|AB |=(x 1-x 2)2+(y 1-y 2)2=1+k 2·|x 1-x 2|=1+k 2·(x 1+x 2)2-4x 1x 2=1+k 2·Δ|a |. [知识拓展] 过一点的直线与圆锥曲线的位置关系(1)过椭圆外一点总有两条直线与椭圆相切; 过椭圆上一点有且只有一条直线与椭圆相切; 过椭圆内一点的直线与椭圆相交.(2)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条与对称轴平行或重合的直线;过抛物线上一点总有两条直线与抛物线有且只有一个公共点:一条切线和一条与对称轴平行或重合的直线;过抛物线内一点只有一条直线与抛物线有且只有一个公共点:一条与对称轴平行或重合的直线.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)直线l 与椭圆C 相切的充要条件是直线l 与椭圆C 只有一个公共点.( ) (2)直线l 与双曲线C 相切的充要条件是直线l 与双曲线C 只有一个公共点.( ) (3)过抛物线y 2=2px (p >0)焦点的弦中最短弦的弦长是2p .( )(4)若抛物线上存在关于直线l 对称的两点,则l 与抛物线有两个交点.( ) [解析] (1)对.椭圆是个封闭图形,直线与椭圆只有一个公共点时,一定相切. (2)错.当直线l 与渐近线平行时,直线与双曲线只有一个交点,但不相切. (3)对.可转化为到准线的距离来证明(3)正确. (4)错.当直线l 为对称轴时,l 与抛物线有一个交点. [答案] (1)√ (2)× (3)√ (4)×2.(教材改编)直线y =k (x -1)+1与椭圆x 29+y 24=1的位置关系是( )A .相交B .相切C .相离D .不确定A [直线y =k (x -1)+1恒过定点(1,1),又点(1,1)在椭圆内部,故直线与椭圆相交.]3.过点(0,1)作直线,使它与抛物线y 2=4x 仅有一个公共点,这样的直线有( )A .1条B .2条C .3条D .4条C [结合图形分析可知,满足题意的直线共有3条:一条过点(0,1)且平行于x 轴的直线,两条过点(0,1)且与抛物线相切的直线.]4.直线y =b a x +3与双曲线x 2a 2-y 2b2=1(a >0,b >0)的交点个数是( )A .1B .2C .1或2D .0A [因为直线y =ba x +3与双曲线的渐近线y =b ax 平行,所以它与双曲线只有1个交点.]5.过抛物线y 2=8x 的焦点F 作倾斜角为135°的直线,交抛物线于A ,B 两点,则弦AB 的长为________.16 [设A (x 1,y 1),B (x 2,y 2),因为抛物线y 2=8x 的焦点为F (2,0),直线AB 的倾斜角为135°,故直线AB 的方程为y =-x +2,代入抛物线方程y 2=8x ,得x 2-12x +4=0,则x 1+x 2=12,x 1x 2=4,则|AB |=x 1+x 2+4=12+4=16.]第1课时 直线与圆锥曲线的位置关系(对应学生用书第149页)(2017·全国卷Ⅰ)设A ,B 为曲线C :y =x 24上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.[解] (1)设A (x 1,y 1),B (x 2,y 2), 则x 1≠x 2,y 1=x 214,y 2=x 224,x 1+x 2=4,于是直线AB 的斜率k =y 1-y 2x 1-x 2=x 1+x 24=1. (2)由 y =x 24,得y ′=x2.设M (x 3,y 3),由题设知x 32=1,解得x 3=2,于是M (2,1).设直线AB 的方程为y =x +m ,故线段AB 的中点为N (2,2+m ),|MN |=|m +1|. 将y =x +m 代入y =x 24得x 2-4x -4m =0.当Δ=16(m +1)>0,即m >-1时,x 1,2=2±2m +1. 从而|AB |=2|x 1-x 2|=42(m +1).由题设知|AB |=2|MN |,即42(m +1)=2(m +1),解得m =7. 所以直线AB 的方程为y =x +7.x 或,判断该方程组解的个数,方程组有几组解,直线与圆锥曲线就有几个交点注意两点:消元后需要讨论含2或2项的系数是否为重视“判别式”起的限制作用2.对于选择题、要充分利用几何条件,借助数形结合的思想方法直观求解,优化解题过程.[跟踪训练] 已知直线l :y =2x +m ,椭圆C :4+2=1.试问当m 取何值时,直线l 与椭圆C :(1)有两个不重合的公共点; (2)有且只有一个公共点.[解] 将直线l 的方程与椭圆C 的方程联立,得方程组⎩⎪⎨⎪⎧y =2x +m , ①x 24+y22=1, ②将①代入②,整理得9x 2+8mx +2m 2-4=0.③方程③根的判别式Δ=(8m )2-4×9×(2m 2-4) =-8m 2+144.(1)当Δ>0,即-32<m <32时,方程③有两个不同的实数根,可知方程组有两组不同的实数解.这时直线l 与椭圆C 有两个不重合的公共点.(2)当Δ=0,即m =±32时,方程③有两个相同的实数根,可知方程组有两组相同的实数解.这时直线l 与椭圆C 有两个互相重合的公共点,即直线l 与椭圆C 有且只有一个公共点.(2018·广州综合测试(二))已知双曲线x 25-y 2=1的焦点是椭圆C :x 2a 2+y 2b2=1(a >b>0)的顶点,且椭圆与双曲线的离心率互为倒数.【导学号:79140304】(1)设椭圆C 的方程;(2)设动点M ,N 在椭圆C 上,且|MN |=433,记直线MN 在y 轴上的截距为m ,求m的最大值.[解] (1)双曲线x 25-y 2=1的焦点坐标为(±6,0),离心率为305.因为双曲线x 25-y 2=1的焦点是椭圆C :x 2a 2+y 2b2=1(a >b >0)的顶点,且椭圆与双曲线的离心率互为倒数,所以a =6,且a 2-b 2a =306,解得b =1.故椭圆C 的方程为x 26+y 2=1.(2)因为|MN |=433>2,所以直线MN 的斜率存在.因为直线MN 在y 轴上的截距为m , 所以可设直线MN 的方程为y =kx +m . 代入椭圆的方程x 26+y 2=1中,得(1+6k 2)x 2+12kmx +6(m 2-1)=0. 因为Δ=(12km )2-24(1+6k 2)(m 2-1) =24(1+6k 2-m 2)>0, 所以m 2<1+6k 2.设M (x 1,y 1),N (x 2,y 2),根据根与系数的关系得x 1+x 2=-12km1+6k 2,x 1x 2=6(m 2-1)1+6k2则|MN |=1+k 2|x 1-x 2| =1+k 2·(x 1+x 2)2-4x 1x 2 =1+k 2·⎝ ⎛⎭⎪⎫-12km 1+6k 22-24(m 2-1)1+6k 2. 因为|MN |=433,则1+k 2·⎝ ⎛⎭⎪⎫-12km 1+6k 22-24(m 2-1)1+6k 2=433. 整理得m 2=-18k 4+39k 2+79(1+k 2). 令k 2+1=t ≥1,则k 2=t -1.所以m 2=-18t 2+75t -509t =19⎣⎢⎡⎦⎥⎤75-⎝⎛⎭⎪⎫18t +50t ≤75-2×309=53.等号成立的条件是t =53,此时k 2=23,m 2=53满足m 2<1+6k 2,符合题意.故m 的最大值为153. 定义法:过圆锥曲线的焦点的弦长问题,利用圆锥曲线的定义,可优化解题点距法:将直线的方程和圆锥曲线的方程联立,求出两交点的坐标,再运用两点间距离公式求弦长弦长公式法:它体现了解析几何中设而不求的思想,其实质是利用两点之间的距离公式以及一元二次方程根与系数的关系得到的易错警示:直线与圆锥曲线的对称轴平行或垂直的特殊情况[跟踪训练] (2017·宜春中学与新余一中联考)设椭圆M :a 2+b2=1(a >b >0)的离心率与双曲线x 2-y 2=1的离心率互为倒数,且椭圆的长轴长为4.(1)求椭圆M 的方程;(2)若直线y =2x +1交椭圆M 于A ,B 两点,P (1,2)为椭圆M 上一点,求△PAB 的面积.[解] (1)由题可知,双曲线的离心率为2,则椭圆的离心率e =c a =22, 由2a =4,c a =22,b 2=a 2-c 2,得a =2,c =2,b =2, 故椭圆M 的方程为y 24+x 22=1.(2)联立方程⎩⎪⎨⎪⎧y =2x +1x 22+y 24=1,得4x 2+22x -3=0,且⎩⎪⎨⎪⎧x 1+x 2=-22x 1x 2=-34,所以|AB |=1+2|x 1-x 2|=3·(x 1+x 2)2-4x 1x 2=3·12+3=422.又P 到直线AB 的距离为d =13,所以S △PAB =12|AB |·d =12·422·13=144.(1)在椭圆x 216+y 24=1内,通过点M (1,1),且被这点平分的弦所在的直线方程为( )【导学号:79140305】A .x +4y -5=0B .x -4y -5=0C .4x +y -5=0D .4x -y -5=0(2)如图8­9­1,已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称.则实数m 的取值范围为________. (1)A (2)⎝ ⎛⎭⎪⎫-∞,-63∪⎝ ⎛⎭⎪⎫63,+∞ [(1)设直线与椭圆的交点为A (x 1,y 1),B (x 2,y 2),则⎩⎪⎨⎪⎧x 2116+y 214=1, ①x 2216+y 224=1, ②由①-②, 得(x 1+x 2)(x 1-x 2)16+(y 1+y 2)(y 1-y 2)4=0,因为⎩⎪⎨⎪⎧x 1+x 2=2,y 1+y 2=2,所以y 1-y 2x 1-x 2=-4(x 1+x 2)16(y 1+y 2)=-14, 所以所求直线方程为y -1=-14(x -1),即x +4y -5=0.(2)由题意知m ≠0,可设直线AB 的方程为y =-1m x +B .由⎩⎪⎨⎪⎧x 22+y 2=1,y =-1m x +b ,消去y ,得⎝ ⎛⎭⎪⎫12+1m 2x 2-2b m x +b 2-1=0.因为直线y =-1m x +b 与椭圆x 22+y 2=1有两个不同的交点,所以Δ=-2b 2+2+4m 2>0,①将AB 中点M ⎝ ⎛⎭⎪⎫2mbm 2+2,m 2b m 2+2代入直线方程y =mx +12,解得b =-m 2+22m 2,②由①②得m <-63或m >63.]根与系数的关系:即联立直线与圆锥曲线的方程,将其转化为一元二次方程后由根与系数的关系求解[跟踪训练两点.若P (1,1)为线段AB 的中点,则抛物线C 的方程为( ) A .y =2x 2B .y 2=2x C .x 2=2yD .y 2=-2xB [设A (x 1,y 1),B (x 2,y 2),抛物线方程为y2=2px ,则⎩⎪⎨⎪⎧y 21=2px 1,y 22=2px 2,两式相减可得2p =y 1-y 2x 1-x 2·(y 1+y 2)=k AB ·2=2,即可得p =1,∴抛物线C 的方程为y 2=2x .]。

2019版高考数学一轮复习第八章平面解析几何

2019版高考数学一轮复习第八章平面解析几何



双曲线
课前·双基落实
想一想、辨一辨、试一试、全面打牢基础
课堂·考点突破
自主研、合作探、多面观、全扫命题题点

课后·三维演练
基础练、题型练、能力练、全练力保全能
课 前 双 基落实
想一想、辨一辨、试一试、全面打牢基础





1.双曲线的定义 平面内与两个定点F1, F2的 距离的差的绝对值等于非零 常数 (小于 |F1F2|)的点的轨迹叫做双曲线.这两个定点叫做双曲线 ______
2.双曲线的标准方程和几何性质 标准方程 x2 y2 y2 x2 - =1(a>0,b>0) 2- 2=1(a>0,b>0) a2 b2 a b
图形
性 质
范围 对称性
x≤-a 或 x≥a,y∈R y≤-a 或 y≥a,x∈R 对称轴: 坐标轴 对称中心: 原点
标准方程 顶点 渐近线 离心率 性 质 a,b,c 的关系
2 y 即其标准方程为x2- = 1. 2 2 y 答案:x2- =1 2
课 堂 考 点突破
自主研、合作探、多面观、全扫命题题点
考点一 双曲线的标准方程
[题组练透]
x2 y2 1. (2017· 天津高考 )已知双曲线 2- 2 = 1(a>0, b>0)的左焦点 a b 为 F,离心率为 2 .若经过 F和 P(0,4)两点的直线平行于双 ( )
x2 y2 解析:设要求的双曲线方程为 2- 2= 1(a>0, b>0), a b x2 y2 由椭圆 + =1,得椭圆焦点为(± 1,0),顶点为(± 2,0). 4 3 所以双曲线的顶点为(± 1,0),焦点为(± 2,0). 所以a= 1, c= 2,所以b2= c2- a2= 3,

全国通用近年高考数学一轮复习第八章平面解析几何课时作业四十九8.5.1椭圆的概念及其性质文(202

全国通用近年高考数学一轮复习第八章平面解析几何课时作业四十九8.5.1椭圆的概念及其性质文(202

(全国通用版)2019版高考数学一轮复习第八章平面解析几何课时分层作业四十九8.5.1 椭圆的概念及其性质文编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((全国通用版)2019版高考数学一轮复习第八章平面解析几何课时分层作业四十九8.5.1 椭圆的概念及其性质文)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(全国通用版)2019版高考数学一轮复习第八章平面解析几何课时分层作业四十九8.5.1 椭圆的概念及其性质文的全部内容。

课时分层作业四十九椭圆的概念及其性质一、选择题(每小题5分,共35分)1。

椭圆x2+4y2=1的离心率为( )A.B。

C.D。

【解析】选A。

因为椭圆方程化为x2+=1,所以c==,离心率e==.2。

设P是椭圆+=1上的点.若F1,F2是椭圆的两个焦点,则|PF1|+|PF2|等于( ) A。

4 B。

5 C.8 D。

10【解析】选D.由椭圆的第一定义知|PF1|+|PF2|=2a=10.3。

已知动点P(x,y)与两点A1(—2,0),A2(2,0)的连线斜率之积为·=-,则点P(x,y)的轨迹方程为()A.+=1(y≠0)B。

+=1(y≠0)C。

+y2=1(y≠0) D.+=1(y≠0)【解析】选B.因为·=·=-,整理得+=1.又因为点P不能在x 轴上,所以y≠0。

【变式备选】若过椭圆的一个焦点作长轴的垂线,交椭圆于两点P,Q,线段PQ的长度为2,椭圆的一个焦点是(2,0),则椭圆的标准方程是_________.【解析】由题意可知,=2,c=2,又因为a2=b2+c2,解得a2=80,b2=20,所求椭圆的标准方程为+=1.答案:+=14.若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是()A.B。

2019年高考数学一轮总复习第八章解析几何8.5椭圆课件理

2019年高考数学一轮总复习第八章解析几何8.5椭圆课件理
2 2 x y 所以 b2=48,又焦点 C1、C2 在 x 轴上,故所求的轨迹方程为 + =1. 64 48
x2 y2 【答案】 (1)A (2) + =1 64 48
2.辨明两个易误点 (1)椭圆的定义中易忽视 2a>|F1F2|这一条件, 当 2a=|F1F2|时, 其轨迹为线段 F1F2, 当 2a<|F1F2|时,不存在轨迹. x2 y2 (2) 求椭圆的标准方程时易忽视判断焦点的位置,而直接设方程为 2 + 2 = a b 1(a>b>0). 3.求椭圆标准方程的两种方法 (1)定义法:根据椭圆的定义,确定 a2,b2 的值,结合焦点位置可写出椭圆方程. (2)待定系数法:若焦点位置明确,则可设出椭圆的标准方程,结合已知条件求 出 a、b;若焦点位置不明确,则需要分焦点在 x 轴上和 y 轴上两种情况讨论,也可 设椭圆的方程为 Ax2+By2=1(A>0,B>0,A≠B).
【解析】 (1)因为点 P 在椭圆上,所以|PF1|+|PF2|=6,又因为|PF1|∶|PF2|=2∶ 1, 所以|PF1|=4, |PF2|=2, 又易知|F1F2|=2 5, 显然|PF1|2+|PF2|2=|F1F2|2, 故△PF1F2 1 为直角三角形,所以△PF1F2 的面积为 ×2×4=4.故选 A. 2 (2)设动圆 M 的半径为 r, 则|MC1|+|MC2|=(13-r)+(3+r)=16, 又|C1C2|=8<16, 所以动圆圆心 M 的轨迹是以 C1、C2 为焦点的椭圆,且 2a=16,2c=8,则 a=8,c=4,
答案:C
2.椭圆 C 的一个焦点为 F1(0,1),并且经过点 x2 y2 A. + =1 4 3 x2 y2 C. + =1 3 2

【配套K12】2019年高考数学一轮复习学案+训练+课件(北师大版理科): 第8章 平面解析几何 第

【配套K12】2019年高考数学一轮复习学案+训练+课件(北师大版理科): 第8章 平面解析几何 第

第五节 椭 圆[考纲传真] (教师用书独具)1.了解椭圆的实际背景,了解椭圆在刻画现实世界和解决实际问题中的作用.2.掌握椭圆的定义、几何图形、标准方程及简单性质(范围、对称性、顶点、离心率).3.理解数形结合思想.4.了解椭圆的简单应用.(对应学生用书第138页)[基础知识填充]1.椭圆的定义把平面内到两个定点F 1,F 2的距离之和等于常数(大于|F 1F 2|)的点的集合叫作椭圆.这两个定点叫作椭圆的焦点,两焦点间的距离叫作椭圆的焦距.集合P ={M ||MF 1|+|MF 2|=2a },|F 1F 2|=2c ,其中a >0,c >0,且a ,c 为常数: (1)若a >c ,则集合P 为椭圆; (2)若a =c ,则集合P 为线段; (3)若a <c ,则集合P 为空集.2.椭圆的标准方程和几何性质[知识拓展] 1.点P (x 0,y 0)和椭圆的位置关系:(1)P (x 0,y 0)在椭圆内⇔0a +y 20b <1.(2)P (x 0,y 0)在椭圆上⇔x 20a 2+y 20b 2=1.(3)P (x 0,y 2)在椭圆外⇔x 20a 2+y 20b2>1.2.对于x 2a 2+b 2b2=1(a >b >0)如图8­5­1.图8­5­1则:(1)S △PF 1F 2=b 2tan θ2.(2)|PF 1|=a +e x 0,|PF 2|=a -e x 0. (3)a -c ≤|PF 1|≤a +c . (4)过P (x 0,y 0)点的切线方程为x 0x a 2 +y 0yb2=1. [基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)平面内与两个定点F 1,F 2的距离之和等于常数的点的轨迹是椭圆.( ) (2)椭圆上一点P 与两焦点F 1,F 2构成△PF 1F 2的周长为2a +2c (其中a 为椭圆的长半轴长,c 为椭圆的半焦距).( )(3)椭圆的离心率e 越大,椭圆就越圆.( ) (4)椭圆既是轴对称图形,又是中心对称图形.( )(5)方程mx 2+ny 2=1(m >0,n >0,m ≠n )表示的曲线是椭圆.( )(6)x 2a 2+y 2b 2=1(a >b >0)与y 2a 2+x 2b2=1(a >b >0)的焦距相同.( ) [答案] (1)× (2)√ (3)× (4)√ (5)√ (6)√2.(2017·浙江高考)椭圆x 29+y 24=1的离心率是( )A .133B .53C .23D .59B [∵椭圆方程为x 29+y 24=1,∴a =3,c =a 2-b 2=9-4= 5. ∴e =c a =53. 故选B .]3.(教材改编)已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是( )A .x 23+y 24=1B .x 24+y 23=1C .x 24+y 22=1D .x 24+y 23=1 D [椭圆的焦点在x 轴上,c =1.又离心率为c a =12,故a =2,b 2=a 2-c 2=4-1=3,故椭圆的方程为x 24+y 23=1.]4.椭圆C :x 225+y 216=1的左右焦点分别为F 1,F 2,过F 2的直线交椭圆C 于A 、B 两点,则△F 1AB的周长为( ) A .12 B .16 C .20D .24C [△F 1AB 的周长为 |F 1A |+|F 1B |+|AB |=|F 1A |+|F 2A |+|F 1B |+|F 2B | =2a +2a =4a .在椭圆x 225+y 216=1中,a 2=25,a =5,所以△F 1AB 的周长为4a =20,故选C .]5.若方程x 25-k +y 2k -3=1表示椭圆,则k 的取值范围是________.(3,4)∪(4,5) [由已知得⎩⎪⎨⎪⎧5-k >0,k -3>0,5-k ≠k -3,解得3<k <5且k ≠4.](对应学生用书第139页)(1)已知两圆C 1:(x -4)2+y 2=169,C 2:(x +4)2+y 2=9,动圆在圆C 1内部且和圆C 1相内切,和圆C 2相外切,则动圆圆心M 的轨迹方程为( )A .x 264-y 248=1B .x 248+y 264=1C .x 248-y 264=1 D .x 264+y 248=1 (2)F 1,F 2是椭圆x 29+y 27=1的两个焦点,A 为椭圆上一点,且∠AF 1F 2=45°,则△AF 1F 2的面积为( ) A .7 B .74 C .72D .752(1)D (2)C [(1)设圆M 的半径为r ,则|MC 1|+|MC 2|=(13-r )+(3+r )=16,又|C 1C 2|=8<16,∴动圆圆心M 的轨迹是以C 1、C 2为焦点的椭圆,且2a =16,2c =8,则a =8,c =4,∴b 2=48,故所求的轨迹方程为x 264+y 248=1.(2)由题意得a =3,b =7,c =2, ∴|F 1F 2|=22,|AF 1|+|AF 2|=6.∵|AF 2|2=|AF 1|2+|F 1F 2|2-2|AF 1|·|F 1F 2|cos 45°=|AF 1|2-4|AF 1|+8, ∴(6-|AF 1|)2=|AF 1|2-4|AF 1|+8.∴|AF 1|=72,∴S △AF 1F 2=12×72×22×22=72.][跟踪训练] (1)设F 1,F 2分别是椭圆E :a 2+b2=1(a >b >0)的左,右焦点,过点F 1的直线交椭圆E 于A ,B 两点,|AF 1|=3|F 1B |,且|AB |=4,△ABF 2的周长为16,则|AF 2|=________.【导学号:79140284】(2)已知F 1、F 2是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的两个焦点,P 为椭圆C 上的一点,且PF 1⊥PF 2,若△PF 1F 2的面积为9,则b =__________.(1)5 (2)3 [(1)由|AF 1|=3|F 1B |,|AB |=4,得|AF 1|=3, ∵△ABF 2的周长为16,∴4a =16,∴a =4. 则|AF 1|+|AF 2|=2a =8, ∴|AF 2|=8-|AF 1|=8-3=5. (2)设|PF 1|=r 1,|PF 2|=r 2,则⎩⎪⎨⎪⎧r 1+r 2=2a ,r 21+r 22=4c 2,∴2r 1r 2=(r 1+r 2)2-(r 21+r 22)=4a 2-4c 2=4b 2, ∴S △PF 1F 2=12r 1r 2=b 2=9, ∴b =3.](1)若直线x -2y +2=0经过椭圆的一个焦点和一个顶点,则该椭圆的标准方程为( ) A .x 25+y 2=1B .x 24+y 25=1C .x 25+y 2=1或x 24+y 25=1D .以上答案都不对(2)已知椭圆的中心在原点,离心率e =12,且它的一个焦点与抛物线y 2=-4x 的焦点重合,则此椭圆方程为( ) A .x 24+y 23=1B .x 28+y 26=1C .x 22+y 2=1D .x 24+y 2=1(1)C (2)A [(1)直线与坐标轴的交点分别为(0,1),(-2,0),由题意知当焦点在x 轴上时,c =2,b =1,所以a 2=5,所求椭圆的标准方程为x 25+y 2=1.当焦点在y 轴上时,b =2,c =1,所以a 2=5,所求椭圆的标准方程为y 25+x 24=1.(2)依题意,可设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),由已知可得抛物线的焦点为(-1,0),所以c =1,又离心率e =c a =12,解得a =2,b 2=a 2-c 2=3,所以椭圆方程为x 24+y 23=1.][规律方法] 求椭圆的标准方程的方法有定义法与待定系数法,但基本方法是待定系数法,具体过程是先定位,再定量,即首先确定焦点所在的位置,然后再根据条件建立关于a ,b 的方程组,若焦点位置不确定,可把椭圆方程设为Ax 2+By 2=A >0,B >0,A ≠B 的形式.[跟踪训练] (1)(2017·湖南长沙一模)椭圆的焦点在x 轴上,中心在原点,其上、下两个顶点和两个焦点恰为边长是2的正方形的顶点,则椭圆的标准方程为( ) A .x 22+y 22=1B .x 22+y 2=1C .x 24+y 22=1 D .y 24+x 22=1(2)已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直于x 轴的直线交C 于A ,B 两点,且|AB |=3,则C 的方程为__________.【导学号:79140285】(1)C (2)x 24+y 23=1 [(1)由条件可知b =c =2,a =2,∴椭圆的标准方程为x 24+y 22=1.故选C .(2)依题意,设椭圆C :x 2a 2+y 2b2=1(a >b >0).过点F 2(1,0)且垂直于x 轴的直线被曲线C 截得弦长|AB |=3, ∴点A ⎝ ⎛⎭⎪⎫1,32必在椭圆上,∴1a 2+94b 2=1. ① 又由c =1,得1+b 2=a 2. ②由①②联立,得b 2=3,a 2=4. 故所求椭圆C 的方程为x 24+y 23=1.]◎角度1 求离心率的值或范围(2017·全国卷Ⅲ)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx -ay +2ab =0相切,则C 的离心率为( ) A .63 B .33C .23D .13A [由题意知以A 1A 2为直径的圆的圆心为(0,0),半径为a . 又直线bx -ay +2ab =0与圆相切, ∴圆心到直线的距离d =2aba 2+b 2=a ,解得a =3b ,∴b a=13,∴e =c a =a 2-b2a=1-⎝ ⎛⎭⎪⎫b a 2=1-⎝ ⎛⎭⎪⎫132=63. 故选A .]◎角度2 根据椭圆的性质求参数已知椭圆x 2m -2+y 210-m=1的长轴在x 轴上,焦距为4,则m 等于( )A .8B .7C .6D .5A [∵椭圆x 2m -2+y 210-m=1的长轴在x 轴上,∴⎩⎪⎨⎪⎧m -2>0,10-m >0,m -2>10-m ,解得6<m <10.∵焦距为4,∴c 2=m -2-10+m =4,解得m =8.] 求椭圆离心率的方法,c 的值,利用离心率公式直接求解,b ,c 的齐次方程或不等式,借助于方程或不等式求解利用椭圆几何性质求值或范围的思路求解与椭圆几何性质有关的参数问题时,要结合图形进行分析,当涉及顶点、焦点、长轴、短轴等椭圆的基本量时,要理清它们之间的关系[跟踪训练] (1)已知椭圆9+4-k =1的离心率为5,则k 的值为( )A .-21B .21C .-1925或21D .1925或-21 (2)已知F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,若椭圆C 上存在点P ,使得线段PF 1的中垂线恰好经过焦点F 2,则椭圆C 离心率的取值范围是( )A .⎣⎢⎡⎭⎪⎫23,1B .⎣⎢⎡⎦⎥⎤13,22 C .⎣⎢⎡⎭⎪⎫13,1 D .⎝ ⎛⎦⎥⎤0,13 (1)D (2)C [(1)当9>4-k >0,即-5<k <4时,a =3,c 2=9-(4-k )=5+k ,∴5+k 3=45,解得k =1925. 当9<4-k ,即k <-5时,a =4-k ,c 2=-k -5,∴-k -54-k =45,解得k =-21, 所以k 的值为1925或-21.(2)如图所示,∵线段PF 1的中垂线经过F 2, ∴|PF 2|=|F 1F 2|=2c , 即椭圆上存在一点P , 使得|PF 2|=2c .∴a -c ≤2c ≤a +c .∴e =c a ∈⎣⎢⎡⎭⎪⎫13,1.](2018·东北三省四市模拟(一))已知椭圆E 的一个顶点为A (0,-1),焦点在x 轴上,若椭圆右焦点到椭圆E 的中心的距离是 2.(1)求椭圆E 的方程;(2)设直线l :y =kx +1(k ≠0)与该椭圆交于不同的两点B ,C ,若坐标原点O 到直线l 的距离为32,求△BOC 的面积. [解] (1)由题意b =1,c =2, ∴a 2=b 2+c 2=3,又∵椭圆E 的焦点在x 轴上, ∴椭圆E 的方程为x 23+y 2=1.(2)设B (x 1,y 1),C (x 2,y 2),将直线方程与椭圆联立⎩⎪⎨⎪⎧y =kx +1,x 2+3y 2=3,整理得(3k 2+1)x 2+6kx =0, 由原点O 到直线l 的距离为11+k2=32,得k 2=13, 又|BC |=(x 1-x 2)2+(y 1-y 2)2=1+k 236k23k 2+1=2, ∴S △BOC =12×|BC |×32=32,∴△BOC 的面积为32. 解决直线与椭圆的位置关系的相关问题,消元、化简,然后应用根与系数的关系建立方程,解决相关问题“点差法”解决,往往会更简单设直线与椭圆的交点坐标为x 1,1,x 2,2,则|AB |=2] ⎛k 为直线斜率利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,B ⎝⎛⎭⎪⎫66,33两点,O 为坐标原点. (1)求曲线C 的方程;(2)设M (x 1,y 1),N (x 2,y 2)是曲线C 上两点,向量p =(mx 1,ny 1),q =(mx 2,ny 2),且p ·q =0,若直线MN 过点⎝ ⎛⎭⎪⎫0,32,求直线MN 的斜率. [解] (1)由题可知:⎩⎪⎨⎪⎧18m +12n =1,16m +13n =1,解得m =4,n =1.∴曲线C 的方程为y 2+4x 2=1.(2)设直线MN 的方程为y =kx +32, 代入椭圆方程y 2+4x 2=1,得(k 2+4)x 2+3kx -14=0,∴x 1+x 2=-3kk 2+4,x 1x 2=-14k 2+4,∵p ·q =(2x 1,y 1)·(2x 2,y 2)=4x 1x 2+y 1y 2=0, ∴-1k 2+4+-14k 2k 2+4+32k ·(-3k )k 2+4+34=0, 即k 2-2=0,k =± 2. 故直线MN 的斜率为± 2.。

全国近年高考数学一轮复习第8章平面解析几何第5讲椭圆增分练(2021年整理)

全国近年高考数学一轮复习第8章平面解析几何第5讲椭圆增分练(2021年整理)

(全国版)2019版高考数学一轮复习第8章平面解析几何第5讲椭圆增分练编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((全国版)2019版高考数学一轮复习第8章平面解析几何第5讲椭圆增分练)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(全国版)2019版高考数学一轮复习第8章平面解析几何第5讲椭圆增分练的全部内容。

第5讲椭圆板块四模拟演练·提能增分[A级基础达标]1.[2016·湖北八校联考]设F1,F2为椭圆错误!+错误!=1的两个焦点,点P在椭圆上,若线段PF1的中点在y轴上,则错误!的值为()A.错误!B.错误! C。

错误! D。

错误!答案B解析由题意知a=3,b=错误!,c=2.设线段PF1的中点为M,则有OM∥PF2,∵OM⊥F1F2,∴PF2⊥F1F2,∴|PF2|=错误!=错误!。

又∵|PF1|+|PF2|=2a=6,∴|PF1|=2a-|PF2|=错误!,∴错误!=错误!×错误!=错误!。

故选B。

2.已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于错误!,则C的方程是( )A.错误!+错误!=1 B。

错误!+错误!=1C。

错误!+错误!=1 D。

错误!+错误!=1答案D解析依题意,所求椭圆的焦点位于x轴上,且c=1,e=ca=错误!⇒a=2,b2=a2-c2=3,因此椭圆C的方程是错误!+错误!=1。

3.“-3<m〈5”是“方程错误!+错误!=1表示椭圆”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件答案B解析要使方程错误!+错误!=1表示椭圆,只须满足错误!解得-3〈m<5且m≠1,因此,“-3〈m<5"是“方程错误!+错误!=1表示椭圆"的必要不充分条件.故选B。

2019-2020版高考数学一轮总复习第8章平面解析几何8.5椭圆课件文20

2019-2020版高考数学一轮总复习第8章平面解析几何8.5椭圆课件文20

①a1+c1=a2+c2;②a1-c1=a2-c2;③
c1 a1
<
c2 a2
;④
c1a2>a1c2.
其中正确式子的序号是(
)
A.①③ B.①④
C.②③ D.②④
解析 观察图形可知a1+c1>a2+c2,即①式不正确;a1 -c1=a2-c2=|PF|,即②式正确;由a1-c1=a2-c2>0, c1>c2>0,知a1- c1 c1<a2- c2 c2,即ac11<ac22,从而c1a2>a1c2,ca11>ac22, 即④式正确,③式不正确.故选D.
பைடு நூலகம்c a

3 2
,得c=3
3 ,故b2=
a2-c2=36-27=9,故所求椭圆方程为3x26+y92=1.
触类旁通 (1)一般地,解决与到焦点的距离有关问题时,首先应 考虑用定义来解决. (2)求椭圆的标准方程有以下五种方法: ①定义法:根据椭圆的定义,确定a2,b2的值,结合 焦点位置可写出椭圆方程.
焦点F1的直线与椭圆交于A,B两点,则A与B和椭圆的另一
个焦点F2构成的△ABF2的周长为(
)
A.2 B.4
C.8 D.2 2
[解析] 因为椭圆方程为4x2+y2=1,所以a=1.根据椭
圆的定义,知△ABF2的周长为|AB|+|AF2|+|BF2|=|AF1|+ |BF1|+|AF2|+|BF2|=(|AF1|+|AF2|)+(|BF1|+|BF2|)=4a=4.
⑤相关点法(代入法):若动点与某个参动点有关,常 用动点坐标表示参动点坐标,然后代入参动点满足关系即 可得方程.
【变式训练1】 (1)[2017·湖南岳阳模拟]在平面直角坐

2019版高考数学(文)第8章 平面解析几何 第5讲椭圆 Word版含答案

2019版高考数学(文)第8章 平面解析几何 第5讲椭圆 Word版含答案

第讲椭圆
板块一知识梳理·自主学习
[必备知识]
考点椭圆的概念
在平面内到两定点、的距离的和等于常数(大于)的点的轨迹(或集合)叫做椭圆.这两定点叫做椭圆的焦点,两焦点间的距离叫做焦距.
集合={+=},=,其中>,>,且,为常数:
()若>,则集合为椭圆;
()若=,则集合为线段;
()若<,则集合为空集.
考点椭圆的标准方程和几何性质
[必会结论]
椭圆的常用性质
()设椭圆+=(>>)上任意一点(,),则当=时,有最小值,点在短轴端点处;当=±时,有最大值,点在长轴端点处.
()椭圆的一个焦点、中心和短轴的一个端点构成直角三角形,其中为斜边,=+.
()已知过焦点的弦,则△的周长为.
()过椭圆的焦点且垂直于长轴的弦之长为.
()椭圆离心率=.
[考点自测]
.判断下列结论的正误.(正确的打“√”,错误的打“×”)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8.5 椭圆[重点保分 两级优选练]A 级一、选择题1.(2018·江西五市八校模拟)已知正数m 是2和8的等比中项,则圆锥曲线x 2+y 2m=1的焦点坐标为( )A .(±3,0)B .(0,±3)C .(±3,0)或(±5,0)D .(0,±3)或(±5,0)答案 B解析 因为正数m 是2和8的等比中项,所以m 2=16,则m =4,所以圆锥曲线x 2+y 2m=1即为椭圆x 2+y 24=1,易知其焦点坐标为(0,±3),故选B.2.(2017·湖北荆门一模)已知θ是△ABC 的一个内角,且sin θ+cos θ=34,则方程x 2sin θ-y 2cos θ=1表示( )A .焦点在x 轴上的双曲线B .焦点在y 轴上的双曲线C .焦点在x 轴上的椭圆D .焦点在y 轴上的椭圆 答案 D解析 因为(sin θ+cos θ)2=1+2sin θcos θ=916,所以sin θcos θ=-732<0,结合θ∈(0,π),知sin θ>0,cos θ<0,又sin θ+cos θ=34>0,所以sin θ>-cos θ>0,故1-cos θ>1sin θ>0,因为x 2sin θ-y 2cos θ=1可化为y 2-1cos θ+x 21sin θ=1,所以方程x 2sin θ-y 2cos θ=1表示焦点在y 轴上的椭圆.故选D.3.(2018·湖北八校联考)设F 1,F 2为椭圆x 29+y 25=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y 轴上,则|PF 2||PF 1|的值为( )A.514B.513C.49D.59答案 B解析 由题意知a =3,b =5,c =2.设线段PF 1的中点为M ,则有OM ∥PF 2,∵OM ⊥F 1F 2,∴PF 2⊥F 1F 2,∴|PF 2|=b 2a =53.又∵|PF 1|+|PF 2|=2a =6,∴|PF 1|=2a -|PF 2|=133,∴|PF 2||PF 1|=53×313=513,故选B.4.(2017·全国卷Ⅲ)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx -ay +2ab =0相切,则C 的离心率为( )A.63B.33C.23D.13答案 A解析 由题意知以A 1A 2为直径的圆的圆心为(0,0),半径为a . 又直线bx -ay +2ab =0与圆相切, ∴圆心到直线的距离d =2aba 2+b2=a ,解得a =3b ,∴b a=13,∴e =c a =a 2-b 2a=1-⎝ ⎛⎭⎪⎫b a2=1-⎝⎛⎭⎪⎫132=63.故选A. 5.已知椭圆x 2a 2+y 2b 2=1(a >b >0)与双曲线x 2m 2-y 2n2=1(m >0,n >0)有相同的焦点(-c,0)和(c,0),若c 是a ,m 的等比中项,n 2是2m 2与c 2的等差中项,则椭圆的离心率为( )A.32B.22C.12D.14答案 C解析 因为椭圆x 2a 2+y 2b 2=1(a >b >0)与双曲线x 2m 2-y 2n2=1(m >0,n >0)有相同的焦点(-c,0)和(c,0),所以c 2=a 2-b 2=m 2+n 2.因为c 是a ,m 的等比中项,n 2是2m 2与c 2的等差中项,所以c 2=am,2n 2=2m 2+c 2,所以m 2=c 4a 2,n 2=c 4a 2+c 22,所以2c 4a 2+c 22=c 2,化为c 2a 2=14,所以e =c a =12.故选C.6.(2017·荔湾区期末)某宇宙飞船运行的轨道是以地球中心为一焦点的椭圆,测得近地点距地面m 千米,远地点距地面n 千米,地球半径为r 千米,则该飞船运行轨道的短轴长为( )A .2m +r n +r 千米 B.m +r n +r 千米C .2mn 千米D .mn 千米答案 A解析 ∵某宇宙飞船的运行轨道是以地球的中心F 2为一个焦点的椭圆, 设长半轴长为a ,短半轴长为b ,半焦距为c , 则近地点A 距地心为a -c ,远地点B 距地心为a +c . ∴a -c =m +r ,a +c =n +r , ∴a =m +n2+r ,c =n -m2.又∵b 2=a 2-c 2=⎝ ⎛⎭⎪⎫m +n 2+r 2-⎝ ⎛⎭⎪⎫n -m 22=mn +(m +n )r +r 2=(m +r )(n +r ).∴b =m +rn +r , ∴短轴长为2b =2m +rn +r 千米,故选A.7.(2017·九江期末)如图,F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的两个焦点,A 和B 是以O 为圆心,以|OF 1|为半径的圆与该椭圆左半部分的两个交点,且△F 2AB 是等边三角形,则该椭圆的离心率为( )A.32B.12C.3-1D.22答案 C 解析 连接AF 1,∵F 1F 2是圆O 的直径,∴∠F 1AF 2=90°, 即F 1A ⊥AF 2,又∵△F 2AB 是等边三角形,F 1F 2⊥AB , ∴∠AF 2F 1=12∠AF 2B =30°,因此,在Rt △F 1AF 2中,|F 1F 2|=2c ,|F 1A |=12|F 1F 2|=c ,|F 2A |=32|F 1F 2|=3c .根据椭圆的定义,得2a =|F 1A |+|F 2A |=(1+3)c ,解得a =1+32c ,∴椭圆的离心率为e =c a=3-1.故选C.8.(2018·郑州质检)椭圆x 25+y 24=1的左焦点为F ,直线x =a 与椭圆相交于点M ,N ,当△FMN 的周长最大时,△FMN 的面积是( )A.55B.655C.855D.455答案 C解析 设椭圆的右焦点为E ,由椭圆的定义知△FMN 的周长为L =|MN |+|MF |+|NF |=|MN |+(25-|ME |)+(25-|NE |).因为|ME |+|NE |≥|MN |,所以|MN |-|ME |-|NE |≤0,当直线MN 过点E 时取等号,所以L =45+|MN |-|ME |-|NE |≤45,即直线x =a 过椭圆的右焦点E 时,△FMN 的周长最大,此时S △FMN =12×|MN |×|EF |=12×2×45×2=855,故选C.9.如图所示,内外两个椭圆的离心率相同,从外层椭圆顶点向内层椭圆引切线AC ,BD ,设内层椭圆方程为x 2a 2+y 2b 2=1(a >b >0),若直线AC 与BD 的斜率之积为-14,则椭圆的离心率为( )A.12 B.22C.32D.34答案 C解析 设外层椭圆方程为x 2ma 2+y 2mb2=1(a >b >0,m >1),则切线AC 的方程为y =k 1(x-ma ),切线BD 的方程为y =k 2x +mb ,则由⎩⎪⎨⎪⎧y =k 1x -ma ,bx 2+ay2=a 2b 2,消去y ,得(b 2+a 2k 21)x2-2ma 3k 21x +m 2a 4k 21-a 2b 2=0.因为Δ=(2ma 3k 21)2-4(b 2+a 2k 21)(m 2a 4k 21-a 2b 2)=0,整理,得k 21=b 2a 2·1m 2-1.由⎩⎪⎨⎪⎧y =k 2x +mb ,bx 2+ay 2=a 2b 2,消去y ,得(b 2+a 2k 22)x 2+2a 2mbk 2x +a 2m 2b 2-a 2b 2=0,因为Δ2=(2a 2mbk 2)2-4×(b 2+a 2k 22)(a 2m 2b 2-a 2b 2)=0,整理,得k 22=b 2a2·(m 2-1).所以k 21·k 22=b 4a 4.因为k 1k 2=-14,所以b 2a 2=14,e 2=c 2a 2=a 2-b 2a 2=34,所以e =32,故选C.10.(2018·永康市模拟)设椭圆C :x 2a 2+y 2b2=1(a >b >0)和圆x 2+y 2=b 2,若椭圆C 上存在点P ,使得过点P 引圆O 的两条切线,切点分别为A ,B ,满足∠APB =60°,则椭圆的离心率e 的取值范围是( )A .0<e ≤32B.12≤e <1 C.32<e <1 D.32≤e <1 答案 D解析 由椭圆C :x 2a 2+y 2b2=1(a >b >0)焦点在x 轴上,连接OA ,OB ,OP ,依题意,O ,P ,A ,B 四点共圆, ∵∠APB =60°,∠APO =∠BPO =30°, 在直角三角形OAP 中,∠AOP =60°,∴cos ∠AOP =b |OP |=12,∴|OP |=b12=2b ,∴b <|OP |≤a ,∴2b ≤a ,∴4b 2≤a 2, 由a 2=b 2+c 2,即4(a 2-c 2)≤a2,∴3a 2≤4c 2,即c 2a 2≥34,∴e ≥32,又0<e <1,∴32≤e <1, ∴椭圆C 的离心率的取值范围是32≤e <1.故选D. 二、填空题11.(2017·湖南东部六校联考)设P ,Q 分别是圆x 2+(y -1)2=3和椭圆x 24+y 2=1上的点,则P ,Q 两点间的最大距离是________.答案733解析 依据圆的性质可知,P ,Q 两点间的最大距离可以转化为圆心到椭圆上点的距离的最大值加上圆的半径3,设Q (x ,y ),则圆心(0,1)到椭圆上点的距离为d =x 2+y -2=-3y 2-2y +5=-3⎝ ⎛⎭⎪⎫y +132+163,∵-1≤y ≤1,∴当y =-13时,d 取最大值433,所以P ,Q 两点间的最大距离为d max +3=733. 12.(2018·广州二测)已知中心在坐标原点的椭圆C 的右焦点为F (1,0),点F 关于直线y =12x 的对称点在椭圆C 上,则椭圆C 的方程为________.答案 5x 29+5y 24=1解析 设F (1,0)关于直线y =12x 的对称点为(x ,y ),则⎩⎪⎨⎪⎧0+y 2=12×1+x2,y -0x -1×12=-1,解得⎩⎪⎨⎪⎧x =35,y =45,由于椭圆的两个焦点为(-1,0),(1,0),所以2a =⎝ ⎛⎭⎪⎫35-12+⎝ ⎛⎭⎪⎫452+⎝ ⎛⎭⎪⎫35+12+⎝ ⎛⎭⎪⎫452=655,a =355,又c =1,所以b 2=a 2-c 2=95-1=45,所以椭圆C 的方程为x 295+y 245=1,即5x 29+5y24=1. 13.(2018·江西五市联考)已知椭圆x 2a 2+y 2b2=1(a >b >0),A ,B 为椭圆上的两点,线段AB的垂直平分线交x 轴于点M ⎝ ⎛⎭⎪⎫a5,0,则椭圆的离心率e 的取值范围是________. 答案 ⎝⎛⎭⎪⎫55,1解析 设A (x 1,y 1),B (x 2,y 2),x 1≠x 2,则⎩⎪⎨⎪⎧ ⎝ ⎛⎭⎪⎫x 1-a 52+y 21=⎝ ⎛⎭⎪⎫x 2-a 52+y 22,x 21a 2+y21b 2=1,x 22a 2+y 22b 2=1,即⎩⎪⎨⎪⎧2a 5x 1-x 2=x 21-x 22+y 21-y 22,y 21=b 2-b2a 2x 21,y 22=b 2-b 2a2x 22,所以2a 5(x 1-x 2)=a 2-b 2a2(x 21-x 22),所以2a3a 2-b 2=x 1+x 2.又-a ≤x 1≤a ,-a ≤x 2≤a ,x 1≠x 2,所以-2a <x 1+x 2<2a ,则2a 3a 2-b 2<2a ,即b 2a 2<45,所以e 2>15.又0<e <1,所以55<e <1.14.(2016·江苏高考)如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC=90°,则该椭圆的离心率是________.答案63解析 由已知条件易得B ⎝ ⎛⎭⎪⎫-32a ,b 2,C ⎝ ⎛⎭⎪⎫32a ,b 2,F (c,0), ∴BF →=⎝ ⎛⎭⎪⎫c +32a ,-b 2,CF →=⎝ ⎛⎭⎪⎫c -32a ,-b 2,由∠BFC =90°,可得BF →·CF →=0, 所以⎝ ⎛⎭⎪⎫c -32a ⎝ ⎛⎭⎪⎫c +32a +⎝ ⎛⎭⎪⎫-b 22=0,c 2-34a 2+14b 2=0,即4c 2-3a 2+(a 2-c 2)=0,亦即3c 2=2a 2,所以c 2a 2=23,则e =c a =63.B 级三、解答题15.(2018·安徽合肥三校联考)已知椭圆的中心在原点,焦点在x 轴上,离心率为22,且椭圆经过圆C :x 2+y 2-4x +22y =0的圆心C .(1)求椭圆的方程;(2)设直线l 过椭圆的焦点且与圆C 相切,求直线l 的方程. 解 (1)圆C 方程化为(x -2)2+(y +2)2=6, 圆心C (2,-2),半径r = 6.设椭圆的方程为x 2a 2+y 2b2=1(a >b >0),则⎩⎪⎨⎪⎧4a 2+2b2=1,1-⎝ ⎛⎭⎪⎫b a 2=⎝ ⎛⎭⎪⎫222,所以⎩⎪⎨⎪⎧a 2=8,b 2=4.所以所求的椭圆方程是x 28+y 24=1.(2)由(1)得椭圆的左、右焦点分别是F 1(-2,0),F 2 (2,0), |F 2C |=-2++22=2<r = 6.F 2在圆C 内,故过F 2没有圆C 的切线,所以直线l 过焦点F 1.设l 的方程为y =k (x +2),即kx -y +2k =0, 点C (2,-2)到直线l 的距离为d =|2k +2+2k |1+k 2, 由d =6,得|2k +2+2k |1+k 2= 6. 化简,得5k 2+42k -2=0,解得k =25或k =- 2. 故l 的方程为2x -5y +22=0或2x +y +22=0.16.(2018·陕西咸阳模拟)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b2=1(a >b >0)过点P (2,1),且离心率e =32. (1)求椭圆C 的方程;(2)直线l 的斜率为12,直线l 与椭圆C 交于A ,B 两点.求△PAB 面积的最大值.解 (1)∵e 2=c 2a 2=a 2-b 2a 2=34,∴a 2=4b 2.又椭圆C :x 2a 2+y 2b2=1(a >b >0)过点P (2,1),∴4a 2+1b2=1.∴a 2=8,b 2=2.故所求椭圆方程为x 28+y 22=1.(2)设l 的方程为y =12x +m ,点A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =12x +m ,x 28+y22=1,整理得x 2+2mx +2m 2-4=0.∵Δ=4m 2-8m 2+16>0,解得|m |<2. ∴x 1+x 2=-2m ,x 1x 2=2m 2-4. 则|AB |=1+14× x 1+x 22-4x 1x 2= -m2.点P 到直线l 的距离d = |m |1+14=2|m |5. ∴S △PAB =12d |AB |=12×2|m |5×-m2=m2-m2≤m 2+4-m 22=2.而且仅当m 2=2,即m =±2时取得最大值. ∴△PAB 面积的最大值为2.17.(2018·兰州模拟)已知椭圆C 的中心在坐标原点,焦点在x 轴上,左顶点为A ,左焦点为F 1(-2,0),点B (2,2)在椭圆C 上,直线y =kx (k ≠0)与椭圆C 交于P ,Q 两点,直线AP ,AQ 分别与y 轴交于点M ,N .(1)求椭圆C 的方程;(2)以MN 为直径的圆是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.解 (1)设椭圆C 的方程为x 2a 2+y 2b2=1(a >b >0),∵椭圆的左焦点为F 1(-2,0),∴a 2-b 2=4. ∵点B (2,2)在椭圆C 上,∴4a 2+2b2=1,解得a 2=8,b 2=4, ∴椭圆C 的方程为x 28+y 24=1.(2)依题意点A 的坐标为(-22,0),设P (x 0,y 0)(不妨设x 0>0),则Q (-x 0,-y 0),由⎩⎪⎨⎪⎧y =kx ,x 28+y24=1,得x 0=221+2k2,y 0=22k 1+2k2,∴直线AP 的方程为y =k1+1+2k 2(x +22), 直线AQ 的方程为y =k1-1+2k 2(x +22), ∴M ⎝ ⎛⎭⎪⎫0,22k 1+1+2k 2,N ⎝ ⎛⎭⎪⎫0,22k 1-1+2k 2,∴|MN |=⎪⎪⎪⎪⎪⎪22k1+1+2k 2-22k 1-1+2k 2=2+2k 2|k |.设MN 的中点为E ,则点E 的坐标为⎝⎛⎭⎪⎫0,-2k ,则以MN 为直径的圆的方程为x 2+⎝ ⎛⎭⎪⎫y +2k 2=+2k2k2,即x 2+y 2+22ky =4,令y =0得x =2或x =-2,即以MN 为直径的圆经过两定点P 1(-2,0),P 2(2,0).18.(2018·湖南十校联考)如图,设点A ,B 的坐标分别为(-3,0),(3,0),直线AP ,BP 相交于点P ,且它们的斜率之积为-23.(1)求点P 的轨迹方程;(2)设点P 的轨迹为C ,点M ,N 是轨迹C 上不同于A ,B 的两点,且满足AP ∥OM ,BP ∥ON ,求证:△MON 的面积为定值.解 (1)设点P 的坐标为(x ,y ),由题意得,k AP ·k BP =y x +3·y x -3=-23(x ≠±3),化简得,点P 的轨迹方程为x 23+y 22=1(x ≠±3). (2)证明:由题意知,M ,N 是椭圆C 上不同于A ,B 的两点,且AP ∥OM ,BP ∥ON ,则直线教育配套资料K12教育配套资料K12 AP ,BP 的斜率必存在且不为0.因为AP ∥OM ,BP ∥ON ,所以k OM ·k ON =k AP ·k BP =-23. 设直线MN 的方程为x =my +t ,代入椭圆方程x 23+y 22=1,得(3+2m 2)y 2+4mty +2t 2-6=0,①设M ,N 的坐标分别为(x 1,y 1),(x 2,y 2),则y 1,y 2是方程①的两根,所以y 1+y 2=-4mt 3+2m 2,y 2y 2=2t 2-63+2m 2. 又k OM ·k ON =y 1y 2x 1x 2=y 1y 2m 2y 1y 2+mt y 1+y 2+t 2=2t 2-63t 2-6m 2, 所以2t 2-63t 2-6m 2=-23,即2t 2=2m 2+3. 又S △MON =12|t ||y 1-y 2| =12·|t |-24t 2+48m 2+723+2m2, 所以S △MON =26t 24t 2=62, 即△MON 的面积为定值62.。

相关文档
最新文档