光纤基础知识中文
光纤基本知识
1、光纤基本结构光纤是光导纤维的简称,是工作在光波波段的一种介质波导,通常是圆柱形,具有数据容量通信大、传输快、耐久性好、价格低廉等优点,已经广泛应用于通信领域的数据传输。
光纤的基本结构如下图所示,由纤芯、包层、涂敷层(亦称保护层)、增强纤维和保护套组成。
光纤的基本结构如下图所示,由纤芯、包层、涂敷层(亦称保护层)、增强纤维和保护套组成:2、光纤传感基本原理用被测的物理量调制传输光光波的某一参数,使之随其变化,然后对已调制的光信号进行检测,从而得到被测量。
分为强度型、相位型、波长型。
其中波长型传感器也就是光纤光栅传感器。
三种光纤传感器定性比较情况如下:指标强度型干涉型光栅精度低较高高加工工艺简单复杂较复杂成本低高较低技术成熟性成熟较成熟成熟可否分布测量(成网) 可以不可以嵌入性(兼容性)可以较难很好线性度一般一般很好变形能力好差好性能稳定较好较好好耐久性好较好好监测参数多少多响应频率带宽宽窄宽信号解调设备简单复杂复杂3、光纤光栅基本结构光纤光栅基本结构如下图示:4、光纤光栅传感原理当光波传输通过光纤光栅时,满足光栅波长条件()的光波矢将被反射回来,这样入射光栅波矢就会分成两部分:投射光波矢和反射光波矢,这就是光纤光栅的工作原理。
如下图所示:光波通过光栅能量分配示意图:光谱仪得到的光栅反射谱光谱仪得到的光栅透射谱5、光纤光栅传感器的优点光纤光栅传感器是结构局部监测的最佳选择,具有准分布式测量、体积小、绝对测量、防电磁干扰、耐久性好、稳定性好、精度高、测量空间分辨率高等优点。
6、光纤光栅传感器的发展过程• 1978年, Hill等人制作出第一根光栅• 1989年, Meltz 等人发明紫外写入技术• 1989年, Morey 等人研究了光纤光栅的应变与温度传感特性• 1992年, Prohaska 等人用光纤光栅研究了大跨混凝土结构的应变• 1997年, Nellen 等人布设FBGs 在Lucerne 与 Winterhur Storck 大桥• 1998年, Fuhr 等人埋入FBGs 在 Waterbury 大桥面板上• 1999年, Udd 等人埋入FBGs Horsetail Falls 大桥上• In 2001, 欧进萍等人布设FBGs 在黑龙江省呼兰河、牛头山等大桥上7、光纤光栅传感器应用概况(1)民用土木工程• 1993年,Udd 等人最早使用16个光纤光栅传感器在加拿大的Beddington Trail大桥是进行测量,对光纤光栅的工程应用进行了有益的探索。
光纤通信原理及基础知识
t D • Δ PMD= pmd * LΛ0.5
•
PMD Link
y=
1
n
n k 1
x
2 k
1 2
• PMDQ :99.99% probability of 100000 y
光纤的基本参数
光纤的光学及传输特性参数之一------偏振模色散受限的最大理 论传输距离
偏振模色散受限的最大理论传输距离
光纤的通信原理及基础知识
第一章 光纤通信的基本原理 第二章 光纤的基本结构和分类 第三章 光纤的基本参数 第四章 光纤的制造方法
第一章 光纤、光缆的基本知识
§1.1 光纤通信的基本原理
信号 处理
发送端
光波导
信号 处理
接收端
光纤通信的基本原理
频谱分配
电磁波谱
低频
高频
微波
直流电
LW MW KW UKW dm cm
微观弯曲损耗:是指光纤受到不均匀应力的作
用,光纤轴产生的微小不规则弯曲所引入的附加损耗。
光纤的基本参数
参数典型值 光纤的光学及传输特性参数之一------
• 模场直径: • 衰减系数:
• 色散系数:
• 偏振模色散:
• 截止波长: • 弯曲损耗:
•1310nm: 8-10m; 1550nm: 9-11m
包层(SiO2+F )掺氟二氧化硅
125 µm
标准单模光纤
标准梯度折射率分布多模光纤
涂层(acrylic) 250 µm
涂层 250 µm
涂层
力学影响的防护
塑料光纤
涂层 1000 µm
光纤的基本结构和分类
光纤的分类
按材料分类:
光纤基础知识
5.按照波长分类 可分为短波长光纤、长波长光纤和超长波长光纤。
短波长光纤:=0.70.9m,用于短距离、小容量光 纤通信系统,它属于多模光纤。
长波长光纤: =1.11.6m,用于中、长距离,大容 量光纤通信系统,单模和多模都有。 超长波长光纤: ≥2m。它属于单模光纤,是光纤 的发展方向。
··
二次涂覆层 一次涂覆层
优点:机械性能好,温度特性好,防水性能好。 紧套管 松套管 缺点:测量不方便。
图2.2
结构原理
光导纤维是由两层折射率不同的玻璃组成。内层 为光内芯,直径在几微米至几十微米,外层的直径 0.1~0.2mm。一般内芯玻璃的折射率比外层玻璃大 1%。根据光的折射和全反射原理,当光线射到内芯 和外层界面的角度大于产生全反射的临界角时,光 线透不过界面,全部反射。
6.按照制造方法分类 预塑有汽相轴向沉积(VAD)、化学汽相沉积(CVD) 等,拉丝法有管律法(Rod intube)和双坩锅法等。
目前在通信上使用的光纤主要有:
(1)突变型多模光纤(SIF) (2)渐变型多模光纤(GIF) (2)单模光纤(SMF)
如图2.4所示 图2.4
表2.1
三种光纤的主要区别
纤芯的作用是传导光波。包层的作用是将光 波封闭在光纤中传播。 一、光纤的结构 光纤是用石英玻璃制成的截面很小的双层或 多模光纤的纤芯直径为50m。 多层同心圆柱体。 光纤非常细,比头发稍粗,单模光纤的纤芯 单模光纤和多模光纤的包层直径都是125m。 直径为10m。
125m
纤芯
50μm 10μm
目前广泛使用的是突变型光纤和渐变型光纤。
图2.3 光纤的折射率剖面分布 (a)突变型光纤;(b)渐变型光纤;(c)W型光纤
4.按照光纤传输模式分类
光纤基础介绍
光工作的波段
1. 可见光波段(Visible Light Band):可见光波段通常指波长范围在380纳米(nm)到780
纳米(nm)之间的光。可见光波段是人眼可见的光谱范围,常用于照明、显示和一些 短距离通信应用。
2. 近红外波段(Near Infrared Band):近红外波段通常指波长范围在780纳米(nm)到
4. 根据特殊用途:
1. 光纤传感器用光纤(Fiber Optic Sensor Fiber):用于光纤传感器中,具有特殊的结构和特性。 2. 光纤光栅(Fiber Bragg Grating Fiber):在光纤中引入光栅结构,用于光纤传感和光谱分析等应用。
光纤和光缆关系
• 光纤(Fiber):光纤是一种细长的柔韧的光导纤维,通常由
光纤基础介绍
什么是光纤
• 光纤是一种用于传输光信号的细长柔韧的光导纤维。它由高纯度的
玻璃或塑料制成,具有非常高的折射率,可以将光信号在其内部进 行传输。
光纤原理
• 光纤的原理是基于全反射的现象。当光线从光纤的一端进入时,由
于光纤的折射率高于周围介质,光线会在光纤的界面上发生全反射, 并沿着光纤的轴向传输。由于光线在光纤内部的传输是基于全反射 的,所以光信号可以在光纤中传输较长的距离而不会明显衰减。
2500纳米(nm)之间的光。近红外波段在光通信和光传感等领域得到广泛应用,因为 在这个波段上,光纤的传输损耗较低。
3. 中红外波段(Mid Infrared Band):中红外波段通常指波长范围在2500纳米(nm)到
5000纳米(nm)之间的光。中红外波段在红外传感和光谱分析等领域具有重要应用具有高带 宽、低损耗和抗干扰等优点。
• 光缆(Cable):光缆是由一个或多个光纤组成的电缆,用于
光纤基础知识
光纤基础知识光纤,是一种光导纤维,广泛应用于通信、医疗、工业等领域。
它可以高效传输光信号,具有较大的带宽和低的衰减,被认为是现代通信技术的重要组成部分。
本文将介绍光纤的基本原理、结构和常见应用。
一、光纤的基本原理光纤的传输基于光的全反射原理。
当光从一种介质射向密度较大的介质时,会发生全反射现象。
利用这个特性,将光信号封装在一根玻璃或塑料纤维中,通过纤维内部的反射来传输光信号。
二、光纤的结构1. 光纤芯:光纤芯是光信号传输的核心部分,通常由高纯度的二氧化硅或塑料材料制成。
光信号在光纤芯内进行全反射,不会发生衰减。
2. 光纤包层:光纤包层是包围光纤芯的一层材料,通常由折射率较低的材料制成。
它的作用是减少光信号的损失,并保持光信号沿着光纤传输的方向。
3. 光纤护套:光纤护套是外部的保护层,通常由聚氨脂或聚乙烯等材料制成。
它可以保护光纤免受机械和环境损坏。
三、光纤的工作原理光纤的传输过程可以分为发射、传输和接收三个过程。
1. 发射:发射端通过光源产生光信号,并将信号输入光纤芯中。
常用的光源有激光器和发光二极管等。
2. 传输:光信号在光纤芯中以全内反射的方式传输,信号可以在光纤中长距离传输而不发生明显衰减。
3. 接收:接收端利用光探测器接收传输过来的光信号,并将其转换为电信号进行进一步处理和传输。
四、光纤的优势与应用光纤具有许多优势,使其成为通信和其他行业首选的传输介质。
1. 大带宽:光纤具有较大的带宽,可以支持高速数据传输和大容量通信。
2. 长传输距离:光信号在光纤中传输衰减较小,可以实现较长的传输距离。
3. 抗干扰性:光纤不受电磁干扰和射频干扰,适用于复杂环境和电磁敏感设备。
4. 安全性:光纤传输的信号无法被窃听,具有较高的安全性。
光纤的应用广泛,包括但不限于以下领域:1. 通信领域:光纤用于电话、互联网和有线电视等通信网络,提供高速、可靠的通信服务。
2. 医疗领域:光纤在内窥镜、光纤导光束等医疗设备中得到应用,用于检测、诊断和手术。
光纤基础知识_中文ppt课件
12 根光纤的线缆
© 2007 EXFO Electro-Optical Engineering Inc. All rights reserved.
1.蓝 2. 橙 3. 绿 4. 棕 5. 暗灰色 6. 白 7. 红 8. 黑 9. 黄 10. 紫 11. 粉红 12. 浅绿
黄 橙 浅绿色 绿色
光纤类型
dBm 绝对值的功率
dBm 用来测试光的输出功率
光纤Байду номын сангаас
检测器 光源
•激光的输出功率 -3.50 dBm
© 2007 EXFO Electro-Optical Engineering Inc. All rights reserved.
仪表读数 - 3.50 dBm
mW
如何将 dBm 转换成 mW dBm = 10*log(mW)
光在单模光纤和双模光纤中传输的区别:
单模
NA
脉冲
NA
X 公里
多模
脉冲
X 公里
© 2007 EXFO Electro-Optical Engineering Inc. All rights reserved.
损耗 dB/Km
光纤类型
主要光纤类型
多模光纤 (50/125 µm 和 62.5/125 µm): 50/125 µm 比62.5/125 µm有更高的传输速率 用在LAN局域网中 由于模态色散,比单模光纤有更低的速率 经常用在大楼的内部
单模光纤
尺寸一般为 8.6 to 9.5/125 µm 用途: 长距离网络, 接入网, 城域网和高速率网络 建筑物外安装
© 2007 EXFO Electro-Optical Engineering Inc. All rights reserved.
光纤基础知识
光纤基础知识光纤是光导玻璃纤维的简称,就是用来导光的透明介质纤维,它是一种新型的光波导。
光纤外径一般为125 μm~140 μm,芯径一般为3 μm~100 μm。
1.光纤的结构一根实用化的光纤是由多层透明介质构成的,一般为同心圆柱形细丝,为轴对称结构,可以分为三部分:折射率较高的纤芯、折射率较低的包层和外面的涂覆层。
其外形如图2.1所示,其结构如图2.2所示。
图2.1 光纤外形示意图图2.2 光纤的结构示意图光纤的结构一般是双层或多层的同心圆柱体,如图2.2所示。
中心部分是纤芯,纤芯以外的部分称为包层。
纤芯的作用是传导光波,包层的作用是将光波封闭在光纤中传播。
为了达到传波的目的,需要使光纤材料的折射率n,大于包层1。
为了实现纤芯和包层的折射率差,必须使纤芯和包层材料有所材料的折射率n2不同。
目前实用的光纤主要是石英。
如果在石英中掺入折射率高于石英的掺杂剂,则就可作为纤芯材料。
同样如果在石英中掺入折射率比石英低的掺杂剂,则就可以作为包层材料,经过这样掺杂后,上述的目的就可达到了。
也就是说,光纤是由两种不同折射率的玻璃材料拉制而成的。
(1)纤芯位于光纤的中心部位,是光波的主要传输通道。
直径d1=4 μm~50 μm,单模光纤的纤芯为4 μm~10 μm,多模光纤的纤芯为50 μm。
纤芯的成分是高纯度SiO2,掺有极少量的掺杂剂(如GeO2,P2O5),作用是提高纤芯对光的折射率(n1),以传输光信号。
(2)包层位于纤芯的周围。
直径d2=125 μm,其成分也是含有极少量掺杂剂的高纯度SiO2。
而掺杂剂(如B2O3)的作用则是适当降低包层对光的折射率(n2),使之略低于纤芯的折射率,即n1>n2,它使得光信号封闭在纤芯中传输。
(3)涂覆层光纤的最外层为涂覆层,包括一次涂覆层,缓冲层和二次涂覆层。
一次涂覆层一般使用丙烯酸酯、有机硅或硅橡胶材料;缓冲层一般为性能良好的填充油膏;二次涂覆层一般多用聚丙烯或尼龙等高聚物。
光纤专业知识
光纤专业知识目录一、基础概念 (3)1.1 光纤的定义与分类 (4)1.1.1 光纤的基本结构 (6)1.1.2 光纤的种类与特性 (7)1.2 光纤的工作原理 (8)1.2.1 光在光纤中的传输过程 (9)1.2.2 光纤的传输特点 (10)二、光纤材料与制造 (11)2.1 光纤材料的种类与特性 (12)2.1.1 纤维素系光纤材料 (14)2.1.2 硅石系光纤材料 (15)2.2 光纤的制造工艺 (16)2.2.1 纤维素的拉丝工艺 (17)2.2.2 硅石的熔融拉丝工艺 (19)三、光纤性能与测试 (20)3.1 光纤的性能指标 (22)3.2 光纤的测试方法 (23)3.2.1 光时域反射仪测试 (23)3.2.2 光纤损耗测试 (24)四、光纤通信系统 (25)4.1 光纤通信系统的组成 (26)4.2 光纤通信系统的传输特性 (27)4.2.1 传输速率 (29)4.2.2 传输距离 (30)4.2.3 信号衰减 (32)五、光纤应用与拓展 (33)5.1 光纤在通信领域的应用 (34)5.1.1 长途通信 (35)5.1.2 城市通信 (36)5.1.3 数据传输 (38)5.2 光纤在其他领域的应用 (38)5.2.1 医疗领域 (40)5.2.2 工业领域 (41)5.2.3 军事领域 (42)六、光纤未来发展趋势与挑战 (43)6.1 光纤技术的发展趋势 (44)6.1.1 大容量光纤 (46)6.1.2 集成光纤 (47)6.1.3 智能光纤 (48)6.2 光纤面临的挑战 (50)6.2.1 材料革新 (51)6.2.2 制造工艺优化 (52)6.2.3 环境适应能力提升 (54)一、基础概念光纤通信:光纤通信是一种利用光波在光纤中传播信息的一种通信技术。
由于光信号具有高速、大容量、低损耗等优点,因此在现代通信领域得到了广泛应用。
光纤:光纤是一种由玻璃或塑料材料制成的细长线状物体,被广泛应用于光通信系统中。
光纤重要基础知识点
光纤重要基础知识点
光纤是一种用于传输光信号的细长柔韧的光学纤维。
光纤作为一种高效、高速、大带宽的通信传输介质,在现代通信领域中发挥着重要的
作用。
下面我们将介绍一些光纤的重要基础知识点。
1. 光纤的结构:光纤由一个或多个玻璃或塑料制成的芯线和包裹在外
面的护套组成。
光纤的芯线是光信号传输的核心部分,护套则起到保
护和绝缘的作用。
2. 光纤的工作原理:光信号通过光纤内的多次全反射来进行传输。
当
光信号从光纤的一端进入时,在芯线内部不断发生全反射,从而使光
信号沿着光纤的长度传播。
光信号会在光纤两端的光接口处进行转换,从光纤中释放出或接收光信号。
3. 光纤的优势:相比传统的电缆传输方式,光纤具有许多优势。
光纤
传输速度快,能够支持大容量的数据传输;光纤抗干扰能力强,不受
电磁干扰和辐射影响;光纤传输距离远,信号衰减较小;光纤重量轻、体积小,便于安装和布线等。
4. 光纤的应用领域:光纤广泛应用于通信、互联网、计算机网络、医疗、军事、航天等领域。
在通信领域中,光纤网络被广泛应用于长途
电话、宽带接入、数据中心连接等。
5. 光纤的分类:根据光纤的制作材料和结构不同,可以将光纤分为多
种类型,如单模光纤和多模光纤、塑料光纤和玻璃光纤等。
每种类型
的光纤在不同的应用场景中有着各自的特点和适用性。
总的来说,了解光纤的基础知识对于我们理解现代通信技术的发展和
使用具有重要意义。
光纤作为一种高效可靠的通信传输介质,不断推动着信息技术的进步和创新。
光纤基础知识总结
光纤基础知识总结什么是光纤?光纤是一种细长且柔韧的纤维,由纯净的玻璃或塑料制成。
它可以传输光信号,用于光通信、光传感、光束导向等领域。
光纤由两部分组成:纤芯和包层。
纤芯是光信号传输的核心部分,包层可以保护纤芯并提高光信号的传输效率。
光纤的工作原理光纤的工作原理基于光的全反射现象。
当光从一个介质进入到另一个折射率较低的介质时,会发生全反射,这使得光可以在光纤中传输而不会损失太多信号。
光信号在光纤中的传输是通过内部的光纤界面进行的,这些界面由纤芯和包层之间的折射率差引起。
光信号通过多次全反射在纤芯内部传输,几乎不发生能量损失。
光纤的类型根据使用的材料和制造工艺的不同,光纤可以分为多种类型。
以下是常见的几种光纤类型:1.单模光纤(Single Mode Fiber,SMF):纤芯直径较小,适用于长距离传输,具有低损耗和高带宽的特点。
2.多模光纤(Multimode Fiber,MMF):纤芯直径较大,适用于短距离传输,成本较低。
3.具芯光纤(Graded-Index Fiber,GI):纤芯的折射率呈梯度分布,能够减少射出角度的折射和色散,提高传输速度。
4.光子晶体光纤(Photonic Crystal Fiber,PCF):利用周期性的结构改变来控制光的传播,具有广阻带、低损耗和高非线性等特点。
光纤的优点光纤相比传统的电缆和铜线具有许多优点,使得它成为现代通信和网络系统中的首选传输介质:•高带宽:光纤可以传输更多的信息,具有更高的数据传输速率。
•低损耗:光信号在光纤中传输的损耗非常小,可以实现长距离传输。
•抗干扰:光纤不受电磁干扰影响,能够在电磁环境较差的地方稳定工作。
•安全性能:由于光信号无法被窃听,因此光纤通信更加安全可靠。
•体积小、重量轻:光纤相比传统的电缆和铜线更加轻便,安装方便。
光纤的应用领域光纤在各个领域都有广泛的应用:1.通信网络:光纤是构建光纤通信网络的关键组成元素,应用于电话、互联网和有线电视等通信领域。
光纤光缆的基本知识
光纤光缆的基本知识一、内容描述首先让我们先来了解一下光纤光缆是什么,光纤光缆简单来说,就是一种用光信号来传输信息的线缆。
它是由玻璃或者塑料制成的一根细细的线,里面隐藏着强大的能量和信息传输能力。
就像我们生活中的快递小哥一样,光纤光缆是信息传输的快递员,快速、稳定地把我们的数据、声音、图像等送到目的地。
接下来我们就来详细说说光纤光缆的一些基本知识。
1. 光纤光缆的概念与重要性光纤光缆这个词,听起来好像很高科技,但其实它已经成为我们生活中不可或缺的一部分了。
光纤光缆是什么?简单来说就是一种用光信号传递信息的通信线路,它里面藏着一根细细的玻璃丝或者塑料丝,通过这丝“光的高速公路”,信息就像光一样快速地传输着。
你可能想不到,无论我们打电话、上网冲浪,还是看电视节目,背后都有光纤光缆在默默支撑着我们的通信需求。
那么光纤光缆的重要性体现在哪里呢?首先它的传输速度非常快,能够迅速传递大量的信息。
其次光纤光缆的抗干扰能力强,不容易受到电磁干扰或天气的影响。
因此它在我们的日常生活中扮演着越来越重要的角色,光纤光缆技术的发展让信息的传递变得更快更方便,也给我们的生活带来了更多乐趣和便利。
每一次的拨通电话、每一条的信息传递背后,都是光纤光缆的默默付出。
现在你是不是对光纤光缆有了更深的认识和感慨呢?接下来我们将更深入地探讨光纤光缆的其他基本知识。
2. 光纤光缆的应用领域简介好的接下来让我为您撰写关于《光纤光缆的基本知识》中的“光纤光缆的应用领域简介”的部分:您知道吗?如今我们生活中的许多地方,都离不开小小的光纤光缆呢。
咱们一起来看看它们究竟应用在哪些地方吧!光纤光缆的广泛应用真可谓是无处不在呢!从城市的高楼大厦到偏远山区的小村落,都有它们的身影。
首先最明显的应用就是在通信领域了,无论是电话、手机还是互联网,光纤光缆都扮演着传输信息的角色,它们像信息的超级快递员一样,将信息快速准确地送达千家万户。
不仅如此光纤光缆还广泛应用于有线电视信号的传输,让我们的电视节目更加清晰稳定。
光纤光缆干货基础知识点
光纤光缆干货基础知识点1.简述光纤的组成答:光纤由两个基本部分组成:由透明的光学材料制成的芯和包层、涂敷层。
2.描述光纤线路传输特性的基本参数有哪些?答:包括损耗、色散、带宽、截止波长、模场直径等。
3. 产生光纤衰减的原因有什么?答:光纤中光功率沿纵轴逐渐减小。
光功率减小与波长有关。
光纤链路中,光功率减小主要原因是散射、吸收,以及连接器和熔接接头造成的光功率损耗。
衰减的单位为dB。
产生原因:使光纤产生衰减的原因很多,主要有:吸收衰减,包括杂质吸收和本征吸收;散射衰减,包括线性散射、非线性散射和结构不完整散射等;其它衰减,包括微弯曲衰减等。
其中最主要的是杂质吸收引起衰减。
4.光纤的带宽与什么有关?答:光纤的带宽指的是:在光纤的传递函数中,光功率的幅值比零频率的幅值降低50%或3dB时的调制频率。
光纤的带宽近似与其长度成反比,带宽长度的乘积是一常量。
光纤中由光源光谱成分中不同波长的不同群速度所引起的光脉冲展宽的现象。
5.信号在光纤中传播的色散特性怎样描述?答:可以用脉冲展宽、光纤的带宽、光纤的色散系数三个物理量来描述。
6.什么是截止波长?答:是指光纤中只能传导基模的最短波长。
对于单模光纤,其截止波长必须短于传导光的波长。
7.光纤的色散对光纤通信系统的性能会产生什么影响?答:光纤的色散将使光脉冲在光纤中传输过程中发生展宽。
影响误码率的大小,和传输距离的长短,以及系统速率的大小。
8.光时域反射计(OTDR)的测试原理是什么?有何功能?答:OTDR基于光的背向散射与菲涅耳反射原理制作,利用光在光纤中传播时产生的后向散射光来获取衰减的信息,可用于测量光纤衰减、接头损耗、光纤故障点定位以及了解光纤沿长度的损耗分布情况等,是光缆施工、维护及监测中必不可少的工具。
其主要指标参数包括:动态范围、灵敏度、分辨率、测量时间和盲区等。
9.常见光测试仪表中的“1310nm”或“1550nm”指的是什么?答:指的是光信号的波长。
光纤光缆的基础知识
光纤光缆的基础知识一、光纤1.光纤的定义光纤是光导纤维的简称,即用来通光传输的石英玻璃丝。
2.光纤的结构组成和作用1)光纤的构成:光纤是由光折射率较高的纤芯和折射率较低的包层组成,为了保护光纤不受外力和环境的影响,在包层的外面都加上一层塑料护套(也叫涂覆层)。
2)光纤各组成部分的作用:纤芯:siO2+GeO2(作用是导光通信)包层:siO2(作用是使全反射成为可能)涂覆层:光固化丙烯酸环氧树脂或热固化的硅酮树脂(作用是防止光纤表面受损产生微裂纹,将光纤表面与环境中的水分、化学物质隔开,防止已有的微小裂纹逐步生长扩大)3.光纤的分类A:按组成光纤的材料分类:玻璃(石英)光纤、塑料光纤;B:按光纤横截面上折射率分布分类:有突变型光纤(普通单模光纤)、渐变型光纤(多模光纤)、阶跃型光纤等;C:按光纤传输模式分类:多模光纤、单模光纤等。
单模光纤中光偏振状态要传输过程中是否保持不变,又可分为偏振模保持光纤和非偏振模保持光纤;D:按工作波长窗口分类:长波长光纤和短波长光纤等注:单模光纤是指只能传输一种模式(基模或最低阶模)的光纤,其信号畸变很小。
多模光纤是一种能承载多种模式的光纤,即能够允许多个传导模的通过。
模是指光在光纤中的传输方式(单模/多模)。
单模光纤具有很小的芯径,以确保其传输单模,但是其包层直径要比芯径在十多倍,以避免光的损耗。
单模光纤以其衰减小、频带宽、容量大、成本低和易于扩容等优点,作为一种理想的光通信媒介,在全世界得到及为广泛的应用。
4.光纤的特性A:几何特性和光学特性(主要针对单模光纤)纤芯直径:A、多模光纤(50um/62.5um两种标称直径)B、单模光纤(8.3um)包层直径:125.0±1.0um包层不圆度:≤1.0%涂层外径:245±5.0um纤芯、包层同心度:≤0.5um翘曲度:曲率半径≥4.0m模场直径:指光纤中基模场的电场强度随空间的分布。
它描述了单模光纤中光能集中程度的参量。
光纤基础知识汇总
光纤是光导纤维的简写,是一种利用光在玻璃或塑料制成的纤维中的全反射原理而达成的光传导工具。
微细的光纤封装在塑料护套中,使得它能够弯曲而不至于断裂。
通常,光纤的一端的发射装置使用发光二极管或一束激光将光脉冲传送至光纤,光纤的另一端的接收装置使用光敏元件检测脉冲。
在日常生活中,由于光在光导纤维的传导损耗比电在电线传导的损耗低得多,光纤被用作长距离的信息传递。
光纤结构1、光纤(Optical Fiber)的典型结构是多层同轴圆柱体,自内向外由纤芯、包层和涂敷层三部分组成。
纤芯作用——传导光波成分——高纯度SiO2+极少量掺杂剂(如P2O5)掺杂目的是提高纤芯对光的折射率包层作用——为光的传输提供反射面和光隔离,并起一定的机械保护作用。
将光波限制在纤芯中传播成分——高纯度SiO2+极少量掺杂剂(如B2O3)掺杂目的是使折射率略低于纤芯折射率设纤芯和包层的折射率分别为n1和n2,光能量在光纤中传输的必要条件是n1>n2。
涂覆层作用——保护光纤不受水汽的侵蚀和机械擦伤。
同时增加光纤柔韧性。
一次涂覆层:丙烯酸酯,有机硅或硅橡胶材料缓冲层:一般为性能良好的填充油膏二次涂覆层:聚丙烯或尼龙等高聚物光纤分类(1)按照制造光纤所用的材料分类有:石英系光纤;多组分玻璃光纤;塑料包层石英芯光纤;全塑料光纤。
2)按折射率分布情况分类:光纤主要有三种基本类型:(多模阶跃折射率光纤)——纤芯折射率为n1保持不变,到包层突然变为n2。
这种光纤一般纤芯直径2a=50~80μm,光线以折线形状沿纤芯中心轴线方向传播,特点是信号畸变大。
渐变型多模光纤(多模渐变射率光纤)——在纤芯中心折射率最大为n1,沿径向r向外围逐渐变小,直到包层变为n2。
这种光纤一般纤芯直径2a为50μm,光线以正弦形状沿纤芯中心轴线方向传播,特点是信号畸变小。
单模光纤——折射率分布和突变型光纤相似,纤芯直径只有8~10 μm,光线以直线形状沿纤芯中心轴线方向传播。
光纤传输重要基础知识点
光纤传输重要基础知识点光纤传输是一种常见且广泛应用于通信领域的数据传输技术。
它利用光的物理特性,将信息以光信号的形式通过光纤传输,具有传输速度快、带宽大、抗干扰能力强等优点。
下面将介绍一些光纤传输的重要基础知识点。
1. 光纤的结构和工作原理:光纤主要由纤芯、包层和包覆组成。
光信号通过纤芯的全内反射来传输。
纤芯的折射率高于包层,确保光信号沿纤芯内部传播而不会发生衰减。
包层的作用是保护纤芯,并通过降低折射率的差异减小信号的传播损耗。
2. 光纤的类型:常见的光纤类型包括单模光纤(Single Mode Fiber,SMF)和多模光纤(Multi Mode Fiber,MMF)。
单模光纤适用于远距离传输,传输的光信号只有一个传播模式。
多模光纤适用于短距离传输,传输的光信号可以同时具备多个传播模式。
3. 光纤的衰减和色散:光信号在光纤中传输时会发生衰减和色散效应。
衰减是指光信号强度随传输距离增加而减弱,常用单位是分贝(dB)。
色散是指光信号在传输过程中不同波长的光信号到达终点的时间不同,导致信号畸变和距离限制。
为了减小衰减和色散带来的影响,可以采用光纤光放大器和补偿技术。
4. 光纤的连接和连接器:在光纤传输中,需要对光纤进行连接。
常用的光纤连接器包括FC(Fiber Connector)、SC(Subscriber Connector)和LC(Lucent Connector)等。
这些连接器可以实现光纤之间的精确对接,确保信号的传输质量。
5. 光纤网络的组成:光纤传输技术被广泛应用于构建各种类型的光纤网络。
光纤网络包括传输子系统、交换子系统和接入子系统。
传输子系统负责光信号的传输和放大,交换子系统实现光信号的转发和路由,接入子系统连接终端用户与光纤网络之间。
总的来说,光纤传输作为一种重要的数据传输技术,具有众多优点和广泛应用前景。
掌握光纤传输的基础知识,对于理解光纤通信原理、设计光纤网络以及解决光纤传输中的问题都具有重要意义。
光纤光缆21条基础知识
光纤光缆基础知识1. 光纤的结构是怎么样的?光纤裸纤一般分为三层:纤芯、包层和涂覆层。
光纤的结构:光纤纤芯和包层是由不同折射率的玻璃组成,中心为高折射率玻璃纤芯(掺锗二氧化硅),中间为低折射率硅玻璃包层(纯二氧化硅)。
光以一特定的入射角度射入光纤,在光纤和包层间发生全发射(由于包层的折射率稍低于纤芯),从而可以在光纤中传播。
涂覆层的主要作用是保护光纤不受外界的损伤,同时又增加光纤的柔韧性。
正如前面所述,纤芯和包层都是玻璃材质,不能弯曲易碎,涂覆层的使用则起到保护并延长光纤寿命的作用。
2.光缆的组成光纤由纯石英以特别的工艺拉丝成比头发还细中间有几介质的玻璃管,它的质地脆易断,因此需要外加一层保护层。
光纤外层加上塑料保护套管及塑料外皮就成了光缆。
光缆包含光纤,光纤就是光缆内的玻璃纤维,广泛上来说光纤是光缆,都是一种传输介质。
但严格意义上讲,两者是不相同的产品,光纤和光缆的区别:光纤是一种传输光束的细而柔软的媒质。
多数光纤在使用前必须由几层保护结构包覆,包覆后的缆线即被称为光缆。
所以光纤是光缆的核心部分,光纤经过一些构件极其附属保护层的保护就构成了光缆。
3.光纤的工作波长?光是由它的波长来定义,在光纤通信中,使用的光是在红外区域中的光,此处光的波长大于可见光。
在光纤通信中,典型的波长是800到1600nm,其中最常用的波长是850nm、1310nm和1550nm。
在选择传输波长时,主要综合考虑光纤损耗和散射。
目的是通过向最远的距离、以最小的光纤损耗来传输最多的数据。
在传输中信号强度的损耗就是衰减。
衰减度与波形的长度有关,波形越长,衰减越小。
光纤中使用的光在850、1310、1550nm处的波长较长,故此光纤的衰减较小,这也导致较少的光纤损耗。
并且这三个波长几乎具有零吸收,最为适合作为可用光源在光纤中传输。
4.最小色散波长和最小损耗波长在目前商用光纤中,什么波长的光具有最小色散?什么波长的光具有具有最小损耗?1310nm波长的光具有最小色散,1550nm波长的光具有最小损耗。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Cladding
Core
I
θC
θR
R1
R2
© 2007 EXFO Electro-Optical Engineering Inc. All rights reserved.
光纤基础
© 2007 EXFO Electro-Optical Engineering Inc. All rights reserved.
纤芯 覆盖层
50/125 (µm)
光纤的护层
单色色码的蒙皮表示不同的光纤类型:
单模 9/125 多模 62.5/125 多模 50/125 (10 Gbit/s) 多模 100/140
TIA/EIA-598 色码对应多光纤的线缆:
色码的序列以蓝色为1号,浅绿为12号. 我们用同样的序列来标示线缆的子层.
光纤基础知识中文
- 原理知识 - 光纤基础知识 - 测试仪表 - 连接器的类型 - 光纤的清洁和观察验证
© 2007 EXFO Electro-Optical Engineering Inc. All rights reserved.
原理知识
© 2007 EXFO Electro-Optical Engineering Inc. All rights reserved.
光在单模光纤和双模光纤中传输的区别:
单模
NA
脉冲
NA
X 公里
多模
脉冲
X 公里
© 2007 EXFO Electro-Optical Engineering Inc. All rights reserved.
损耗 dB/Km
光纤类型
主要光纤类型
多模光纤 (50/125 µm 和 62.5/125 µm): 50/125 µm 比62.5/125 µm有更高的传输速率 用在LAN局域网中 由于模态色散,比单模光纤有更低的速率 经常用在大楼的内部
折射
同样,光照在不同的物体上,会产生折射; 产生折射的原因是由于穿过了不同折射率的物体; 由于传播速率的不同,导致了光角度的变化;
n1 Core
I
θi
θR
R
n2 Cladding
θr
T
n1 sin(θi) = n2 sin(θr)
Байду номын сангаас
© 2007 EXFO Electro-Optical Engineering Inc. All rights reserved.
司奈尔和 菲涅尔反射
折射和反射
入射光越是垂直,反射光越少;
I
R
T
I
R
I
R
T
T
© 2007 EXFO Electro-Optical Engineering Inc. All rights reserved.
司奈尔和 菲涅尔反射
临界角 (全内反射)
存在一个临界角,100%的光都被反射,无折射,这个角度称为“临界 角”; 这个概念用在光纤的光传播中,非常重要.
12 根光纤的线缆
© 2007 EXFO Electro-Optical Engineering Inc. All rights reserved.
1.蓝 2. 橙 3. 绿 4. 棕 5. 暗灰色 6. 白 7. 红 8. 黑 9. 黄 10. 紫 11. 粉红 12. 浅绿
黄 橙 浅绿色 绿色
光纤类型
上一页的光功率: -3.50 dBm
因此, -3.50 dBm 是 0.45 mW
© 2007 EXFO Electro-Optical Engineering Inc. All rights reserved.
光的性质
光包括: 电场 - E 磁场 - H
沿Z轴时间方向进行传播
X
电场
Y
磁场
Z
© 2007 EXFO Electro-Optical Engineering Inc. All rights reserved.
Y 90o
X
电磁波频谱
光纤内部光的波长和频率范围 850 nm 353 000 GHz 1650 nm 182 000 GHz
单位 微米 (mm) - 10-6 m 纳米 (nm) - 10-9 m 兆 - 106 吉 - 109 Tera(太) - 1012 Peta - 1015 皮 - 10-12
© 2007 EXFO Electro-Optical Engineering Inc. All rights reserved.
© 2007 EXFO Electro-Optical Engineering Inc. All rights reserved.
光纤类型
光纤通信中有两种类型的光纤:
单模
多模
纤芯 覆盖层
9/125 (µm)
纤芯 覆盖层
62.5/125 (µm)
ITU-T G.652D
用于通信
© 2007 EXFO Electro-Optical Engineering Inc. All rights reserved.
光纤结构
蒙皮
丙烯酸盐, 特氟隆, 聚酰亚 胺
覆盖层
玻璃 2
纤芯
玻璃 1
© 2007 EXFO Electro-Optical Engineering Inc. All rights reserved.
光纤结构
覆盖层直径 = 125 µm 纤芯直径 = 9, 50 或 62.5 µm
蒙皮直径= 250 µm
司奈尔和 菲涅尔反射
反射
一束光(I) 照射到一个不同折射率的物体,该光的一部分会产生反射。 反射角和入射角相同
n1 纤芯
I
θi
θR
R
n2 包层
θi = θR
© 2007 EXFO Electro-Optical Engineering Inc. All rights reserved.
司奈尔和 菲涅尔反射
单模光纤
尺寸一般为 8.6 to 9.5/125 µm 用途: 长距离网络, 接入网, 城域网和高速率网络 建筑物外安装
© 2007 EXFO Electro-Optical Engineering Inc. All rights reserved.
测试仪表
© 2007 EXFO Electro-Optical Engineering Inc. All rights reserved.
dBm 绝对值的功率
dBm 用来测试光的输出功率
光纤
检测器 光源
•激光的输出功率 -3.50 dBm
© 2007 EXFO Electro-Optical Engineering Inc. All rights reserved.
仪表读数 - 3.50 dBm
mW
如何将 dBm 转换成 mW dBm = 10*log(mW)