线性代数行列式部分练习题及答案
(完整word版)行列式练习题答案
1.设自然数从小到大为标准次序,则排列 1 3 … )12(-n 2 4 … )2(n 的逆序数为 ,排列 1 3 … )12(-n )2(n )22(-n …2的逆序数为 .2.在6阶行列式中,651456314223a a a a a a 这项的符号为 。
3.所有n 元排列中,奇排列的个数共 个. 二、选择题1.由定义计算行列式nn 0000010020001000-= ( )。
(A )!n (B )!)1(2)1(n n n -- (C )!)1(2)2)(1(n n n --- (D )!)1()1(n n n --2.在函数xx x x xx f 21123232101)(=中,3x 的系数是( )。
(A )1 (B)-1 (C)2 (D )33.四阶行列式的展开式中含有因子32a 的项,共有( )个. (A)4; (B)2; (C )6; (D)8。
三、请按下列不同要求准确写出n 阶行列式)det(ij a D =定义式:1. 各项以行标为标准顺序排列;2. 各项以列标为标准顺序排列;3. 各项行列标均以任意顺序排列.四、若n 阶行列式中,等于零的元素个数大于n n -2,则此行列式的值等于多少?说明理由.1.若D=._____324324324,13332313123222121131211111333231232221131211=---==a a a a a a a a a a a a D a a a a a a a a a 则 2.方程229132513232213211x x --=0的根为___________ .二、计算题1.8171160451530169144312----- 2.dcb a10110011001---3.abbb a b b b a D n=(完整word 版)行列式练习题答案4。
111113213211211211211n n n n n a a a a x a a a a x a a a a x a a a a x D ---+=5.计算n 阶行列式)2(212121222111≥+++++++++=n nx x x n x x x n x x x D n n n n 。
线性代数第1章行列式试卷及答案
第一章 行列式一、单项选择题1.行列式D 非零的充分条件是( D )(A) D 的所有元素非零 (B) D 至少有n 个元素非零 (C) D 的任何两行元素不成比例(D)以D 为系数矩阵的非齐次线性方程组有唯一解 2.二阶行列式1221--k k ≠0的充分必要条件是( C )A .k ≠-1B .k ≠3C .k ≠-1且k ≠3D .k ≠-1或≠3 3.已知2阶行列式2211b a b a =m ,2211c b c b =n ,则222111c a b c a b ++=( B )+n (m+n )4.设行列式==1111034222,1111304z y x zy x 则行列式( A ) A.32D.38 5.下列行列式等于零的是(D )A .100123123- B. 031010300- C . 100003010- D . 261422613-6.行列式111101111011110------第二行第一列元素的代数余子式21A =( B )A .-2B .-1C .1D .28.如果方程组⎪⎩⎪⎨⎧=+=-=-+0404033232321kx x x x x kx x 有非零解,则 k =( B )9.(考研题)行列式0000000a b abc d c d=( B ) A.()2ad bc -B.()2ad bc --C.2222a d b c -D.2222b c a d -二、填空题1.四阶行列式中带负号且含有因子12a 和21a 的项为 44332112a a a a 。
2. 行列式1112344916中(3,2)元素的代数余子式A 32=___-2___.3. 设7343690211118751----=D ,则5A 14+A24+A 44=_______。
解答:5A 14+A 24+A 44=1501343090211115751-=---4.已知行列式011103212=-a ,则数a =____3______.5.若a ,b 是实数,则当a =___且b =___时,有=---10100a b b a 0。
行列式测试题(有答案)
行列式测试题(有答案)第九讲行列式单元测试题点评一、填空题(每小题2分,满分20分)1.全体3阶排列一共有6 个,它们是123,132,213,231,312,321;2. 奇排列经过奇数次对换变为偶排列,奇排列经过偶数次对换变为奇排列;3. 行列式D和它的转置行列式D'有关系式D D'=;4. 交换一个行列式的两行(或两列),行列式的值改变符号;5. 如果一个行列式有两行(或两列)的对应元素成比例,则这个行列式等于零;6. 一个行列式中某一行(列)所有元素的公因子可以提到行列式符号的外边;7. 把行列式的某一行(列)的元素乘以同一数后加到另一行(列)的对应元素上,行列式的值不变;8. 行列式的某一行(列)的元素与另一行(列)的对应元素的代数余子式的乘积之和等于零;9.111212221122; 00nnnnnna a aa aa=10.当k=22±时,542k kk=。
二、判断题(每小题3分,满分24分)1.1)(,)(31221±==k i i i i k i i i n n ππ则若(∨)的符号的一般项则设n n j i j i j i nnn n n n a a a a a a a a a a a a D2211D ,.2212222111211=.)1()(21n j j j π-是(×)3. 若n(n>2)阶行列式D=0,则D 有两行(列)元素相同. (×) 4.若n 阶行列式D 恰有n 个元素非0,则D ≠0. (×) 5.对于线性方程组,只要方程个数等于未知数个数,就可以直接使用克莱姆法则求解。
(×)6.若行列式D 的相同元素多于2n n -个,则D=0. (×)7.1213132333212223122223313233112131a a a a a a a a a a a a a a a a a a = (×) 8.n 阶行列式主对角线上元素乘积项带正号,副对角线上元素乘积项带负号。
厦门理工学院线性代数第一章行列式参考答案
第一章 行 列 式系 专业 班 姓名 学号 第一节 二阶与三阶行列式 第三节 n 阶行列式的定义一.选择题一.选择题1.若行列式x52231521 = 0,则=x [ C ](A )2 (B )2- (C )3 (D )3-2.线性方程组ôóôòñ=+=+473322121x x x x ,则方程组的解),(21x x = [ C ] (A )(13,5) (B )(13-,5) (C )(13,5-) (D )(5,13--)3.方程093142112=x x根的个数是根的个数是 [ C ](A )0 (B )1 (C )2 (D )3 4.下列构成六阶行列式展开式的各项中,取“+”的有”的有 [ AD ] (A )665144322315a a a a a a (B )655344322611a a a a a a (C )346542165321a a a a a a (D )266544133251a a a a a a5.若55443211)541()1(a a a a a l k l k N -是五阶行列式ij a 的一项,则l k ,的值及该项的符号为[ B ] (A )3,2==l k ,符号为正;,符号为正; (B )3,2==l k ,符号为负;,符号为负; (C )2,3==l k ,符号为正;,符号为正; (D )2,3==l k ,符号为负,符号为负6.下列n (n >2)阶行列式的值必为零的是)阶行列式的值必为零的是 [ B ] (A) 行列式主对角线上的元素全为零行列式主对角线上的元素全为零 (B) 三角形行列式主对角线上有一个元素为零三角形行列式主对角线上有一个元素为零 (C) 行列式零的元素的个数多于n 个 (D) 行列式非零元素的个数小于n 个 二、填空题二、填空题 1.行列式1221--k k 0¹的充分必要条件是的充分必要条件是3,1k k ¹¹- 2.排列36715284的逆序数是的逆序数是 133.已知排列397461t s r 为奇排列,则r = 2,8,5 s = 5,2,8 ,t = 8,5,2 4.在六阶行列式ij a 中,623551461423a a a a a a 应取的符号为应取的符号为 负 。
线性代数习题集及其答案
第一章行列式一.填空题1.四阶行列式中带有负号且包含a 12和a 21的项为______.解.a 12a 21a 33a 44中行标的排列为1234,逆序为0;列标排列为2134,逆序为1.该项符号为“-”,所以答案为a 12a 21a 33a 44.2.排列i 1i 2…i n 可经______次对换后变为排列i n i n -1…i 2i 1.解.排列i 1i 2…i n 可经过1+2+…+(n -1)=n(n -1)/2次对换后变成排列i n i n -1…i 2i 1.3.在五阶行列式中3524415312)23145()15423()1(a a a a a ττ+-=______3524415312a a a a a .解.15423的逆序为5,23145的逆序为2,所以该项的符号为“-”.4.在函数xx x x x x f 21112)(---=中,x 3的系数是______.解.x 3的系数只要考察234222x x xxx x +-=--.所以x 3前的系数为2.5.设a ,b 为实数,则当a =______,且b =______时,010100=---a b b a .解.0)(11010022=+-=--=---b a ab ba ab b a .所以a =b =0.6.在n 阶行列式D =|a ij |中,当i <j 时a ij =0(i ,j =1,2,…,n ),则D =______.解.nnn n a a a a a a a a 221121222111000=7.设A 为3×3矩阵,|A |=-2,把A 按行分块为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=321A A A A ,其中A j (j =1,2,3)是A 的第j 行,则行列式=-121332A A A A ______.解.=-121332A A A A 6||33233211213=-=-=-A A A A A A A A .二.计算证明题1.设4322321143113151||-=A 计算A 41+A 42+A 43+A 44=?,其中A 4j (j=1,2,3,4)是|A |中元素a 4j 的代数余子式.解.A 41+A 42+A 43+A 441111321143113151-=210320206)1(000121013201206114--=-=+=62103202061=--2.计算元素为a ij =|i -j |的n 阶行列式.解.111111110021201110||--------=n n n n n A 每行减前一行由最后一行起,)1(2)1(1000201201121--=--------n n n n n n n列每列加第3.计算n 阶行列式nx x x nx x x nx x x D n n n n +++++++++=212121222111(n ≥2).解.当2>n n x x x n x x x n x x x D n n n n ++++++=222222111+n x x n x x n x x n n ++++++ 2121212211=n x x x x n x x x x n x x x x n n nn++++++ 33322221111+nx x x n x x x n x x x n n n++++++ 323232222111+nx x x n x x x n x x x n n n ++++++ 313131222111+nx x n x x n x x n n ++++++ 32132********=-n x x x n x x x n x x x n n n++++++ 313131222111=-n x x x n x x x n x x x n n n+++ 111222111-nx x nx x n x x n n+++ 3131312211=0当2=n 2122112121x x x x x x -=++++4.证明:奇数阶反对称矩阵的行列式为零.证明:||||)1(||||||,A A A A A A A nTT-=-=-==-=(n 为奇数).所以|A |=0.5.试证:如果n 次多项式nn x C x C C x f ++=10)(对n +1个不同的x 值都是零,则此多项式恒等于零.(提示:用范德蒙行列式证明)证明:假设多项式的n +1个不同的零点为x 0,x 1,…,x n .将它们代入多项式,得关于C i 方程组0010=++nn x C x C C 01110=++n n x C x C C …………10=++n n n n x C x C C 系数行列式为x 0,x 1,…,x n 的范德蒙行列式,不为0.所以010====n C C C 6.设).(',620321)(232x F xx x x x xx F 求=解.x x x x x x x F 620321)(232==x x x x x x 3103211222=x x x x x x 310201222=xxx x x 3102101222=32220021012xxx x x x =26)('x x F =第二章矩阵一.填空题1.设α1,α2,α3,α,β均为4维向量,A =[α1,α2,α3,α],B =[α1,α2,α3,β],且|A |=2,|B |=3,则|A -3B |=______.解.βαααα3222|3|321----=-B A =βαααα38321-⨯-=αααα321(8⨯-56|)|3|(|8)3321=--=-B A βααα2.若对任意n ×1矩阵X ,均有AX =0,则A =______.解.假设[]m A αα 1=,αi 是A 的列向量.对于j =1,2,…,m ,令⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=010 j X ,第j 个元素不为0.所以[]m αα 10010==⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡j α (j =1,2,…,m ).所以A =0.3.设A 为m 阶方阵,存在非零的m ×n 矩阵B ,使AB =0的充分必要条件是______.解.由AB =0,而且B 为非零矩阵,所以存在B 的某个列向量b j 为非零列向量,满足Ab j =0.即方程组AX =0有非零解.所以|A |=0;反之:若|A |=0,则AX =0有非零解.则存在非零矩阵B ,满足AB =0.所以,AB =0的充分必要条件是|A |=0.4.设A 为n 阶矩阵,存在两个不相等的n 阶矩阵B ,C ,使AB =AC 的充分条件是______.解.0||0)(=⇔-=-⇔=≠A C B C B A AC AB C B 非零且且5.[]42121b b b a a a n ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=______.解.[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n n n n n n n b a b a b a b a b a b a b a b a b a b b b a a a 212221212111421216.设矩阵12,23,3211-+-=⎥⎦⎤⎢⎣⎡-=B E A A B A 则=______.解.=2A ⎥⎦⎤⎢⎣⎡-3211⎥⎦⎤⎢⎣⎡-3211=⎥⎦⎤⎢⎣⎡--7841E A A B 232+-==⎥⎦⎤⎢⎣⎡--7841-⎥⎦⎤⎢⎣⎡-9633+⎥⎦⎤⎢⎣⎡2002=⎥⎦⎤⎢⎣⎡--021221||*1==-B B B ⎥⎦⎤⎢⎣⎡--2210=⎥⎥⎦⎤⎢⎢⎣⎡--112107.设n 阶矩阵A 满足12,032-=++A E A A 则=______.解.由,0322=++E A A 得E E A A 3)2(-=+.所以0|3||2|||≠-=+E E A A ,于是A 可逆.由,0322=++E A A 得)2(31,03211E A A AE A +-==++--8.设)9()3(,10002010121E A E A A -+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-则=______.解.=2A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100020101⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100020101=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100040201=-E A 92⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---800050208,=+E A 3⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡400050104→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100010001400050104 →⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡4100010001100050104 →⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-41000104101100050004 ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-41000510161041100010001 ,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=+-4100051161041)3(1E A )9()3(21E A E A -+-=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-4100051161041⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---800050208=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---2000101029.设.______])2[(______,)(_______,,3342122111*1*1=-==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=---A A A A 则解.|A|=-3-12+8+8+6-6=1→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----100010001334212211 →⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----104012001570230211 →⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------104031320015703210211 →⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-----137320313203131310032103401 →⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----137322524933100010001 →⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------372252493100010001 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=-3722524931A ====---||)(,||,||1*1**1A AA A A A A AA ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----3342122111131*4)2(||)2()2(|2|)2(---=--=--=-A A A A A A 414)4(])2[(111*===----A A A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----33421221110.设矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=3111522100110012A ,则A 的逆矩阵1-A =______.解.⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡-211111121,⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡-215331521使用分块求逆公式⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡-----1111100B CAB A BC A -⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡--11212153⎥⎦⎤⎢⎣⎡--2111=⎥⎦⎤⎢⎣⎡--1173019所以⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------=-21117533019002100111A 二.单项选择题1.设A 、B 为同阶可逆矩阵,则(A)AB =BA(B)存在可逆矩阵P ,使B AP P =-1(C)存在可逆矩阵C ,使BAC C T=(D)存在可逆矩阵P 和Q ,使BPAQ =解.因为A 可逆,存在可逆E AQ P Q P A A A A =使,.因为B 可逆,存在可逆E BQ P Q P B B B B =使,.所以A A AQ P =B B BQ P .于是BQ AQ P P B A A B =--11令A B P P P 1-=,1-=BA Q Q Q .(D)是答案.2.设A 、B 都是n 阶可逆矩阵,则⎥⎦⎤⎢⎣⎡--1002B A T等于(A)12||||)2(--B A n(B)1||||)2(--B A n(C)||||2B A T-(D)1||||2--B A 解.121||||)2(002---=⎥⎦⎤⎢⎣⎡-B A B A n T.(A)是答案.3.设A 、B 都是n 阶方阵,下面结论正确的是(A)若A 、B 均可逆,则A +B 可逆.(B)若A 、B 均可逆,则AB 可逆.(C)若A +B 可逆,则A -B 可逆.(D)若A +B 可逆,则A ,B 均可逆.解.若A 、B 均可逆,则111)(---=A B AB .(B)是答案.4.设n 维向量)21,0,,0,21( =α,矩阵ααTE A -=,ααT E B 2+=其中E 为n 阶单位矩阵,则AB =(A)0(B)-E(C)E(D)ααTE +解.AB =)(ααTE -)2(ααT E +=ααT E -+2ααT -2ααT ααT =E .)21(=ααT (C)是答案.5.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=333231232221131211a a a a a a a a a A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=233322322131131211232221a a a a a a a a a a a a B ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1000010101P ,设有P 2P 1A =B ,则P 2=(A)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101010001(B)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-101010001(C)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100010101(D)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-100010101解.P 1A 表示互换A 的第一、二行.B 表示A 先互换第一、二行,然后将互换后的矩阵的第一行乘以(-1)加到第三行.所以P 2=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-101010001.(B)是答案.6.设A 为n 阶可逆矩阵,则(-A )*等于(A)-A *(B)A *(C)(-1)n A *(D)(-1)n -1A *解.(-A )*=*111)1()1(1||)1()(||A A A A A n n ----=--=--.(D)是答案.7.设n 阶矩阵A 非奇异(n ≥2),A *是A 的伴随矩阵,则(A)A A A n 1**||)(-=(B)A A A n 1**||)(+=(C)AA A n 2**||)(-=(D)AA A n 2**||)(+=解.1*||-=AA A AA A A A A A A A A A A A n n 211111*1**||||||||)|(|||||)|(|)(-------====(C)是答案.8.设A 为m ×n 矩阵,C 是n 阶可逆矩阵,矩阵A 的秩为r 1,矩阵B =AC 的秩为r,则(A)r >r 1(B)r <r 1(C)r =r 1(D)r 与r 1的关系依C 而定解.n C r C A B n n n m ==⨯⨯)(,,所以1)()()(r n C r A r AC r r =-+≥=又因为1-=BC A ,于是rn C r B r BC r r =-+≥=--)()()(111所以r r =1.(C)是答案.9.设A 、B 都是n 阶非零矩阵,且AB =0,则A 和B 的秩(A)必有一个等于零(B)都小于n (C)一个小于n ,一个等于n(D)都等于n解.若0,0.,)(1===-B AB A n A r 得由存在则,矛盾.所以n A r <)(.同理n B r <)(.(B)是答案.三.计算证明题1.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=243121013A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=143522011B .求:i.AB -BA ii.A 2-B 2iii.B T A T解.=-BA AB ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----1618931717641,=-22B A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----1326391515649=T T A B ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--2211531517652.求下列矩阵的逆矩阵i.⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------111111*********1ii.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-1000cos sin 0sin cos ααααiii.⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0001001001001000iv.⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-110210000120025解.i.→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------10000100001000011111111111111111 →⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---------1010101001100010220202022001111 →⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------1001001102102100010220220010101111 →⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡------110000110210210210212200220010100101 →⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡----1100002121021021021021220011010100101 →⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-----11110021210210210212104000110010101001→⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-----414141410021210210210212101000110010101001 ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡------414141414141414141414141414141411000010000100001 ,⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡------=-414141414141414141414141414141411A ii.⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡--ααααααααcos sin sin cos cos sin sin cos 1.由矩阵分块求逆公式:⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡---1110000B A B A 得到:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-100cos sin 0sin cos 1ααααA iii.⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡-011001101.由矩阵分块求逆公式:⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡---0000111A B B A 所以⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=-00010010010010001A iv.由矩阵分块求逆公式:⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡---111000B A B A 得到:⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡---=-313100323100005200211A 3.已知三阶矩阵A 满足)3,2,1(==i i A i i αα.其中T)2,2,1(1=α,T )1,2,2(2-=α,T )2,1,2(3--=α.试求矩阵A .解.由本题的条件知:=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---212122221A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---622342641→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---100010001212122221 →⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----102012001630360221 →⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-----0313231032001120210221 →⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-----3231323103232031300210201 →⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-----9291923103232031100210201 →⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---929192919292929291100010001 ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡----=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=232323235032037929192919292929291622342641A 4.k 取什么值时,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=11100001k A 可逆,并求其逆.解.01110001||≠=-=k k A →⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-10011101000001001 k ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--101110010010001001 k →⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-111100010010001001k k 所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-1110100011k k A 5.设A 是n 阶方阵,且有自然数m ,使(E +A )m =0,则A 可逆.解.因为)(1=+==+∑∑==mi i i m mi iimmA c E A c A E所以∑=-=-mi i im E A c A 11)(.所以A 可逆.6.设B 为可逆矩阵,A 是与B 同阶方阵,且满足A 2+AB +B 2=0,证明A 和A +B 都是可逆矩阵.解.因为022=++B AB A ,所以2)(B B A A -=+.因为B 可逆,所以0||)1(||22≠-=-B B n所以0|||)(|2≠-=+B B A A .所以B A A +,都可逆.7.若A ,B 都是n 阶方阵,且E +AB 可逆,则E +BA 也可逆,且AAB E B E BA E 11)()(--+-=+解.AAB E B BA E BA E A AB E B E BA E 11)()())()((--++-+=+-+=AAB E AB E B BA E A AB E BAB B BA E 11))(())((--++-+=++-+=E BA BA E =-+所以A AB E B E BA E 11)()(--+-=+.8.设A ,B 都是n 阶方阵,已知|B |≠0,A -E 可逆,且(A -E )-1=(B -E )T ,求证A 可逆.解.因为(A -E )-1=(B -E )T ,所以(A -E )(B -E )T =E 所以E E B E B A T T =+--)(,TT B E B A =-)(由|B |≠0知11)(--TB B ,存在.所以E B E B A T T =--1))((.所以A 可逆.9.设A ,B ,A +B 为n 阶正交矩阵,试证:(A +B )-1=A-1+B -1.解.因为A ,B ,A +B 为正交矩阵,所以111,,)()(---==+=+B B A A B A B A TTT所以111)()(---+=+=+=+B A B A B A B A T T T 10.设A ,B 都是n 阶方阵,试证明:||E AB BE EA -=.解.因为⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡AB E B E B E E A E A E E E 0000所以ABE BEB E E A E A E E E -=-0000||)1(01)1(2E AB AB E BEB E E A n n --=-=⋅⋅-因为n n )1()1(2-=-,所以||E AB BE EA -=11.设A 为主对角线元素均为零的四阶实对称可逆矩阵,E 为四阶单位矩阵)0,0(00000000000000>>⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=l k l k B i.试计算|E +AB |,并指出A 中元素满足什么条件时,E +AB 可逆;ii.当E +AB 可逆时,试证明(E +AB )-1A 为对称矩阵.解.i.⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=44342414342313242312141312000a a a a a a a a a a a a a A ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=l k a a a a a a a a a a a a a AB 000000000000000044342414342313242312141312⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=0000000000343424231413ka la la ka la ka AB E +⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1001001001343424231413ka la la ka la ka ,2341||kla AB E -=+所以当2341a kl≠时,E +AB 可逆.ii.11111)()]([)(-----+=+=+B A AB E A A AB E 因为A ,B 为实对称矩阵,所以B A +-1为实对称矩阵,所以(E +AB )-1A 为对称矩阵.12.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=λλλ100100A ,求A n .解.使用数学归纳法.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2222210200100100100100λλλλλλλλλλλA =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=λλλλλλλλ1001002102002223A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+323233)21(0300λλλλλλ假设k A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-++---k k k k k kk k k λλλλλλ121)11(000则1+k A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-++---k k k k k k k k k λλλλλλ121)11(000⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡λλλ100100=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+++++-++1111)1()1(0)1(00k k k k k k k k k λλλλλλ 所以n A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-++---nn n n n n n n n λλλλλλ121)11(000=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----n n n n n nn n n n λλλλλλ1212)1(00013.A 是n 阶方阵,满足A m =E ,其中m 是正整数,E 为n 阶单位矩阵.今将A 中n 2个元素a ij 用其代数余子式A ij 代替,得到的矩阵记为A 0.证明E A m=0.解.因为A m =E ,所以1||=m A ,所以A 可逆.11*0)(||]|[|)(--===T T T A A A A A A 所以EE A A A A A A m T m m m T m ====---1110||])[(||])(|[|14.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=010101001A i.证明:n ≥3时,E A A A n n-+=-22(E 为三阶单位矩阵)ii.求A 100.解.i.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=010*******A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡010101001⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=101011001⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1010110013A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡010101001⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=011102001+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-+010*******E A A -⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101011001⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡100010001⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=0111020013A =所以E A A A -+=-2233假设EA A A k k -+=-22则=-+=-+A A A A k k 311A E A A A k --++-21=EA A k -+-+221)(所以EA A A n n -+=-22ii.=-+=E A A A298100E A E A A 4950222296-==-+ -⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=50050050500050⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡490004900049⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1050015000115.当⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=21232321A 时,A 6=E .求A 11.解.121232321||=-=A ,所以==-||*1A A A ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-21232321因为1112116--===EA A A A E A ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=2123232116.已知A ,B 是n 阶方阵,且满足A 2=A ,B 2=B ,与(A -B )2=A +B ,试证:AB =BA =0.解.因为(A -B )2=A +B ,所以))(())(()(3B A B A B A B A B A -+=+-=-于是2222B AB BA A B AB BA A --+=-+-,所以BAAB =BA B BA AB A B A B A +=+--+=-222,)(因为A 2=A ,B 2=B ,所以2AB =0,所以0==BA AB .第三章向量一.填空题1.设)1,2,0,1(),,1,0,1(),0,3,2,4(),5,0,1,2(4321-=-=--=-=ααααk ,则k =______时,α1,α2,α3,α4线性相关.解.考察行列式1102131181105213000011182105213000211142k k k -----=-----=-----316102038++-+--=k k =13k +5=0.135-=k 2.设)0,,3,1(),4,3,5,0(),2,0,2,1(),0,3,1,2(4321t -=-=-=-=αααα,则t =______时,α1,α2,α3,α4线性相关.解.考察行列式4243355504243335551000042030335211012---=----=----t tt t 0603020306020=--+++-=t t .所以对任何t ,α1,α2,α3,α4线性相关.3.当k =______时,向量β=(1,k ,5)能由向量),1,1,2(),2,3,2(21-=-=αα线性表示.解.考察行列式,012513211=--k 得k =-8.当k =-8时,三个向量的行列式为0,于是21,,ααβ线性相关.显然21,αα线性无关,所以β可用21,αα线性表示.4.已知)1,4,0,1,1(),3,1,3,0,2(),10,5,1,2,0(),1,2,2,1,1(4321-=-=-==αααα,则秩(α1,α2,α3,α4)=______.解.将α1,α2,α3,α4表示成矩阵→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---131********210211201→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------21102550211002201201⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------211052110211001101201⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---→20052000200001101201.所以r (α1,α2,α3,α4)=35.设⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-----=3224211631092114047116A ,则秩(A)=______.解.→⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-----=3224211631092114047116A →⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-----3224211631711614040921⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------3408012550755110140800921⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---------→8351051510117510815100921⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------→410004030008845000815100921所以r (A )=3.6.已知),2,0,1,0(,)2,1,0,1(=-=βαT矩阵A =α·β,则秩(A )=______.解.A =α·β=()→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-402020100000201020102101⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0020000000002010所以r (A )=1.7.已知向量),6,5,4(),6,5,4,3(),5,4,3,2(),4,3,2,1(4321t ====αααα,且秩(α1,α2,α3,α4)=2,则t =______.解.A =(α1,α2,α3,α4)⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=t 654654354324321⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------=16630642032104321t ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=700000032104321t 所以当t =7时,r (A )=2.二.单项选择题1.设向量组α1,α2,α3线性无关,则下列向量组线性相关的是(A)α1+α2,α2+α3,α3+α1(B)α1,α1+α2,α1+α2+α3(C)α1-α2,α2-α3,α3-α1(D)α1+α2,2α2+α3,3α3+α1解.由0)()()(133322211=-+-+-ααααααk k k 得)()()(323212131=-+-+-αααk k k k k k 因为向量组α1,α2,α3线性无关,所以得关于321,,k k k 的方程组⎪⎩⎪⎨⎧=+-=+-=-000322131k k k k k k 321,,k k k 的系数行列式为011110011101=-=---.所以321,,k k k 有非零解,所以α1-α2,α2-α3,α3-α1线性相关.(C)是答案.2.设矩阵A m ×n 的秩为R (A )=m <n ,E m 为m 阶单位矩阵,下列结论正确的是(A)A 的任意m 个列向量必线性无关(B)A 的任意一个m 阶子式不等于零(C)若矩阵B 满足BA =0,则B =0(D)A 通过行初等变换,必可以化为(E m ,0)的形式解.(A),(B)都错在“任意”;(D)不正确是因为只通过行初等变换不一定能将A 变成(E m ,0)的形式;(C)是正确答案.理由如下:因为BA =0,所以0)()()()()(B r m m B r m A r B r BA r =-+=-+≥=.所以)(B r =0.于是B =0.3.设向量组(I):T T T a a a a a a a a a ),,(,),,(,),,(332313332221223121111===ααα;设向量组(II):T T T a a a a a a a a a a a a ),,,(,),,,(,),,,(433323133423222122413121111===βββ,则(A)(I)相关⇒(II)相关(B)(I)无关⇒(II)无关(C)(II)无关⇒(I)无关(B)(I)无关⇔(II)无关解.由定理:若原向量组线性无关,则由原向量组加长后的向量组也线性无关.所以(B)是答案.4.设β,α1,α2线性相关,β,α2,α3线性无关,则(A)α1,α2,α3线性相关(B)α1,α2,α3线性无关(C)α1可用β,α2,α3线性表示(D)β可用α1,α2线性表示解.因为β,α1,α2线性相关,所以β,α1,α2,α3线性相关.又因为β,α2,α3线性无关,所以α1可用β,α2,α3线性表示.(C)是答案.5.设A ,B 是n 阶方阵,且秩(A )=秩(B ),则(A)秩(A -B )=0(B)秩(A +B )=2秩(A)(C)秩(A -B )=2秩(A)(D)秩(A +B )≤秩(A )+秩(B )解.(A)取B A ≠且|A |≠0,|B |≠0则A -B ≠0,则r (A -B )≠0.排除(A);(B)取A =-B ≠0,则秩(A +B )≠2秩(A);(C)取A =B ≠0,则秩(A -B )≠2秩(A).有如下定理:秩(A +B )≤秩(A )+秩(B ).所以(D)是答案.三.计算证明题1.设有三维向量⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111k α,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=112k α,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2113α,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=21k k β问k 取何值时i.β可由α1,α2,α3线性表示,且表达式唯一;ii.β可由α1,α2,α3线性表示,但表达式不唯一;iii.β不能由α1,α2,α3线性表示.解.)1(22221111112-=-=k k k k k k i.10≠≠k k 且时,α1,α2,α3线性无关,四个三维向量一定线性相关,所以β可由α1,α2,α3线性表示,由克莱姆法则知表达式唯一;ii.当k =1时→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡121111111111 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡010********* .系数矩阵的秩等于增广矩阵的秩为2.所以所以β可由α1,α2,α3线性表示,但表示不惟一;iii.当0=k 时→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡021********* ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡021********* ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→011011100101 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-→100011100101 .系数矩阵的秩等于2,增广矩阵的秩为3,所以所以β不能由α1,α2,α3线性表示.2.设向量组α1,α2,α3线性相关,向量组α2,α3,α4线性无关,问i.α1能否由α2,α3线性表出?证明你的结论;ii.α4能否由α1,α2,α3线性表出?证明你的结论解.i.α1不一定能由α2,α3线性表出.反例:T )1,1(1=α,T )0,1(2=α,T )0,2(3=α.向量组α1,α2,α3线性相关,但α1不能由α2,α3线性表出;ii.α4不一定能由α1,α2,α3线性表出.反例:T )0,0,2(1=α,T )0,0,1(2=α,T )0,1,0(3=α,T )1,0,0(4=α.α1,α2,α3线性相关,α2,α3,α4线性无关,α4不能由α1,α2,α3线性表出.3.已知m 个向量α1,α2,…αm 线性相关,但其中任意m -1个都线性无关,证明:i.如果存在等式k 1α1+k 2α2+…+k m αm =0则这些系数k 1,k 2,…k m 或者全为零,或者全不为零;ii.如果存在两个等式k 1α1+k 2α2+…+k m αm =0l 1α1+l 2α2+…+l m αm =0其中l 1≠0,则mm l k l k l k === 2211.解.i.假设k 1α1+k 2α2+…+k m αm =0,如果某个k i =0.则k 1α1+…+k i -1αi -1+k i+1αi+1…+k m αm =0因为任意m -1个都线性无关,所以k 1,k 2,…k i -1,k i+1,…,k m 都等于0,即这些系数k 1,k 2,…k m 或者全为零,或者全不为零;ii.因为l 1≠0,所以l 1,l 2,…l m 全不为零.所以m m l l l l ααα12121---= .代入第一式得:0)(2212121=+++---m m m m k k l l l l k αααα 即0)()(1122112=+-+++-m m m k k l l k k l l αα 所以02112=+-k k l l ,…,011=+-m m k k l l 即mm l k l k l k === 22114.设向量组α1,α2,α3线性无关,问常数a ,b ,c 满足什么条件a α1-α2,b α2-α3,c α3-α1线性相关.解.假设0)()()(133322211=-+-+-ααααααc k b k a k 得)()()(323212131=-+-+-αααk c k k b k k a k 因为α1,α2,α3线性无关,得方程组⎪⎩⎪⎨⎧=+-=+-=-000322131ck k bk k k ak当行列式0100110=---cba 时,321,k k k 有非零解.所以1=abc 时,a α1-α2,b α2-α3,c α3-α1线性相关.5.设A 是n 阶矩阵,若存在正整数k ,使线性方程组A k x =0有解向量α,且A k -1α≠0,证明:向量组α,A α,⋯,A k -1α是线性无关的.解.假设01110=+++--αααk k A a A a a .二边乘以1-k A 得010=-αk A a ,0=a 由0111=++--ααk k A a A a .二边乘以1-k A 得011=-αk A a ,1=a ………………………………最后可得011=--αk k A a ,1=-k a 所以向量组α,A α,⋯,A k -1α是线性无关.6.求下列向量组的一个极大线性无关组,并把其余向量用极大线性无关组线性表示.i.)3,2,1,2(),7,4,3,1(),6,5,1,4(),3,1,2,1(4321=----=---==αααα.ii.).10,5,1,2(),0,2,2,1(),14,7,0,3(),2,1,3,0(),4,2,1,1(54321=-===-=ααααα解.解.i.→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------3763245113122141→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---------34180039031902141⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---3200320031902141⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--→0000320031902141所以321,,ααα是极大线性无关组.由3322114ααααk k k ++=得方程组⎪⎩⎪⎨⎧-==+=-+323924332321k k k k k k 解得2331-==k k ,212=k 所以3214232123αααα-+-=ii.→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--1001424527121203121301→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--24220101103133021301⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--24220313301011021301⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--→04000010001011021301所以421,,ααα是极大线性无关组.由4322115ααααk k k ++=得方程组⎪⎪⎩⎪⎪⎨⎧=-=-==+0401233231k k k k k 解得21=k ,12=k ,03=k 所以421502αααα++=由4322113ααααk k k ++=得方程组⎪⎪⎩⎪⎪⎨⎧=-=-==+0401333231k k k k k 解得31=k ,12=k ,03=k 所以421303αααα++=7.已知三阶矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=x yyy x y y yxA ,讨论秩(A)的情形.解.i.0==y x ,)(=A r ii.0,00,0=≠≠=y x y x 或,3)(=A r iii.0≠=y x ,1)(=A r iv.0≠-=y x ,3)(=A r iv.yx y x ±≠≠≠,0,0⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=x y y y x yy yxA ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡→2222x xyxy xy x xy y y xy ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→2222222200y x y xy y xy y x y y xy ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++→y x yy y x y yx00⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++→)2(00y x x yy x y y x 所以,当y x 2-=时,2)(=A r ;当y x 2-≠时,3)(=A r 8.设三阶矩阵A 满足A 2=E(E 为单位矩阵),但A ≠±E ,试证明:(秩(A -E )-1)(秩(A +E )-1)=0解.由第十一题知3)()(=-++E A r E A r 又因为A ≠±E ,所以0)(≠+E A r ,0)(≠-E A r 所以)(E A r +,)(E A r -中有一个为1所以(秩(A -E )-1)(秩(A +E )-1)=09.设A 为n 阶方阵,且A 2=A ,证明:若A 的秩为r ,则A -E 的秩为n -r ,其中E 是n 阶单位矩阵.解.因为A 2=A ,所以)(=-E A A 所以n E A r A r E A A r --+≥-=)()())((0所以nE A r A r ≤-+)()(又因为n E r A E A r A E r A r E A r A r ==-+≥-+=-+)()()()()()(所以n E A r A r =-+)()(.所以rn E A r -=-)(10.设A 为n 阶方阵,证明:如果A 2=E ,则秩(A +E )+秩(A -E )=n.解.因为A 2=E ,所以))((0E A E A +-=所以n E A r E A r E A E A r --++≥-+=)()()))(((0所以nE A r E A r ≤-++)()(又因为n E r A E E A r A E r E A r E A r E A r ==-++≥-++=-++)2()()()()()(所以n E A r E A r =-++)()(.第四章线性方程组一.填空题1.在齐次线性方程组A m ×n x =0中,若秩(A)=k 且η1,η2,…,ηr 是它的一个基础解系,则r =_____;当k =______时,此方程组只有零解.解.k n r -=,当n k =时,方程组只有零解.2.若n 元线性方程组有解,且其系数矩阵的秩为r,则当______时,方程组有唯一解;当______时,方程组有无穷多解.解.假设该方程组为A m ×n x =b,矩阵的秩r A r =)(.当n r =,方程组有惟一解;当n r <,方程组有无穷多解.3.齐次线性方程组⎪⎩⎪⎨⎧=+=++=++0302032321321x kx x x x x kx x 只有零解,则k 应满足的条件是______.解.03011211≠kk ,53,0623≠≠--+k k k k 时,方程组只有零解.4.设A 为四阶方阵,且秩(A)=2,则齐次线性方程组A *x =0(A *是A 的伴随矩阵)的基础解系所包含的解向量的个数为______.解.因为矩阵A 的秩31412)(=-=-<=n A r ,所以0)(*=A r ,A *x =0的基础解系所含解向量的个数为4-0=4.5.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=112011121A ,则A x =0的通解为______.解.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=000110101110110121112011121A 2)(=A r ,基础解系所含解向量个数为3-2=1.⎩⎨⎧=-=-003231x x x x ,取1,1123===x x x 则.基础解系为(1,1,1)T.A x =0的通解为k (1,1,1)T,k 为任意常数.6.设α1,α2,…αs 是非齐次线性方程组A x =b 的解,若C 1α1+C 2α2+…+C s αs 也是A x =b 的一个解,则C 1+C 2+…+C s =______.解.因为A b A i 且,=α(C 1α1+C 2α2+…+C s αs )=b,所以b b C C s =++)(1 ,11=++s C C .7.方程组A x =0以TT)1,1,0(,)2,0,1(21-==ηη为其基础解系,则该方程的系数矩阵为___.解.方程组A x =0的基础解系为TT)1,1,0(,)2,0,1(21-==ηη,所以2)(=-A r n ,即2)(3=-A r ,)(A r =1.所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=22111αααk k A ,假设),,(1312111a a a =α.由01=ηA ,得02201),,(1311131211=+=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡a a a a a 由02=ηA ,得0110),,(1312131211=-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-a a a a a 取2,1,0111213-===a a a 得.所以)1,1,2(1-=α,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=22111αααk k A (其中2,1k k 为任意常数).8.设A x =b,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=112210321A ,则使方程组有解的所有b 是______.解.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=112210321A ,05112210321||≠=-=A ,所以)(A r =3.因为A x =b 有解,所以⎪⎪⎪⎭⎫ ⎝⎛⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎪⎪⎪⎭⎫ ⎝⎛⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-b r r 112210321112210321所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=123112201321k k k b ,其中321,,k k k 为任意常数.9.设A,B 为三阶方阵,其中⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=110121211A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=11202314k B ,且已知存在三阶方阵X ,使得B AX =,则k =___________.解.由题设B X A =⨯⨯3333,又因为0110121211||=-=A ,所以0||||||==X A B ,即0266411202314=+--=--k k k ,2-=k .二.单项选择题1.要使ξ1=(1,0,1)T ,ξ2=(-2,0,1)T 都是线性方程组0=Ax 的解,只要系数矩阵A 为(A)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡112213321(B)⎥⎦⎤⎢⎣⎡-211121(C)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡123020010(D)⎥⎦⎤⎢⎣⎡-020010解.因为21,ξξ的对应分量不成比例,所以21,ξξ线性无关.所以方程组0=Ax 的基础解系所含解向量个数大于2.(A)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=112213321A ,3)(,0112213321||=≠=A r A .因为A 是三阶矩阵,所以0=Ax 只有零解,排除(A);(B)2)(,211121=⎥⎦⎤⎢⎣⎡-=A r A .所以方程组0=Ax 的基础解系所含解向量个数:3-1)(=A r .排除(B);(C)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=123020010A ,2)(=A r .所以方程组0=Ax 的基础解系所含解向量个数:3-1)(=A r .排除(C);(D)⎥⎦⎤⎢⎣⎡-=020010A ,1)(=A r .所以方程组0=Ax 的基础解系所含解向量个数:3-2)(=A r ,(D)是答案.2.设0,,321=Ax 是ξξξ的基础解系,则该方程组的基础解系还可以表成(A)321,,ξξξ的一个等阶向量组(B)321,,ξξξ的一个等秩向量组(C)321211,,ξξξξξξ+++(C)133221,,ξξξξξξ---解.由0)()(321321211=+++++ξξξξξξk k k ,得0)()(332321321=+++++k k k k k k ξξξ.因为0,,321=Ax 是ξξξ的基础解系,所以321,,ξξξ线性无关.于是⎪⎩⎪⎨⎧==+=++000332321k k k k k k ,所以0321===k k k ,则321211,,ξξξξξξ+++线性无关.它也可以是方程组的基础解系.(C)是答案.(A)不是答案.例如321,,ξξξ和21321,,,ξξξξξ+等价,但21321,,,ξξξξξ+不是基础解系.3.n 阶矩阵A 可逆的充分必要条件是(A)任一行向量都是非零向量(B)任一列向量都是非零向量(C)b Ax =有解(D)当0≠x 时,0≠Ax ,其中Tn x x x ),,(1 =解.对(A),(B):反例⎥⎦⎤⎢⎣⎡=2121A ,不可逆;对于(C)假设A 为n×n 矩阵,A 为A 的增广矩阵.当n A r A r <=)()(时,b Ax =有无穷多解,但A 不可逆;(D)是答案,证明如下:当0≠x 时,0≠Ax ,说明0=Ax 只有零解.所以1,0||-≠A A 存在.4.设n 元齐次线性方程组0=Ax 的系数矩阵A 的秩为r,则0=Ax 有非零解的充分必要条件是(A )n r =(B )n r ≥(C )n r <(D )n r >解.(C )为答案.5.设n m A ⨯为矩阵,m n B ⨯为矩阵,则线性方程组0)(=x AB (A )当m n >时仅有零解.(B )当m n >时必有非零解.(C )当n m >时仅有零解.(D )当n m >时必有非零解.解.因为AB 矩阵为m m ⨯方阵,所以未知数个数为m 个.又因为n A r AB r ≤≤)()(,所以,当n m >时,m n A r AB r <≤≤)()(,即系数矩阵的秩小于未知数个数,所以方程组有非零解.(D )为答案.6.设n 阶矩阵A 的伴随矩阵0*≠A ,若4321,,,ξξξξ是非齐次线性方程组b Ax =的互不相等的解,则对应的齐次线性方程组0=Ax 的基础解系(A )不存在(B )仅含一个非零解向量(C )含有二个线性无关解向量(D )含有三个线性无关解向量解.因为⎪⎩⎪⎨⎧-<-===1)(,01)(,1)(,*)(n A r n A r n A r n A r 因为0*≠A ,所以1)(-≥n A r ;又因为4321,,,ξξξξ是非齐次线性方程组b Ax =的互不相等的解,所以b Ax =的解不唯一,所以1)(-≤n A r ,所以1)(-=n A r .于是:基础解系所含解向量个数1)1()(=--=-=n n A r n (B )为答案.三.计算证明题1.求方程组⎪⎩⎪⎨⎧=----=+-+-=-+-174952431132542143214321x x x x x x x x x x x 的通解,并求满足方程组及条件16354321-=-++x x x x 的全部解.解.将条件方程与原方程组构成矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-------→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----------56144280287214028721401132511163517409152413113251⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----→0000000000287214017409100000000002872140113251 i.条件方程与原方程组兼容,即加上条件后的方程组与原方程组有相同的通解;ii.2)()(==A r A r ,方程组有解.齐次方程组的基础解系含解向量的个数为2)(4=-A r ;iii.齐次方程的基础解系:⎩⎨⎧=-+-=++07214049432421x x x x x x 令27,41,03142=-===x x x x 得令7,90,13142=-===x x x x 得基础解系为:T T)0,7,1,9(,)1,27,0,4(--iv.非齐次方程的通解:⎩⎨⎧=-+--=++2872141749432421x x x x x x 令2,10,02143-====x x x x 得所以全部解为:⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-127040719002121k k 2.设有线性方程组⎪⎩⎪⎨⎧=++--=++=++kmx x x x x x x x x 3213213214132303,问m,k 为何值时,方程组有惟一解?有无穷多组解?有无穷多组解时,求出一般解.解.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--110010700131170107001314113230131k m k m k m i.当3)()(,1==-≠A r A r m 时,方程组有惟一解;ii.当)()(,1,1A r A r k m ≠≠-=时,方程组无解;iii.当32)()(,1,1<===-=A r A r k m 时,方程组有无穷多解.此时基础解系含解向量个数为1)(3=-A r 齐次方程组:⎩⎨⎧==++07032321x x x x ,所以02=x .令1,113-==x x 得.基础解系解向量为:T)1,0,1(-.非齐次方程组:⎩⎨⎧==++17032321x x x x ,所以712=x .令73,013-==x x 得.非齐次方程特解为:T)0,71,73(-.通解为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-=10107173k x 3.问λ为何值时,线性方程组⎪⎩⎪⎨⎧+=+++=++=+324622432132131λλλx x x x x x x x 有解,并求出解的一般形式.。
答案版线代讲义 行列式部分
第一章 行列式一、行列式计算的基本方法1.用定义计算A.所有不同行,不同列的n 个元素的乘积的代数和B.按行或列展开2.用性质计算A.转置性质B.互换性质C.数乘性质D.倍加性质E.加法性质3.递推法(3对角行列式)4.方阵行列式 A A n k k = B A AB = 1-n *A A =5.用特征值6.拉普拉斯定理其中A 为n ×n 矩阵 B 为m×m 矩阵7.范德蒙行列式二、数字或字母行列式的计算1.四阶行列式的值等于()答案:2.n阶行列式等于()答案:按第一列展开即可3.计算n阶行列式的值答案:所有行加到第一行4.计算n阶行列式的值答案:若a=0时,行列式等于0当a不等于0时,然后得到5.计算n(n>=2)阶行列式的值答案:然后得到6.计算n阶行列式的值答案:三、矩阵行列式的计算1.设矩阵A=,E为二阶单位矩阵,矩阵B满足BA=B+2E,则B= 答案:2.答案:然后有3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:四、向量组型行列式1.答案:2.答案:A.B.五、特征值型行列式1.答案:2.答案:六、行列式的展开定理答案:七、补充习题1.设A 为3×3矩阵, |A | =-2, 把A 按行分块为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=321A A A A , 其中A j (j = 1, 2, 3)是A 的第j 行, 则行列式=-121332A A A A ______.解. =-121332A A A A 6||33233211213=-=-=-A A A A A A A A . 2. 证明:奇数阶反对称矩阵的行列式为零.证明: ||||)1(||||||,A A A A A A A n T T -=-=-==-=(n 为奇数). 所以|A | = 0.3.设()ij a A =是三阶非零矩阵,A 为其行列式,ij A 为元素ij a 的代数余子式,且满足)3,2,1,(0==+j i a A ij ij ,则A= .4.【详解】由条件)3,2,1,(0==+j i a A ij ij 可知0*=+T A A ,其中*A 为A 的伴随矩阵,从而可知A AA A T -===-13**,所以A 可能为1-或0.但由结论⎪⎩⎪⎨⎧-<-===1)(,01)(,1)(,)(*n A r n A r n A r n A r 可知,0*=+T A A 可知*)()(A r A r =,伴随矩阵的秩只能为3,所以.1-=A5. 设A 为3阶矩阵,=3A ,*A 为A 伴随矩阵,若交换A 的第1行与第2行得矩阵B ,则*BA = .【答案】:27-【解析】:**BA B A =,其中31*3,9B A A A-=-=-==,可知*27BA =-。
(完整版)线性代数习题集(带答案)
第一部分 专项同步练习第一章 行列式一、单项选择题1.下列排列是5阶偶排列的是 ( ).(A) 24315 (B) 14325 (C) 41523 (D)24351 2.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A )k (B)k n - (C)k n -2! (D)k n n --2)1(3. n 阶行列式的展开式中含1211a a 的项共有( )项.(A ) 0 (B )2-n (C) )!2(-n (D ) )!1(-n4.=0001001001001000( )。
(A) 0 (B )1- (C) 1 (D) 25。
=0001100000100100( ).(A) 0 (B)1- (C) 1 (D ) 26.在函数100323211112)(x x x x x f ----=中3x 项的系数是( ).(A) 0 (B)1- (C) 1 (D) 27. 若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B ) 4- (C ) 2 (D ) 2-8.若a a a a a =22211211,则=21112212ka a ka a ( )。
(A )ka (B)ka - (C )a k 2 (D )a k 2-9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( )。
(A) 0 (B)3- (C) 3 (D) 210。
若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( )。
(A )1- (B)2- (C)3- (D)011. 若2235001011110403--=D ,则D 中第四行元的余子式的和为( ).(A)1- (B)2- (C)3- (D )012. k 等于下列选项中哪个值时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x kx x kx x kx x x 有非零解. ( )(A )1- (B )2- (C)3- (D)0二、填空题1。
行列式练习题及答案
行列式 练习题一、判断题1. 行列式的行数和列数可以相同也可以不同。
( )2. n 阶行列式共有2n 个元素,展开后共有n !项。
( )3. n 阶行列式展开后的n !项中,带正号的项和带负号的项各占一半。
( )4. 行列式D 中元素ij a 的余子式ij M 与其代数余子式ij A 符号相反。
( )5. 上(下)三角形行列式的值等于主对角线上元素的乘积。
( )6. 行列式与它的转置行列式符号相反。
( )7. 行列式中有一行的元素全部是零则行列式的值为零。
( )8. 行列式中有两行元素相同,行列式的值为零。
( )9. 行列式中有两行元素成比例,行列式的值为零。
( ) 10.互换行列式的两行,行列式的值不变。
( ) 11. 行列式中某一行的公因子k 可以提到行列式符号之外。
( ) 12. 行列式中若所有元素均相同,则行列式的值为零。
( ) 13. 行列式的值等于它的任一行(列)的元素与其对应的代数余子式乘积。
( )14. 行列式某一行(列)的元素与另一行(列)的对应的元素的代数余子式乘积之和为零。
( ) 15. 齐次线性方程组的系数行列式0D ≠,则它仅有零解。
( )二、填空题1.=______x yyx -。
2.sin cos =______cos sin θθθθ-。
3. 123246=______345。
4.2-20310=______450。
5.=______a x xx b x x x c。
6. 211123=0______49x x x =,则。
7.222031,005D =-已知111213=______M M M -+则。
8.=______x y x y y x y x x y x y+++。
9.100110=______011001a b c d---。
10.222=______a b c a b c b c c a a b+++。
11. 已知21341023,15211152D =-则1323432=______A A A ++。
高等代数《行列式》部分习题及解答
高等代数《行列式》部分习题及解答例1:决定以下9级排列的逆序数,从而决定它们的奇偶性: 1).134782695;2).217986354;3).987654321. 答:1). ()134782695=10τ,134782695是一个偶排列;2). ()217986354=18τ,217986354是一个偶排列; 3). ()987654321=36τ,987654321是一个偶排列. 例2:写出把排列12435变成排列25341的那些对换.答:()()()()()()()12154,312435214352543125341−−→−−→−−−→.例3:如果排列121...n n x x x x -的逆序数为k ,排列121...n n x x x x -的逆序数是多少?答:()112n n k --例4:按定义计算行列式: 000100201).0100000n n - 010000202).0001000n n -001002003).1000000n n-答:1).原行列式()()()()1,1,,2,121!1!n n n n n n τ--=-=-2).原行列式()11!.n n -=-3).原行列式()()()1221!n n n --=-.例5:由行列式定义计算()212111321111x x x f x x x-=中4x 与3x 的系数,并说明理由. 答:()f x 的展开式中x 的4次项只有一项;2,x x x x ⋅⋅⋅故4x 的系数为2;x 的3次项也只有一项()()213411,x x x τ-⋅⋅⋅故3x 的系数为-1.例6:由111111=0111,证明:奇偶排列各半.证明:由于12n j j j 为奇排列时()()121n j j j τ- 为-1,而偶排列时为1,.设有k 个奇排列和l 个偶排列,则上述行列式()()()()12121212110.n n nnj j j j j j j j j j j j l k ττ=-+-=-=∑∑ 即奇偶排列各占一半.例7:证明1111111112222222222b cc a a b a b c b c c a a b a b c b c c a a b a b c ++++++=+++. 证明:111111111111111111122222222222222222222222.2b cc a a bac aa baa b a cab c b c c a a b a c a a b a a b a c a b c b c c a a b a c a a b a a b a c a b c +++-+++++++=-++=++=+++-++++ 例8:算出行列式:121401211).00210003-;1122).321014-的全部代数余子式. 答:111213142122232431323334414243441).6,0;12,6,0;15,6,3,0;7,0,1, 2.A A A A A A A A A A A A A A A A =-====-=====-=-=====-1112132122233132332).7,12,3;6,4,1;5,5, 5.A A A A A A A A A ==-====-=-== 例9:计算下面的行列式:111121131).12254321-;11112112132).1111321112---;01214201213).135123312121035-- 答:1111111111110115011501151).= 1.011400010012012300120001---------==-=-------原式132).12-3).483-. 例10:计算下列n 级行列式: 0000001).;000000x y x y x yyx1112121222122).n nn n n na b a b a b a b a b a b a b a b a b ---------122222223).;2232222n1231110004)..02200011n n n n-----答:()()110000000000000001).11.000000000000000n n n n xy xy yx y x xy x y x y x y x yy yxxxy++=+-=+-2).当1n =时,为11a b -;当2n =时,为()()1212a a b b --;当3n ≥时,为零.()12221000222222223).22!223200102220002n n n -==-⋅--(利用第2行(列)的特点)()()11231110001!4).1.02200211n n nn n n---+=---- (从左起,依次将前一列加到后一列) 例11:用克拉默法则解线性方程组1234123412341234232633325323334x x x x x x x x x x x x x x x x -++=⎧⎪-++=⎪⎨--+=⎪⎪-+-=⎩.答:2132333270031123131d --==-≠----,所以可以用克拉默法则求解.又因16132533270;31124131d --==-----22632353270;33123431d ==---32162335270;31323141d --==----42136333570;31133134d --==----所以此线性方程组有唯一解,解为1234 1.x x x x ====例12:求12121212111222,n nnnj j j j j j j j j nj nj nj a a a a a a a a a ∑这里12nj j j ∑是对所有n 级排列求和.答:对每个排列12n j j j ,都有:()()121212121111112122221222121.n n nnj j j n j j j j j j nn n nnnj nj nj a a a a a a a a a a a a a a a a a a τ=- 因为在全部n 级排列中,奇偶排列个数相同,各有!2n 个.所以121212121112220n n nnj j j j j j j j j nj nj nj a a a a a a a a a =∑.例13:计算n 级行列式:12222122221212111.nnn n n nnn n nx x x x x x x x x x x x ---答:作范德蒙德行列式:1212222121111111211211111.n n n n n n n n n n nnn nn n x x x x x x x x D x x x x x x x x ++----++=将这个行列式按最后一列展开,展开式中11n n x -+的系数的()11n n++-倍就是所求行列式D ,因为()111,ji i j n D xx ≤<≤+=-∏所以()()()()11111111.nnn nji k ji k k k i j n i j n D xx x xx x ++==≤<≤+≤<≤+=---=-∑∑∏∏。
(完整版)行列式习题答案
线性代数练习题 第一章 行 列 式系 专业 班 姓名 学号第一节 n 阶 行 列 式一.选择题1.若行列式 = 0,则[ C ]x52231521-=x (A )2 (B )(C )3(D )2-3-2.线性方程组,则方程组的解=[ C ]⎩⎨⎧=+=+473322121x x x x ),(21x x (A )(13,5)(B )(,5)(C )(13,)(D )()13-5-5,13--3.方程根的个数是[ C ]093142112=x x (A )0 (B )1 (C )2 (D )34.下列构成六阶行列式展开式的各项中,取“+”的有 [ A ](A ) (B ) 665144322315a a a a a a 655344322611a a a a a a (C ) (D )346542165321a a a a a a 266544133251a a a a a a 5.若是五阶行列式的一项,则的值及该项的符号为[ B ]55443211)541()1(a a a a a l k l k N -ij a l k ,(A ),符号为正; (B ),符号为负;3,2==l k 3,2==l k (C ),符号为正;(D ),符号为负2,3==l k 2,3==l k 6.下列n (n >2)阶行列式的值必为零的是 [ BD ](A) 行列式主对角线上的元素全为零 (B) 三角形行列式主对角线上有一个元素为零 (C) 行列式零的元素的个数多于n 个 (D) 行列式非零元素的个数小于n 个二、填空题1.行列式的充分必要条件是1221--k k 0≠3,1k k ≠≠-2.排列36715284的逆序数是133.已知排列为奇排列,则r =2,8,5s = 5,2,8,t = 8,5,2397461t s r4.在六阶行列式中,应取的符号为 负 。
ij a 623551461423a a a a a a 三、计算下列行列式:1.=181322133212.=55984131113.yxyx x y x yyx y x +++332()x y =-+4.=100011000001001005.000100002000010n n -1(1)!n n -=-6.0011,22111,111 n n nn a a a a a a --(1)212,11(1)n n n n n a a a --=-线性代数练习题 第一章 行 列 式系专业 班 姓名 学号第二节 行列式的性质一、选择题:1.如果, ,则 [ C ]1333231232221131211==a a a a a a a a a D 3332313123222121131211111232423242324a a a a a a a a a a a a D ---==1D (A )8(B )(C )(D )2412-24-2.如果,,则 [ B ]3333231232221131211==a a a a a a a a a D 2323331322223212212131111352352352a a a a a a a a a a a a D ---==1D (A )18(B ) (C )(D )18-9-27-3. = [ C ]2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a (A )8 (B )2(C )0(D )6-二、选择题:1.行列式 12246000 2. 行列式-3=30092280923621534215=11101101101101112.多项式的所有根是0211111)(321321321321=+++++=x a a a a x a a a a x a a a a x f 0,1,2--3.若方程= 0 ,则225143214343314321x x --1,x x =±=4.行列式 5==2100121001210012D 三、计算下列行列式:1.2605232112131412-21214150620.12325062r r +=2.xa a a x a a a x 1[(1)]().n x n a x a -=+--线性代数练习题 第一章 行 列 式系专业 班 姓名 学号第三节 行列式按行(列)展开一、选择题:1.若,则中x 的一次项系数是[D]111111111111101-------=x A A (A )1(B )(C )(D )1-44-2.4阶行列式的值等于 [D ]443322110000000a b a b b a b a (A ) (B )43214321b b b b a a a a -))((43432121b b a a b b a a --(C )(D )43214321b b b b a a a a +))((41413232b b a a b b a a --3.如果,则方程组 的解是 [B]122211211=a a a a ⎩⎨⎧=+-=+-0022221211212111b x a x a b x a x a (A ), (B ),2221211a b a b x =2211112b a b a x =2221211a b a b x -=2211112b a b a x =(C ), (D ),2221211a b a b x ----=2211112b a b a x ----=2221211a b a b x ----=2211112b a b a x -----=二、填空题:1.行列式 中元素3的代数余子式是 -6122305403--2.设行列式,设分布是元素的余子式和代数余子式,4321630211118751=D j j A M 44,j a 4则 =,=-6644434241A A A A +++44434241M M M M +++3.已知四阶行列D 中第三列元素依次为,2,0,1,它们的余子式依次分布为1-5,3,4,则D = -15,7-三、计算行列式:1.321421431432432112341234134101131010141201311123031111310131160.311-==---=-=-2.12111111111na a a +++ ==121111011101110111n a a a+++121111100100100na a a---211112111110010010n c c a a a a a+--+111223211111100001000na a cc a a a a++-+11121101111000000ni ni iia a a c a c a=+++∑1211()(1)nn i i a a a a =+∑或121123113111111000000nn a r r a r r a r r a a a a+------211211212311111000000na a aa a a c c a a a a+++--11122313311111100000ni in nnaa a c c a a a c c a a a a=++++∑1122()(1)nn i ia a a a a =++∑或11221121121110111110111111111(1).n n n n nn i ia a a a a a D a a a a a a a --=++++=+=+=+∑线性代数练习题 第一章 行 列 式系专业 班 姓名学号综 合 练 习一、选择题:1.如果,则 = [ C ]0333231232221131211≠==M a a a a a a a a a D 3332312322211312111222222222a a a a a a a a a D =(A )2 M(B )-2 M(C )8 M(D )-8 M2.若,则项的系数是[ A ]xxx x x x f 171341073221)(----=2x (A )34 (B )25 (C )74 (D )6二、选择题:1.若为五阶行列式带正号的一项,则 i = 2 j = 154435231a a a a a j i 2. 设行列式,则第三行各元素余子式之和的值为 8。
行列式习题答案
线性代数练习题 第一章 行 列 式系 专业 班 学号 第一节 n 阶 行 列 式一.选择题1.若行列式x52231521- = 0,则=x [ C ] (A )2 (B )2- (C )3 (D )3- 2.线性方程组⎩⎨⎧=+=+473322121x x x x ,则方程组的解),(21x x = [ C ](A )(13,5) (B )(13-,5) (C )(13,5-) (D )(5,13--)3.方程093142112=x x根的个数是 [ C ] (A )0 (B )1 (C )2 (D )34.下列构成六阶行列式展开式的各项中,取“+”的有 [ A ] (A )665144322315a a a a a a (B )655344322611a a a a a a (C )346542165321a a a a a a (D )266544133251a a a a a a 5.若55443211)541()1(a a a a a l k l k N -是五阶行列式ij a 的一项,则l k ,的值及该项的符号为[ B ](A )3,2==l k ,符号为正; (B )3,2==l k ,符号为负; (C )2,3==l k ,符号为正; (D )2,3==l k ,符号为负6.下列n (n >2)阶行列式的值必为零的是 [ BD ] (A) 行列式主对角线上的元素全为零 (B) 三角形行列式主对角线上有一个元素为零 (C) 行列式零的元素的个数多于n 个 (D) 行列式非零元素的个数小于n 个 二、填空题 1.行列式1221--k k 0≠的充分必要条件是 3,1k k ≠≠-2.排列36715284的逆序数是 133.已知排列397461t s r 为奇排列,则r = 2,8,5 s = 5,2,8 ,t = 8,5,24.在六阶行列式ij a 中,623551461423a a a a a a 应取的符号为 负 。
(完整版)线性代数习题集带答案
第一部分 专项同步练习第一章 行列式一、单项选择题1.下列排列是5阶偶排列的是 ( ).(A) 24315 (B) 14325 (C) 41523 (D)243512.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C)k n -2! (D)k n n --2)1(3. n 阶行列式的展开式中含1211a a 的项共有( )项.(A) 0 (B)2-n (C) )!2(-n (D) )!1(-n4.=0001001001001000( ).(A) 0 (B)1- (C) 1 (D) 25.=0001100000100100( ).(A) 0 (B)1- (C) 1 (D) 26.在函数1323211112)(x x xxx f ----=中3x 项的系数是( ).(A) 0 (B)1- (C) 1 (D) 27. 若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若a a a a a =22211211,则=21112212ka a ka a ( ).(A)ka (B)ka - (C)a k 2 (D)a k 2-9. 已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ).(A) 0 (B)3- (C) 3 (D) 210. 若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3- (D)011. 若2235001011110403--=D ,则D 中第四行元的余子式的和为( ). (A)1- (B)2- (C)3- (D)012. k 等于下列选项中哪个值时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x kx x kx x kx x x 有非零解.( )(A)1- (B)2- (C)3- (D)0二、填空题1. n 2阶排列)12(13)2(24-n n 的逆序数是.2.在六阶行列式中项261365415432a a a a a a 所带的符号是.3.四阶行列式中包含4322a a 且带正号的项是.4.若一个n 阶行列式中至少有12+-n n 个元素等于0, 则这个行列式的值等于.5. 行列式=100111010100111.6.行列式=-000100002000010n n .7.行列式=--001)1(2211)1(111n n n n a a a a a a .8.如果M a a a a a a a a a D ==333231232221131211,则=---=323233312222232112121311133333 3a a a a a a a a a a a a D .9.已知某5阶行列式的值为5,将其第一行与第5行交换并转置,再用2乘所有元素,则所得的新行列式的值为.10.行列式=--+---+---1111111111111111x x x x .11.n 阶行列式=+++λλλ111111111.12.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3,2,1,则该行列式的值为.13.设行列式5678123487654321=D ,j A 4)4,3,2,1(=j 为D 中第四行元的代数余子式,则=+++44434241234A A A A .14.已知db c a cc a b b a b c a cb a D =, D 中第四列元的代数余子式的和为.15.设行列式62211765144334321-==D ,j A 4为)4,3,2,1(4=j a j 的代数余子式,则=+4241A A ,=+4443A A .16.已知行列式nn D001030102112531-=,D 中第一行元的代数余子式的和为.17.齐次线性方程组⎪⎩⎪⎨⎧=+-=+=++0020232121321x x x kx x x x kx 仅有零解的充要条件是.18.若齐次线性方程组⎪⎩⎪⎨⎧=+--=+=++0230520232132321kx x x x x x x x 有非零解,则k =.三、计算题1.cb a db a dc a dc bd c b a d c ba d cb a++++++++33332222; 2.yxyx x y x y y x y x +++;3.解方程0011011101110=x x xx ; 4.111111321321221221221----n n n n a a a a x a a a a x a a a a xa a a a x ;5. na a a a 111111111111210(n j a j ,,1,0,1 =≠); 6. bn b b----)1(1111211111311117. n a b b b a a b b a a a b 321222111111111; 8.xa a a a x a a a a x a a a a x n nn 321212121;9.2212221212121111nn n nnx x x x x x x x x x x x x x x +++; 10. 21000120000021001210001211.aa a a a a aa a D ---------=110001100011000110001.四、证明题1.设1=abcd ,证明:011111111111122222222=++++dddd c c c c b b b b a a a a .2.3332221112333332222211111)1(c b a c b a c b a x c b x a x b a c b x a x b a c b x a xb a -=++++++.3.))()()()()()((111144442222d c b a c d b d b c a d a c a b d c b a d c b adc b a +++------=.4.∏∑≤<≤=----=nj i i jni innn nn nn n nna aa a a a a a a a a a a a a 1121222212222121)(111.5.设c b a ,,两两不等,证明0111333=c b a c ba 的充要条件是0=++cb a .参考答案一.单项选择题A D A C C D ABCD B B 二.填空题1.n ;2.”“-;3.43312214a a a a ;4.0;5.0;6.!)1(1n n --;7.1)1(212)1()1(n n n n n a a a ---; 8.M 3-; 9.160-; 10.4x ; 11.1)(-+n n λλ; 12.2-;13.0; 14.0; 15.9,12-; 16.)11(!1∑=-nk k n ; 17.3,2-≠k ; 18.7=k三.计算题1.))()()()()()((c d b d b c a d a c a b d c b a ------+++-; 2. )(233y x +-; 3. 1,0,2-=x ; 4.∏-=-11)(n k kax5.)111()1(00∑∏==-+-nk k nk k a a ; 6. ))2(()1)(2(b n b b ---+- ;7. ∏=--nk k kna b1)()1(; 8. ∏∑==-+nk k nk k a x a x 11)()(;9. ∑=+nk k x 11; 10. 1+n ;11. )1)(1(42a a a ++-. 四. 证明题 (略)第二章 矩阵一、单项选择题1. A 、B 为n 阶方阵,则下列各式中成立的是( )。
线性代数习题(带答案解析)
线性代数习题(带答案解析)第一部分专项同步练习第一章行列式一、单项选择题1.下列排列是5阶偶排列的是 ( ).(A) 24315 (B) 14325 (C) 41523 (D)243512.如果n 阶排列n j j j 21的逆序数是k , 则排列12j j j n 的逆序数是( ). (A)k (B)k n - (C)k n -2! (D)k n n --2)1(3. n 阶行列式的展开式中含1211a a 的项共有( )项.(A) 0 (B)2-n (C) )!2(-n (D) )!1(-n4.=0001001001001000( ). (A) 0 (B)1- (C) 1 (D) 25.=0001100000100100( ). (A) 0 (B)1- (C) 1 (D) 26.在函数1323211112)(x x x x x f ----=中3x 项的系数是( ).(A) 0 (B)1- (C) 1 (D) 27. 若21333231232221131211==a a a a a a a a a D ,则=---=323133312221232112111311122222 2a a a a a a a a a a a a D ( ). (A) 4 (B) 4- (C) 2 (D) 2- 8.若a a a a a =22211211,则=21112212ka a ka a ( ).(A)ka (B)ka - (C)a k 2 (D)a k 2-9.已知4阶行列式中第1行元依次是3,1,0,4-, 第3行元的余子式依次为x ,1,5,2-, 则=x ( ).(A) 0 (B)3- (C) 3 (D) 210. 若5734111113263478----=D ,则D 中第一行元的代数余子式的和为( ). (A)1- (B)2- (C)3-(D)011. 若22351011110403--=D ,则D 中第四行元的余子式的和为( ).(A)1- (B)2- (C)3- (D)012. k 等于下列选项中哪个值时,齐次线性方程组=++=++=++000321321321x x kx x kx x kx x x 有非零解.( )(A)1- (B)2- (C)3- (D)0二、填空题1. n 2阶排列)12(13)2(24-n n 的逆序数是.2.在六阶行列式中项261365415432a a a a a a 所带的符号是.3.四阶行列式中包含4322a a 且带正号的项是. 4.若一个n 阶行列式中至少有12+-n n 个元素等于0, 则这个行列式的值等于.5. 行列式100111010100111.6.行列式=-000100002000010n n .7.行列式=--001)1(2211)1(111n n n n a a a a a a .8.如果M a a a a a a a a a D ==333231232221131211,则=---=323233312222232112121311133333 3a a a a a a a a a a a a D .9.已知某5阶行列式的值为5,将其第一行与第5行交换并转置,再用2乘所有元素,则所得的新行列式的值为.10.行列式--+---+---1111111111111111x x x x .11.n 阶行列式=+++λλλ111111111 .12.已知三阶行列式中第二列元素依次为1,2,3, 其对应的余子式依次为3,2,1,则该行列式的值为.13.设行列式5678123487654321=D ,j A 4)4,3,2,1(=j 为D 中第四行元的代数余子式,则=+++44434241234A A A A .14.已知db c a cc a b b a b c a c b a D =, D 中第四列元的代数余子式的和为.15.设行列式62211765144334321-==D ,j A 4为)4,3,2,1(4=j a j 的代数余子式,则=+4241A A ,=+4443A A .16.已知行列式nn D001030102112531-=,D 中第一行元的代数余子式的和为.17.齐次线性方程组=+-=+=++0020232121321x x x kx x x x kx 仅有零解的充要条件是. 18.若齐次线性方程组=+--=+=++0230520232132321kx x x x x x x x 有非零解,则k =.三、计算题1. cb a db a dc a dc bd c b a d c b a d c b a++++++++33332222; 2.yxyx x y x y y x y x +++;3.解方程0011011101110=x x xx ; 4.111111321321221221221----n n n n a a a a x a a a a x a a a a x a a a a x;5. na a a a 111111111111210(n j a j ,,1,0,1 =≠);6. bn b b ----)1(1111211111311117. n a b b b a a b b a a a b 321222 111111111; 8.xa a a a x a a a a x a a a a x n nn 321212121;9.2212221212121111nn n nnx x x x x x x x x x x x x x x +++ ; 10. 2 1000120000021001210001211.aa a aa a a a aD ---------=1101100011000110001.四、证明题1.设1=abcd ,证明:011111111111122222222=++++dddd c c c c b b b b a a a a . 2.3332221112333332222211111)1(c b a c b a c b a x c b x a x b a c b x a x b a c b x a xb a -=++++++.3.))()()()()()((111144442222d c b a c d b d b c a d a c a b d c b a d c b a d c b a +++------=.4.∏∑≤<≤=----=nj i i jni innn nn nn n nna aa a a a a a a a a a a a a 1121222212222121)(111.5.设c b a ,,两两不等,证明0111333=c b a c ba 的充要条件是0=++cb a .参考答案一.单项选择题A D A C C D ABCD B B 二.填空题1.n ;2.”“-;3.43312214a a a a ;4.0;5.0;6.!)1(1n n --;7.1)1(212)1()1(n n n n n a a a ---; 8.M 3-; 9.160-; 10.4x ; 11.1)(-+n n λλ;12.2-;13.0; 14.0; 15.9,12-; 16.)11(!1∑=-nk k n ; 17.3,2-≠k ; 18.7=k三.计算题1.))()()()()()((c d b d b c a d a c a b d c b a ------+++-;2. )(233y x +-;3. 1,0,2-=x ;4.∏-=-11)(n k kax5.)111()1(00∑∏==-+-nk knk k a a ; 6. ))2(()1)(2(b n b b ---+- ; 7. ∏=--n k k kna b1)()1(; 8. ∏∑==-+nk k nk k a x a x 11)()(;9. ∑=+nk k x 11; 10. 1+n ;11. )1)(1(42a a a ++-. 四. 证明题 (略)第二章矩阵一、单项选择题1. A 、B 为n 阶方阵,则下列各式中成立的是( )。
线性代数习题解答(一)行列式
线性代数习题解答习题一1.计算以下行列式 2223333223(1)(2)53(1)7.15cos sin (2)cos sin 1.sin cos log 1(3)log log 1110.1log 11(4)(1)(1)(1) 1.1113(5)2111123212.120273(6)5415670451201037a a b b b b a a a a a a a a a a a a αααααα-=-⨯-⨯-=---=+==-=-=+=+-+-=+-=-+--=-++-=---=-++-2222456178.0(7)00.01(8)112.1a ba c abc abcbc c b ca abc abc b a +-=--=-+=----=-+++2.解方程(1) 111121.16x x =解 221212281,230,(1)(3)0,1, 3.x x x x x x x x +--=--=+-==-= (2)221220110.12220,20,(2)(1)0.1, 2.x x xx x x x x x x x x -=-++-=+-=+-===- 3.解下面的线性方程组21221222222112123123123131133132(2)()()()(),.().,.235(3)35549521036, 2.424,0,22452x ax a x bx b a b a b x a b a b a b x a b x a a a b ab x ab x a b x x x x x x x x x x x x x x x x x x ⎧+=⎪⎨+=≠⎪⎩-=-=-+=+=-+=-=-⎧⎨=+⎩-+=⎧⎪+-=⎨⎪-+=⎩-=⎧==-==⎨-=⎩=-+解解13123354 1.210x x x x x -=-+=-=⎧⎪=-⎨⎪=⎩12312312320(4)3251324x x x x x x x x x -+=⎧⎪+-=⎨⎪+-=⎩ 解1231231231231233121220 (1) 325 1 (2)32 4 (3)(1)(3)32 4 (4)(4)(2)3219/4 (5)43,3/4.322/4 (6)19/4222/4313/413.327281322/413/28473x x x x x x x x x x x x x x x x x x x x -+=⎧⎪+-=⎨⎪+-=⎩++-=-+=⎧==⎨+=⎩===-==123.281328472834x x x ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩4.求下列个排列的逆序数,并且说明它们的奇偶性: (1)4213 (2)542163(3)134782695 (4)(-1)(-2)21(1)(4213)1+2+1=4,(2)(542163)123039,(3)(134782695)42410,(4)((-1)(-2)21)12(1)(1)/2.4,4142,4n n n n n n n n n n k k n k k ττττ==++++==++==+++-=-=+=+ 解偶排列,3+5.确定i 和j 的值,使得9级排列(1) 1274i 56j 9成偶排列; (2)3972i 15j 4成奇排列.解(1) τ (127435689)=1+2+1+1=5,奇排列, 127485639为偶排列. (2) τ (397261584)=1+3+2+5+3+1+5=20, 397281564为奇排列.6.下列各项,哪些是五阶行列式||ij a 中的一项.若是,试决定该项的符号.132532415431124352244321351254(1)(2);(3)a a a a a a a a a a a a a a a解(1) 1325324154.a a a a a 行号按自然顺序排列,列号排列35214. τ (35214)=2+3+1=6,取正号.(2) 3112435224.a a a a a 列号2重复,不是行列式的项.(3) 43213512541221354354.a a a a a a a a a a =行号按自然序列,列号排列是21534. τ (21534)=1+1+1=3,取符号.7.根据行列式的定义计算下面的行列式:(2(1)1)112(1)2(1)2(1)(1)(1)121(1)/212(1)1010000002000(1)00000100000(1)!(1)!.00000(2)0(1).n n n n n n n n n n n n nn nnn n n n n n n n n a a a a a a a a a a a a a τ-----------=-=-=-((1)(2)1)(1)(2)/2000010000200(3)1000000000(1)!(1)!.n n n n n n nn n τ-----=-=-1111122222331542544455(4)000000.000000a b c d e a b c d e a b a b b a a b a b εε=+= 8.用行列式性质计算下列行列式32153320533205310032053(1)72284721847218410072184320533205310032053132053100721847218410072184172184100(7218432053)4013100.1(2)2()1112()02()0x y x y y x y y x y x x y x yx x yx y x y y x yx x y xy x y x yx+=+=+==-=+++=++++=+-=+--22332()()2().y x yxx y x xy y x y ---=+-+-=-+32222(3)2212()121212()00002().111100111100(4)11110011111111000011011101111()10a b c a b c b c ab ca c a ba b a b c b c ab ac a b a b a b c b c ac a b a b c x x y x x y y yyyyx y y xy y x yy x yxy xy xy xy y xy x y ++++++=++++++=++++++=+++--=+---=----=+=-+=-2.y9。
《线性代数》第一章行列式精选习题及解答
a1 ...
∏ a2
...
... ...
an ...
=
(a j − ai ) .
1≤i< j≤n
a1n−1
a
n−1 2
... ann−1
1.2.6 计算行列式的常用方法
1.利用对角线法则计算行列式,它只适用于 2、3 阶行列式;
2.利用 n 阶行列式定义计算行列式;
3.利用行列式的性质化三角形法计算行列式;
(C) 10 (D) 9
解 在排列 14536287 中,1 排在首位,逆序数为 0;4、5、6、8 各数的前面没有比它们
自身大的数,故这四个数的逆序数为 0;3 的前面比它大的数有 2 个(4、5),故逆序数为 2;
2 的前面比它大的数有 4 个(4、5、3、6),故逆序数为 4;7 的前面比它大的数有 1 个(8),
MM MM
M
11 1 1L2
1 −1 −1 −1 L −1
n +1 0 0 0 L 0
11 0 0L0
求和,故共有 n!项. 1.2.2 行列式的性质
1.行列式和它的转置行列式相等; 2.行列式的两行(列)互换,行列式改变符号; 3.行列式中某行(列)的公因子可提到行列式的的外面,或若以一个数乘行列式等于 用该数乘此行列式的任意一行(列);
4.行列式中若有两行(列)成比例,则该行列式为零; 5.若行列式的某一行(列)的元素都是两数之和,则此行列式等于两个行列式之和, 即
即 ( A31 + A32 + A33 ) + 2( A34 + A35 ) =0. 同理 2( A31 + A32 + A33 ) + ( A34 + A35 ) =0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《线性代数与解析几何》练习题
行列式部分
一.填空题:
1.已知
4
1
132
213
----=D 用ij A 表示D 的元素ij a 的代数余子式,则21222323______A A A --+=,
31323323____A A A --+=,行列式__________33
32
31
232221
13
1211
=A A A A A A A A A 2.
12434
003
209
1
064
1
2
a a a a a 的的代数余子式的值等于________。
3.设512
31212
3
122x x x D x
x
x
=
,则D 的展开式中3
x 的系数为______
4.4阶行列式1112131421222324144231323334414243
44
a a a a a a a a D a a a a a a a a a a =
展开式中含有因子的项为______和
______
5.行列式2342342
3
4
2
3
4
a a a a
b b b b D
c c c c d
d d d =
=______
6.设
x
x x x x f 3211322133
21)(=
则(4)_____f = 7.设
0112520842111111
15411521211111
1541132111111
3
2
3
2
3
2
=+
+
-x x x
x x x
x x x
上述方程的解______________________=x
8.行列式1
1
2
2334
4
0000
000
a b a b D b a b a =
=__________ 9.若齐次线性方程组⎪⎩⎪
⎨⎧=++=++=++0
00321321321x x x x x x x x x λλ 只有零解,则λ应满足_________条件。
10.若方程123123123
020kx x x x kx x x x x ++=⎧⎪
+-=⎨⎪-+=⎩有非零解,则k =_________或k =________。
11.行列式x
y y
y
x y y
y
x
=______ 12.行列式
1110
110110110111=
______
13.行列式
000000000
a
b c d
e f
=______
14.方程组1231232
12
31x x x x x x x x x λλλλλ++=⎧⎪
++=⎨⎪++=⎩ 有唯一解时,对λ的要求是______
二.计算题: 1.已知5阶行列式
270
513422111542131
12225
4321=
求434241A A A ++和4544A A +,其中ij A 是元素ij a 的代数余子式。
2.计算行列式9
1
7
31
30
2
11221111
------=
D
3.计算),,2,1,(3
21
321
321
321n i a x x a a a a x a a a a x a a a a x D i i n
n n n
=≠=
部分习题答案: 一、填空题
2. 123a a a
3.-5
4. 14422133a a a a 、14422331a a a a -
5. )()()()()()(
abcd b a c a d a c b d b d c ------ 6.0
8.))(
(
14142323a a b b a a b b --
10.-1、4
11、))
((2
2x y x y +-
12、3- 13.abdf - 14.1,2λλ≠≠-。