盾构机选型资料
盾构法施工机械设备选型案例
序号
主要穿越地层
隧道埋深(m)
地下水位(m)
盾构机或TBM类型
1
粉土、黏土、粉细砂、圆砾、卵石等16~2.516.8~21.8
土压平衡盾构机
2
砂质粉土、黏土、粉质黏土
5.39~18.68
2.15~4.67
土压平衡盾构机
3
灰色淤泥质黏土、灰色黏土、暗绿~草色黄色黏土、草黄色砂质粉土、灰色粉细砂
最高水头约10
泥水平衡盾构
4
淤泥、粉质黏土,中砂、粗砂分布较广,局部有全风化花岗岩、弱风化花岗岩
11~21
5.05~7.03
土压平衡盾构机
5
粉细砂、中粗砂、砾砂、粉质黏土、淤泥质土、灰岩微风化地层及土洞、溶洞
7.5~13.8
1.33~5.88
泥水平衡盾构机
6
第四系全新松散土层和侏罗系中统沙溪庙组泥岩,砂岩,砂岩主要为Ⅲ级,砂质泥岩主要为Ⅳ级。
2.当地下水压大于0.3MPa时,宜选用泥水平衡盾构机;如果采用土压平衡盾构机,则螺旋输送机难以形成有效的土塞效应,在螺旋输送机排土闸门处易发生渣土喷涌现象,引起土仓中土压力下降,导致开挖面坍塌。当水压大于0.3MPa时,如因地质原因需采用土压平衡盾构机,则需采用以下某一措施或若干措施的组合:①增大螺旋输送机的长度;②采用二级螺旋输送机;③采用保压泵;④通过渣土改良来有效提高渣土的抗渗性。
10~56
地下水不发育
敞开式硬岩掘进机
说明:
1.地层渗透系数对于盾构机选型是一个很重要的因素。通常,当地层渗透系数小于10-7m/s时,可以洗用土压平衡盾构机;当地层渗透系数在10-7~10-4“m/s之间时,既可以选用土压平衡盾构机,也可以选用泥水平衡盾构机;当地层渗透系数大于10-4m/s时,宜选用泥水平衡盾构机。根据地层渗透系教与盾构机型的关系,当地层以各种级配富水的砂层、砂砾层为主时,宜选用泥水平衡盾构机;其他地层宜选用土压平衡盾构机。
《盾构机分类及选型》课件
本课件将介绍盾构机的分类和选型,帮助您更好地了解和选择适合用于隧道掘进的特种土木工程机械设备。
作用: 盾构机通过推进的方式在地下隧道掘进过程中同时完成支撑和爆破土层的工 作。
结构和组成部件: 盾构机由主体结构、推进系统、导轨系统、排土系统、液压系统等部件组成。
优缺点: 矩形盾机具有适应性强、施工环境控制较好的优点,但刀盘转动较为复杂,构造复杂度较高。
开式盾构机
开式盾构机是一种常见的盾构机结构形式。
基本结构: 开式盾构机由盾体、刀盘、推进室等部分组成,前部没有闭合的壳体。
工作原理: 开式盾构机通过刀盘的旋转挖掘土层,同时进行支撑和排土工作。
适用工程特点和范围: 开式盾构机适用于软弱土层、沉积层等多种地质条件下的隧道掘进工程。
优缺点: 圆盾机具有掘进速度快、施工效率高的优点,但在硬岩地层中的适用性较差。
矩形盾机
矩形盾机是另一种常见的盾构机类型。
基本结构: 矩形盾机由盾体、刀盘、推进室等部分组成。
工作原理: 矩形盾机通过刀盘的旋转和前铰链的作用挖掘土层,同时推进室内进行支护,实现隧道的掘进。
适用工程特点和范围: 矩形盾机适用于较硬的地层,如岩石、玄武岩等,能够应对不同地质条件下的隧道工程。
盾构机的分类
盾构机可按照不同的方式进行分类。
按推进方式分类: 圆盾机和矩形盾机。
按盾构机构型分类: 开式盾构机和封闭式盾构机。
圆盾机
圆盾机是一种常见的盾构机类型。
基本结构: 圆盾机由盾体、刀盘、推进室等部分组成。
工作原理: 圆盾机通过刀盘的旋转挖掘土层,同时推进室内进行支护,实现隧道的掘进。
适用工程特点和范围: 圆盾机适用于软弱土层、淤泥层、砂质土层等多种地质条件下的隧道掘进工程。
盾构机的分类及选型
2.盾构机选型的其它条件 除了地质条件以外的盾构机选型的制约条件还很多,如工期、造价、环境 因素、基地条件等。
工期制约条件
因为手掘式与半机械式盾构机使用人工较多,机械化程度低,所以施工进度慢。 其余各类型盾构机因为都是机械化掘进和运输,平均掘进速度比前者快。
造价制约因素
一般敞口式盾构机的造价比密闭式盾构机低,主要原因是敞口式盾构机个象密 闭式盾构机那样有复杂的后配套系统,在地质条件允许的情况下,从降低造 价考虑,宜优先选用敞口式盾构机。
盾构类型与水压的关系
• 当水压大于0.3MPa时,适宜采用泥水盾构。 如采用土压平衡盾构,螺旋输送机难以形 成有效的土塞效应,在螺旋输送机排土闸 门处易发生碴土喷涌现象,引起土仓中土 压力下降,导致开挖面坍塌。 • 当水压大于0.3MPa时,如因地质原因需采 用土压平衡盾构,则需增大螺旋输送机的 长度,或采用二级螺旋输送机。
1995年
盾构选型的基本原则
开挖面稳定 地层的适应性 地下水处理 沉降 施工适宜性 安全性 辅助工法 环境及公害
盾构类型与渗透性的关系
地层渗透系数
卵石层 粗砂砾层 中细砂砾层 粉细砾层 粗砂层 中砂层 细砂层 淤泥质粘土 淤泥
渗 透 系 数
–– –– –– –– –– –– –– –– –– –– –– –– –– ––
我国典型地区盾构选型
我国盾构应用较多或较早的地区是上海、 广州及北京地区,可以说这三个地区分别代 表了我国三大区域的土层特征,盾构特征。 上海是软土区域,广州是软弱不均区域,北 京是砂卵石地层为特点。
1. 根据地质条件选择盾构机类型
砂质土类自立性能较差的地层,应尽量使用密闭型的盾构施工。若 为地下水较丰富且透水性较好的砂质土,则应优先考虑使用泥水平衡 盾构;对粘性土,则可首先考虑土压平衡盾构。砂砾和软岩等强度较 高的地层自立性能较好,应考虑半机械式或敞口机械式盾构施工。因 在相同条件下,盾构复杂,操作困难,造价高,反之,盾构简单,制 造使用方便,造价低。 针对地下水条件,若其压力值较高(大于0.1MPa),就应优先考虑 使用密封型的盾构,以保证工程的安全,条件许可也可采用降水或气 压等辅助方法。 对于砾径较小的地层,可以考虑各种盾构的使用。若砾径较大,除自 立性能较好的地层可考虑采用手掘式或半机械式盾构外,-般应使用 土压平衡盾构,若需采用泥水平衡盾构的话,须增加一个鳄式碎石机, 在输出泥浆前,先将大石块粉碎。
盾构机械设备的性能及选型分析
盾构机械设备的性能及选型分析1. 引言盾构机作为现代地下隧道施工的重要设备,在城市建设和基础设施建设中发挥着重要作用。
本文将对盾构机械的性能和选型进行详细分析,以帮助工程设计师和施工方在选择合适的盾构机械设备时做出明智的决策。
2. 盾构机械设备性能分析2.1 掘进能力盾构机械设备的掘进能力是评估其性能的一个重要指标。
掘进能力取决于盾构机的驱动力、推进速度以及其刀盘的结构设计和材料选择。
在选型过程中,需根据隧道的地质条件、长度和直径等因素综合考虑,选择具备充足掘进能力的盾构机。
2.2 安全性能盾构机械设备在施工过程中需要保证施工人员的安全。
因此,选型时应关注盾构机的安全性能表现,如智能监测系统、紧急停车装置、防震减振装置等。
这些装置的应用将最大程度地减少事故发生的可能性,确保施工人员的生命安全。
2.3 自动化程度近年来,随着科技的发展和智能化水平的提高,盾构机械设备的自动化程度越来越高。
自动化程度的提升不仅可以提高施工效率,还可以降低人工操作的风险。
选型时需根据具体工程需求和施工条件,选择自动化程度适宜的盾构机械设备。
2.4 维护保养成本盾构机械设备的维护保养成本包括设备的维修费用、易损件的更换费用以及设备故障停机带来的经济损失等。
选型时应考虑设备维护保养的难易程度、易损件的价格和更换周期等因素,并综合评估维护保养成本的经济性。
3. 盾构机械设备选型分析3.1 地质条件分析地质条件对盾构机械设备的选型至关重要。
需要考虑的地质因素包括地层稳定性、岩性和土壤类型等。
对于不同地质条件,应选择适宜的盾构机械设备,如硬岩盾构机、软土盾构机或土压平衡盾构机等。
3.2 隧道长度和直径隧道长度和直径直接影响到盾构机械设备的选型。
隧道长度较短、直径较小的工程可选择较小、灵活的盾构机械设备,而对于长隧道和大直径隧道的工程,则需要选择大型、高性能的盾构机械设备。
3.3 工期和成本工期和成本是盾构机械设备选型时需要综合考虑的因素。
盾构机类型和选用原则
盾构机类型和选用原则
盾构机是一种用于隧道挖掘的工程机械,根据不同的工程需求和地质条件,盾构机可以分为以下几种类型:
1. 泥水式盾构机:适用于软弱的土层或泥水地层,通过泥水压力平衡掌子面的水土压力。
2. 土压平衡式盾构机:适用于粘性土层或砂土质地层,通过土压力平衡掌子面的水土压力。
3. 硬岩盾构机:适用于坚硬的岩石地层,通过刀具切割岩石实现掘进。
4. 混合式盾构机:适用于地质条件复杂的地层,可以同时使用泥水式和土压平衡式两种方式进行掘进。
在选用盾构机时,需要考虑以下原则:
1. 地质条件:根据隧道穿越的地质条件,选择适合的盾构机类型。
2. 工程规模:根据隧道的长度、直径和曲率等工程规模,选择适当的盾构机尺寸和性能。
3. 施工环境:考虑施工现场的环境条件,如地下水位、周边建筑物等,选择适合的盾构机类型。
4. 工程进度:根据工程进度要求,选择能够满足施工进度的盾构机。
5. 经济效益:综合考虑盾构机的购置成本、运行成本和维护成本等因素,选择经济效益最佳的盾构机。
选用合适的盾构机对于隧道工程的顺利进行和施工质量至关重要,需要根据具体情况进行综合考虑和决策。
盾构选型
盾构选型盾构选型包括盾构机选型与衬砌选型两个方面。
1.盾构的种类与选型盾构机是一种用钢板作成圆筒形结构的活动支撑,是通过软弱、含水地层,特别在海底、河底、城市内修建隧道的一种施工机械。
在盾构的支护下,可安全地进行掘进和衬砌。
盾构施工法是使用盾构机在地下掘进,边防止开挖面土砂崩塌边在机内安全地进行开挖作业和衬砌作业从而构筑成隧道的施工方法。
因此,盾构施工法是由稳定开挖面、盾构机挖掘和衬砌三大要素组成。
一般地,按开挖面与作业室之间隔墙构造可分为敞式、半开敞式及密封式三种。
密封式又可分为泥水加压式盾构和土压平衡式盾构。
泥水加压式盾构,是在切削刀盘后方设隔墙将盾构封闭起来,压力泥水送入此隔墙与掌子面之间的所谓泥水室,用泥水压力形成承压面,以抵抗地层水压,防止开挖面的塌方。
用切削刀盘进行开挖,切削下来的砂土经搅拌机搅拌成泥浆,由泥浆泵经排泥管道抽出,输送到地面泥水处理场。
一面切削,一面用千斤顶向前推进盾体,至一个衬砌管片宽度时,用盾尾拼装机进行管片安装。
泥水加压盾构有盾尾的漏水以及难以确认开挖面状态及刀具磨耗等确点,还需要较大的泥水处理场地。
泥水加压盾构对于不稳定的软弱地层或地下水位高,含水砂层,粘土以及冲积层以及洪积层等流动性高的土质,使用效果较好。
泥水加压平衡盾构具有土层适应性强、对周围土体影响小、施工机械化程度高等优点。
根据日本的实践,在砂层中进行大断面、长距离推进的盾构机,大多采用泥水加压式盾构机。
实践证明,掘进断面越大,用泥水加压式盾构机的效果越好。
泥水加压式盾构机除在控制开挖面稳定以减少地面沉降方面较为有利外,还在减少刀头磨损、适应长距离推进方面显示出优越性。
土压平衡盾构是在切削刀架及螺旋输送机内部充填的土砂所产生的压力与开挖面的土压保持平衡。
施工中一边掘进,一边控制推进千斤顶推力、推进速度、刀盘和螺旋输送机回转扭矩、速度以及闸门千斤顶的开口度,使之不断与开挖面的土压保持平衡。
有软稠度的粘质粉土和粉砂是最适合使用土压平衡式盾构机的土层。
盾构机分类及选型课件
压缩空气辅助盾构机
适用于含水地层掘进,通过压缩空气在切削刀盘前方形成一道气幕,防止泥水 进入切削仓。同时,压缩空气还能起到排土和平衡压力的作用。
按排渣方式分
机械排渣盾构机
盾构机工作原理
盾构机在工作时,首先通过刀盘旋转将地层切削下来,然后 由运输设备将切削下来的土渣运出隧道,接着由拼装机将预 制的混凝土管片拼装成隧道衬砌,最后通过注浆系统将隧道 固定。
盾构机在工作时需要配合使用多种辅助技术,如地层加固、 泥水加压、气压保护等,以保证施工安全和隧道质量。
盾构机发展历程
适用于中小型隧道掘进,通过螺旋输 送机将切削下来的土体排出。机械排 渣盾构机结构简单、维护方便,但排 渣能力有限。
泥水加压盾构机
适用于大断面隧道掘进,通过泥水加 压将切削下来的土体通过泥浆管路输 送到地面处理。泥水加压盾构机排渣 能力强,适用于大断面、长距离掘进 。
按适用地层分
硬岩盾构机
适用于岩石地层掘进,通过硬岩 刀具切削岩体。硬岩盾构机切削 效率高,但刀具磨损较大,需要 定期更换。
果和经济效益。
专家评估
邀请盾构机专家或顾问 对不同型号的盾构机进 行评估,提供专业意见
和建议。
04
盾构机应用实例
开敞式盾构机应用实例
开敞式盾构机主要用于挖掘隧道和地下通道,其工作原理 是通过旋转刀盘切割土体,同时将切削下来的土体排出, 形成隧道。这种盾构机适用于地层较为单一、岩石较少的 地区,如河床、平原等。
工期要求
根据施工计划和工期要求,选 择能够满足工期要求的盾构机 型号。
盾构机选型
盾构机机型选择正确与否是盾构隧道工程施工成败的关键。盾构工法 应用160多年来,因盾构选型欠妥或者不恰当,致使隧道施工过程出现事故 的情况很多。如:选型不恰当,掘削面喷水,掘进被迫停止;掘削面坍塌 致使周围建筑物基础受损;地层变形、地表沉降,致使地下管道设施受损, 引起管道破裂,造成喷水、喷气、通讯中断、停电等事故。严重时整条隧 道报废的事例也屡见不鲜。由此可见,盾构选型工作的重要性。
冲积粘土
冲积粘土一般强度非常低,若其自然含水率接近或超过液限,掘削 面则不能自稳,故一般应选择半密闭式盾构(挤压式)或密闭式盾构。 (1)当整个掘削断面和施工沿线均是N值为0~5的软弱粉砂及粘土地 层时,宜采用挤压式盾构施工法。 但是,该工法在施工过程中要挤压盾构周围的地层,并贯入推进, 其推挤压力可能扰乱地层,使地层先行隆起。从盾构机通过后直到被 扰乱地层获得稳定期间,不可避免地会引起一定程度的沉降,且沉降 量大。 (2)对于含砂量大、有硬软交错层、液限指数过大并含有砾石等冲积 粘土层,宜采用密闭式(泥水式或土压平衡式)盾构机。
砂质土
洪就砂质土而言,一般情况下泥水盾构和土压盾构均可选用。 (1)泥水盾构:若含水砂地层具备以下条件:渗水系数K≥10-2 cm/ s、74μ m以下的微细颗粒含量低于10%、匀粒系数Uc<10,采用泥水盾 构时,掘削面易坍塌,很难确保掘削面稳定。这种情况下不宜再选泥 水盾构。覆盖土薄且渗水系数大的砂层掘削中,易出现地表逸泥,也 应注意。 (2)泥土盾构:可以调节添加材的浓度和数量来适应砂土和粘土交错 层掘削的土质变化,所以泥土盾构机是最适用的。但泥土充填是否密实、 均匀及对掘削面土压的正确检测都非常重要,同时必须充分注意切削刀 形状、搅拌机械等机械的选择。
洪积粘土
洪积粘土一般N值大,含水率低、掘削面能够自立。此外,因抗剪力 大,变形小,故可无需挡土隔板。 (1)在掘削面可以长时间自立的情况下,宜采用敞开式盾构工法,包 括手式盾构、半机械式盾构、机械式盾构工法,同时辅以压气工法以 增加掘削面稳定性。 (2)一般全线掘削面都是洪积粘土的情况非常少,很多的情况是夹层 中夹有含水砂层,这时选用封闭式盾构机。 使用密闭式盾构机时,由于含水低的固结粘土吸水后粘附力增加, 所以对周边支承式或中间式刀盘来说,易产生刀盘、土舱四周粘附压 实固结粘土的现象。为此,多采用中心轴支承方式、轮辐刀盘掘削且 搅拌效果好的加泥盾构机或气泡盾构机。
盾构机选型标准
盾构机选型标准(总5页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--1、盾构机选型依据地铁区间,线路总长:隧道埋深9~13米。
隧道洞身大部分处于残积层中,局部地段穿越花岗岩、辉绿岩全、强风化带或断层破碎带,结构松散,易软化、变形,产生坍塌。
花岗岩层面起伏大,存在差异风化现象。
地下水按赋存条件分为第四系孔隙潜水和基岩裂隙水,砂层中具承压性。
主要补给来源为大气降水。
地下水埋深~米。
盾构隧道内径:5400mm,管片厚度:300mm,隧道外径:6000mm。
标准管片宽度:1200mm,分块数:6块。
本盾构隧道区间采用两台盾构机。
盾构机由站西端下井始发,推进至站东站起吊出井。
隧道地质情况、工程要求、环境保护要求、经济比较、地面施工场地大小等因素是盾构选型的基本依据。
根据国内外盾构施工经验与实例,我们认为,盾构机的选型必须满足以下几个要求:必须确保开挖空间的安全和稳定支护;保证隧道土体开挖顺利;保证永久隧道衬砌的安装质量;保证隧道开挖碴土的清除;确保盾构机械的作业可靠性和作业效率;保证地面沉降量在要求范围内;满足施工场地及环保要求。
2、不同开挖模式的工作原理盾构机的型式与工作特点目前世界上流行的盾构机按开挖模式主要可以分为两大类:敞开式与密闭式。
敞开式指盾构机的开挖面与机内的工作室间无隔板或隔板的某处设置可调节开口面积的出土口。
开挖面基本依靠开挖土体的自立保持稳定。
敞开式适用于地层条件简单、自立性好且无地下水的地层。
密闭式盾构机是在盾构机的开挖面与机内的工作室间设置隔板,刀盘旋转将开挖下来的碴土送入开挖面和隔板间的刀盘腔内,由泥水压力或土压或气压提供足以使开挖面保持稳定的压力。
密闭式盾构机适用于地层变化复杂、自立条件较差、地下水较丰富的地层,因为采用密闭式掘进可以有效地保证开挖面的自立与稳定,保证施工安全。
密闭式盾构机主要分为泥水平衡式、土压平衡式两类,代表了不同的出土方式和不同工作面土体平衡方式的特点,但适用地质与范围有一定的区别。
盾构选型与配置要求
盾构选型与配置要求一、引言盾构机是一种用于地下隧道施工的机械设备,通过推进和控制盾体实现地下隧道的开挖和衬砌。
盾构机的选型与配置要求是保证工程施工顺利进行的关键。
本文将从盾构机选型与配置背景、盾构机选型要求、盾构机配置要求、技术要求等方面进行分析。
二、盾构机选型与配置背景随着城市化进程的加快和交通网络的不断扩展,地下隧道建设的需求逐渐增加,盾构机作为地下隧道施工主要设备之一,承担着巨大的施工任务。
在盾构机选型与配置时,需要考虑工程的具体需求,包括隧道的长度、直径、土层情况、地质条件等,以及施工周期、施工速度要求等因素。
三、盾构机选型要求1.适应地质条件:盾构机选型时需要根据地质条件选择合适的机型。
地质条件复杂的地区,如软黏土层、水下隧道等,需要采用具有较强适应性的盾构机。
2.考虑工程参数:盾构机选型要考虑隧道的直径、长度、弯曲半径等工程参数,选用合适的机型。
一般情况下,隧道直径较小的可以选择小型盾构机,隧道直径较大的可以选择大型盾构机。
3.考虑施工速度要求:盾构机选型时需要考虑施工周期和施工速度要求。
如果施工周期较紧迫,需要选择具有较高推进速度和装备配置的盾构机。
四、盾构机配置要求1.推进系统:盾构机的推进系统是保证施工进度的关键,需要配置具有较高推进力和推进速度的系统。
推进系统的配置要充分考虑地质条件、隧道直径等因素。
2.壁厚控制系统:盾构机的壁厚控制系统需要精确控制衬砌的厚度,以保证隧道的结构安全。
配置的壁厚控制系统要具备高精度和稳定性。
3.螺旋输送系统:盾构机的螺旋输送系统负责将挖出的土方料送出隧道,需要配置高效稳定的螺旋输送系统,以保证施工的连续性和效率。
五、技术要求1.控制系统:盾构机的控制系统需要具备高精度、高稳定性,并能保持与其他系统的协调工作。
控制系统的配置要根据盾构机的使用特点和需求进行选择。
2.故障诊断系统:盾构机的故障诊断系统可以及时发现和解决机械故障,提高施工的效率和安全性。
盾构类型及选型—参考资料
渗透系数
k<10-7m/s—土压式 10-7m/s<k<10-4m/s—土压、泥水式 k>10-4m/s—泥水式
颗粒粒径
粘土、粉土含量> 40%—土压式 粘土、粉土含量 < 40%—泥水式
地下水压
水压<0.3Mpa—土压式 水压>0.3Mpa——泥水式
土压式盾构: 粉土、粘土、 淤泥质粉土层 泥水式盾构: 河底、海底等高水压的中、粗砂、砾石、卵石地层
盾构选型
盾构的选型
◆ 是指采用何种盾构来施工。 ◆ 直接关系到隧道的顺利施工与否,选型不当会导致施工 停顿、地表变形过大、工程造价严重超支等不良后果。 ◆ 选型的过程是技术性与经济性等条件综合评判的过程, 盾构越复杂、操作要求就越高、造价也会越高。选型的目的就 是要选出既安全可靠,又能保证合理进度与造价的盾构。
其他地层或地层组合采用土压平衡盾构机是合理的。
盾构的选型
细颗粒含量较多时,易充满整个土舱,从而建立土舱压力以平衡开挖面的 土压。因此,大体上当岩土粉粒和粘粒的总量达到40%以上时,通常会选用土 压平衡盾构机,相反的情况选择泥水盾构。粉粒的绝对大小通常以0.075mm为界。
盾构的选型
1.地质条件与水文地质条件
选型步骤
1.闭胸式还是敞开式; 2.泥水式还是土压式; 3.主要部件选择:刀盘、刀具、螺旋输送机; 4.主要参数计算:刀盘直径、开口率、转速、扭矩、功率, 推力,掘进速度,螺旋输送机功率等; 5.后配套设备选择。
ቤተ መጻሕፍቲ ባይዱ构的选型
盾构选型依据-地质水文-渗透系数
若地层以各种级配富水的砂层、砂砾层为主时,选择泥水加压式盾构 机是适合的。
盾构的选型
盾构选型必须满足以下三个技术问题: 1、支护:用什么支护形式来保护正面土体,确保在盾构推 进过程中,保持开挖面稳定。(稳得住) 2、开挖:用什 么刀具开挖正面土体。(掘得进) 3、排土:开挖下来的土渣,用什么排土方式可以迅速排土, 使土舱内土渣排排出速度与开挖速度相符。(排得出)
盾构机选型汇报材料
三、主驱动装置
1)、刀盘变频电机驱动及输出特性 • 两台盾构机切削刀盘均通过6个中间支撑梁和主轴承安 装在盾构机切口环上,由10台55kW总功率550kW的变 频减速电机驱动。具有启动时电机频率很低(解决了启 动时电流大的问题),脱困力矩可达120%,并且能保 持各驱动电机同步等特点。 • 小松盾构机刀盘转速在0.3~0.8rpm时具有恒扭矩输出, 0.8~1.3rpm时具有恒功率输出,额定扭矩(100%) 时为6434kN-m ,扭矩在120%时,为7721kN-m。IHI 盾构机刀盘转速为0~1.7rpm额定扭矩(100%)时为 4810kN-m ,扭矩在120%时,为5772kN-m,均能满 足各种地质条件对扭矩和转速的要求。
六、皮带输送机系统
• 两台盾构机皮带机均由一台37kW电 机驱动,小松机理论运输量为 500m3/h,IHI机理论运输量为 400m3/h,均能满足碴土输送的要 求。
七、铰接系统
• 铰接装置均为为主动铰接形式,铰接油缸安装 在前后壳体上、铰接处有防水密封,小松盾构 机前后盾构最大左右弯曲1.5度、上下弯曲1.0度, IHI盾构机最大左右弯曲1.0度、上下弯曲0.5度。 • 前体与中体的铰接部分设置有一道密封,在密 封处中体上涂有一层特殊涂料,铰接密封设计 实验可耐1MPa水压,能够保证开挖过程中地下 水不会由此处进入到盾构内部。
树兜站
L=539.9m
斗门站
L(下行线)=1033.491m L(上行线)=1013.393m
福州火车 站站
2013.6.15
2013.3.25
2013.7.15
2013.12.3
火-斗区间:盾构机从树兜站吊出,转场至斗门站东端,下井二次 始发;下行线2013年7月15日始发,上行线2013年7月15日始发,2014 年1月2日完成区间双线隧道施工。
盾构机选型的方法和步骤
盾构机选型的方法和步骤盾构机是隧道施工中的重要设备,正确的选型对于工程的顺利实施至关重要。
以下为盾构机选型的方法和步骤:1.确定隧道类型首先需要确定隧道工程的类型。
根据隧道的设计要求,可以分为交通隧道、水利隧道、市政隧道等。
不同类型的隧道对盾构机的需求和性能要求不同。
2.确定隧道尺寸根据隧道的设计要求,需要确定隧道的尺寸。
这包括隧道的直径、长度以及曲率半径等。
盾构机的尺寸必须与隧道尺寸相匹配,以满足施工要求。
3.确定地质条件地质条件是选择盾构机的重要因素之一。
需要对工程场地的地质条件进行详细勘察和分析,包括土质类型、地下水位、岩石强度等。
根据地质条件,选择适合的盾构机和刀具。
4.确定推进速度推进速度是盾构机的重要参数之一。
需要根据隧道施工的要求和盾构机的性能,确定合适的推进速度。
推进速度过快可能导致盾构机控制难度增加,过慢则可能影响施工效率。
5.确定出土方式盾构机在挖掘过程中需要将土石运出隧道。
根据工程需要和场地条件,可以选择不同的出土方式,如机械出土、水力出土等。
选择合适的出土方式有助于提高施工效率和质量。
6.确定控制系统控制系统是盾构机的核心部分之一。
需要根据盾构机的性能和施工要求,选择合适的控制系统。
控制系统应具有稳定性、可靠性和灵活性等特点,能够实现对盾构机的精确控制。
7.确定辅助系统辅助系统是盾构机的重要组成部分,包括注浆系统、通风系统、照明系统等。
需要根据隧道施工的要求和场地条件,选择合适的辅助系统,以提高施工效率和质量。
8.确定刀具和盾构材料最后需要确定盾构机的刀具和材料。
刀具的类型和数量应根据地质条件和隧道尺寸来确定。
同时,盾构机的材料也应根据工程需要和场地条件进行选择,如钢铁、合金等。
综上所述,盾构机的选型需要综合考虑隧道类型、尺寸、地质条件、推进速度、出土方式、控制系统、辅助系统和刀具及盾构材料等多个方面因素。
只有在全面了解并分析这些因素后,才能选择出最适合工程需求的盾构机,从而确保隧道施工的顺利进行和质量要求的达成。
盾构机选型要点及盾构施工条件与现场布置
【考点】盾构机选型要点一、盾构类型与适用条件(一)盾构类型(1)按支护地层的形式分类,主要分为自然支护式、机械支护式、压缩空气支护式、泥浆支护式、土压平衡支护式5种类型(见图1K413031-1)。
(2)按开挖面是否封闭划分,可分为密闭式和敞开式两类。
按平衡开挖面土压与水压的原理不同,密闭式盾构又可分为土压式(常用泥土压式)和泥水式两种。
敞开式盾构按开挖方式划分,可分为手掘式、半机械挖掘式和机械挖掘式三种(见图1K413031-2)。
(3)按盾构的断面形状划分,有圆形和异型盾构两类,其中异型盾构主要有多圆形、马蹄形、类矩形和矩形,目前在国内轨道交通建设中,已有双圆马蹄形、矩形和类矩形盾构应用。
(二)盾构机的刀盘配置盾构的刀盘主要由刀盘体、刀具、磨损检测器、搅拌棒、泡沫及膨润土管路等零部件组成。
刀盘体由钢结构焊接而成,刀具可分为:滚刀、切刀、边缘刮刀、仿形刀、保径刀、先行刀、中心刀等。
刀盘是机械化盾构的掘削部件,刀盘结构应根据地质适应性的要求进行设计,以适合围岩条件,并保证开挖面稳定的前提下,提高掘进速度。
刀盘设计时,应充分考虑刀盘的结构形式、支承方式、开口率、开口大小和分布、刀具的布置等因素。
刀盘具有三大功能:(1)开挖功能。
刀盘旋转时,刀具切削隧道开挖面的土体,对开挖面的岩土层进行开挖,开挖后的渣土通过刀盘的开口进入土仓。
(2)稳定功能。
支撑开挖面,具有稳定开挖面的功能。
(3)搅拌功能。
对于土压平衡盾构,刀盘对土仓内的渣土进行搅拌,使渣土具有一定的塑性、流动性并在一定程度上避免形成“泥饼”的作用。
盾构的刀盘结构形式与工程地质情况有着密切的关系,不同的地层应采用不同的刀盘结构形式:土压平衡盾构的刀盘有两种形式——面板式和辐条式。
(1)面板式刀盘开口率相对较小,面板直接支撑面,有挡土功能,有利于切削面稳定,但在开挖黏土层时,易发生黏土粘附面板表面影响开挖效率的情况,防止措施是注入改良材料等。
(2)辐条式刀盘开口率大,土砂流动顺畅,不易堵塞,土仓压力能有效作用于开挖面,但一般不能安装滚刀,且中途换刀安全性较差。
盾构机选型方案
盾构机选型方案盾构机是一种用于地下隧道施工的机械设备,其选型方案涉及多个因素,包括隧道长度、地质条件、工期要求、施工环境等。
以下是一个完整的盾构机选型方案,包括机械选型、设备配置、施工参数等。
首先,根据隧道长度确定盾构机的类型。
通常情况下,盾构机可分为硬岩盾构机、软土盾构机和混合地质盾构机。
对于隧道长度较短且地质情况良好的项目,可以选择硬岩盾构机。
而对于地质条件复杂、隧道长度较长的项目,则需要选择适合软土和围岩的盾构机,如可转体和伸缩型盾构机。
其次,根据地质条件和工期要求确定盾构机的口径。
盾构机的口径通常与隧道的设计口径相对应,一般在地质勘察报告中会给出推荐的盾构机口径范围。
根据隧道工程的方案设计,选择适当的盾构机口径,以保证施工质量和施工效率的平衡。
再次,根据施工环境确定盾构机的工作方式。
盾构机的工作方式可分为开挖式和顶管式两种。
开挖式盾构机适用于较稳定的地下环境,可以直接在地下开挖隧道;而顶管式盾构机适用于地下环境不稳定的工程,需要同时进行隧道开挖和管片施工。
根据工程要求选择合适的工作方式,确保施工的平稳进行。
然后,确定盾构机的设备配置。
盾构机的设备配置包括刀盘结构和推进机构。
刀盘结构可根据地质条件选择不同类型的刀盘,如开盘式刀盘、密闭式刀盘和改良刀盘等。
推进机构则包括盾构机的推进系统和液压系统,需要根据工程要求选择推进速度和施工压力等参数。
最后,确定盾构机的施工参数。
盾构机的施工参数包括推进速度、土压平衡和泥水平衡等。
推进速度主要根据工期要求和施工效率确定。
土压平衡用于在软土或水中施工,通过对推进腔进行注浆,保持盾构机的平衡。
泥水平衡则用于固化土层或固结液中施工,通过在推进腔内与土层或固结液之间形成一层平衡泥浆,来实现施工。
综上所述,盾构机的选型方案需要综合考虑隧道长度、地质条件、工期要求和施工环境等多个因素,并根据工程要求确定机械选型、设备配置和施工参数等。
选择合适的盾构机和施工方案,可以提高施工效率,保证施工质量,降低工程风险。
盾构机选型方案范文
盾构机选型方案范文一、背景介绍随着城市化进程的加快,地下空间的利用变得越来越普遍,盾构机广泛应用于地铁、隧道等工程中。
在选择盾构机类型时,需要综合考虑施工工程条件、地质情况、施工周期等因素。
二、盾构机选型因素1.盾构机直径:盾构机直径应根据隧道设计要求确定。
直径较小的盾构机适用于地下维修、水管隧道等工程,直径较大的盾构机适用于地铁、隧道等大型工程。
2.地质条件:地质条件是选择盾构机类型的重要因素之一、如地下有软土、沙土等地质情况,选择压力平衡式盾构机;如地下有硬岩、岩层等地质情况,选择土压平衡式盾构机或开挖式盾构机。
3.施工工程条件:施工工程条件包括施工地面空间、施工时间限制、施工环境等因素。
如果施工空间有限,可以选择小型盾构机;如果需要快速施工,可以选择高性能盾构机;如果施工环境恶劣,可以选择特殊材质的盾构机。
4.施工周期:施工周期直接影响了盾构机的选型。
如施工周期较短,可以选择高效盾构机;如施工周期较长,可以选择自适应盾构机,能够适应不同地质条件。
5.维护保养成本:盾构机的维护保养成本也是选择盾构机的重要因素之一、通常来说,市场上成熟的盾构机品牌维护成本较低,而一些不成熟的盾构机品牌维护成本较高。
三、盾构机选型方案1.根据隧道直径确定盾构机类型:根据隧道直径进行筛选,如直径小于6米使用小直径盾构机,直径为6-12米使用中直径盾构机,直径大于12米使用大直径盾构机。
2.根据地质条件选择盾构机类型:针对地质条件,选择合适的盾构机类型。
如对于软土、沙土等地质情况,选择压力平衡式盾构机;对于硬岩、岩层等地质情况,选择土压平衡式盾构机或开挖式盾构机。
3.根据施工工程条件选型:考虑施工环境、施工空间、施工时间限制等因素,选择适合条件的盾构机。
如在施工空间有限的情况下,选择小型盾构机;在施工时间限制较为严格的情况下,选择高效盾构机。
4.考虑盾构机品牌和维护保养成本:选择市场上知名的、维护成本较低的盾构机品牌,避免维护保养成本过高。
(完整版)盾构机选型方案
• 3、2015年6月27日业主组织专家到我司盾构维修基地对盾 构进行考察并形成专业的考察报告。
• 4、本次会议对完善后的盾• 工程概况
• 盾构机适应性分析
• 盾构机相关配置
• 刀盘刀具优化方案
推 进 系 统 油 缸 分 布 图
三、盾构机相关配置
• 螺旋输送机配置
螺旋输送机由一个液压马达驱动,在0~22rpm范围内无级调速, 正反转运行,可以很好的控制出土量。
螺旋输送机功率200KW、直径d=900mm、长度L=12m,额定出土量 400m3/h。
在土仓壁与螺旋机连接处设有前闸门,螺旋机后端设有出土闸门。 出土闸门设有闸门紧急关闭系统。在螺旋机的不同位置截面设有注入 孔,可以向螺旋输送机圆周的孔注入膨润土或泡沫。
盾构采用VMT公司SLS-T激光导向系统,盾构的姿态可以随时反映在操作 室内,从而可以对盾构的姿态随时进行灵活的调整,保证盾构在软硬 不均地段掘进保持良好的盾构姿态。
二、盾构选型及适应性分析
• 对曲线段施工的适应性
本标段工程的工程最小曲线半径为300m,盾构机的设计最小转弯 半径为采用1.5m管片时250m,同时我司采用1.5m宽的管片顺利通过广 州地铁四号线盾构区间最小曲线半径300m段,隧道质量符合施工规范 要求,而本标段管片为1.2米宽,因此本盾构机完全能满足本工程最小 曲线半径的要求。
一、工程概况
• 【南昌火车站~洪都中大道站盾构区间】右线长度为 506.960m,左线长度为504.408 m。隧道埋深7.6m~10.3m。 区间平面位置主要位于铁路八村住宅小区,下穿及侧穿房 屋18栋。
• 火车站~洪都中站区间主要穿行于3-2细沙层、3-6圆砾层, 隧道上部主要为3-1粉质粘土层,粘土层厚度4~6米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章.第2章.第3章.第4章.第5章.第6章.第7章.第8章.第9章.第10章.盾构、配套设备与管模10.1.盾构机选型10.1.1.选型原则盾构机的性能及其对地质条件的适应性是盾构隧道施工成败的关键。
本合同段盾构区间工程的盾构机选型按照性能可靠、技术先进、经济适用相统一的原则,依据招标文件、颐和园站-圆明园站和圆明园站-成府路站区间岩土工程勘察报告等资料,并参考国内外已有盾构工程实例及相关的技术规范进行。
10.1.2.选型依据盾构机选型具体依据如下:(1)本合同段盾构工程施工条件隧道长度:3032+2044.286单线延米;线路间距:8~19m;隧道覆土厚度最小:6m,最大:15.4m;平面最小曲线半径:350m;最大坡度:20.801‰;隧道衬砌管片内径:5400mm 外径:6000mm(2)工程施工环境特点本工程施工环境具有如下特点对盾构机施工有一定的影响:本合同段区间隧道沿线地下管线、建(构)筑物密集。
颐和园-圆明园区间线路下穿颐和园、圆明园,与万泉河高架桥相交;圆明园~成府路站区间线路通过成府小学、化工研究院,下穿万泉河。
区间线路与万泉河高架桥相交时,隧道外轮廓与桩基距离最小为5m,下穿圆明园一座池塘时覆土厚度仅6m,万泉河底部区域隧道覆土厚度为9m。
本合同段区间线路主要沿颐和园路、清华西路布置,与中关村北大街相交,所经道路尤其是中关村北大街交通繁忙、车流量大。
(3)区间地质特点本合同段区间隧道穿越地层主要有粉质粘土、粉土层,局部夹有砂层、卵石圆砾等。
具体的地质统计表见表10-1-1和图10-1-1。
10.1.3. 本工程地质特点对盾构机功能的要求针对以上工程地质条件及特点,盾构应具备以下功能: (1)盾构机对地层条件的适应性要求本合同段隧道地层主要由粉质粘土、粉土层、卵石圆砾层组成,局部夹有砂层,所以盾构对软土地层的适应性应是重点考虑的问题。
盾构在软土地段的施工时应重点考虑以下功能:具备土压平衡掘进功能; 足够的推力和刀盘驱动扭矩; 良好的加泥、加泡沫等碴土改良能力; 合理的刀盘及刀具设计; 具有完善的防喷涌功能; 能够有效防止中心泥饼的生成; 较好的人员仓条件;圆明园-成府路站区间颐和园-圆明园站区间图10-1-1 盾构区间隧道洞身主要地质比例图超前地质钻探及管片壁后同步注浆功能。
由于本合同段承压水分布较为普遍,含水层主要为卵石圆砾地层和砂层,所以盾构应具有平衡水土压力,防止喷砂、涌水,最大限度的减少地表沉降,并有效保护刀盘刀具的能力。
(2)特殊地段的通过能力本合同段的特殊地段,主要有以下几种:部分隧道区段较近距离穿越建(构)筑物,且局部隧道覆土厚度仅6米,这样的地段对盾构的施工提出了很高的要求。
盾构在通过该类地段时必须能很好的调整与保持土仓压力,控制地面沉降;区间隧道局部地段含有少量的砂层和卵石圆砾,这就要求盾构机刀盘具有较强的耐磨能力和有效保护刀具的能力。
区间线路曲线段长度占区间总长的66%,且最小曲线半径仅为350米。
要求盾构机具有小半径曲线施工的能力。
且对运输系统、通风系统及测量导向系统均有较高的要求。
当盾构机处于含砂地层施工时应具有相应的施工辅助措施及设备,如对土仓压力的控制与碴土改良等。
(3)方向调整与控制能力本合同段盾构隧道线路较长,且曲线段施工及工程接口较多,要求盾构的导向系统具有很高的精度,以保证线路方向准确。
盾构方向的控制包括两个方面:一是盾构本身能够进行纠偏、转向,二是采用先进的激光导向技术保证盾构掘进方向的正确。
(4)环境保护与控制能力盾构法施工的环境保护包括两个方面:首先是盾构施工时对周围自然环境的保护,即地面沉降满足设计要求,噪声、震动等满足相关环境保护规定的要求;再者要求盾构施工时使用的辅助材料如油脂、泡沫等不能对环境造成污染。
(5)掘进速度满足计划工期需求根据计划工期安排,盾构的掘进速度必须满足本合同段的计划工期要求。
10.1.4.盾构机型式的确定不同类型的盾构机适用的地质类型也是不同的。
盾构机的选型必须做到针对不同的工程,不同的地质条件进行针对性设计,才能使盾构更好的适应工程。
盾构机的主要类型有泥水式、插刀式(敞开式)盾构、土压平衡式、复合型盾构等。
其中土压平衡盾构能够适应较大的地质范围与地质条件,能用于粘结性、非粘结性、有水或无水、软土和卵石圆砾等多种复杂的地层,施工速度较高,能有效的控制地表沉降。
所以根据本合同段的工程条件、地质特点、工期及施工要求,结合类似工程盾构的选型经验和北京地铁既有盾构工程的盾构类型,在本工程宜采用加泥式土压平衡盾构。
10.1.5.土压平衡式盾构机的基本工作原理土压平衡工作原理:土压平衡盾构的开挖土仓由刀盘、切口环、隔板及添加剂注入系统组成。
将刀盘切削下来的碴土填满土仓,在切削刀盘后面装有使土仓内土砂强制混合的搅拌臂。
借助盾构推进油缸的推力通过隔板进行加压,产生泥土压,这一压力通过碴土及刀盘作用于整个作业面,使作业面稳定,同时用螺旋输送机排土,螺旋输送机排土量与盾构推进量相适应,掘进过程中始终维持开挖土量与排土量平衡,维持土仓内土压力稳定在预定范围内。
空隙量相适应,有效控制地表的沉降。
碴土改良工作原理:土压平衡盾构维持工作面稳定的介质为碴土,为维持土仓内土压力的稳定和碴土的排出,土仓内的碴土必须具有:良好的塑性和流动性、良好的粘—软稠度、低的内摩擦力、低的透水性。
一般情况下碴土不一定具有这些特性,刀盘扭矩较大,碴土流动困难,在土压力作用下易压实固结,容易产生泥饼或泥团,在透水性土层中,在水的作用下碴土在螺旋输送机内排出无法形成有效的压力递减,土仓内的土压力难以稳定,因此需要对开挖后的碴土进行改良,使其具有上述特性。
根据地层情况,向开挖土仓内注入泡沫、粘土或添加剂,进行强制搅拌,使碴土具有可塑性和不透水性,螺旋机排土顺畅,土仓内的压力容易控制和稳定。
10.1.6.盾构机的主要组成与功能描述(1)概述盾构是一个由不同功能的组件有机结合的综合性施工设备,它集合了盾构施工过程中的开挖、出土、支护、注浆、导向等全部的功能。
不同形式的盾构其主机结构特点及配套设施也是不同的,对盾构来说,盾构法施工的过程也就是这些功能合理运用的过程。
土压平衡型盾构在结构上包括刀盘、盾体、人仓、螺旋输送机、管片安装机、管片小车、皮带机和后配套拖车等;在功能上包括开挖系统、主驱动系统、推进系统、出碴系统、注浆系统、油脂系统、液压系统、电气控制系统、激光导向系统及通风、供水、供电系统等。
下面根据这些部件或系统在盾构施工中的不同功能特点来分别进行说明。
盾构机主机结构图机后配套总图见图10-1-3,图10-1-4(1、2)。
(2)盾构主机1)刀盘和刀具刀盘结构是根据本合同段的地质适应性要求设计的。
刀盘结构如图10-1-5所示,整个刀盘为焊接结构,在刀盘上焊接了安装各种刀具的刀座。
刀盘和主驱动通过一个很厚的法兰盘连接,刀盘背面和法兰盘通过四根Ф600mm,壁厚100mm的钢管焊接在一起,以传递足够的扭矩和推力。
刀盘可以双向旋转。
刀盘标称直径6280mm,刀盘总重约57t。
为了保证刀盘的整体结构强度和刚度,刀盘的中心部位采用整体铸钢铸造,周边和中心部件在制造时采用先栓接后焊接的方式连接。
刀盘是安装在盾构机前面的旋转部分,在支撑掌子面土压的同时进行开挖。
通过在不同形式的刀盘上安装不同的刀具或刀具组合,可以适应不同的地质情况下的施工需要。
刀盘采用典型面板式结构,刀盘开口度34%。
装有中心刀4把,切刀124把,刮刀16把,刀盘还配备有一把超挖刀,行程20~50mm,由液压操纵伸缩。
大多数刀具采用螺栓连接在刀盘面肋板上,可在土仓室内检查或更换刀具。
刀盘的后部开口向内倾斜,便于土碴的流动。
焊接的搅拌臂可以使碴土改良添加剂和挖出的碴土在刀盘后面进行充分的搅拌。
刀盘安装在主轴承的内齿圈上,通过8个液压马达驱动。
刀盘设计为双向旋转,其转速可无级调节。
刀盘面板上共有8个泡沫注入口,其中包括在刀盘的中心设置的四个泡沫注入口。
背面有3个泡沫注入口备用。
泡沫注入口也可以用来加注膨润土和泥浆。
通过刀盘的旋转接头,土质改良用的泡沫、膨润土或水被送到土仓内。
另外,仿形刀的液压供应也是通过旋转接头来连接的。
回转中心通过刀盘中心的法兰和刀盘连接。
刀盘结构与刀具示意见图10-1-5。
图10-1-3,图10-1-42)盾壳盾壳包括三个主要组件:前体、中体和盾尾。
前体里面装有支撑主驱动和螺旋输送机的钢结构。
压力隔板将前体的土仓和主仓分离开来。
隔板上面的门可以让人进入土仓进行保养和检查工作。
此外,隔板有几个开口,可以作为碴土改良材料的入口以及作为修理时输电线的接线盒接头。
水、膨润土或泡沫被输送至土仓,通过安装的隔板上的四个搅拌器使土仓内的碴土充分搅拌。
在保养和修理时,螺旋输送机的套筒回收后,通过前体上液压闭合装置,可以关闭螺旋输送机的进碴口。
在前体的隔板上安装有土压传感器用以监测土仓内的土压,以便在土压平衡模式下及时对土仓内的土压进行反馈和调节。
前体和中体是用螺栓上紧并焊接在一起的。
在中体内布置了推进缸支座和管片安装机架。
管片安装机支架通过相应的法兰面和管片安装机梁连接起来。
推进缸和连接盾尾的铰接油缸布置在中体。
在中体的盾壳上焊接了带球阀的可在需要时实施超前钻孔的预留孔,当需要时还可以通过这些预留孔注入膨润土等用以减小盾壳与土层的磨擦,或实施临时止水。
中体和盾尾之间通过铰接油缸连接,两者之间可以有一定的夹角,从而使盾构在掘进时可以方便的转向。
正常情况下铰接处使用的是预紧密封,并安装有一道气囊密封用于对铰接密封维修时使用。
盾尾安装了三道密封钢丝刷及二个油脂注入管道,在密封刷中注入密封油脂以防止盾构外面的水或砂浆进入盾构。
另外还安装了8根内置的同步注浆管道。
如图10-1-6所示。
3)人员仓人员仓是在土仓保压期间,人员出入土仓进行维修和检查的转换通道,出入土仓的工具和材料也由此通过。
其主要目的也是为了在人员和材料进入土仓时能够保持土仓中的土压。
人员仓包括主仓和准备仓,它们由压力门隔开。
主仓和中间仓之间有法兰连接,而中间仓直接焊接在压力隔板上。
通过隔板上的门就可以进入土仓。
准备仓和主仓横向连接,这样图10-1-6 同步注浆及盾尾密封示意图从准备仓出来必须要经过主仓。
准备仓的作用是在压缩空气工作时和出现紧急情况时的出入。
(3)主驱动系统主驱动机构包括主轴承、八个液压马达、八个减速器和安装在后配套拖车上的主驱动液压泵站。
刀盘通过螺栓和主轴承的内齿圈联接在一起,主驱动系统通过液压马达驱动主轴承的内齿圈来带动刀盘旋转。
主驱动的配备功率为945KW ,标称扭矩为4500KN ·m ,脱困扭矩为5300KN ·m 。
主轴承有两套密封系统密:外密封系统负责土仓内的密封,而内密封系统则负责盾构后部的大气密封。