2020年重庆市潼南县中考数学试卷(WORD版)含答案

合集下载

2020届重庆市中考数学(a卷)试题(有答案)(word版)(已纠错)

2020届重庆市中考数学(a卷)试题(有答案)(word版)(已纠错)

重庆市初中毕业暨高中招生考试数学试卷(A卷)(全卷共五个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括辅助线)请一律用黑色签字笔完成;4.考试结束,由监考人员将试题和答题卡一并回收.参考公式:抛物线)(a2≠++=cbxaxy的顶点坐标为⎪⎪⎭⎫⎝⎛--abacab44,22,对称轴为abx2-=一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了A、B、C、D的四个答案,其中只有一个是正确的,请讲答题卡上题号右侧正确答案所对应的框涂黑.1、在实数2-,2,0,1-中,最小的数是()A. 2- B. 2 C. 0 D. 1-2.下列图形中是轴对称的是()A B C D3.计算23aa⋅正确的是()A. aB. 5aC. 6aD. 9a4.下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市直辖区内长江流域水质情况的调查B.对乘坐飞机的旅客是否携带违禁物品的调查C.对一个社区每天丢弃塑料袋数量的调查D.对重庆电视台“天天630”栏目收视率的调查5.如图,AB//CD,直线l交AB于点E,交CD于点F,若∠2=80°,则∠1等于()A.120°B.110°C.100°D.80°6.若1,2==ba,则32++ba的值为()A.-1B.3C.6D.57.函数21+=xy中,x的取值范围是()A. 0≠x B. 2->x C. 2-<x D. 2≠x8.△ABC与△DEF的相似比为1:4,则△ABC与△DEF的周长比为()A. 1:2B. 1:3C. 1:4D. 1:169.如图,以AB为直径,点O为圆心的半径经过点C,若2==BCAB,则图中阴影部分的面积是()A.4πB.421π+ C.2πD.221π+10.下列图形都是有同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列下去,第⑦个图形中小圆圈的个数为()A.64B.77C.80D.8511.某数学兴趣小组同学进行测量大树CD高度的综合实践活动,如图在点A处测得直立于地面的大树顶端C 的仰角为36°,然后沿同一剖面的斜坡AB行走13米至坡顶B处,然后再沿水平方向行走6米至大树脚底点D处,斜面AB的坡度(或坡比)i=1:2.4,那么大树CD的高度约为()(参考数据:sin36°≈0.95,cos36°≈0.81,tan36°≈0.73)A.8.1米B.17.2米C.19.7米D.25.5米12.从3,1,21,1-,3-这五个数中,随机抽取一个数,记为a,若数a使关于x的不等式组⎪⎩⎪⎨⎧<-≥+3)72(31axx无解,且使关于x的分式方程1323-=----xaxx有整数解,那么这5个数中所有满足条件的a的值之和是()A.-3B.-2C.23- D.21二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上。

重庆市2020年中考数学试题(A卷,word版,含答案)

重庆市2020年中考数学试题(A卷,word版,含答案)

2020重庆中考数学试题(A 卷)一、选择题1、在实数-3,2,0,-4,最大的数是( )A 、-3B 、2C 、0D 、-4 2、下列图形中是轴对称图形的是( )A B C D 3、计算26x x ÷正确的解果是( )A 、3B 、3xC 、4x D 、8x 4、下列调查中,最适合采用全面调查(普查)方式的是( ) A 、对重庆市初中学生每天阅读时间的调查 B 、对端午节期间市场上粽子质量情况的调查 C 、对某批次手机的防水功能的调查D 、对某校九年级3班学生肺活量情况的调查 5、估计110+的值应在( )A 、3和4之间B 、4和5之间C 、5和6之间D 、6和7之间 6、若4,31-==y x ,则代数式33-+y x 的值为( ) A 、-6 B 、0 C 、2 D 、6 7、要使分式34-x 有意义,x 应满足的条件是( )A 、3 xB 、3=xC 、3 xD 、3≠x8、若ABC ∆DEF ∆,相似比为3:2,则对应高的比为( )A 、3:2B 、3:5C 、9:4D 、4:99、如图,矩形ABCD 的边AB=1,BE 平分ABC ∠,交AD 于点E ,若点E 是AD 的中点,以点B 为圆心,BE 为半径画弧,交BC 于点F ,则图中阴影部分的面积是( )A 、4-2πB 、4-23π C 、8-2π D 、8-23π10、下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有3个菱形,。

,按此规律排列下去,第⑨个图形中菱形的个数为( )A 、73B 、81C 、91D 、10911、如图,小王在长江边某瞭望台D 处,测得江面上的渔船A 的俯角为040,若DE=3米,CE=2米,CE 平行于江面AB ,迎水坡BC 的坡度75.0:1=i ,坡长BC=10米,则此时AB的长约为( )(参考数据:84.040tan ,77.040cos ,64.040sin 000≈≈≈)A 、5.1米B 、6.3米C 、7.1米D 、9.2米12、若数a 使关于x 的分式方程4112=-+-xax 的解为正数,且使关于y 的不等式组()⎪⎩⎪⎨⎧≤--+021232a y yy 的解集为2- y ,则符合条件的所有整数a 的和为( ) A 、10 B 、12 C 、14 D 、16 二、填空题13、“渝新欧”国际铁路联运大通道全长11000千米,成为服务“一带一路”的大动脉之一,将数11000用科学记数法表示为 。

潼南区中考数学试卷

潼南区中考数学试卷

一、选择题(每小题3分,共30分)1. 已知函数f(x) = 2x - 1,若f(3) = f(a),则a的值为()A. 2B. 3C. 4D. 52. 若等差数列{an}的前三项分别为2,5,8,则第10项an等于()A. 15B. 18C. 21D. 243. 在直角坐标系中,点A(2,3)关于x轴的对称点为B,则点B的坐标为()A. (2,-3)B. (-2,3)C. (2,3)D. (-2,-3)4. 若等比数列{bn}的前三项分别为1,2,4,则第10项bn等于()A. 64B. 128C. 256D. 5125. 在△ABC中,∠A=30°,∠B=45°,则∠C的度数为()A. 105°B. 120°C. 135°D. 150°6. 已知一次函数y=kx+b的图象过点P(2,3),且k<0,b>0,则下列选项中正确的是()A. k>0,b>0B. k>0,b<0C. k<0,b>0D. k<0,b<07. 若正方形的对角线长为10cm,则该正方形的周长为()A. 20cmB. 25cmC. 30cmD. 40cm8. 在平面直角坐标系中,点M(3,4)到原点O的距离为()A. 5B. 6C. 7D. 89. 若a、b、c为等差数列,且a+b+c=12,则b的值为()A. 4B. 6C. 8D. 1010. 若等比数列{an}的前三项分别为1,-2,4,则公比q等于()A. -2B. -1C. 1D. 2二、填空题(每小题3分,共30分)11. 已知函数f(x) = x^2 - 4x + 3,若f(x)的值域为[1,5],则x的取值范围为______。

12. 若等差数列{an}的前三项分别为2,5,8,则该数列的公差为______。

13. 在△ABC中,∠A=30°,∠B=45°,则sinC的值为______。

2020年重庆市中考数学试卷-(含答案)

2020年重庆市中考数学试卷-(含答案)

2020年重庆市中考数学试卷一、选择题(共12个小题). 1.下列各数中,最小的数是( ) A .3-B .0C .1D .22.下列图形是轴对称图形的是( )A .B .C .D .3.在今年举行的第127届“广交会”上,有近26000家厂家进行“云端销售”.其中数据26000用科学记数法表示为( ) A .32610⨯B .32.610⨯C .42.610⨯D .50.2610⨯4.把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形,⋯,按此规律排列下去,则第⑤个图案中黑色三角形的个数为( )A .10B .15C .18D .215.如图,AB 是O 的切线,A 为切点,连接OA ,OB ,若20B ∠=︒,则AOB ∠的度数为( )A .40︒B .50︒C .60︒D .70︒6.下列计算中,正确的是( ) A .235+=B .2222+=C .236⨯=D .2323-=7.解一元一次方程11(1)123x x +=-时,去分母正确的是( ) A .3(1)12x x +=- B .2(1)13x x +=-C .2(1)63x x +=-D .3(1)62x x +=-8.如图,在平面直角坐标系中,ABC ∆的顶点坐标分别是(1,2)A ,(1,1)B ,(3,1)C ,以原点为位似中心,在原点的同侧画DEF ∆,使DEF ∆与ABC ∆成位似图形,且相似比为2:1,则线段DF 的长度为( )A .5B .2C .4D .259.如图,在距某居民楼AB 楼底B 点左侧水平距离60m 的C 点处有一个山坡,山坡CD 的坡度(或坡比)1:0.75i =,山坡坡底C 点到坡顶D 点的距离45CD m =,在坡顶D 点处测得居民楼楼顶A 点的仰角为28︒,居民楼AB 与山坡CD 的剖面在同一平面内,则居民楼AB 的高度约为(参考数据:sin 280.47︒≈,cos 280.88︒≈,tan 280.53)(︒≈ )A .76.9mB .82.1mC .94.8mD .112.6m10.若关于x 的一元一次不等式组313,2x x x a-⎧+⎪⎨⎪⎩的解集为x a ;且关于y 的分式方程34122y a y y y --+=--有正整数解,则所有满足条件的整数a 的值之积是( ) A .7B .14-C .28D .56-11.如图,三角形纸片ABC ,点D 是BC 边上一点,连接AD ,把ABD ∆沿着AD 翻折,得到AED ∆,DE 与AC 交于点G ,连接BE 交AD 于点F .若DG GE =,3AF =,2BF =,ADG ∆的面积为2,则点F 到BC 的距离为( )A .55B .255C .455D .43312.如图,在平面直角坐标系中,矩形ABCD 的对角线AC 的中点与坐标原点重合,点E 是x 轴上一点,连接AE .若AD 平分OAE ∠,反比例函数(0,0)k y k x x=>>的图象经过AE 上的两点A ,F ,且AF EF =,ABE ∆的面积为18,则k 的值为( )A .6B .12C .18D .24二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.计算:0(1)|2|π-+-= .14.一个多边形的内角和等于它的外角和的2倍,则这个多边形的边数是 .15.现有四张正面分别标有数字1-,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背面朝上洗均匀,随机抽取一张,记下数字后放回,背面朝上洗均匀,再随机抽取一张记下数宇,前后两次抽取的数字分别记为m ,n .则点(,)P m n 在第二象限的概率为 .16.如图,在边长为2的正方形ABCD 中,对角线AC 的中点为O ,分别以点A ,C 为圆心,以AO 的长为半径画弧,分别与正方形的边相交,则图中的阴影部分的面积为 .(结果保留)π17.A ,B 两地相距240km ,甲货车从A 地以40/km h 的速度匀速前往B 地,到达B 地后停止.在甲出发的同时,乙货车从B 地沿同一公路匀速前往A 地,到达A 地后停止.两车之间的路程()y km 与甲货车出发时间()x h 之间的函数关系如图中的折线CD DE EF --所示.其中点C 的坐标是(0,240),点D 的坐标是(2.4,0),则点E 的坐标是 .18.火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3:5:2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加的营业额占总增加的营业额的25,则摆摊的营业额将达到7月份总营业额的720,为使堂食、外卖7月份的营业额之比为8:5,则7月份外卖还需增加的营业额与7月份总营业额之比是 .三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上. 19.(10分)计算: (1)2()(2)x y x x y ++-;(2)229(1)369m m m m m --÷+++. 20.(10分)为了解学生掌握垃圾分类知识的情况,增强学生环保意识.某学校举行了“垃圾分类人人有责”的知识测试活动,现从该校七、八年级中各随机抽取20名学生的测试成绩(满分10分,6分及6分以上为合格)进行整理、描述和分析,下面给出了部分信息.七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6.八年级20名学生的测试成绩条形统计图如图:七、八年级抽取的学生的测试成绩的平均数、众数、中位数、8分及以上人数所占百分比如下表所示:年级 平均数 众数中位数 8分及以上人数所占百分比七年级 7.5 a745% 八年级7.58bc根据以上信息,解答下列问题:(1)直接写出上述表中的a ,b ,c 的值;(2)根据上述数据,你认为该校七、八年级中哪个年级学生掌握垃极分类知识较好?请说明理由(写出一条理由即可);(3)该校七、八年级共1200名学生参加了此次测试活动,估计参加此次测试活动成绩合格的学生人数是多少?21.(10分)如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,分别过点A ,C 作AE BD ⊥,CF BD ⊥,垂足分别为E ,F .AC 平分DAE ∠.(1)若50AOE ∠=︒,求ACB ∠的度数; (2)求证:AE CF =.22.(10分)在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数261xy x =+性质及其应用的部分过程,请按要求完成下列各小题.(1)请把下表补充完整,并在图中补全该函数图象;x⋯ 5- 4-3- 2- 1- 0 1 2 34 5 ⋯261x y x =+ ⋯ 1513- 2417-125- 3- 0 31252417 1513⋯ (2)根据函数图象,判断下列关于该函数性质的说法是否正确,正确的在答题卡上相应的括号内打“√”,错误的在答题卡上相应的括号内打“⨯”; ①该函数图象是轴对称图形,它的对称轴为y 轴.②该函数在自变量的取值范围内,有最大值和最小值.当1x =时,函数取得最大值3;当1x =-时,函数取得最小值3-.③当1x <-或1x >时,y 随x 的增大而减小;当11x -<<时,y 随x 的增大而增大. (3)已知函数21y x =-的图象如图所示,结合你所画的函数图象,直接写出不等式26211xx x >-+的解集(保留1位小数,误差不超过0.2).23.(10分)在整数的除法运算中,只有能整除与不能整除两种情况,当不能整除时,就会产生余数,现在我们利用整数的除法运算来研究一种数-- “差一数”.定义:对于一个自然数,如果这个数除以5余数为4,且除以3余数为2,则称这个数为“差一数”. 例如:14524÷=⋯,14342÷=⋯,所以14是“差一数”; 19534÷=⋯,但19361÷=⋯,所以19不是“差一数”. (1)判断49和74是否为“差一数”?请说明理由; (2)求大于300且小于400的所有“差一数”.24.(10分)“中国人的饭碗必须牢牢掌握在咱们自己手中”.为优选品种,提高产量,某农业科技小组对A ,B 两个小麦品种进行种植对比实验研究.去年A ,B 两个品种各种植了10亩.收获后A ,B 两个品种的售价均为2.4元/kg ,且B 的平均亩产量比A 的平均亩产量高100kg ,A ,B 两个品种全部售出后总收入为21600元.(1)请求出A ,B 两个品种去年平均亩产量分别是多少?(2)今年,科技小组加大了小麦种植的科研力度,在A ,B 种植亩数不变的情况下,预计A ,B 两个品种平均亩产量将在去年的基础上分别增加%a 和2%a .由于B 品种深受市场的欢迎,预计每千克价格将在去年的基础上上涨%a ,而A 品种的售价不变.A ,B 两个品种全部售出后总收入将在去年的基础上增加20%9a .求a 的值. 25.(10分)如图,在平面直角坐标系中,已知抛物线2y x bx c =++与直线AB 相交于A ,B 两点,其中(3,4)A --,(0,1)B -.(1)求该抛物线的函数表达式;(2)点P 为直线AB 下方抛物线上的任意一点,连接PA ,PB ,求PAB ∆面积的最大值;(3)将该抛物线向右平移2个单位长度得到抛物线21111(0)y a x b x c a =++≠,平移后的抛物线与原抛物线相交于点C ,点D 为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点E ,使以点B ,C ,D ,E 为顶点的四边形为菱形,若存在,请直接写出点E 的坐标;若不存在,请说明理由.四、解答题:(本大题1个小题,共8分)解答时必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.26.(8分)如图,在Rt ABC ∆中,90BAC ∠=︒,AB AC =,点D 是BC 边上一动点,连接AD ,把AD 绕点A 逆时针旋转90︒,得到AE ,连接CE ,DE .点F 是DE 的中点,连接CF . (1)求证:22CF AD =; (2)如图2所示,在点D 运动的过程中,当2BD CD =时,分别延长CF ,BA ,相交于点G ,猜想AG 与BC 存在的数量关系,并证明你猜想的结论;(3)在点D 运动的过程中,在线段AD 上存在一点P ,使PA PB PC ++的值最小.当PA PB PC ++的值取得最小值时,AP 的长为m ,请直接用含m 的式子表示CE 的长.2020年重庆市中考数学试卷答案1.A . 2.A . 3.C . 4.B . 5.D . 6.C 7.D 8.D 9.B 10.A 11.B 12.B13.3. 14.6. 15.316. 16.4π-. 17.(4,160). 18.1:8.19.解:(1)2()(2)x y x x y ++-,22222x xy y x xy =+++-, 222x y =+;(2)229(1)369m m m m m --÷+++, 23(3)()33(3)(3)m m m m m m m ++=-⨯+++-, 3333m m m +=⨯+-, 33m =-. 20.解:(1)七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6,7a ∴=,由条形统计图可得,(78)27.5b =+÷=,(523)20100%50%c =++÷⨯=,即7a =,7.5b =,50%c =;(2)八年级学生掌握垃极分类知识较好,理由:八年级的8分及以上人数所占百分比大于七年级,故八年级学生掌握垃极分类知识较好;(3)从调查的数据看,七年级2人的成绩不合格,八年级2人的成绩不合格,∴参加此次测试活动成绩合格的学生有(202)(202)120010802020-+-⨯=+(人),即参加此次测试活动成绩合格的学生有1080人. 21.(1)解:AE BD ⊥,90AEO ∴∠=︒, 50AOE ∠=︒, 40EAO ∴∠=︒, CA 平分DAE ∠,40DAC EAO ∴∠=∠=︒,四边形ABCD 是平行四边形,//AD BC ∴, 40ACB DAC ∠=∠=︒,(2)证明:四边形ABCD 是平行四边形,OA OC ∴=,AE BD ⊥,CF BD ⊥, 90AEO CFO ∴∠=∠=︒,AOE COF ∠=∠,()AEO CFO AAS ∴∆≅∆, AE CF ∴=.22.解:(1)补充完整下表为:x⋯5- 4- 3- 2- 1-0 1 2 3 4 5⋯261xy x =+ ⋯ 1513- 2417-95- 125-3-0 3 125 95 24171513⋯ 画出函数的图象如图:;(2)根据函数图象:①该函数图象是轴对称图形,它的对称轴为y 轴,说法错误;②该函数在自变量的取值范围内,有最大值和最小值.当1x =时,函数取得最大值3;当1x =-时,函数取得最小值3-,说法正确;③当1x <-或1x >时,y 随x 的增大而减小;当11x -<<时,y 随x 的增大而增大,说法正确.(3)由图象可知:不等式26211xx x >-+的解集为1x <-或0.3 1.8-<. 23.解:(1)49594÷=⋯,但493161÷=⋯,所以49不是“差一数”; 745144÷=⋯,743242÷=⋯,所以74是“差一数”. (2)大于300且小于400的数除以5余数为4的有304,309,314,319,324,329,334,339,344,349,354,359,364,369,374,379,384,389,394,399, 其中除以3余数为2的有314,327,344,359,374,389.故大于300且小于400的所有“差一数”有314,327,344,359,374,389. 24.解:(1)设A 、B 两个品种去年平均亩产量分别是x 千克和y 千克;根据题意得,10010 2.4()21600y x x y -=⎧⎨⨯+=⎩,解得:400500x y =⎧⎨=⎩,答:A 、B 两个品种去年平均亩产量分别是400千克和500千克; (2)202.440010(1%) 2.4(1%)50010(12%)21600(1%)9a a a a ⨯⨯+++⨯⨯+=+, 解得:0.1a =, 答:a 的值为0.1.25.解:(1)将点A 、B 的坐标代入抛物线表达式得4931b c c -=-=⎧⎨=-⎩,解得41b c =⎧⎨=-⎩,故抛物线的表达式为:241y x x =+-;(2)设直线AB 的表达式为:y kx t =+,则431k t t -=-+⎧⎨=-⎩,解得11k t =⎧⎨=-⎩,故直线AB 的表达式为:1y x =-, 过点P 作y 轴的平行线交AB 于点H ,设点2(,41)P x x x +-,则(,1)H x x -,PAB ∆面积221139()(141)(03)2222B A S PH x x x x x x x =⨯⨯-=---+⨯+=--, 302-<,故S 有最大值,当32x =-时,S 的最大值为278; (3)抛物线的表达式为:2241(2)5y x x x =+-=+-, 则平移后的抛物线表达式为:25y x =-, 联立上述两式并解得:14x y =-⎧⎨=-⎩,故点(1,4)C --;设点(2,)D m -、点(,)E s t ,而点B 、C 的坐标分别为(0,1)-、(1,4)--; ①当BC 为菱形的边时,点C 向右平移1个单位向上平移3个单位得到B ,同样D (E )向右平移1个单位向上平移3个单位得到E (D ),即21s -+=且3m t +=①或21s --=且3m t -=②,当点D 在E 的下方时,则BE BC =,即2222(1)13s t ++=+③, 当点D 在E 的上方时,则BD BC =,即22222(1)13m ++=+④, 联立①③并解得:1s =-,2t =或4-(舍去4)-,故点(1,3)E -;联立②④并解得:1s =,46t =-±,故点(1,46)E -+或(1,46)--; ②当BC 为菱形的的对角线时,则由中点公式得:12s -=-且41m t --=+⑤, 此时,BD BE =,即22222(1)(1)m s t ++=++⑥, 联立⑤⑥并解得:1s =,3t =-, 故点(1,3)E -,综上,点E 的坐标为:(1,2)-或(1,46)-+或(1,46)--或(1,3)-. 26.证明:(1)AB AC =,90BAC ∠=︒,45ABC ACB ∴∠=∠=︒,把AD 绕点A 逆时针旋转90︒,得到AE ,AD AE ∴=,90DAE BAC ∠=︒=∠, BAD CAE ∴∠=∠,2DE AD =,又AB AC =,()BAD CAE SAS ∴∆≅∆, 45ABD ACE ∴∠=∠=︒, 90BCE BCA ACE ∴∠=∠+∠=︒,点F 是DE 的中点,1222CF DE AD ∴==;(2)26AG BC =, 理由如下:如图2,过点G 作GH BC ⊥于H ,2BD CD =,∴设CD a =,则2BD a =,3BC a =,90BAC ∠=︒,AB AC =,3222BC AB AC a ∴===, 由(1)可知:BAD CAE ∆≅∆,2BD CE a ∴==, CF DF =, FDC FCD ∴∠=∠, tan tan FDC FCD ∴∠=∠, ∴2CE GHCD CH==, 2GH CH ∴=,GH BC ⊥,45ABC ∠=︒, 45ABC BGH ∴∠=∠=︒, BH GH ∴=,2BG BH ∴= 3BH CH BC a +==, CH a ∴=,2BH GH a ==,22BG a ∴=,222226AG BG AB a CD BC ∴=-===; (3)如图31-,将BPC ∆绕点B 顺时针旋转60︒得到BNM ∆,连接PN ,BP BN ∴=,PC NM =,60PBN ∠=︒, BPN ∴∆是等边三角形, BP PN ∴=,PA PB PC AP PN MN ∴++=++,∴当点A ,点P ,点N ,点M 共线时,PA PB PC ++值最小,此时,如图32-,连接MC ,将BPC ∆绕点B 顺时针旋转60︒得到BNM ∆,BP BN ∴=,BC BM =,60PBN CBM ∠=︒=∠, BPN ∴∆是等边三角形,CBM ∆是等边三角形, 60BPN BNP ∴∠=∠=︒,BM CM =, BM CM =,AB AC =,AM ∴垂直平分BC , AD BC ⊥,60BPD ∠=︒,3BD ∴=,AB AC =,90BAC ∠=︒,AD BC ⊥,AD BD ∴=, ∴3PD PD AP =+,312PD +∴=, 3332BD PD +∴==, 由(1)可知:332CE BD +==.。

2020年重庆市中考数学试卷(A卷)及答案 (解析版)

2020年重庆市中考数学试卷(A卷)及答案 (解析版)

2020年重庆市中考数学试卷(A卷)一、选择题(共12个小题).1.(4分)下列各数中,最小的数是()A.3-B.0C.1D.22.(4分)下列图形是轴对称图形的是()A.B.C.D.3.(4分)在今年举行的第127届“广交会”上,有近26000家厂家进行“云端销售”.其中数据26000用科学记数法表示为()A.3⨯D.50.2610⨯2.610⨯C.4⨯B.326102.6104.(4分)把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形,⋯,按此规律排列下去,则第⑤个图案中黑色三角形的个数为()A.10B.15C.18D.215.(4分)如图,AB是O的切线,A为切点,连接OA,OB,若20∠=︒,则AOB∠的B度数为()A.40︒B.50︒C.60︒D.70︒6.(4分)下列计算中,正确的是()A .235+=B .2222+=C .236⨯=D .2323-=7.(4分)解一元一次方程11(1)123x x +=-时,去分母正确的是( ) A .3(1)12x x +=- B .2(1)13x x +=- C .2(1)63x x +=- D .3(1)62x x +=-8.(4分)如图,在平面直角坐标系中,ABC ∆的顶点坐标分别是(1,2)A ,(1,1)B ,(3,1)C ,以原点为位似中心,在原点的同侧画DEF ∆,使DEF ∆与ABC ∆成位似图形,且相似比为2:1,则线段DF 的长度为( )A .5B .2C .4D .259.(4分)如图,在距某居民楼AB 楼底B 点左侧水平距离60m 的C 点处有一个山坡,山坡CD 的坡度(或坡比)1:0.75i =,山坡坡底C 点到坡顶D 点的距离45CD m =,在坡顶D 点处测得居民楼楼顶A 点的仰角为28︒,居民楼AB 与山坡CD 的剖面在同一平面内,则居民楼AB 的高度约为(参考数据:sin 280.47︒≈,cos 280.88︒≈,tan 280.53)(︒≈ )A .76.9mB .82.1mC .94.8mD .112.6m10.(4分)若关于x 的一元一次不等式组313,2x x x a-⎧+⎪⎨⎪⎩的解集为x a ;且关于y 的分式方程34122y a y y y --+=--有正整数解,则所有满足条件的整数a 的值之积是( ) A .7 B .14- C .28 D .56-11.(4分)如图,三角形纸片ABC ,点D 是BC 边上一点,连接AD ,把ABD ∆沿着AD 翻折,得到AED ∆,DE 与AC 交于点G ,连接BE 交AD 于点F .若DG GE =,3AF =,2BF =,ADG ∆的面积为2,则点F 到BC 的距离为( )A .55B .255C .455D .43312.(4分)如图,在平面直角坐标系中,矩形ABCD 的对角线AC 的中点与坐标原点重合,点E 是x 轴上一点,连接AE .若AD 平分OAE ∠,反比例函数(0,0)k y k x x=>>的图象经过AE 上的两点A ,F ,且AF EF =,ABE ∆的面积为18,则k 的值为( )A .6B .12C .18D .24二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上. 13.(4分)计算:0(1)|2|π-+-= .14.(4分)一个多边形的内角和等于它的外角和的2倍,则这个多边形的边数是 .15.(4分)现有四张正面分别标有数字1-,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背面朝上洗均匀,随机抽取一张,记下数字后放回,背面朝上洗均匀,再随机抽取一张记下数宇,前后两次抽取的数字分别记为m ,n .则点(,)P m n 在第二象限的概率为 .16.(4分)如图,在边长为2的正方形ABCD 中,对角线AC 的中点为O ,分别以点A ,C 为圆心,以AO 的长为半径画弧,分别与正方形的边相交,则图中的阴影部分的面积为 .(结果保留)π17.(4分)A ,B 两地相距240km ,甲货车从A 地以40/km h 的速度匀速前往B 地,到达B 地后停止.在甲出发的同时,乙货车从B 地沿同一公路匀速前往A 地,到达A 地后停止.两车之间的路程()y km 与甲货车出发时间()x h 之间的函数关系如图中的折线CD DE EF --所示.其中点C 的坐标是(0,240),点D 的坐标是(2.4,0),则点E 的坐标是 .18.(4分)火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3:5:2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加的营业额占总增加的营业额的25,则摆摊的营业额将达到7月份总营业额的720,为使堂食、外卖7月份的营业额之比为8:5,则7月份外卖还需增加的营业额与7月份总营业额之比是 .三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(10分)计算:(1)2()(2)x y x x y ++-;(2)229(1)369m m m m m --÷+++. 20.(10分)为了解学生掌握垃圾分类知识的情况,增强学生环保意识.某学校举行了“垃圾分类人人有责”的知识测试活动,现从该校七、八年级中各随机抽取20名学生的测试成绩(满分10分,6分及6分以上为合格)进行整理、描述和分析,下面给出了部分信息.七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6.八年级20名学生的测试成绩条形统计图如图:七、八年级抽取的学生的测试成绩的平均数、众数、中位数、8分及以上人数所占百分比如下表所示:年级平均数众数中位数8分及以上人数所占百分比七年级7.5a745%八年级7.58b c根据以上信息,解答下列问题:(1)直接写出上述表中的a,b,c的值;(2)根据上述数据,你认为该校七、八年级中哪个年级学生掌握垃极分类知识较好?请说明理由(写出一条理由即可);(3)该校七、八年级共1200名学生参加了此次测试活动,估计参加此次测试活动成绩合格的学生人数是多少?21.(10分)如图,在平行四边形ABCD中,对角线AC,BD相交于点O,分别过点A,C 作AE BD⊥,CF BD∠.⊥,垂足分别为E,F.AC平分DAE(1)若50AOE∠的度数;∠=︒,求ACB(2)求证:AE CF=.22.(10分)在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数261x y x =+性质及其应用的部分过程,请按要求完成下列各小题. (1)请把下表补充完整,并在图中补全该函数图象;x ⋯ 5- 4- 3- 2- 1- 0 1 2 3 4 5 ⋯261x y x =+ ⋯ 1513- 2417-125- 3- 03 125 2417 1513⋯(2)根据函数图象,判断下列关于该函数性质的说法是否正确,正确的在答题卡上相应的括号内打“√”,错误的在答题卡上相应的括号内打“⨯”;①该函数图象是轴对称图形,它的对称轴为y 轴.②该函数在自变量的取值范围内,有最大值和最小值.当1x =时,函数取得最大值3;当1x =-时,函数取得最小值3-.③当1x <-或1x >时,y 随x 的增大而减小;当11x -<<时,y 随x 的增大而增大.(3)已知函数21y x =-的图象如图所示,结合你所画的函数图象,直接写出不等式26211x x x >-+的解集(保留1位小数,误差不超过0.2).23.(10分)在整数的除法运算中,只有能整除与不能整除两种情况,当不能整除时,就会产生余数,现在我们利用整数的除法运算来研究一种数-- “差一数”.定义:对于一个自然数,如果这个数除以5余数为4,且除以3余数为2,则称这个数为“差一数”.例如:14524÷=⋯,14342÷=⋯,所以14是“差一数”;19534÷=⋯,但19361÷=⋯,所以19不是“差一数”.(1)判断49和74是否为“差一数”?请说明理由;(2)求大于300且小于400的所有“差一数”.24.(10分)“中国人的饭碗必须牢牢掌握在咱们自己手中”.为优选品种,提高产量,某农业科技小组对A ,B 两个小麦品种进行种植对比实验研究.去年A ,B 两个品种各种植了10亩.收获后A ,B 两个品种的售价均为2.4元/kg ,且B 的平均亩产量比A 的平均亩产量高100kg ,A ,B 两个品种全部售出后总收入为21600元.(1)请求出A ,B 两个品种去年平均亩产量分别是多少?(2)今年,科技小组加大了小麦种植的科研力度,在A ,B 种植亩数不变的情况下,预计A ,B 两个品种平均亩产量将在去年的基础上分别增加%a 和2%a .由于B 品种深受市场的欢迎,预计每千克价格将在去年的基础上上涨%a ,而A 品种的售价不变.A ,B 两个品种全部售出后总收入将在去年的基础上增加20%9a .求a 的值. 25.(10分)如图,在平面直角坐标系中,已知抛物线2y x bx c =++与直线AB 相交于A ,B 两点,其中(3,4)A --,(0,1)B -.(1)求该抛物线的函数表达式;(2)点P 为直线AB 下方抛物线上的任意一点,连接PA ,PB ,求PAB ∆面积的最大值;(3)将该抛物线向右平移2个单位长度得到抛物线21111(0)y a x b x c a =++≠,平移后的抛物线与原抛物线相交于点C ,点D 为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点E ,使以点B ,C ,D ,E 为顶点的四边形为菱形,若存在,请直接写出点E 的坐标;若不存在,请说明理由.四、解答题:(本大题1个小题,共8分)解答时必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.26.(8分)如图,在Rt ABC ∆中,90BAC ∠=︒,AB AC =,点D 是BC 边上一动点,连接AD ,把AD绕点A逆时针旋转90︒,得到AE,连接CE,DE.点F是DE的中点,连接CF.(1)求证:22CF AD=;(2)如图2所示,在点D运动的过程中,当2BD CD=时,分别延长CF,BA,相交于点G,猜想AG与BC存在的数量关系,并证明你猜想的结论;(3)在点D运动的过程中,在线段AD上存在一点P,使PA PB PC++的值最小.当PA PB PC++的值取得最小值时,AP的长为m,请直接用含m的式子表示CE的长.2020年重庆市中考数学试卷(A卷)参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)下列各数中,最小的数是()A.3-B.0C.1D.2解:3012-<<<,∴这四个数中最小的数是3-.故选:A.2.(4分)下列图形是轴对称图形的是()A.B.C.D.解:B、C、D都不是轴对称图形,A是轴对称图形,故选:A.3.(4分)在今年举行的第127届“广交会”上,有近26000家厂家进行“云端销售”.其中数据26000用科学记数法表示为()A.3⨯D.5⨯2.6100.2610⨯C.42610⨯B.32.610解:4=⨯,26000 2.610故选:C.4.(4分)把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形,⋯,按此规律排列下去,则第⑤个图案中黑色三角形的个数为()A.10B.15C.18D.21解:第①个图案中黑色三角形的个数为1,第②个图案中黑色三角形的个数312=+,第③个图案中黑色三角形的个数6123=++,⋯⋯++++=,∴第⑤个图案中黑色三角形的个数为1234515故选:B.5.(4分)如图,AB是O的切线,A为切点,连接OA,OB,若20∠的∠=︒,则AOBB度数为()A.40︒B.50︒C.60︒D.70︒解:AB是O的切线,A为切点,∴∠=︒,A90∠=︒,B20∴∠=︒-︒=︒,902070AOB故选:D.6.(4分)下列计算中,正确的是()A235==D.2323+=C236+=B.222解:A23B.22不是同类二次根式,不能合并,此选项计算错误;=⨯=,此选项计算正确;C23236D.23与2-不是同类二次根式,不能合并,此选项错误;故选:C .7.(4分)解一元一次方程11(1)123x x +=-时,去分母正确的是( ) A .3(1)12x x +=- B .2(1)13x x +=- C .2(1)63x x +=- D .3(1)62x x +=- 解:方程两边都乘以6,得:3(1)62x x +=-,故选:D .8.(4分)如图,在平面直角坐标系中,ABC ∆的顶点坐标分别是(1,2)A ,(1,1)B ,(3,1)C ,以原点为位似中心,在原点的同侧画DEF ∆,使DEF ∆与ABC ∆成位似图形,且相似比为2:1,则线段DF 的长度为( )A 5B .2C .4D .25解:以原点为位似中心,在原点的同侧画DEF ∆,使DEF ∆与ABC ∆成位似图形,且相似比为2:1,而(1,2)A ,(3,1)C ,(2,4)D ∴,(6,2)F ,22(26)(42)5DF ∴=-+-=故选:D .9.(4分)如图,在距某居民楼AB 楼底B 点左侧水平距离60m 的C 点处有一个山坡,山坡CD 的坡度(或坡比)1:0.75i =,山坡坡底C 点到坡顶D 点的距离45CD m =,在坡顶D 点处测得居民楼楼顶A 点的仰角为28︒,居民楼AB 与山坡CD 的剖面在同一平面内,则居民楼AB 的高度约为(参考数据:sin 280.47︒≈,cos 280.88︒≈,tan 280.53)(︒≈ )A.76.9m B.82.1m C.94.8m D.112.6m 解:如图,由题意得,28ADF∠=︒,45CD=,60BC=,在Rt DEC∆中,山坡CD的坡度1:0.75i=,∴140.753 DEEC==,设4DE x=,则3EC x=,由勾股定理可得5CD x=,又45CD=,即545x=,9x∴=,327EC x∴==,436DE x FB===,602787BE BC EC DF∴=+=+==,在Rt ADF∆中,tan280.538746.11AF DF=︒⨯≈⨯≈,46.113682.1AB AF FB∴=+=+≈,故选:B.10.(4分)若关于x的一元一次不等式组313,2xxx a-⎧+⎪⎨⎪⎩的解集为x a;且关于y的分式方程34122y a yy y--+=--有正整数解,则所有满足条件的整数a的值之积是() A.7B.14-C.28D.56-解:不等式组整理得:7xx a⎧⎨⎩,由解集为x a ,得到7a ,分式方程去分母得:342y a y y -+-=-,即32y a -=, 解得:23a y +=, 由y 为正整数解,且2y ≠得到1a =,7 177⨯=,故选:A .11.(4分)如图,三角形纸片ABC ,点D 是BC 边上一点,连接AD ,把ABD ∆沿着AD 翻折,得到AED ∆,DE 与AC 交于点G ,连接BE 交AD 于点F .若DG GE =,3AF =,2BF =,ADG ∆的面积为2,则点F 到BC 的距离为( )A 55B 255C 455D 433解:DG GE =,2ADG AEG S S ∆∆∴==,4ADE S ∆∴=,由翻折可知,ADB ADE ∆≅∆,BE AD ⊥,4ABD ADE S S ∆∆∴==,90BFD ∠=︒, ∴1()42AF DF BF +=, ∴1(3)242DF +=, 1DF ∴=,2222125DB BF DF ∴=+=+=设点F 到BD 的距离为h ,则有1122BD h BF DF =, 255h ∴=, 故选:B .12.(4分)如图,在平面直角坐标系中,矩形ABCD 的对角线AC 的中点与坐标原点重合,点E 是x 轴上一点,连接AE .若AD 平分OAE ∠,反比例函数(0,0)k y k x x=>>的图象经过AE 上的两点A ,F ,且AF EF =,ABE ∆的面积为18,则k 的值为( )A .6B .12C .18D .24解:如图,连接BD ,OF ,过点A 作AN OE ⊥于N ,过点F 作FM OE ⊥于M .//AN FM ,AF FE =,MN ME ∴=,12FM AN ∴=, A ,F 在反比例函数的图象上,2AON FOM k S S ∆∆∴==, ∴1122ON AN OM FM =, 12ON OM ∴=, ON MN EM ∴==,13ME OE ∴=, 13FME FOE S S ∆∆∴=,AD 平分OAE ∠,OAD EAD ∴∠=∠,四边形ABCD 是矩形,OA OD ∴=,OAD ODA DAE ∴∠=∠=∠,//AE BD ∴,ABE AOE S S ∆∆∴=,18AOE S ∆∴=,AF EF =,192EOF AOE S S ∆∆∴==, 133FME EOF S S ∆∆∴==, 9362FOM FOE FME k S S S ∆∆∆∴=-=-==, 12k ∴=. 故选:B .二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)计算:0(1)|2|π-+-= 3 .解:0(1)|2|123π-+-=+=,故答案为:3.14.(4分)一个多边形的内角和等于它的外角和的2倍,则这个多边形的边数是 6 . 解:设这个多边形的边数为n ,依题意,得:(2)1802360n -︒=⨯︒,解得6n =.故答案为:6.15.(4分)现有四张正面分别标有数字1-,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背面朝上洗均匀,随机抽取一张,记下数字后放回,背面朝上洗均匀,再随机抽取一张记下数宇,前后两次抽取的数字分别记为m ,n .则点(,)P m n 在第二象限的概率为 316. 解:画树状图为:共有16种等可能的结果数,其中点(,)P m n 在第二象限的结果数为3,所以点(,)P m n 在第二象限的概率316=. 故答案为316. 16.(4分)如图,在边长为2的正方形ABCD 中,对角线AC 的中点为O ,分别以点A ,C 为圆心,以AO 的长为半径画弧,分别与正方形的边相交,则图中的阴影部分的面积为4π- .(结果保留)π解:四边形ABCD 为正方形,2AB BC ∴==,90DAB DCB ∠=∠=︒,由勾股定理得,2222AC AB BC =+=,2OA OC ∴==,∴图中的阴影部分的面积2290(2)224360ππ⨯=-=-, 故答案为:4π-.17.(4分)A ,B 两地相距240km ,甲货车从A 地以40/km h 的速度匀速前往B 地,到达B 地后停止.在甲出发的同时,乙货车从B 地沿同一公路匀速前往A 地,到达A 地后停止.两车之间的路程()y km 与甲货车出发时间()x h 之间的函数关系如图中的折线CD DE EF --所示.其中点C 的坐标是(0,240),点D 的坐标是(2.4,0),则点E 的坐标是(4,160) .解:根据题意可得,乙货车的速度为:240 2.44060(40/)km h ÷-=,∴乙货车从B 地到A 地所用时间为:240604÷=(小时), 当乙货车到底A 地时,甲货车行驶的路程为:404160⨯=(千米),∴点E 的坐标是(4,160).故答案为:(4,160).18.(4分)火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3:5:2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加的营业额占总增加的营业额的25,则摆摊的营业额将达到7月份总营业额的720,为使堂食、外卖7月份的营业额之比为8:5,则7月份外卖还需增加的营业额与7月份总营业额之比是 1:8 .解:设6月份堂食、外卖、摆摊三种方式的营业额为3a ,5a ,2a ,设7月份总的增加营业额为5x ,摆摊增加的营业额为2x ,7月份总营业额20b ,摆摊7月份的营业额为7b ,堂食7月份的营业额为8b ,外卖7月份的营业额为5b ,由题意可得:72220105b a x b a x -=⎧⎨-=⎩, 解得:63x a xb ⎧=⎪⎪⎨⎪=⎪⎩, 7∴月份外卖还需增加的营业额与7月份总营业额之比(55):201:8b a b =-=,故答案为:1:8.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(10分)计算:(1)2()(2)x y x x y ++-;(2)229(1)369m m m m m --÷+++. 解:(1)2()(2)x y x x y ++-,22222x xy y x xy =+++-,222x y =+;(2)229(1)369m m m m m --÷+++, 23(3)()33(3)(3)m m m m m m m ++=-⨯+++-, 3333m m m +=⨯+-, 33m =-. 20.(10分)为了解学生掌握垃圾分类知识的情况,增强学生环保意识.某学校举行了“垃圾分类人人有责”的知识测试活动,现从该校七、八年级中各随机抽取20名学生的测试成绩(满分10分,6分及6分以上为合格)进行整理、描述和分析,下面给出了部分信息. 七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6.八年级20名学生的测试成绩条形统计图如图:七、八年级抽取的学生的测试成绩的平均数、众数、中位数、8分及以上人数所占百分比如下表所示:根据以上信息,解答下列问题:(1)直接写出上述表中的a ,b ,c 的值;(2)根据上述数据,你认为该校七、八年级中哪个年级学生掌握垃极分类知识较好?请说明理由(写出一条理由即可);(3)该校七、八年级共1200名学生参加了此次测试活动,估计参加此次测试活动成绩合格的学生人数是多少?解:(1)七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6,7a ∴=,由条形统计图可得,(78)27.5b =+÷=,(523)20100%50%c =++÷⨯=,即7a =,7.5b =,50%c =;(2)八年级学生掌握垃极分类知识较好,理由:八年级的8分及以上人数所占百分比大于七年级,故八年级学生掌握垃极分类知识较好;(3)从调查的数据看,七年级2人的成绩不合格,八年级2人的成绩不合格, ∴参加此次测试活动成绩合格的学生有(202)(202)120010802020-+-⨯=+(人), 即参加此次测试活动成绩合格的学生有1080人.21.(10分)如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,分别过点A ,C 作AE BD ⊥,CF BD ⊥,垂足分别为E ,F .AC 平分DAE ∠.(1)若50AOE ∠=︒,求ACB ∠的度数;(2)求证:AE CF =.【解答】(1)解:AE BD ⊥,90AEO ∴∠=︒,50AOE ∠=︒,40EAO ∴∠=︒,CA 平分DAE ∠,40DAC EAO ∴∠=∠=︒,四边形ABCD 是平行四边形,//AD BC ∴,40ACB DAC ∠=∠=︒,(2)证明:四边形ABCD 是平行四边形,OA OC ∴=,AE BD ⊥,CF BD ⊥,90AEO CFO ∴∠=∠=︒,AOE COF ∠=∠,()AEO CFO AAS ∴∆≅∆,AE CF ∴=.22.(10分)在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数261x y x =+性质及其应用的部分过程,请按要求完成下列各小题.(1)请把下表补充完整,并在图中补全该函数图象;(2)根据函数图象,判断下列关于该函数性质的说法是否正确,正确的在答题卡上相应的括号内打“√”,错误的在答题卡上相应的括号内打“⨯”;①该函数图象是轴对称图形,它的对称轴为y 轴.②该函数在自变量的取值范围内,有最大值和最小值.当1x =时,函数取得最大值3;当1x =-时,函数取得最小值3-.③当1x <-或1x >时,y 随x 的增大而减小;当11x -<<时,y 随x 的增大而增大.(3)已知函数21y x =-的图象如图所示,结合你所画的函数图象,直接写出不等式26211x x x >-+的解集(保留1位小数,误差不超过0.2).解:(1)补充完整下表为:x⋯5- 4- 3- 2- 1-0 1 2 3 4 5⋯261xy x =+ ⋯ 1513-2417-95- 125-3-0 3 12595 2417 1513⋯画出函数的图象如图:;(2)根据函数图象:①该函数图象是轴对称图形,它的对称轴为y 轴,说法错误;②该函数在自变量的取值范围内,有最大值和最小值.当1x =时,函数取得最大值3;当1x =-时,函数取得最小值3-,说法正确;③当1x <-或1x >时,y 随x 的增大而减小;当11x -<<时,y 随x 的增大而增大,说法正确.(3)由图象可知:不等式26211xx x >-+的解集为1x <-或0.3 1.8-<.23.(10分)在整数的除法运算中,只有能整除与不能整除两种情况,当不能整除时,就会产生余数,现在我们利用整数的除法运算来研究一种数--“差一数”.定义:对于一个自然数,如果这个数除以5余数为4,且除以3余数为2,则称这个数为“差一数”.例如:14524÷=⋯,14342÷=⋯,所以14是“差一数”;19534÷=⋯,但19361÷=⋯,所以19不是“差一数”.(1)判断49和74是否为“差一数”?请说明理由;(2)求大于300且小于400的所有“差一数”.解:(1)49594÷=⋯,但493161÷=⋯,所以49不是“差一数”;745144÷=⋯,743242÷=⋯,所以74是“差一数”.(2)大于300且小于400的数除以5余数为4的有304,309,314,319,324,329,334,339,344,349,354,359,364,369,374,379,384,389,394,399,其中除以3余数为2的有314,327,344,359,374,389.故大于300且小于400的所有“差一数”有314,327,344,359,374,389.24.(10分)“中国人的饭碗必须牢牢掌握在咱们自己手中”.为优选品种,提高产量,某农业科技小组对A,B两个小麦品种进行种植对比实验研究.去年A,B两个品种各种植了10亩.收获后A,B两个品种的售价均为2.4元/kg,且B的平均亩产量比A的平均亩产量高100kg,A,B两个品种全部售出后总收入为21600元.(1)请求出A,B两个品种去年平均亩产量分别是多少?(2)今年,科技小组加大了小麦种植的科研力度,在A,B种植亩数不变的情况下,预计A,B两个品种平均亩产量将在去年的基础上分别增加%a和2%a.由于B品种深受市场的欢迎,预计每千克价格将在去年的基础上上涨%a,而A品种的售价不变.A,B两个品种全部售出后总收入将在去年的基础上增加20%9a.求a的值.解:(1)设A、B两个品种去年平均亩产量分别是x千克和y千克;根据题意得,10010 2.4()21600y xx y-=⎧⎨⨯+=⎩,解得:400500xy=⎧⎨=⎩,答:A、B两个品种去年平均亩产量分别是400千克和500千克;(2)202.440010(1%) 2.4(1%)50010(12%)21600(1%)9a a a a ⨯⨯+++⨯⨯+=+, 解得:0.1a =, 答:a 的值为0.1.25.(10分)如图,在平面直角坐标系中,已知抛物线2y x bx c =++与直线AB 相交于A ,B 两点,其中(3,4)A --,(0,1)B -.(1)求该抛物线的函数表达式;(2)点P 为直线AB 下方抛物线上的任意一点,连接PA ,PB ,求PAB ∆面积的最大值; (3)将该抛物线向右平移2个单位长度得到抛物线21111(0)y a x b x c a =++≠,平移后的抛物线与原抛物线相交于点C ,点D 为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点E ,使以点B ,C ,D ,E 为顶点的四边形为菱形,若存在,请直接写出点E 的坐标;若不存在,请说明理由.解:(1)将点A 、B 的坐标代入抛物线表达式得4931b c c -=-=⎧⎨=-⎩,解得41b c =⎧⎨=-⎩,故抛物线的表达式为:241y x x =+-;(2)设直线AB 的表达式为:y kx t =+,则431k t t -=-+⎧⎨=-⎩,解得11k t =⎧⎨=-⎩,故直线AB 的表达式为:1y x =-, 过点P 作y 轴的平行线交AB 于点H ,设点2(,41)P x x x +-,则(,1)H x x -, PAB ∆面积221139()(141)(03)2222B A S PH x x x x x x x =⨯⨯-=---+⨯+=--, 302-<,故S 有最大值,当32x =-时,S 的最大值为278;(3)抛物线的表达式为:2241(2)5y x x x =+-=+-, 则平移后的抛物线表达式为:25y x =-, 联立上述两式并解得:14x y =-⎧⎨=-⎩,故点(1,4)C --;设点(2,)D m -、点(,)E s t ,而点B 、C 的坐标分别为(0,1)-、(1,4)--; ①当BC 为菱形的边时,点C 向右平移1个单位向上平移3个单位得到B ,同样D (E )向右平移1个单位向上平移3个单位得到E (D ),即21s -+=且3m t +=①或21s --=且3m t -=②,当点D 在E 的下方时,则BE BC =,即2222(1)13s t ++=+③, 当点D 在E 的上方时,则BD BC =,即22222(1)13m ++=+④,联立①③并解得:1s =-,2t =或4-(舍去4)-,故点(1,3)E -; 联立②④并解得:1s =,46t =-±,故点(1,46)E -+或(1,46)--; ②当BC 为菱形的的对角线时,则由中点公式得:12s -=-且41m t --=+⑤, 此时,BD BE =,即22222(1)(1)m s t ++=++⑥, 联立⑤⑥并解得:1s =,3t =-, 故点(1,3)E -,综上,点E 的坐标为:(1,2)-或(1,46)-+或(1,46)--或(1,3)-.四、解答题:(本大题1个小题,共8分)解答时必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.26.(8分)如图,在Rt ABC ∆中,90BAC ∠=︒,AB AC =,点D 是BC 边上一动点,连接AD ,把AD 绕点A 逆时针旋转90︒,得到AE ,连接CE ,DE .点F 是DE 的中点,连接CF . (1)求证:22CF AD =; (2)如图2所示,在点D 运动的过程中,当2BD CD =时,分别延长CF ,BA ,相交于点G ,猜想AG 与BC 存在的数量关系,并证明你猜想的结论;(3)在点D 运动的过程中,在线段AD 上存在一点P ,使PA PB PC ++的值最小.当PA PB PC ++的值取得最小值时,AP 的长为m ,请直接用含m 的式子表示CE 的长.【解答】证明:(1)AB AC =,90BAC ∠=︒,45ABC ACB ∴∠=∠=︒,把AD 绕点A 逆时针旋转90︒,得到AE , AD AE ∴=,90DAE BAC ∠=︒=∠, BAD CAE ∴∠=∠,2DE =,又AB AC =,()BAD CAE SAS ∴∆≅∆, 45ABD ACE ∴∠=∠=︒, 90BCE BCA ACE ∴∠=∠+∠=︒,点F 是DE 的中点, 1222CF DE AD ∴==; (2)26AG BC =, 理由如下:如图2,过点G 作GH BC ⊥于H ,2BD CD =,∴设CD a =,则2BD a =,3BC a =,90BAC ∠=︒,AB AC =,3222BC AB AC ∴===, 由(1)可知:BAD CAE ∆≅∆, 2BD CE a ∴==, CF DF =, FDC FCD ∴∠=∠, tan tan FDC FCD ∴∠=∠, ∴2CE GHCD CH==, 2GH CH ∴=,GH BC ⊥,45ABC ∠=︒, 45ABC BGH ∴∠=∠=︒, BH GH ∴=,2BG BH ∴=3BH CH BC a +==, CH a ∴=,2BH GH a ==,22BG a ∴=,222226AG BG AB a CD BC ∴=-===; (3)如图31-,将BPC ∆绕点B 顺时针旋转60︒得到BNM ∆,连接PN ,BP BN ∴=,PC NM =,60PBN ∠=︒, BPN ∴∆是等边三角形, BP PN ∴=,PA PB PC AP PN MN ∴++=++,∴当点A ,点P ,点N ,点M 共线时,PA PB PC ++值最小,此时,如图32-,连接MC ,将BPC ∆绕点B 顺时针旋转60︒得到BNM ∆,BP BNPBN CBM∠=︒=∠,=,60∴=,BC BM∆是等边三角形,BPN∴∆是等边三角形,CBM=,∴∠=∠=︒,BM CMBPN BNP60=,BM CM=,AB AC∴垂直平分BC,AM∠=︒,BPD⊥,60AD BCBD∴=,⊥,BAC∠=︒,AD BCAB AC=,90∴=,AD BD=+,∴PD AP∴=,PD∴==,BD由(1)可知:CE BD==.。

2020年重庆市中考数学试题(word版)(含答案)

2020年重庆市中考数学试题(word版)(含答案)

2020年重庆市中考数学试题(word 版)(含答案)〔全卷共五个大题,总分值150分,考试时刻120分钟〕题号 一 二 三 四 五 总分 总分人得分参考公式:抛物线y =ax 2+bx +c (a ≠0)的顶点坐标为〔—b 2a ,4ac —b 24a 〕,对称轴公式为x =—b2a. 一、选择题:〔本大题共10个小题,每题4分,共40分〕在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案中,其中只有一个是正确的,请将正确答案的代号填表在题后的括号中. 1.3的倒数是〔〕A .13B .— 13 C .3 D .—32.运算2x 3·x 2的结果是〔〕A .2xB .2x 5C .2x 6D .x 5 3.不等式组⎩⎨⎧>≤-62,31x x 的解集为〔〕A .x >3B .x ≤4C .3<x <4D .3<x ≤44.如图,点B 是△ADC 的边AD 的延长线上一点,DE ∥BC ,假设∠C =50°,∠BDE =60°,那么∠CDB 的度数等于〔〕A .70°B .100°C .110°D .120° 5.以下调查中,适宜采纳全面调查〔普查〕方式的是〔〕A .对全国中学生心理健康现状的调查B .对冷饮市场上冰淇淋质量情形的调查C .对我市市民实施低碳生活情形的调查D .以我国首架大型民用直升机各零部件的检查6.如图,△ABC 是⊙O 的内接三角形,假设∠ABC =70°,那么∠AOC 的度数等于〔〕 A .140° B .130° C .120° D .110° 7.由四个大小相同的正方体组成的几何体如下图,那么它的俯视图是〔〕8.有两个完全重合的矩形,将其中一个始终保持不动,另一个矩形绕其对称中心O 按逆时针方向进行旋转,每次均旋转45°,第1次旋转后得到图①,第2次旋转后得到图②,……,那么第10次旋转后得到的图形与图①~④中相同的是〔〕A .图①B .图②C .图③D .图④9.小华的爷爷每天坚持体育锤炼,某天他慢步到离家较远的绿岛公园,打了一会儿太极拳后跑步回家。

2020年重庆市中考数学试卷-答案

2020年重庆市中考数学试卷-答案

2020年重庆市初中学业水平考试数学答案解析 一、1.【答案】A【解析】有理数的大小比较法则:正数大于0,负数小于0,正数大于一切负数;两个负数,绝对值大的反而小.3012-∵<<<,∴最小的数是3-,故选:A .【考点】有理数的大小比较2.【答案】A【解析】根据轴对称图形的概念对各选项分析判断即可得解.解:A 、是轴对称图形,故本选项正确;B 、不是轴对称图形,故本选项错误;C 、不是轴对称图形,故本选项错误;D 、不是轴对称图形,故本选项错误; 故选:A .【考点】轴对称图形的概念3.【答案】C【解析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10>时,n 是正数;当原数的绝对值1<时,n 是负数.426000 2.610=⨯,故选:C .【考点】科学记数法的表示方法4.【答案】B【解析】根据前三个图案中黑色三角形的个数得出第n 个图案中黑色三角形的个数为1234n +++++,据此可得第⑤个图案中黑色三角形的个数.解:∵第①个图案中黑色三角形的个数为1,第②个图案中黑色三角形的个数312=+,第③个图案中黑色三角形的个数6123=++,…… ∴第⑤个图案中黑色三角形的个数为1234515++++=,故选:B . 【考点】图形的变化规律5.【答案】D【解析】根据切线的性质可得°90OAB ∠=,再根据三角形内角和求出AOB ∠.∵AB 是O 的切线°90OAB ∠=∴°20B ∠=∵°°18070AOB OAB B ∠=-∠-∠=∴故选D . 【考点】切线的性质6.【答案】C【解析】根据同类二次根式的概念与二次根式的乘法逐一判断可得答案.解:A 不是同类二次根式,不能合并,此选项计算错误;B .2不是同类二次根式,不能合并,此选项计算错误;C =D .与2-不是同类二次根式,不能合并,此选项错误;故选:C . 【考点】二次根式的混合运算7.【答案】D【解析】根据等式的基本性质将方程两边都乘以6可得答案.解:方程两边都乘以6,得:()3162x x +=-,故选:D . 【考点】解一元一次方程8.【答案】D【解析】把A 、C 的横纵坐标都乘以2得到D 、F 的坐标,然后利用两点间的距离公式计算线段DF 的长. 解:∵以原点为位似中心,在原点的同侧画DEF △,使DEF △与ABC △成位似图形,且相似比为2:1,而()12A ,,()31C ,,()24D ∴,,()62F ,,DF =∴ 故选:D .【考点】位似变换9.【答案】B【解析】构造直角三角形,利用坡比的意义和直角三角形的边角关系,分别计算出DE 、EC 、BE 、DF 、AF ,进而求出AB .解:如图,由题意得,°28ADF ∠=,45CD =,60BC =,在Rt DEC △中,∵山坡CD 的坡度1:0.75i =,140.753DE EC ==∴, 设4DE x =,则3EC x =,由勾股定理可得5CD x =,又45CD =,即545x =,9x =∴,327EC x ==∴,436DE x FB ===,602787BE BC EC DF =+=+==∴,在Rt ADF △中,°tan 280.538746.11AF DF =⨯≈⨯≈,46.113682.11AB AF FB =+=+≈∴,故选:B .【考点】直角三角形的边角关系10.【答案】A【解析】不等式组整理后,根据已知解集确定出a 的范围,分式方程去分母转化为正整数方程,由分式方程有非负整数解,确定出a 的值,求出之和即可.解:解不等式3132x x -+≤,解得7x ≤, ∴不等式组整理的7x x a ⎧⎨⎩≤≤,由解集为x a ≤,得到7a ≤,分式方程去分母得:342y a y y -+-=-,即32y a -=, 解得:23a y +=, 由y 为正整数解且2y ≠,得到1a =,7,177⨯=, 故选:A .【考点】分式方程的解11.【答案】B【解析】首先求出ABD △的面积.根据三角形的面积公式求出DF ,设点F 到BD 的距离为h ,根据1122BD h BF DF =,求出BD 即可解决问题. 解:DG GE =∵,2ADG AEG S S ==△△∴,4ADE S =△∴,由翻折可知,ADB ADE ≅△△,BE AD ⊥,4ABD ADE S S ==△△∴,°90BFD ∠=,()142AF DF BF +=∴, ()13242DF +=∴,1DF =∴,DB ===∴设点F 到BD 的距离为h ,则1122BD h BF DF =,h =∴, 故选:B .【考点】翻折变换,三角形的面积,勾股定理二次根式的运算12.【答案】B【解析】先证明OB AE ,得出18ABE OAE S S ==△△,设A 的坐标为k a a ⎛⎫ ⎪⎝⎭,,求出F 点的坐标和E 点的坐标,可得13182OAE k S a a=⨯⨯=△,求解即可. 解:如图,连接BD ,∵四边形ABCD 为矩形,O 为对角线,AO OD =∴,ODA OAD ∠=∠∴,又AD ∵为DAE ∠的平分线,OAD EAD ∠=∠∴,EAD ODA ∠=∠∴,OB AE ∴,18ABE S =△∵,18OAE S =△∴,设A 的坐标为k a a ⎛⎫ ⎪⎝⎭,, AF EF =∵,F ∴点的纵坐标为2k a, 代入反比例函数解析式可得F 点的坐标为22k a a ⎛⎫ ⎪⎝⎭,, E ∴点的坐标为()30a ,, 13182OAE k S a a=⨯⨯=△, 解得12k =,故选:B .【考点】反比例函数,几何综合,矩形的性质,平行线的判定二、13.【答案】3【解析】设这个多边形的边数为n ,根据内角和公式和外角和公式,列出等式求解即可.设这个多边形的边数为n , ()°°21802360n -=⨯∴,解得:6n =,故答案为:6.【解析】画树状图展示所有16种等可能的结果数,利用第二象限内点的坐标特征确定点()P m n ,在第二象限的结果数,然后根据概率公式求解.解:画树状图为:共有16种等可能的结果数,其中点()P m n ,在第二象限的结果数为3,所以点()P m n ,在第二象限的概率316=. 故答案为:316. 【考点】列表法,树状图法,点的坐标16.【答案】4π-【解析】根据图形可得S 2ABCD S S =-阴影扇形,由正方形的性质可求得扇形的半径,利用扇形面积公式求出扇形的面积,即可求出阴影部分面积.由图可知,2ABCD S S S =-阴影扇形,224ABCD S =⨯=,∵四边形ABCD 是正方形,边长为2,AC =∴,∵点O 是AC 的中点,OA =∴2°°903602S ππ==扇形∴,24ABCD S S S π=-=-阴影扇形∴, 故答案为:4π-.【考点】求阴影部分面积,扇形面积公式,正方形的性质17.【答案】()4160,【解析】先根据CD 段的求出乙货车的行驶速度,再根据两车的行驶速度分析出点E 表示的意义,由此即可得出答案.设乙货车的行驶速度为km/h a由题意可知,图中的点D 表示的是甲、乙货车相遇∵点C 的坐标是()0240,,点D 的坐标是()2.40, ∴此时甲、乙货车行驶的时间为2.4h ,甲货车行驶的距离为()40 2.4=96km ⨯,乙货车行驶的距离为()24096144km -=()144 2.460km/h a =÷=∴∴乙货车从B 地前往A 地所需时间为()240604h ÷=由此可知,图中点E 表示的是乙货车行驶至A 地,EF 段表示的是乙货车停止后,甲货车继续行驶至B 地, 则点E 的横坐标为4,纵坐标为在乙货车停止时,甲货车行驶的距离,即404160⨯=.即点E 的坐标为()4160,故答案为:()4160,.【解析】先根据题意设出相应的未知数,再结合题目的等量关系列出相应的方程组,最后求解即可求得答案.解:设6月份该火锅店堂食、外卖、摆摊三种方式的营业额分别为3k ,5k ,2k ,7月份总增加的营业额为m ,则7月份摆摊增加的营业额为2m 5,设7月份外卖还需增加的营业额为x .∵7月份摆摊的营业额是总营业额的720,且7月份的堂食、外卖营业额之比为8:5, ∴7月份的堂食、外卖、摆摊三种方式的营业额之比为8:5:7,∴设7月份的堂食、外卖、摆摊三种方式的营业额分别为8a ,5a ,7a , 由题意可知:3385552275k m x a k x a m k a ⎧+-=⎪⎪+=⎨⎪⎪+=⎩, 解得:125215k a x a m a ⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩, 512857208a x a a a a ==++∴, 故答案为:18. ()()()()()()2233333333m m m m m m m m m ++==+-++-【解析】(1)利用完全平方公式和整式乘法展开后合并同类型即可.具体解题过程参照答案.(2)先把分子分母因式分解,然后按顺序计算即可.具体解题过程参照答案.【考点】整式的运算,分式的混合运算20.【答案】(1)7a =,7.5b =,50%c =(2)根据以上数据,八年级的平均数、众数、中位数、8分及以上人数所占百分比比七年级的学生掌握垃圾分类知识较好.(3)七年级合格人数:18人八年级合格人数:18人181********%108040+⨯⨯=人答:估计参加此次测试活动成绩合格的人数有1 080人.【解析】(1)七年级20名学生的测试成绩的众数找出现次数最多的即可得出的a 值,由条形统计图即可得出八年级抽取的学生的测试成绩的中位数,八年级8分及以上人数除以总人数20人即可得出c 的值. 七年级20名学生的测试成绩的众数是:7,7a =∴, 由条形统计图可得,八年级抽取的学生的测试成绩的中位数是:787.52+=, 7.5b =∴,八年级8分及以上人数有10人,所占百分比为:50%50%c =∴.(2)分别比较七年级和八年级的平均数、众数、中位数、8分及以上人数所占百分比即可得出结论.具体解题过程参照答案.(3)用七八年级的合格总人数除以总人数40人,得到这两个年级测试活动成绩合格的百分比,再乘以1 200即可得出答案.具体解题过程参照答案.【考点】平均数,众数,中位数,条形统计图21.【答案】(1)解:AE BD ⊥∵,CF BD ⊥AE CF ∴DAC ACB ∠=∠∴°50AOE∵, °50AOE COF ∴°40OCF ∠=∴,∵平行四边形ABCDAD DC ∴,DAC ACB ∠=∠∴°40ACB ∠=∴(2)证明:∵AC 与BD 交于点O ,OA OC =∴,AE BD ⊥∵,CF BD ⊥,°90AEO CFO ∴,AOE COF ∠=∠∵,AEO CFO ≌∴△△,AE CF ∴=.【解析】(1)利用三角形内角和定理求出EAO ∠,利用角平分线的定义求出DAC ∠,再利用平行线的性质解决问题即可.具体解题过程参照答案.(2)证明()AEO CFO AAS △≌△可得结论.具体解题过程参照答案【解析】(1)代入3x =和3x =-即可求出对应的y 值,再补全函数图象即可.解:当3x =-时,261899151x y x -===-++, 当3x =时,261899151x y x ===++, 函数图象如下:(2)结合函数图象可从增减性及对称性进行判断.①由函数图象可得它是中心对称图形,不是轴对称图形;故答案为:×,②结合函数图象可得:该函数在自变量的取值范围内,有最大值和最小值,当1x =时,函数取得最大值3;当1x =-时,函数取得最小值3-;故答案为:√,③观察函数图象可得:当1x -<或1x >时,y 随x 的增大而减小;当11x -<<时,y 随x 的增大而增大; 故答案为:√.(3)根据图象求解即可.具体解题过程参照答案.【考点】一次函数的图象和性质,一次函数与一元一次不等式23.【答案】(1)49不是“差一数”,74是“差一数”,49594÷=∵;493161÷=,∴49不是“差一数”,745144÷=∵;743242÷=, ∴74是“差一数”(2)314、329、344、359、374、389【解析】(1)直接根据“差一数”的定义计算即可.具体解题过程参照答案.(2)根据“差一数”的定义可知被5除余4的数个位数字为4或9;被3除余2的数各位数字之和被3除余2,由此可求得大于300且小于400的所有“差一数”.∵“差一数”这个数除以5余数为4,∴“差一数”这个数的个位数字为4或9,∴大于300且小于400的符合要求的数为304、309、314、319、324、329、334、339、344、349、354、359、364、369、374、379、384、389、394、399,∵“差一数”这个数除以3余数为2,∴“差一数”这个数的各位数字之和被3除余2, ∴大于300且小于400的所有“差一数”为314、329、344、359、374、389.【考点】带余数的除法运算24.【答案】(1)设A 、B 两个品种去年平均亩产量分别是x 、y 千克,由题意得1002.410 2.41021600y x x y =+⎧⎨⨯+⨯=⎩, 解得400500x y =⎧⎨=⎩. 答:A ,B 两个品种去年平均亩产量分别是400、500千克.(2)根据题意得:()()()20244001%241%50012%216001%9a a a a ⎛⎫⨯+++⨯+=+ ⎪⎝⎭. 令%a m =,则方程化为:()()()20244001241500122160019m m m m ⎛⎫⨯+++⨯+=+ ⎪⎝⎭. 整理得2100m m -=,解得:10m =(不合题意,舍去),20.1m =所以%0.1a =,所以10a =,答:a 的值为10.【解析】(1)设A 、B 两个品种去年平均亩产量分别是x 、y 千克,根据题意列出方程组,解方程组即可得到答案.具体解题过程参照答案.(2)根据题意分别表示A 品种、B 品种今年的收入,利用总收入等于A 品种、B 品种今年的收入之和,列出一元二次方程求解即可得到答案.具体解题过程参照答案.【考点】二元一次方程组的应用,一元二次方程的应用25.【答案】(1)∵抛物线过()34A --,,()01B -, 9341b c c -+=-⎧⎨=-⎩∴ 41b c =⎧⎨=-⎩∴ 241y x x =+-∴(2)设AB y kx b =+,将点()34A --,()01B -,代入AB y 1AB y x =-∴过点P 作x 轴得垂线与直线AB 交于点F设点()241P a a a +-,,则()1F a a -,由铅垂定理可得()()22212314123323327228PAB B A S PF x x a a a a a a =-=---+=--⎛⎫=-++ ⎪⎝⎭△ PAB ∴△面积最大值为278(3)抛物线的表达式为:()224125y x x x =+-=+-,则平移后的抛物线表达式为:25y x =-,联立上述两式并解得:14x y =-⎧⎨=-⎩,故点()14C --,;设点()2D m -,、点()E s t ,,而点B 、C 的坐标分别为()01-,、()14--,; ①当BC 为菱形的边时,点C 向右平移1个单位向上平移3个单位得到B ,同样()D E 向右平移1个单位向上平移3个单位得到()E D ,即21s -+=且3m t +=①或21s --=且3m t -=②,当点D 在E 的下方时,则BE BC =,即()2222113s t ++=+③,当点D 在E 的上方时,则BD BC =,即()22222113m ++=+④, 联立①③并解得:1s=-,2t =或4-(舍去4-),故点()12E -,; 联立②④并解得:3s =-,4t =-(34E --+,或(34--,; ②当BC 为菱形的对角线时,则由中点公式得:12s -=-且41m t--=+⑤,此时,BD BE =,即()()2222211m s t ++=++⑥,联立⑤⑥并解得:1s =,3t =-,故点()13E -,, 综上,点E 的坐标为:()12-,或(34--,或(34--,或()13-,.【解析】(1)将点A 、B 的坐标代入抛物线表达式,即可求解.具体解题过程参照答案.(2)设AB y kx b =+,求得解析式,过点P 作x 轴得垂线与直线AB 交于点F ,设点()241P a a a +-,,则()1F a a -,,2133272228PAB B A S PF x x a ⎛⎫=-=-++ ⎪⎝⎭△,即可求解.具体解题过程参照答案. (3)分BC 为菱形的边、菱形的的对角线两种情况,分别求解即可.具体解题过程参照答案.【考点】二次函数综合运用,一次函数的性质,菱形的性质、图形的平移、面积的计算四、26.【答案】(1)CF ,证明如下: 90BAC DAE ︒∠=∠=∵,BAD CAE ∠=∠∴,AB AC =∵,AD AE =,∴在ABD △和ACE △中BAD CAE AB ACAD AE =∠⎧⎪=⎨⎪=⎩, ABD ACE ≅∴△△,45ABD ACE ︒∠=∠=∴,90DCE ACB ACE ︒∠=∠+∠=∴,在Rt ADE △中,F为DE 中点(同时AD AE =),45ADE AED ︒∠=∠=,AF DE ⊥∴,即Rt ADF △为等腰直角三角形,AF DF AD ==∴, CF DF =∵,2CF AD =∴;(2)由(1)得ABD ACE ≅△△,CE BD =,°45ACE ABD ∠=∠=,454590DCB BCA ACE ︒︒︒∠=∠+∠=+=∴,在Rt DCB △中,()2DE BD CE CD ====,F ∵为DE 中点,12DE EF DE ===∴, 在四边形ADCE 中,有90CAG DCE ︒∠=∠=,180CZG DCE ︒∠+∠=,∴点A ,D ,C ,E 四点共圆,F ∵为DE 中点,F ∴为圆心,则CF AF =,在Rt AGC △中,CF AF =∵,F ∴为CG 中点,即2CG CF =,22AG AC ⎛⎫=== ⎪ ⎪⎝⎭∴,即BC =; (3)设点P 存在,由费马定理可得120APB BPC CPA ︒∠=∠=∠=,60BPD ︒∠=∴,设PD 为a ,BD ∴,又AD BD ==,a m +=∴,)1m a =a又BD CE =【解析】(1)先证BAD CAE ≅△△,可得°45ABD ACE ∠=∠=,可求°90BCE ∠=,由直角三角形的性质和等腰直角三角形的性质可得结论.具体解题过程参照答案.(2)由(1)得ABD ACE △≌△,CE BD =,°45ACE ABD ∠=∠=,推出°°°454590DCB BCA ACE ∠=∠+∠=+=,然后根据现有条件说明在Rt DCB △中,DE ==,点A ,D ,C ,E 四点共圆,F 为圆心,则CF AF =,在Rt AGC △中,推出2AG =,即可得出答案.具体解题过程参照答案.(3)设点P 存在,由费马定理可得°120APB BPC CPA ∠=∠=∠=,设PD 为a ,得出BD =,AD BD ==,得出a m +,解出a ,根据BD CE =即可得出答案.具体解题过程参照答案.【考点】全等三角形的判定和性质,等腰直角三角形的性质,旋转的性质,锐角三角函数。

重庆2020年中考数学试卷试题B精校打印版(答案详解)

重庆2020年中考数学试卷试题B精校打印版(答案详解)

重庆市2020年初中学业水平暨高中招生考试数学试题(B卷)(全卷共四个大题,满分150分,考试时间120分钟)参考公式:抛物线y=ax2+bx+c (a≠0)的顶点坐标为(2b a -,244ac b a-),对称轴公式为x=2ba-.一、选择题(本大题12个小题,每小题4分,共48分)1.5的倒数是()A .15B .15-C .5D .5-2.围成下列立体图形的各个面中,每个面都是平面的是()A .B .C .D .3.计算a•a 2的结果是()A .aB .a 2C .a 3D .a 44.如图,AB 是⊙O 的切线,A 为切点,连接OA ,OB ,若∠B =35°,则∠AOB 的度数为()A .65°B .55°C .45°D .35°5.已知a +b =4,则代数式122a b++的值为()A .3B .1C .0D .-16.如图,△ABC 与△DEF 位似,点O 为位似中心.已知OA ∶OD =1∶2,则△ABC 与△DEF的面积比为()A .1∶2B .1∶3C .1∶4D .1∶57.小明准备用40元钱购买作业本和签字笔.已知每个作业本6元,每支签字笔2.2元.小明买了7支签字笔,他最多还可以买的作业本个数为()A .5B .4C .3D .28.下列图形都是由同样大小的实心圆点按一定规律组成的,其中第①个图形一共有5个实心圆点,第②个图形一共有8个实心圆点,第③个图形一共有11个实心圆点,⋯,按此规律排列下去,第⑥个图形中实心圆点的个数为()A .18B .19C .20D .219.如图,垂直于水平面的5G 信号塔AB 建在垂直于水平面的悬崖边B 点处,某测量员从山脚C 点出发沿水平方向前行78米到D 点(点A ,B ,C 在同一直线上),再沿斜坡DE 方向前行78米到E 点(点A ,B ,C ,D ,E 在同一平面内),在点E 处测得5G 信号塔顶端A 的仰角为43°,悬崖BC 的高为144.5米,斜坡DE 的坡度(或坡比)i =1∶2.4,则信号塔AB 的高度约为()(参考数据:sin43°≈0.68,cos43°≈0.73,tan43°≈0.93)A .23米B .24米C .24.5米D .25米10.若关于x 的一元一次不等式组()213212x x x a⎧-≤-⎪⎨->⎪⎩的解集为x ≥5,且关于y 的分式方程122+=---y a y y有非负整数解,则符合条件的所有整数a 的和为()A.-1B.-2C.-3D.011.如图,在△ABC中,AC=ABC=45°,∠BAC=15°,将△ACB沿直线AC翻折至△ABC所在的平面内,得△ACD.过点A作AE,使∠DAE=∠DAC,与CD的延长线交于点E,连接BE,则线段BE的长为()A B.3C.D.412.如图,在平面直角坐标系中,矩形ABCD的顶点A,C分别在x轴,y轴的正半轴上,点D(-2,3),AD=5,若反比例函数kyx=(k>0,x>0)的图象经过点B,则k的值为()A.163B.8C.10D.323二、填空题(本大题6个小题,每小题4分,共24分)13.计算:115-⎛⎫⎪⎝⎭=____.14.经过多年的精准扶贫,截至2019年底,我国的农村贫困人口减少了约94000000人,请把数94000000用科学记数法表示为____.15.盒子里有3张形状、大小、质地完全相同的卡片,上面分别标着数字1,2,3,从中随机抽出1张后不放回,再随机抽出1张,则两次抽出的卡片上的数字之和为奇数的概率是____.16.如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=120°,AB=O为圆心,OB长为半径画弧,分别与菱形的边相交,则图中阴影部分的面积为____.(结果保留π)17.周末,自行车骑行爱好者甲、乙两人相约沿同一路线从A地出发前往B地进行骑行训练,甲、乙分别以不同的速度匀速骑行,乙比甲早出发5分钟.乙骑行25分钟后,甲以原速的85继续骑行,经过一段时间,甲先到达B地,乙一直保持原速前往B地.在此过程中,甲、乙两人相距的路程y(单位:米)与乙骑行的时间x(单位:分钟)之间的关系如图所示,则乙比甲晚____分钟到达B地.18.为刺激顾客到实体店消费,某商场决定在星期六开展促销活动.活动方案如下:在商场收银台旁放置一个不透明的箱子,箱子里有红、黄、绿三种颜色的球各一个(除颜色外大小、形状、质地等完全相同),顾客购买的商品达到一定金额可获得一次摸球机会,摸中红、黄、绿三种颜色的球可分别返还现金50元、30元、10元.商场分三个时段统计摸球次数和返现金额,汇总统计结果为:第二时段摸到红球次数为第一时段的3倍,摸到黄球次数为第一时段的2倍,摸到绿球次数为第一时段的4倍;第三时段摸到红球次数与第一时段相同,摸到黄球次数为第一时段的4倍,摸到绿球次数为第一时段的2倍,三个时段返现总金额为2510元,第三时段返现金额比第一时段多420元,则第二时段返现金额为____元.三、解答题(本大题7个小题,每小题10分,共70分)19.计算:(1)(x+y)2+y(3x-y)(2)22 41611a aaa a⎛⎫--+÷⎪--⎝⎭20.如图,在平行四边形ABCD中,AE,CF分别平分∠BAD和∠DCB,交对角线BD于点E,F.(1)若∠BCF=60°,求∠ABC的度数;(2)求证:BE=DF.21.每年的4月15日是我国全民国家安全教育日.某中学在全校七、八年级共800名学生中开展“国家安全法”知识竞赛,并从七、八年级学生中各抽取20名学生统计这部分学生的竞赛成绩(竞赛成绩均为整数,满分10分,6分及以上为合格).相关数据统计、整理如下:八年级抽取的学生的竞赛成绩:4,4,6,6,6,6,7,7,7,8,8,8,8,8,8,9,9,9,10,10.根据以上信息,解答下列问题:(1)填空:a =_____,b =____,c =____.(2)估计该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数;(3)根据以上数据分析,从一个方面评价两个年级“国家安全法”知识竞赛的学生成绩谁更优异.22.在数的学习过程中,我们总会对其中一些具有某种特性的数充满好奇,如学习自然数时,我们发现一种特殊的自然数——“好数”.定义:对于三位自然数n ,各位数字都不为0,且百位数字与十位数字之和恰好能被个位数字整除,则称这个自然数n 为“好数”.例如:426是“好数”,因为4,2,6都不为0,且4+2=6,6能被6整除;643不是“好数”,因为6+4=10,10不能被3整除.(1)判断312,675是否是“好数”?并说明理由;(2)求出百位数字比十位数字大5的所有“好数”的个数,并说明理由.23.探究函数性质时,我们经历了列表、描点、连线画出函数图象,观察分析图象特征,概括函数性质的过程.结合已有的学习经验,请画出函数2122=-+y x 的图象并探究该函数的性质.x⋯-4-3-2-11234⋯y ⋯23-a -2-4b -4-21211-23-⋯(1)列表,写出表中a ,b 的值:a =____,b =.描点、连线,在所给的平面直角坐标系中画出该函数的图象.(2)观察函数图象,判断下列关于函数性质的结论是否正确(在答题卡相应位置正确的用“√”作答,错误的用“×”作答):①函数2122=-+y x 的图象关于y 轴对称;②当x =0时,函数2122=-+y x 有最小值,最小值为-6;③在自变量的取值范围内函数y 的值随自变量x 的增大而减小.(3)已知函数21033y x =--的图象如图所示,结合你所画的函数图象,直接写出不等式212210233x x -<--+的解集.24.为响应“把中国人的饭碗牢牢端在自己手中”的号召,确保粮食安全,优选品种,提高产量,某农业科技小组对A 、B 两个玉米品种进行实验种植对比研究.去年A 、B 两个品种各种植了10亩.收获后A 、B 两个品种的售价均为2.4元/kg ,且B 品种的平均亩产量比A 品种高100千克,A 、B 两个品种全部售出后总收入为21600元.(1)求A 、B 两个品种去年平均亩产量分别是多少千克?(2)今年,科技小组优化了玉米的种植方法,在保持去年种植面积不变的情况下,预计A 、B 两个品种平均亩产量将在去年的基础上分别增加a %和2a %.由于B 品种深受市场欢迎,预计每千克售价将在去年的基础上上涨a %,而A 品种的售价保持不变,A 、B 两个品种全部售出后总收入将增加20%9a ,求a 的值.25.如图,在平面直角坐标系中抛物线y =ax 2+bx +2(a ≠0)与y 轴交于点C ,与x 轴交于A ,B 两点(点A 在点B 的左侧),且A 点坐标为(0),直线BC 的解析式为2y x =+.(1)求抛物线的解析式;(2)过点A 作AD //BC ,交抛物线于点D ,点E 为直线BC 上方抛物线上一动点,连接CE ,EB ,BD ,DC .求四边形BECD 面积的最大值及相应点E 的坐标;(3)将抛物线y =ax 2+bx +2(a ≠0)已知点M 为抛物线y =ax 2+bx +2(a ≠0)的对称轴上一动点,点N 为平移后的抛物线上一动点.在(2)中,当四边形BECD 的面积最大时,是否存在以A ,E ,M ,N 为顶点的四边形为平行四边形,若存在,直接写出点N 的坐标;若不存在,请说明理由.四、解答题(本大题1个小题,共8分)26.△ABC 为等边三角形,AB =8,AD ⊥BC 于点D ,E 为线段AD 上一点,AE =.以AE 为边在直线AD 右侧构造等边三角形AEF ,连接CE ,N 为CE 的中点.(1)如图1,EF 与AC 交于点G ,连接NG ,求线段NG 的长;(2)如图2,将△AEF 绕点A 逆时针旋转,旋转角为α,M 为线段EF 的中点,连接DN ,MN .当30°<α<120°时,猜想∠DNM 的大小是否为定值,并证明你的结论;(3)连接BN .在△AEF 绕点A 逆时针旋转过程中,当线段BN 最大时,请直接写出△ADN 的面积.1.A【分析】根据倒数的意义可直接进行求解.【详解】解:5的倒数是1 5;故选A.【点睛】本题主要考查倒数,熟练掌握求一个数的倒数是解题的关键.2.A【分析】根据几何体的特点即可判断.【详解】立体图形的各个面中,每个面都是平面的是长方体故选A.【点睛】此题主要考查立体图形的特点,解题的关键是熟知简单几何体的特点.3.C【分析】根据同底数幂的乘法法则计算即可.【详解】解:a•a2=a1+2=a3.故选:C.【点睛】本题考查了幂的运算性质,准确应用同底数幂的乘法是解题的关键.4.B【分析】根据切线性质求出∠OAB=90°,根据直角三角形两锐角互余即可求解.【详解】解:∵AB为⊙O切线,∴∠OAB=90°,∵∠B =35°,∴∠AOB=90°-∠B=55°.故选:B .【点睛】本题考查了切线的性质,直角三角形性质,熟知相关定理是解题关键.5.A 【分析】通过将所求代数式进行变形,然后将已知代数式代入即可得解.【详解】由题意,得411132222a b a b +++=+=+=故选:A.【点睛】此题主要考查已知代数式求代数式的值,熟练掌握,即可解题.6.C 【分析】根据位似图形的性质即可得出答案.【详解】由位似变换的性质可知,//,//AB DE AC DF∴12OA OB OD OE ==12AC OA DF OD ∴==∴△ABC 与△DEF 的相似比为:1∶2∴△ABC 与△DEF 的面积比为:1∶4故选C .【点睛】本题考查了位似图形的性质,熟练掌握性质定理是解题的关键.7.B 【分析】设小明最多还可以买x个作业本,根据题意列出不等式,利用不等式的正整数解可得答案.【详解】解:设小明最多还可以买x个作业本,则⨯+≤2.27640,xx∴≤624.6,∴≤x4.1,为正整数,x∴不等式的最大正整数解是: 4.x=∴小明最多还可以买4本作业本.故选:B.【点睛】本题考查的是一元一次不等式的应用,掌握根据题意列不等式,以及确定不等式的正整数解是解题的关键.8.C【分析】根据已知图形中实心圆点的个数得出规律,即可得解.【详解】解:通过观察可得到第①个图形中实心圆点的个数为:5=2×1+1+2,第②个图形中实心圆点的个数为:8=2×2+2+2,第③个图形中实心圆点的个数为:11=2×3+3+2,……∴第⑥个图形中实心圆点的个数为:2×6+6+2=20,故选:C.【点睛】本题考查探索与表达—图形变化类.关键是通过归纳与总结,得到其中的规律.9.D【分析】如图,作EF⊥CD于F,EG⊥BC于G.解直角三角形DEF得EF=30米,DF=72米,得EG=150米,解直角三角形AFG 得AG =139.5米,求出AB 即可.【详解】解:作EF ⊥CD 于F ,EG ⊥BC 于G .在Rt △DEF 中,设EF=x 米,∵i =1∶2.4∴DF=2.4x 米,∴DE= 2.5x =米∴2.5x =75,∴x =30米,∴DF=2.4x=72米,∴GE=FC=DF+CD=72+78=150米,CG=EF=30米,在Rt △AEG 中,tan 1500.93139.5AG EG AEG =∠=⨯= 米∴139.530144.525AB AG CG BC =+-=+-=米.故选:D .【点睛】本题考查了解直角三角形应用-测高问题,解题的关键是作EF ⊥CD 于F ,EG ⊥BC 于G ,构造直角三角形,应用已知条件解直角三角形.10.B【分析】首先由不等式组的解集为x ≥5,得a <3,然后由分式方程有非负整数解,得a ≥-2且a ≠2的偶数,即可得解.【详解】由题意,得()2132x x -≤-,即5x ≥12x a ->,即2x a +>∴25a +<,即3a <122+=---y a y y ,解得22a y +=有非负整数解,即202a y +=≥∴a ≥-2且a ≠2∴23a -≤<且2a ≠∴符合条件的所有整数a 的数有:-2,-1,0,1又∵22a y +=为非负整数解,∴符合条件的所有整数a 的数有:-2,0∴其和为202-+=-故选:B.【点睛】此题主要考查根据不等式组的解集和分式方程的解求参数的值,熟练掌握,即可解题.11.C【分析】根据三角形内角和定理、翻折及等腰三角形判定,依次易得∠ACB =120°,∠ACE =120°,∠CAE =30°,AC =EC ,再进一步证明△ABC ≌△EBC ,得到BE =BA .延长BC 交AE 于F ,由CE=CA ,BE=BA ,根据到线段两个端点距离相等的点在这条线段的垂直平分线上,可知BC 是线段AE 的垂直平分线,,即∠AFC =90°,在Rt △AFC 中解直角三角形得AFRt △AFB 中,∠ABC=45°,解直角三角形得AF=BE 的长.【详解】解:在△ABC 中,∠ABC =45°,∠BAC =15°,∴∠ACB =120°,∵将△ACB 沿直线AC 翻折,得△ACD ,∴∠ACE =∠ACB =120°,∠DAE =∠DAC=∠BAC =15°,即∠CAE =30°,在△ACE 中,∠CEA=180°-∠ACE-∠CAE=30°,∴AC =EC ,又∵∠ECB=360°-∠ACE-∠ACB =120°,在△EBC 和△ABC 中,EC AC ECB ACB CB CB =⎧⎪∠=∠⎨⎪=⎩∴△EBC ≌△ABC ,∴BE=BA.如下图,延长BC 交AE 于F,∵CE=CA ,BE=BA ,∴BC 是线段AE 的垂直平分线,即∠AFC =90°,在Rt △AFC 中,∠CAF=30°,AC=,∴AF=AC·cos ∠在Rt △AFB 中,∠ABC=45°,∴AF=∴BE=AB=故选:C.【点睛】本题考查三角形内角和定理、翻折、等腰三角形判定、解直角三角形及全等三角形等,准确判断出直线BC 是线段AE 的垂直平分线是解题的关键.12.D【分析】先由D (-2,3),AD =5,求得A (2,0),即得AO =2;设AD 与y 轴交于E ,求得E (0,1.5),即得EO =1.5;作BF 垂直于x 轴于F ,求证△AOE ∽△CDE ,可得103BA CD ==,求证△AOE ∽△BFA ,可得AF =2,BF =83,进而可求得B (4,83);将B (4,83)代入反比例函数kyx=,即可求得k的值.【详解】解:如图,过D作DH垂直x轴于H,设AD与y轴交于E,过B作BF垂直于x轴于F,∵点D(-2,3),AD=5,∴DH=3,∴AH=,∴A(2,0),即AO=2,∵D(-2,3),A(2,0),∴AD所在直线方程为:3342 y x=-+,∴E(0,1.5),即EO=1.5,∴52 AE=,∴ED=AD-AE=5-52=52,∵∠AOE=∠CDE,∠AEO=∠CED,∴△AOE∽△CDE,∴EO AO ED CD=,∴103EDCD AOEO=´=,∴在矩形ABCD中,103 BA CD==,∵∠EAO+∠BAF=90°,又∠EAO+∠AEO=90°,∴∠AEO=∠BAF,又∵∠AOE=∠BFA,∴△BFA∽△AOE,∴BA AF BF AE EO AO==,∴代入数值,可得AF =2,BF =83,∴OF =AF+AO=4,∴B (4,83),∴将B (4,83)代入反比例函数k y x =,得323k =,故选:D .【点睛】本题主要考查了待定系数法求反比例函数的系数、相似三角形的判定与性质、勾股定理、矩形的性质等知识.解题关键是通过求证△AOE ∽△CDE ,△AOE ∽△BFA ,得到B 点坐标,将B 点坐标代入反比例函数,即可得解.13.3.【分析】分别计算负整数指数幂,算术平方根,再合并即可得到答案.【详解】解:115-⎛⎫ ⎪⎝⎭52=-3.=故答案为:3.【点睛】本题考查的是负整数指数幂的运算,考查求一个数的算术平方根,掌握以上知识是解题的关键.14.9.4×107.【分析】根据科学记数法的表示方法解答即可.【详解】解:7940000009.410=⨯故答案为:9.4×107.此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.15.23.【分析】列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.【详解】解:列表如下123134235345由表可知,共有6种等可能结果,其中两次抽出的卡片上的数字之和为奇数的有4种结果,所以两次抽出的卡片上的数字之和为奇数的概率为4263=,故答案为:23.【点睛】本题考查了列表法和树状图法,利用列表法或树状图法展示某一随机事件中所有等可能出现的结果数n ,再找出其中某一事件所出现的可能数m ,然后根据概率的定义可计算出这个事件的概率m n .16.π-.【分析】如图,设⊙O 与菱形的边AB 、AD 分别交于点E 、F ,连接OE 、OF ,由菱形的性质可证得△ABD 是等边三角形,进而可证得△BEO ,△DFO 都是等边三角形,由等边三角形的性质可求得∠EOF =60°,然后根据阴影部分的面积=2×(S △ABD ﹣S △DFO ﹣S △BEO ﹣S 扇形OEF )代入数据计算即可.解:如图,设⊙O与菱形的边AB、AD分别交于点E、F,连接OE、OF,∵四边形ABCD是菱形,∠ABC=120°,∴AC⊥BD,BO=DO,OA=OC,AB=AD,∠DAB=60°,∴△ABD是等边三角形,∴AB=BD=ABD=∠ADB=60°,∴BO=DO∵以点O为圆心,OB长为半径画弧,∴BO=OE=OD=OF,∴△BEO,△DFO是等边三角形,∴∠DOF=∠BOE=60°,∴∠EOF=60°,∴阴影部分的面积=2×(S△ABD﹣S△DFO﹣S△BEO﹣S扇形OEF)=2×603 1233444360π⎫⨯⨯⨯--⨯-⎪⎪⎝⎭=π-.故答案为:π-.【点睛】本题考查了菱形的性质、等边三角形的判定和性质以及扇形面积的计算等知识,正确添加辅助线、明确求解的方法、熟练掌握菱形的性质以及等边三角形的判定和性质是解题的关键.17.12.【分析】根据题意先求解乙的速度与甲的原速度,得到改变后的速度,由86x=时,甲到达B地,再计算出全程,从而可以得到乙与B地的距离,从而得到晚到的时间.【详解】解:由图及题意得:乙的速度为15003005=米/分,()253002552500,v ⨯--= 甲250v ∴=甲即甲原速度为250米/分,当x =25后,甲提速为82504005⨯=米/分,当x =86时,甲到达B 地,此时乙距B 地为250(25-5)+400(86-25)-300×86=3600.360012,300t ∴==即乙比甲晚12分钟到达B 地.答案:12.【点睛】本题考查的是一次函数关于行程问题的应用,从图像中获取信息得到与问题相关的:速度,时间,全程是解题的关键.18.1230.【分析】设第一时段统计摸到红、黄、绿球的次数分别为a ,b ,c ,则第二时段统计摸到红、黄、绿球的次数分别为3a ,2b ,4c ,第三时段统计摸到红、黄、绿球的次数分别为a ,4b ,2c .根据题意得到关于a ,b ,c 方程组,根据a ,b ,c 均为正整数,求解即可.【详解】设第一时段统计摸到红、黄、绿球的次数分别为a ,b ,c ,则第二时段统计摸到红、黄、绿球的次数分别为3a ,2b ,4c ,第三时段统计摸到红、黄、绿球的次数分别为a ,4b ,2c .由题意得()()2502107025105012020503010420a b c a b c a b c ++=⎧⎪⎨++-++=⎪⎩,即25217251942a b c b c ++=⎧⎨+=⎩,其整数解为42372521231225a n b n c n =-⎧⎪=-⎨⎪=-⎩(其中n 为整数),又∵a ,b ,c 均是正整数,易得n =1.所以546a b c =⎧⎪=⎨⎪=⎩.∴150a +60b +40c =150×5+60×4+40×6=1230.故答案为:1230.另解:由上9b +c =42,得知b =1,2,3,4.列举符合题意的解即可.【点睛】本题考查了求方程组的正整数解,根据题意得到方程组,求出方程组的整数解是解题关键.解题时注意题目中隐含条件a ,b ,c ,均为正整数.19.(1)x 2+5xy ;(2)14a -+.【分析】(1)先根据完全平方公式和单项式乘以多项式的法则计算,再合并同类项即可;(2)先计算小括号里的,再计算乘法即可.【详解】解:(1)原式=x 2+2xy +y 2+3xy -y 2=x 2+5xy .(2)原式=()()44411a a a a a +--÷--=()()41144a a a a a ---+- =14a -+.【点睛】本题考查了整式混合运算,分式的混合运算.熟知运算法则,运算公式是解题关键.20.(1)60°;(2)证明见解析.【分析】(1)根据题意可得∠BCD =2∠BCF =120°,利用平行四边形的性质即可解答;(2)根据平行四边形的性质及角平分线即可证明△ABE ≌△CDF ,再利用全等三角形的性质即可证明.【详解】(1)∵CF 平分∠DCB ,∴∠BCD =2∠BCF =120°∵四边形ABCD 是平行四边形,∴∠ABC =180°-∠BCD =180°-120°=60°.(2)∵四边形ABCD 是平行四边形,∴∠BAD =∠DCB ,AB =CD ,AB ∥CD ,∴∠ABE =∠CDF .∵AE ,CF 分别平分∠BAD 和∠DCB ,∴∠BAE =12∠BAD ,∠CDF =12∠DCB ,∴∠BAE =∠CDF ,∴△ABE ≌△CDF ,∴BE =DF .【点睛】本题主要考查了平行四边形的性质,解题的关键是熟悉平行四边形的性质以及全等三角形的判定.21.(1)7.5,8,8;(2)200人;(3)八年级的学生成绩更优异.【分析】(1)由图表可求解;(2)利用样本估计总体思想求解可得;(3)由八年级的合格率高于七年级的合格率,可得八年级“国家安全法”知识竞赛的学生成绩更优异.【详解】解:(1)由图表可得:787.52a +==,8882b +==,8c =,故答案为:7.5,8,8;(2)该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数为:5580020040+⨯=(人),答:该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数为200人;(3) 八年级的合格率高于七年级的合格率,∴八年级“国家安全法”知识竞赛的学生成绩更优异.【点睛】本题考查中位数、众数、平均数的意义和计算方法,理解各个概念的内涵和计算方法,是解题的关键.22.(1)312是“好数”,675不是“好数”,理由见解析;(2)611,617,721,723,729,831,941.理由见解析.【分析】(1)根据“好数”的定义进行判断即可;(2)设十位数字为x ,个位数字为y ,则百位数字为(x +5).根据题意判断出x 、y 取值,根据“好数”定义逐一判断即可.【详解】(1)∵3,1,2都不为0,且3+1=4,4能被2整除,∴312是“好数”.∵6,7,5都不为0,且6+7=13,13不能被5整除,∴675不是“好数”;(2)设十位数字为x ,个位数字为y ,则百位数字为(x +5).其中x ,y 都是正整数,且1≤x ≤4,1≤y ≤9.十位数字与个位数字的和为:2x +5.当x =1时,2x +5=7,此时y =1或7,“好数”有:611,617当x =2时,2x +5=9,此时y =1或3或9,“好数”有:721,723,729当x =3时,2x +5=11,此时y =1,“好数”有:831当x =4时,2x +5=13,此时y =1,“好数”有:941所以百位数字比十位数字大5的所有“好数”的个数是7.【点睛】本题为“新定义”问题,理解好“新定义”,并根据已有数学知识和隐含条件进行分析,转化为所学数学问题是解题关键.23.(1)1211-,6-,作图见解析;(2)①√;②√;③×;(3)x <-4或-2<x <1.【分析】(1)把对应的x 的值代入即可求出a 和b 的值,通过描点,用平滑的曲线连接,即可作出图象;(2)观察图象即可判断;(3)找出函数2122=-+y x 的图象比函数21033y x =--的图象低时对应的x 的范围即可.【详解】(1)当3x =-时,212121132a =-=-+;当0x =时,1262b =-=-;∴1211a =-,6b =-,故答案为:1211-,6-.所画图象,如图所示.(2)①观察图象可知函数2122=-+y x 的图象关于y 轴对称,故该说法正确;②观察图象可知,当x =0时,函数2122=-+y x 有最小值,最小值为6-,故该说法正确;③观察图象可知,当0x <时,y 随x 的增大而减小,当0x >时,y 随x 的增大而增大,故该项题干说法错误.(3)不等式212210233x x -<--+表现在图象上面即函数2122=-+y x 的图象比函数21033y x =--的图象低,因此观察图象,即可得到212210233x x -<--+的解集为:x <-4或-2<x <1.【点睛】本题主要考查一次函数的图象和性质,一次函数与一元一次不等式,会用描点法画出函数图象,利用数形结合的思想得到函数的性质是解题的关键.24.(1)A 品种去年平均亩产量是400、B 品种去年平均亩产量是500千克;(2)10.【分析】(1)设A 、B 两个品种去年平均亩产量分别是x 、y 千克,根据题意列出方程组,解方程组即可得到答案;(2)根据题意分别表示A 品种、B 品种今年的收入,利用总收入等于A 品种、B 品种今年的收入之和,列出一元二次方程求解即可得到答案.【详解】(1)设A 、B 两个品种去年平均亩产量分别是x 、y 千克,由题意得1002.410 2.41021600y x x y =+⎧⎨⨯+⨯=⎩,解得400500x y =⎧⎨=⎩.答:A .B 两个品种去年平均亩产量分别是400、500千克(2)根据题意得:()()()20244001%241%50012%216001%9a a a a ⎛⎫⨯+++⨯+=+ ⎪⎝⎭.令a %=m ,则方程化为:()()()20244001241500122160019m m m m ⎛⎫⨯+++⨯+=+ ⎪⎝⎭.整理得10m 2-m =0,解得:m 1=0(不合题意,舍去),m 2=0.1所以a %=0.1,所以a =10,答:a 的值为10.【点睛】本题考查的是二元一次方程组的应用,一元二次方程的应用,掌握列方程或方程组解应用题的方法与步骤是解题的关键.25.(1)2123y x =-++;(2)四边形BECD E 52);(3)存在.N 的坐标为(2-,76)或(2-,52)或(2,112-).【分析】(1)由直线解析式求得B 、C 两点坐标,结合A 点坐标利用待定系数法进行求解即可;(2)易求AD 的解析式为233y x =--,进而D (103-).求得CD 的解析式为,进而求出CD 与x 轴的交点坐标,易求△BCD 的面积为,设E (x ,21 233x x -++),表示出SBECD 的面积,进而利用二次函数的性质即可求得答案;(3)存在.先求出抛物线21233y x =-++的顶点坐标,根据平移规律求平移后抛物线解析式,设M m ),N (xn ,yn ),易根据平行四边形对角线互相平分及中点公式.分类讨论即可得答案.【详解】(1)23y =-+,当x=0时,y=2,当y=0时,023x =-+,解得:x=所以B(0),C (0,2),将A(,0),B(0)代入y =ax 2+bx +2,得0220182a a ⎧=-+⎪⎨=++⎪⎩,解得:133a b ⎧=-⎪⎪⎨⎪=⎪⎩,所以抛物线的解析式为21233y x =-++;(2)∵AD//BC ,∴设直线AD解析式为:3y x m =-+.将A(,0)代入得:203m =+,解得:m=-23,所以AD的解析式为233y x =--,联立2123233y x y x ⎧=-+⎪⎪⎨⎪=--⎪⎩,解得:110x y ⎧=⎪⎨=⎪⎩22103x y ⎧=⎪⎨=-⎪⎩,∵A(,0),∴D(103-).设CD 解析式为y=kx+2,将点D坐标代入得:1023+=-,解得:k=3-,所以CD的解析式为:23y x =-+,当y=0时,即023x =-+,解得:,则CD 与x 轴的交点为(2,0).所以S △BCD =1102223⎛⎛⎫⨯⨯+ ⎪ ⎝⎭⎝⎭=,设E (x ,21 23x x -++),则SBECD =2112242333x ⎡⎤⎛⎫⎛⎫⨯-++--++⎢⎥ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=232x x -++当x =2时,四边形BECD E (2,52).(3)存在.N 的坐标为(2-,76),或(2,52),或(2,112-).过程如下:(2211823333y x x =-++=--+,,83),将抛物线(2211823333y x x =-++=--+个单位,则平移后抛物线解析式为21833y x =-+.设M ,m ),N (xn ,yn ),①当AM 为对角线时,则(2n x ++,解得:xn =2-,代入解析式得yn =76.所以N (76),如图对角线交点坐标为(0,116),M 113)②当AE 为对角线时,则(2n x =,解得:xn =2-,代入解析式得yn =52.所以N (2-,52),如图对角线交点坐标为(4,54),M ,0)③当AN 为对角线时,则(2n x +=,解得:xn ,代入解析式得yn =112-.所以N (2,112-).如图114-),M ,-8).【点睛】本题考查了二次函数的综合题,涉及了待定系数法,一次函数图象与坐标轴的交点,二次函数图象的平移,二次函数的最值,平行四边形的性质等,综合性较强,有一定的难度,准确识图,把握并灵活运用相关知识是解题的关键,注意数形结合思想与分类讨论思想的运用.26.(1)NG (2)∠DNM 的为定值120°,证明见详解;(3)△AND 的面积为【分析】(1)证明∠CGE =90°,求出DE =,根据直角三角形性质即可求解;(2)证明BE ∥DN ,MN ∥CF ,△ABE ≌△ACF ,得到因此∠DGC =∠BHC ,∠ENM =∠ECF ,∠ABE =∠ACF ,通过角的代换即可求解;(3)取AC 中点P ,因为BP +PN ≥BN ,所以当B 、P 、N 在一直线上,BN 最大.求出BN=,设BP 与AD 交于O ,NQ ⊥AD 于Q ,根据△ONQ ∽△OBD ,可求得NQ =72,问题得解.【详解】解:(1)∵△ABC 为等边三角形,AB =8,AD ⊥BC 于点D ,∴∠DAC=30°,CD=142BC =,∴AD ,∴DE AD AE =-=,∴CE =,∵三角形AEF 是等边三角形,∴60AEG ∠=︒∴90EGC ∠=︒∵N 为CE 的中点∴12NG CE ==.(2)∠DNM 的为定值120°.连CF ,BE ,BE 交AC 于H ,DN 交AC 于G ,如图,∵D 、N 、M 分别为BC 、CE 、EF 中点,∴DN 、MN 分别为△BCE 、ECF 中位线,∴BE ∥DN ,MN ∥CF ,∵△ABC 、△AEF 都是等边三角形,∴AB=AC,AE=AF,60BAC EAF ∠=∠=︒∴BAE CAF∠=∠∴△ABE ≌△ACF .∴∠DGC =∠BHC ,∠ENM =∠ECF ,∠ABE =∠ACF又∵∠BHC =∠ABE +∠BAH =∠ABE +60°,∴∠DGC =∠ABE +60°=∠ACF +60°又∵∠DGC =∠DNC +∠GCN =∠DNC +∠ACF -∠ECF ,∴∠DNC =60°+∠ECF =60°+∠ENM ,∴∠DNE =180°-∠DNC =120°-∠ENM ,∴∠DNM =∠DNE +∠ENM =120°.(3)△AND 的面积为如图,取AC 中点P ,因为BP +PN ≥BN ,所以当B 、P 、N 在一直线上,BN 最大.∴BN =BP +PN =BP +12AE ==设BP 与AD 交于O ,NQ ⊥AD 于Q ,如图,∴BO =23BP =3,ON BD =4,由题意得△ONQ ∽△OBD ,∴NQ =72,∴△AND 的面积为:12×AD ×NQ =【点睛】本题考查了等边三角形性质,直角三角形性质,中位线定理,相似等知识,综合性较强,熟知图形变化规律,根据题意正确画出图形是解题关键.。

2020年重庆市中考数学试卷-含详细解析

2020年重庆市中考数学试卷-含详细解析

2020年重庆市中考数学试卷(A卷)含详细解析姓名:___________班级:___________得分:___________一、选择题(本大题共12小题,共48.0分)1.下列各数中,最小的数是()A.−3B.0C.1D.22.下列图形是轴对称图形的是()A. B. C. D.3.在今年举行的第127届“广交会”上,有近26000家厂家进行“云端销售”.其中数据26000用科学记数法表示为()A.26×103B.2.6×103C.2.6×104D.0.26×1054.把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形,…,按此规律排列下去,则第⑤个图案中黑色三角形的个数为()A.10B.15C.18D.215.如图,AB是⊙O的切线,A为切点,连接OA,OB,若∠B=20°,则∠AOB的度数为()A.40°B.50°C.60°D.70°6.下列计算中,正确的是()A.√2+√3=√5B.2+√2=2√2C.√2×√3=√67.解一元一次方程1(x+1)=1−1x时,去分母正确的是()23D.2√3−2=√3A.3(x+1)=1−2x C.2(x+1)=6−3xB.2(x+1)=1−3x D.3(x+1)=6−2x8.如图,在平面直角坐标系中,△ABC的顶点坐标分别是A(1,2),B(1,1),C(3,1),以原点为位似中心,在原点的同侧画△DEF△,使DEF△与ABC成位似图形,且相似比为2:1,则线段DF的长度为()≤x+3,A.√5B.2C.4D.2√59.如图,在距某居民楼AB楼底B点左侧水平距离60m的C点处有一个山坡,山坡CD的坡度(或坡比)i=1:0.75,山坡坡底C点到坡顶D点的距离CD=45m,在坡顶D点处测得居民楼楼顶A点的仰角为28°,居民楼AB与山坡CD的剖面在同一平面内,则居民楼AB的高度约为(参考数据:si n28°≈0.47,cos28°≈0.88,tan28°≈0.53)()A.76.9mB.82.1mC.94.8mD.112.6m10.若关于x的一元一次不等式组{3x1x≤a2的解集为x≤a;且关于y的分式方程yay2+3y4=1有正整数解,则所有满足条件的整数a的值之积是()y2A.7B.14C.28D.5611.如图,三角形纸片ABC,点D是BC边上一点,连接AD△,把ABD沿着AD翻折,得到△AED,DE与AC交于点G,连接BE交AD于点F.若DG=GE,AF=3,BF=2,△ADG的面积为2,则点F到BC的距离为()A.√55B.2√55C.4√55D.4√3312.如图,在平面直角坐标系中,矩形ABCD的对角线AC的中点与坐标原点重合,点E是x轴上一点,连接AE.若AD平分∠OAE,反比例函数y=k(k>0,x>0)的x 图象经过AE上的两点A,F,且AF=EF,△ABE的面积为18,则k的值为()第2页,共19页m+3)÷14.一个多边形的内角和等于它的外角和的2倍,则这个多边形的边数是______.15.现有四张正面分别标有数字−1,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背面朝上洗均匀,随机抽取一张,记下数字后放回,背面朝上洗均匀,再随机抽取一张记下数宇,前后两次抽取的数字分别记为m,n.则点P(m,n)在第二象限的概率为______.16.如图,在边长为2的正方形ABCD中,对角线AC的中点为O,分别以点A,C为圆心,以AO的长为半径画弧,分别与正方形的边相交,则图中的阴影部分的面积为______.(结果保留π)17.A,B两地相距240km,甲货车从A地以40km/ℎ的速度匀速前往B地,到达B地后停止.在甲出发的同时,乙货车从B地沿同一公路匀速前往A地,到达A地后停止.两车之间的路程y(km)与甲货车出发时间x(ℎ)之间的函数关系如图中的折线CD−DE−EF所示.其中点C的坐标是(0,240),点D的坐标是(2.4,0),则点E的坐标是______.18.火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3:5:2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加的营业额占总增加的营业额的2,则摆摊的营业额将达5到7月份总营业额的7,为使堂食、外卖7月份的营业额之比为8:5,则7月份20外卖还需增加的营业额与7月份总营业额之比是______.三、解答题(本大题共8小题,共78.0分)19.计算:(1)(x+y)2+x(x−2y);(2)(1−m m2−9m2+6m+9.20.为了解学生掌握垃圾分类知识的情况,增强学生环保意识.某学校举行了“垃圾测试成绩(满分10分,6分及6分以上为合格)进行整理、描述和分析,下面给出了部分信息.七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6.八年级20名学生的测试成绩条形统计图如图:七、八年级抽取的学生的测试成绩的平均数、众数、中位数、8分及以上人数所占百分比如下表所示:年级七年级平均数7.5众数a中位数78分及以上人数所占百分比45%八年级7.58b c根据以上信息,解答下列问题:(1)直接写出上述表中的a,b,c的值;(2)根据上述数据,你认为该校七、八年级中哪个年级学生掌握垃极分类知识较好?请说明理由(写出一条理由即可);(3)该校七、八年级共1200名学生参加了此次测试活动,估计参加此次测试活动成绩合格的学生人数是多少?21.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,分别过点A,C作AE⊥BD,CF⊥BD,垂足分别为E,F.AC平分∠DAE.(1)若∠AOE=50°,求∠ACB的度数;(2)求证:AE=CF.x21性质及其应用的部分过程,…−−______−−30x21>2x−1的解集(保留1位小数,误差不超过0.2).22.在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数y=6x请按要求完成下列各小题.(1)请把下表补充完整,并在图中补全该函数图象;x…−5−4−3−2−1012345…y=6xx21152412131753125______24151713…(2)根据函数图象,判断下列关于该函数性质的说法是否正确,正确的在答题卡上相应的括号内打“√”,错误的在答题卡上相应的括号内打“×”;①该函数图象是轴对称图形,它的对称轴为y轴.②该函数在自变量的取值范围内,有最大值和最小值.当x=1时,函数取得最大值3;当x=−1时,函数取得最小值−3.③当x<−1或x>1时,y随x的增大而减小;当−1<x<1时,y随x的增大而增大.(3)已知函数y=2x−1的图象如图所示,结合你所画的函数图象,直接写出不等式6x23.在整数的除法运算中,只有能整除与不能整除两种情况,当不能整除时,就会产生余数,现在我们利用整数的除法运算来研究一种数--“差一数”.定义:对于一个自然数,如果这个数除以5余数为4,且除以3余数为2,则称这个数为“差一数”..19 ÷ 5 = 3 … 4,但19 ÷ 3 = 6 … 1,所以 19 不是“差一数”. (1)判断 49 和 74 是否为“差一数”?请说明理由; (2)求大于 300 且小于 400 的所有“差一数”.24. “中国人的饭碗必须牢牢掌握在咱们自己手中” 为优选品种,提高产量,某农业科技小组对 A ,B 两个小麦品种进行种植对比实验研究.去年 A ,B 两个品种各种 植了 10 亩.收获后 A ,B 两个品种的售价均为2.4元/kg ,且 B 的平均亩产量比 A 的平均亩产量高 100kg ,A ,B 两个品种全部售出后总收入为 21600 元. (1)请求出 A ,B 两个品种去年平均亩产量分别是多少?(2)今年,科技小组加大了小麦种植的科研力度,在 A ,B 种植亩数不变的情况下,预计 A ,B 两个品种平均亩产量将在去年的基础上分别增加a%和2a%.由于 B 品种深受市场的欢迎,预计每千克价格将在去年的基础上上涨a%,而 A 品种的售价不变.A ,B 两个品种全部售出后总收入将在去年的基础上增加20 a%.求 a 的9值.25. 如图,在平面直角坐标系中,已知抛物线y = x 2 + bx + c 与直线 AB 相交于 A ,B两点,其中A (−3, −4),B(0, −1). (1)求该抛物线的函数表达式;(2)点 P 为直线 AB 下方抛物线上的任意一点,连接 P A ,PB △,求 PAB 面积的最大值;(3)将该抛物线向右平移 2 个单位长度得到抛物线y = a 1x 2 + b 1x + c 1(a 1 ≠ 0),平 移后的抛物线与原抛物线相交于点 C ,点 D 为原抛物线对称轴上的一点,在平面 直角坐标系中是否存在点 E ,使以点 B ,C ,D ,E 为顶点的四边形为菱形,若存 在,请直接写出点 E 的坐标;若不存在,请说明理由.26.如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D是BC边上一动点,连接AD,把AD绕点A逆时针旋转90°,得到AE,连接CE,DE.点F是DE的中点,连接CF.(1)求证:CF=√2AD;2(2)如图2所示,在点D运动的过程中,当BD=2CD时,分别延长CF,BA,相交于点G,猜想AG与BC存在的数量关系,并证明你猜想的结论;(3)在点D运动的过程中,在线段AD上存在一点P,使PA+PB+PC的值最小.当PA+PB+PC的值取得最小值时,AP的长为m,请直接用含m的式子表示CE的长.答案和解析1.【答案】A【解析】解:∵−3<0<1<2,∴这四个数中最小的数是−3.故选:A.根据正数大于0,0大于负数,正数大于负数,可得答案.本题考查了有理数比较大小,正数大于0,0大于负数,正数大于负数.2.【答案】A【解析】解:B、C、D都不是轴对称图形,A是轴对称图形,故选:A.根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.此题主要考查了轴对称图形,关键是掌握轴对称图形的概念,找出图形的对称轴.3.【答案】C【解析】解:26000=2.6×104,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】B【解析】解:∵第①个图案中黑色三角形的个数为1,第②个图案中黑色三角形的个数3=1+2,第③个图案中黑色三角形的个数6=1+2+3,……∴第⑤个图案中黑色三角形的个数为1+2+3+4+5=15,故选:B.根据前三个图案中黑色三角形的个数得出第n个图案中黑色三角形的个数为1+2+ 3+4+⋯…+n,据此可得第⑤个图案中黑色三角形的个数.本题主要考查图形的变化规律,解题的关键是根据已知图形得出规律:第n个图案中黑色三角形的个数为1+2+3+4+⋯…+n.5.【答案】D【解析】解:∵AB是⊙O的切线,A为切点,∴∠A=90°,∵∠B=20°,∴∠AOB=90°−20°=70°,故选:D.根据切线的性质和三角形的内角和即可得到结论.本题考查了切线的性质,三角形的内角和,熟练掌握切线的性质是解题的关键.6.【答案】C0.75=4,【解析】解:A.√2与√3不是同类二次根式,不能合并,此选项计算错误;B.2与√2不是同类二次根式,不能合并,此选项计算错误;C.√2×√3=√2×3=√6,此选项计算正确;D.2√3与−2不是同类二次根式,不能合并,此选项错误;故选:C.根据同类二次根式的概念与二次根式的乘法逐一判断可得答案.本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的乘法法则与同类二次根式的概念.7.【答案】D【解析】解:方程两边都乘以6,得:3(x+1)=6−2x,故选:D.根据等式的基本性质将方程两边都乘以6可得答案.本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的步骤和等式的基本性质.8.【答案】D【解析】解:∵以原点为位似中心,在原点的同侧画△DEF△,使DEF△与ABC成位似图形,且相似比为2:1,而A(1,2),C(3,1),∴D(2,4),F(6,2),∴DF=√(2−6)2+(4−2)2=2√5.故选:D.把A、C的横纵坐标都乘以2得到D、F的坐标,然后利用两点间的距离公式计算线段DF的长.本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k.9.【答案】B【解析】解:如图,由题意得,∠ADF=28°,CD=45,BC=60,在Rt△DEC中,∵山坡CD的坡度i=1:0.75,∴DE=EC 13设DE=4x,则EC=3x,由勾股定理可得CD=5x,又CD=45,即5x=45,∴x=9,∴EC=3x=27,DE=4x=36=FB,∴BE=BC+EC=60+27=87=DF,在Rt△ADF中,AF=tan28°×DF≈0.53×87≈46.11,∴AB=AF+FB=46.11+36≈82.1,故选:B.构造直角三角形,利用坡比的意义和直角三角形的边角关系,分别计算出D E、EC、BE、DF、AF,进而求出AB.本题考查直角三角形的边角关系,掌握坡比的意义和直角三角形的边角关系是正确计【解析】解:不等式组整理得:{ ,10.【答案】Cx ≤ 7x ≤ a由解集为x ≤ a ,得到a ≤ 7,分式方程去分母得:y − a + 3y − 4 = y − 2,即3y − 2 = a ,解得:y = a+2 ,3由 y 为正整数解,得到a = 1,4,7 1 × 4 × 7 = 28, 故选:C .不等式组整理后,根据已知解集确定出 a 的范围,分式方程去分母转化为正整数方 程,由分式方程有非负整数解,确定出 a 的值,求出之和即可.此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的 关键.11.【答案】B【解析】解:∵ DG = GE , ∴ △?? ADG = △?? AEG = 2, ∴ △?? ADE = 4,由翻折可知,△ ADB≌△ ADE ,BE ⊥ AD , ∴ △?? ABD = △?? ADE = 4,∠BFD = 90°,∴ 1 ⋅ (AF + DF) ⋅ BF = 4,2∴ 1 ⋅ (3 + DF) ⋅ 2 = 4,2∴ DF = 1,∴ DB = √BF 2 + DF 2 = √12 + 22 = √5,设点 F 到 BD 的距离为 h ,则有1 ⋅ BD ⋅ ℎ = 1 ⋅ BF ⋅ DF ,22∴ ℎ = 2√5,5故选:B .首先求出△ ABD 的面积.根据三角形的面积公式求出 DF ,设点 F 到 BD 的距离为 h ,根据1 ⋅ BD ⋅ ℎ = 1 ⋅ BF ⋅ DF ,求出 BD 即可解决问题.22本题考查翻折变换,三角形的面积,勾股定理等知识,解题的关键是灵活运用所学知 识解决问题,学会利用参数构建方程解决问题.12.【答案】B【解析】解:如图,连接 BD ,OF ,过点 A 作AN ⊥ OE 于 N ,过点 F 作FM ⊥ OE 于 M .△??3 EOF = 3,由此即可解决问题.21 1 1 21∵ AN//FM ,AF = FE , ∴ MN = ME ,∴ FM = 1 AN ,2∵ A ,F 在反比例函数的图象上,∴ △?? AON = △?? FOM = k,∴ 1 ⋅ ON ⋅ AN = 1 ⋅ OM ⋅ FM ,22∴ ON = 1 OM ,2∴ ON = MN = EM ,∴ ME = 1 OE ,3∴ △?? FME = 3 △?? FOE ,∵ AD 平分∠OAE , ∴ ∠OAD = ∠EAD ,∵四边形 ABCD 是矩形, ∴ OA = OD ,∴ ∠OAD = ∠ODA = ∠DAE , ∴ AE//BD , ∴ △?? ABE = △?? AOE , ∴ △?? AOE = 18, ∵ AF = EF ,∴ △?? EOF = 2 △?? AOE = 9,∴ △?? FME = 3 △?? EOF = 3,∴ △?? FOM = △?? FOE − △?? FME = 9 − 3 = 6 = k ,∴ k = 12. 故选:B .如图,连接 BD ,OF ,过点 A 作AN ⊥ OE 于 N ,过点 F 作FM ⊥ OE 于M.证明BD//AE ,推出△?? ABE = △?? AOE = 18,推出△?? EOF = 2 △?? AOE = 9,可得△?? FME =116.解题的关键是证明BD//AE,利用等高模型解决问题,属于中考选择题中的压轴题.13.【答案】3【解析】解:(π−1)0+|−2|=1+2=3,故答案为:3.根据零次幂和绝对值的意义,进行计算即可.本题考查零次幂和绝对值的性质,掌握零次幂和绝对值的性质是正确计算的前提.14.【答案】6【解析】解:设这个多边形的边数为n,依题意,得:(n−2)⋅180°=2×360°,解得n=6.故答案为:6.n边形的内角和可以表示成(n−2)⋅180°,外角和为360°,根据题意列方程求解.本题考查多边形的内角和计算公式,多边形的外角和.关键是根据题意利用多边形的外角和及内角和之间的关系列出方程求边数.15.【答案】316【解析】解:画树状图为:共有16种等可能的结果数,其中点P(m,n)在第二象限的结果数为3,所以点P(m,n)在第二象限的概率=3故答案为3.16画树状图展示所有16种等可能的结果数,利用第二象限内点的坐标特征确定点P(m,n)在第二象限的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了点的坐标.16.【答案】4−π【解析】解:∵四边形ABCD为正方形,∴AB=BC=2,∠DAB=∠DCB=90°,由勾股定理得,AC=√AB2+BC2=2√2,∴OA=OC=√2,∴图中的阴影部分的面积=22−90π×(√2)2×2=4−π,360故答案为:4−π.根据勾股定理求出AC,得到OA、OC的长,根据正方形的面积公式、扇形面积公式计算,得到答案.由题意可得:{,解得:{6,b=m+3)÷m+3)×(m+3)(m−3),m+3×m+3,m−3.17.【答案】(4,160)【解析】解:根据题意可得,乙货车的速度为:240÷2.4−40=60(40km/ℎ),∴乙货车从B地到A地所用时间为:240÷60=4(小时),当乙货车到底A地时,甲货车行驶的路程为:40×4=160(千米),∴点E的坐标是(4,160).故答案为:(4,160).根据点C与点D的坐标即可得出乙货车的速度,进而得出乙货车从B地到A地所用时间,据此即可得出点E的坐标.本题考查一次函数的应用,解题的关键是读懂图象信息,掌握路程、速度、时间之间的关系,属于中考常考题型.18.【答案】1:8【解析】解:设6月份堂食、外卖、摆摊三种方式的营业额为3a,5a,2a,设7月份总的增加营业额为5x,摆摊增加的营业额为2x,7月份总营业额20b,摆摊7月份的营业额为7b,堂食7月份的营业额为8b,外卖7月份的营业额为5b,7b−2a=2x20b−10a=5xa=xx3∴7月份外卖还需增加的营业额与7月份总营业额之比=(5b−5a):20b=1:8,故答案为:1:8.设6月份堂食、外卖、摆摊三种方式的营业额为3a,5a,2a,设7月份总的增加营业额为5x,摆摊增加的营业额为2x,7月份总营业额20b,摆摊7月份的营业额为7b,堂食7月份的营业额为8b,外卖7月份的营业额为5b,由题意列出方程组,可求a,b 的值,即可求解.本题考查了三元一次方程组的应用,理解题意,找到正确的等量关系是本题的关键.19.【答案】解:(1)(x+y)2+x(x−2y),=x2+2xy+y2+x2−2xy,=2x2+y2;(2)(1−m m2−9m2+6m+9,=(m+3−m+3m(m+3)2= =33m−3【解析】(1)根据整式的四则运算的法则进行计算即可;(2)先计算括号内的减法,再计算除法,注意约分和因式分解.考查整式、分式的四则混合运算,掌握计算法则和因式分解是正确计算的前提.20.【答案】解:(1)∵七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6,∴a=7,由条形统计图可得,b=(7+8)÷2=7.5,2020=1080(人),即a=7,b=7.5,c=50%;(2)八年级学生掌握垃极分类知识较好,理由:八年级的8分及以上人数所占百分比大于七年级,故八年级学生掌握垃极分类知识较好;(3)∵从调查的数据看,七年级2人的成绩不合格,八年级2人的成绩不合格,∴参加此次测试活动成绩合格的学生有1200×(202)(202)即参加此次测试活动成绩合格的学生有1080人.【解析】(1)根据题目中的数据和条形统计图中的数据,可以得到a、b、c的值;(2)根据统计表中的数据,可以得到该校七、八年级中哪个年级学生掌握垃极分类知识较好,然后说明理由即可,注意本题答案不唯一,理由只要合理即可;(3)根据题目中的数据和条形统计图中的数据,可以计算出参加此次测试活动成绩合格的学生人数是多少.本题考查条形统计图、中位数、众数、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.21.【答案】(1)解:∵AE⊥BD,∴∠AEO=90°,∵∠AOE=50°,∴∠EAO=40°,∵CA平分∠DAE,∴∠DAC=∠EAO=40°,∵四边形ABCD是平行四边形,∴AD//BC,∠ACB=∠DAC=40°,(2)证明:∵四边形ABCD是平行四边形,∴OA=OC,∵AE⊥BD,CF⊥BD,∴∠AEO=∠CFO=90°,∵∠AOE=∠COF,∴△AEO≌△CFO(AAS),∴AE=CF.【解析】(1)利用三角形内角和定理求出∠EAO,利用角平分线的定义求出∠DAC,再利用平行线的性质解决问题即可.(2)△证明AEO≌△CFO(AAS)可得结论.本题考查平行四边形的性质,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.【答案】9955【解析】解:(1)补充完整下表为:x…54321012345…y=6x1524…x211317951253031259524151713…(3)由图象可知:不等式x21>2x−1的解集为x<−1或−0.3<1.8.画出函数的图象如图:;(2)根据函数图象:①该函数图象是轴对称图形,它的对称轴为y轴,说法错误;②该函数在自变量的取值范围内,有最大值和最小值.当x=1时,函数取得最大值3;当x=−1时,函数取得最小值−3,说法正确;③当x<−1或x>1时,y随x的增大而减小;当−1<x<1时,y随x的增大而增大,说法正确.6x(1)将x=−3,3分别代入解析式即可得y的值,再画出函数的图象;(2)结合图象可从函数的增减性及对称性进行判断;(3)根据图象求得即可.本题主要考查一次函数的图象和性质,一次函数与一元一次不等式,会用描点法画出函数图象,利用数形结合的思想得到函数的性质是解题的关键.23.【答案】解:(1)49÷5=9…4,但49÷3=16…1,所以49不是“差一数”;74÷5=14…4,74÷3=24…2,所以74是“差一数”.(2)大于300且小于400的数除以5余数为4的有304,309,314,319,324,329,334,339,344,349,354,359,364,369,374,379,384,389,394,399,其中除以3余数为2的有314,327,344,359,374,389.故大于300且小于400的所有“差一数”有314,327,344,359,374,389.【解析】(1)根据“差一数”的定义即可求解;(2)根据“差一数”的定义即可求解.考查了因式分解的应用,本题是一个新定义题,关键是根据新定义的特征和仿照样例进行解答,主要考查学生的自学能力.24.【答案】解:(1)设A、B两个品种去年平均亩产量分别是x千克和y千克;y−x=100根据题意得,{10×2.4(x y)=21600,x=400解得:{y=500,答:A、B两个品种去年平均亩产量分别是400千克和500千克;(2)2.4×400×10(1a%) 2.4(1a%)×500×10(12a%)=21600(120a%),9解得:a=0.1,25.【答案】解:(1)将点A、B的坐标代入抛物线表达式得{−4=9−3b=c,解得{,(2)设直线AB的表达式为:y=kx+t,则{,解得{,222答:a的值为0.1.【解析】(1)设A、B两个品种去年平均亩产量分别是x千克和y千克;根据题意列方程组即可得到结论;(2)根据题意列方程即可得到结论.本题考查了一元二次方程的应用,二元一次方程组的应用,正确的理解题意是解题的关键.c=−1b=4c=−1故抛物线的表达式为:y=x2+4x−1;−4=−3k+t k=1t=−1t=−1故直线AB的表达式为:y=x−1,过点P作y轴的平行线交AB于点H,设点P(x,x2+4x−1),则H(x,x−1),△PAB面积S=1×PH×(xB−xA)=1(x−1−x2−4x+1)×(0+3)=−3x2−9x,2∵−3<0,故S有最大值,当x=−3时,S的最大值为27;228(3)抛物线的表达式为:y=x2+4x−1=(x+2)2−5,则平移后的抛物线表达式为:y=x2−5,x=−1联立上述两式并解得:{y=−4,故点C(−1,−4);222设点D(−2, m)、点E(s, t ),而点 B 、C 的坐标分别为(0, −1)、(−1, −4); ①当 BC 为菱形的边时,点 C 向右平移 1 个单位向上平移 3 个单位得到 B ,同样D(E)向右平移 1 个单位向上平 移 3 个单位得到E(D),即−2 + 1 = s 且m + 3 = t①或−2 − 1 = s 且m − 3 = t②,当点 D 在 E 的下方时,则BE = BC ,即s 2 + (t + 1)2 = 12 + 32③, 当点 D 在 E 的上方时,则BD = BC ,即22 + (m + 1)2 = 12 + 32④,联立①③并解得:s = −1,t = 2或−4(舍去−4),故点E(−1,3);联立②④并解得:s = 1,t = −4 ± √6,故点E(1, −4 + √6)或(1, −4 − √6); ②当 BC 为菱形的的对角线时,则由中点公式得:−1 = s − 2且−4 − 1 = m + t⑤, 此时,BD = BE ,即22 + (m + 1)2 = s 2 + (t + 1)2⑥, 联立⑤⑥并解得:s = 1,t = −3, 故点E(1, −3),综上,点 E 的坐标为:(−1,2)或(1, −4 + √6)或(1, −4 − √6)或(1, −3).【解析】(1)将点 A 、B 的坐标代入抛物线表达式,即可求解;(2) △ PAB 面积S = 1 × PH × (x B − x A ) = 1 (x − 1 − x 2 − 4x + 1) × (0 + 3) = − 3 x 2 −9x ,即可求解;2(3)分 BC 为菱形的边、菱形的的对角线两种情况,分别求解即可.本题考查的是二次函数综合运用,涉及到一次函数的性质、菱形的性质、图形的平 移、面积的计算等,其中(3),要注意分类求解,避免遗漏. 26.【答案】证明:(1) ∵ AB = AC ,∠BAC = 90°, ∴ ∠ABC = ∠ACB = 45°,∵把 AD 绕点 A 逆时针旋转90°,得到 AE , ∴ AD = AE ,∠DAE = 90° = ∠BAC , ∴ ∠BAD = ∠CAE ,DE = √2AD , 又∵ AB = AC ,∴△ BAD≌△ CAE(SAS),∴ ∠ABD = ∠ACE = 45°,∴ ∠BCE = ∠BCA + ∠ACE = 90°, ∵点 F 是 DE 的中点,∴ CF = 1 DE = √2 AD ;22(2)AG = √2 BC ,6理由如下:如图 2,过点 G 作GH ⊥ BC 于 H ,∵ BD = 2CD ,∴设CD = a ,则BD = 2a ,BC = 3a , ∵ ∠BAC = 90°,AB = AC ,∴ AB = AC = BC = 3√2 a ,√22由(1)可知:△ BAD≌△ CAE , ∴ BD = CE = 2a , ∵ CF = DF ,∴ ∠FDC = ∠FCD ,∴ tan∠FDC = tan∠FCD ,∴ CE = GH = 2,CDCH∴ GH = 2CH ,∵ GH ⊥ BC ,∠ABC = 45°, ∴ ∠ABC = ∠BGH = 45°, ∴ BH = GH ,∴ BG = √2BH∵ BH + CH = BC = 3a ,∴ CH = a ,BH = GH = 2a , ∴ BG = 2√2a ,∴ AG = BG − AB = √2 a = √2 CD = √2 BC ;226(3)如图3 − 1△,将 BPC 绕点 B 顺时针旋转60°△得到 BNM ,连接 PN ,∴ BP = BN ,PC = NM ,∠PBN = 60°, ∴△ BPN 是等边三角形, ∴ BP = PN ,∴ PA + PB + PC = AP + PN + MN ,∴当点 A ,点 P ,点 N ,点 M 共线时,PA + PB + PC 值最小, 此时,如图3 − 2,连接 MC ,得到BNM,∵将△BPC绕点B顺时针旋转60°△∴BP=BN,BC=BM,∠PBN=60°=∠CBM,∴△BPN是等边三角形,△CBM是等边三角形,∴∠BPN=∠BNP=60°,BM=CM,∵BM=CM,AB=AC,∴AM垂直平分BC,∵AD⊥BC,∠BPD=60°,∴BD=√3PD,∵AB=AC,∠BAC=90°,AD⊥BC,∴AD=BD,∴√3PD=PD+AP,∴PD=√3+1m,2∴BD=√3PD=3+√3m,2由(1)可知:CE=BD=3+√3m.2【解析】(1)由“SAS”可证△BAD≌△CAE,可得∠ABD=∠ACE=45°,可求∠BCE=90°,由直角三角形的性质和等腰直角三角形的性质可得结论;(2)过点G作GH⊥BC于H,设CD=a,可得BD=2a,BC=3a,AB=AC=3√2a,2由全等三角形的性质可得BD=CE=2a,由锐角三角函数可求GH=2CH,可求CH=a,可求BG的长,即可求AG=√2a=√2CD=√2BC;226得到BNM,连接PN,可得当点A,点P,点N,(3)△将BPC绕点B顺时针旋转60°△点M共线时,PA+PB+PC值最小,由旋转的性质可得△BPN是等边三角形,△CBM是等边三角形,可得∠BPN=∠BNP=60°,BM=CM,由直角三角形的性质可求解.本题是几何变换综合题,考查了全等三角形的判定和性质,等腰直角三角形的性质,旋转的性质,锐角三角函数等知识,确定点P的位置是本题的关键.。

2020年重庆市中考数学试卷及答案解析(a卷)

2020年重庆市中考数学试卷及答案解析(a卷)

2020年重庆市中考数学试卷(A卷)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)下列各数中,最小的数是()A.﹣3B.0C.1D.22.(4分)下列图形是轴对称图形的是()A.B.C.D.3.(4分)在今年举行的第127届“广交会”上,有近26000家厂家进行“云端销售”.其中数据26000用科学记数法表示为()A.26×103B.2.6×103C.2.6×104D.0.26×1054.(4分)把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形,…,按此规律排列下去,则第⑤个图案中黑色三角形的个数为()A.10B.15C.18D.215.(4分)如图,AB是⊙O的切线,A为切点,连接OA,OB,若∠B=20°,则∠AOB的度数为()A .40°B .50°C .60°D .70°6.(4分)下列计算中,正确的是( )A .√2+√3=√5B .2+√2=2√2C .√2×√3=√6D .2√3−2=√3 7.(4分)解一元一次方程12(x +1)=1−13x 时,去分母正确的是( )A .3(x +1)=1﹣2xB .2(x +1)=1﹣3xC .2(x +1)=6﹣3xD .3(x +1)=6﹣2x 8.(4分)如图,在平面直角坐标系中,△ABC 的顶点坐标分别是A (1,2),B (1,1),C(3,1),以原点为位似中心,在原点的同侧画△DEF ,使△DEF 与△ABC 成位似图形,且相似比为2:1,则线段DF 的长度为( )A .√5B .2C .4D .2√59.(4分)如图,在距某居民楼AB 楼底B 点左侧水平距离60m 的C 点处有一个山坡,山坡CD 的坡度(或坡比)i =1:0.75,山坡坡底C 点到坡顶D 点的距离CD =45m ,在坡顶D 点处测得居民楼楼顶A 点的仰角为28°,居民楼AB 与山坡CD 的剖面在同一平面内,则居民楼AB 的高度约为(参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)( )A .76.9mB .82.1mC .94.8mD .112.6m 10.(4分)若关于x 的一元一次不等式组{3x−12≤x +3,x ≤a 的解集为x ≤a ;且关于y 的分式方程y−a y−2+3y−4y−2=1有正整数解,则所有满足条件的整数a 的值之积是( )A .7B .﹣14C .28D .﹣5611.(4分)如图,三角形纸片ABC ,点D 是BC 边上一点,连接AD ,把△ABD 沿着AD 翻折,得到△AED ,DE 与AC 交于点G ,连接BE 交AD 于点F .若DG =GE ,AF =3,BF =2,△ADG 的面积为2,则点F 到BC 的距离为( )A .√55B .2√55C .4√55D .4√3312.(4分)如图,在平面直角坐标系中,矩形ABCD 的对角线AC 的中点与坐标原点重合,点E 是x 轴上一点,连接AE .若AD 平分∠OAE ,反比例函数y =k x (k >0,x >0)的图象经过AE 上的两点A ,F ,且AF =EF ,△ABE 的面积为18,则k 的值为( )A .6B .12C .18D .24二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)计算:(π﹣1)0+|﹣2|= .14.(4分)一个多边形的内角和等于它的外角和的2倍,则这个多边形的边数是 .15.(4分)现有四张正面分别标有数字﹣1,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背面朝上洗均匀,随机抽取一张,记下数字后放回,背面朝上洗均匀,再随机抽取一张记下数宇,前后两次抽取的数字分别记为m ,n .则点P (m ,n )在第二象限的概率为 .16.(4分)如图,在边长为2的正方形ABCD 中,对角线AC 的中点为O ,分别以点A ,C为圆心,以AO 的长为半径画弧,分别与正方形的边相交,则图中的阴影部分的面积为 .(结果保留π)17.(4分)A ,B 两地相距240km ,甲货车从A 地以40km /h 的速度匀速前往B 地,到达B地后停止.在甲出发的同时,乙货车从B 地沿同一公路匀速前往A 地,到达A 地后停止.两车之间的路程y (km )与甲货车出发时间x (h )之间的函数关系如图中的折线CD ﹣DE ﹣EF 所示.其中点C 的坐标是(0,240),点D 的坐标是(2.4,0),则点E 的坐标是 .18.(4分)火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3:5:2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加的营业额占总增加的营业额的25,则摆摊的营业额将达到7月份总营业额的720,为使堂食、外卖7月份的营业额之比为8:5,则7月份外卖还需增加的营业额与7月份总营业额之比是 .三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(10分)计算:(1)(x +y )2+x (x ﹣2y );(2)(1−m m+3)÷m 2−9m 2+6m+9. 20.(10分)为了解学生掌握垃圾分类知识的情况,增强学生环保意识.某学校举行了“垃圾分类人人有责”的知识测试活动,现从该校七、八年级中各随机抽取20名学生的测试成绩(满分10分,6分及6分以上为合格)进行整理、描述和分析,下面给出了部分信息.七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6.八年级20名学生的测试成绩条形统计图如图:七、八年级抽取的学生的测试成绩的平均数、众数、中位数、8分及以上人数所占百分比如下表所示:年级平均数众数中位数8分及以上人数所占百分比七年级7.5a745%八年级7.58b c 根据以上信息,解答下列问题:(1)直接写出上述表中的a,b,c的值;(2)根据上述数据,你认为该校七、八年级中哪个年级学生掌握垃极分类知识较好?请说明理由(写出一条理由即可);(3)该校七、八年级共1200名学生参加了此次测试活动,估计参加此次测试活动成绩合格的学生人数是多少?21.(10分)如图,在平行四边形ABCD中,对角线AC,BD相交于点O,分别过点A,C 作AE⊥BD,CF⊥BD,垂足分别为E,F.AC平分∠DAE.(1)若∠AOE=50°,求∠ACB的度数;(2)求证:AE=CF.22.(10分)在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数y=6xx2+1性质及其应用的部分过程,请按要求完成下列各小题.(1)请把下表补充完整,并在图中补全该函数图象;x…﹣5﹣4﹣3﹣2﹣1012345…y= 6x x2+1…−1513−2417−125﹣30312524171513…(2)根据函数图象,判断下列关于该函数性质的说法是否正确,正确的在答题卡上相应的括号内打“√”,错误的在答题卡上相应的括号内打“×”;①该函数图象是轴对称图形,它的对称轴为y轴.②该函数在自变量的取值范围内,有最大值和最小值.当x=1时,函数取得最大值3;当x=﹣1时,函数取得最小值﹣3.③当x<﹣1或x>1时,y随x的增大而减小;当﹣1<x<1时,y随x的增大而增大.(3)已知函数y=2x﹣1的图象如图所示,结合你所画的函数图象,直接写出不等式6xx2+1>2x﹣1的解集(保留1位小数,误差不超过0.2).23.(10分)在整数的除法运算中,只有能整除与不能整除两种情况,当不能整除时,就会产生余数,现在我们利用整数的除法运算来研究一种数﹣﹣“差一数”.定义:对于一个自然数,如果这个数除以5余数为4,且除以3余数为2,则称这个数为“差一数”.例如:14÷5=2…4,14÷3=4…2,所以14是“差一数”;19÷5=3…4,但19÷3=6…1,所以19不是“差一数”.(1)判断49和74是否为“差一数”?请说明理由;(2)求大于300且小于400的所有“差一数”.24.(10分)“中国人的饭碗必须牢牢掌握在咱们自己手中”.为优选品种,提高产量,某农业科技小组对A ,B 两个小麦品种进行种植对比实验研究.去年A ,B 两个品种各种植了10亩.收获后A ,B 两个品种的售价均为2.4元/kg ,且B 的平均亩产量比A 的平均亩产量高100kg ,A ,B 两个品种全部售出后总收入为21600元.(1)请求出A ,B 两个品种去年平均亩产量分别是多少?(2)今年,科技小组加大了小麦种植的科研力度,在A ,B 种植亩数不变的情况下,预计A ,B 两个品种平均亩产量将在去年的基础上分别增加a %和2a %.由于B 品种深受市场的欢迎,预计每千克价格将在去年的基础上上涨a %,而A 品种的售价不变.A ,B 两个品种全部售出后总收入将在去年的基础上增加209a %.求a 的值.25.(10分)如图,在平面直角坐标系中,已知抛物线y =x 2+bx +c 与直线AB 相交于A ,B两点,其中A (﹣3,﹣4),B (0,﹣1).(1)求该抛物线的函数表达式;(2)点P 为直线AB 下方抛物线上的任意一点,连接P A ,PB ,求△P AB 面积的最大值;(3)将该抛物线向右平移2个单位长度得到抛物线y =a 1x 2+b 1x +c 1(a 1≠0),平移后的抛物线与原抛物线相交于点C ,点D 为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点E ,使以点B ,C ,D ,E 为顶点的四边形为菱形,若存在,请直接写出点E 的坐标;若不存在,请说明理由.四、解答题:(本大题1个小题,共8分)解答时必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.26.(8分)如图,在Rt △ABC 中,∠BAC =90°,AB =AC ,点D 是BC 边上一动点,连接AD,把AD绕点A逆时针旋转90°,得到AE,连接CE,DE.点F是DE的中点,连接CF.(1)求证:CF=√22AD;(2)如图2所示,在点D运动的过程中,当BD=2CD时,分别延长CF,BA,相交于点G,猜想AG与BC存在的数量关系,并证明你猜想的结论;(3)在点D运动的过程中,在线段AD上存在一点P,使P A+PB+PC的值最小.当P A+PB+PC的值取得最小值时,AP的长为m,请直接用含m的式子表示CE的长.2020年重庆市中考数学试卷(A卷)参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.(4分)下列各数中,最小的数是()A.﹣3B.0C.1D.2【解答】解:∵﹣3<0<1<2,∴这四个数中最小的数是﹣3.故选:A.2.(4分)下列图形是轴对称图形的是()A.B.C.D.【解答】解:B、C、D都不是轴对称图形,A是轴对称图形,故选:A.3.(4分)在今年举行的第127届“广交会”上,有近26000家厂家进行“云端销售”.其中数据26000用科学记数法表示为()A.26×103B.2.6×103C.2.6×104D.0.26×105【解答】解:26000=2.6×104,故选:C.4.(4分)把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形,…,按此规律排列下去,则第⑤个图案中黑色三角形的个数为()A.10B.15C.18D.21【解答】解:∵第①个图案中黑色三角形的个数为1,第②个图案中黑色三角形的个数3=1+2,第③个图案中黑色三角形的个数6=1+2+3,……∴第⑤个图案中黑色三角形的个数为1+2+3+4+5=15,故选:B.5.(4分)如图,AB是⊙O的切线,A为切点,连接OA,OB,若∠B=20°,则∠AOB的度数为()A.40°B.50°C.60°D.70°【解答】解:∵AB是⊙O的切线,A为切点,∴∠A=90°,∵∠B=20°,∴∠AOB=90°﹣20°=70°,故选:D.6.(4分)下列计算中,正确的是()A.√2+√3=√5B.2+√2=2√2C.√2×√3=√6D.2√3−2=√3【解答】解:A.√2与√3不是同类二次根式,不能合并,此选项计算错误;B.2与√2不是同类二次根式,不能合并,此选项计算错误;C.√2×√3=√2×3=√6,此选项计算正确;D.2√3与﹣2不是同类二次根式,不能合并,此选项错误;故选:C.7.(4分)解一元一次方程12(x+1)=1−13x时,去分母正确的是()A.3(x+1)=1﹣2x B.2(x+1)=1﹣3xC.2(x+1)=6﹣3x D.3(x+1)=6﹣2x【解答】解:方程两边都乘以6,得:3(x+1)=6﹣2x,故选:D.8.(4分)如图,在平面直角坐标系中,△ABC的顶点坐标分别是A(1,2),B(1,1),C (3,1),以原点为位似中心,在原点的同侧画△DEF,使△DEF与△ABC成位似图形,且相似比为2:1,则线段DF的长度为()A.√5B.2C.4D.2√5【解答】解:∵以原点为位似中心,在原点的同侧画△DEF,使△DEF与△ABC成位似图形,且相似比为2:1,而A(1,2),C(3,1),∴D(2,4),F(6,2),∴DF=√(2−6)2+(4−2)2=2√5.故选:D.9.(4分)如图,在距某居民楼AB楼底B点左侧水平距离60m的C点处有一个山坡,山坡CD的坡度(或坡比)i=1:0.75,山坡坡底C点到坡顶D点的距离CD=45m,在坡顶D点处测得居民楼楼顶A点的仰角为28°,居民楼AB与山坡CD的剖面在同一平面内,则居民楼AB的高度约为(参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)()A .76.9mB .82.1mC .94.8mD .112.6m【解答】解:如图,由题意得,∠ADF =28°,CD =45,BC =60, 在Rt △DEC 中,∵山坡CD 的坡度i =1:0.75, ∴DE EC=10.75=43,设DE =4x ,则EC =3x ,由勾股定理可得CD =5x , 又CD =45,即5x =45, ∴x =9,∴EC =3x =27,DE =4x =36=FB , ∴BE =BC +EC =60+27=87=DF , 在Rt △ADF 中,AF =tan28°×DF ≈0.53×87≈46.11, ∴AB =AF +FB =46.11+36≈82.1, 故选:B .10.(4分)若关于x 的一元一次不等式组{3x−12≤x +3,x ≤a的解集为x ≤a ;且关于y 的分式方程y−a y−2+3y−4y−2=1有正整数解,则所有满足条件的整数a 的值之积是( )A .7B .﹣14C .28D .﹣56【解答】解:不等式组整理得:{x ≤7x ≤a ,由解集为x ≤a ,得到a ≤7,分式方程去分母得:y ﹣a +3y ﹣4=y ﹣2,即3y ﹣2=a , 解得:y =a+23,由y 为正整数解,且y ≠2得到a =1,7 1×7=7, 故选:A .11.(4分)如图,三角形纸片ABC ,点D 是BC 边上一点,连接AD ,把△ABD 沿着AD 翻折,得到△AED ,DE 与AC 交于点G ,连接BE 交AD 于点F .若DG =GE ,AF =3,BF =2,△ADG 的面积为2,则点F 到BC 的距离为( )A .√55B .2√55C .4√55D .4√33【解答】解:∵DG =GE , ∴S △ADG =S △AEG =2, ∴S △ADE =4,由翻折可知,△ADB ≌△ADE ,BE ⊥AD , ∴S △ABD =S △ADE =4,∠BFD =90°, ∴12•(AF +DF )•BF =4,∴12•(3+DF )•2=4, ∴DF =1,∴DB =√BF 2+DF 2=√12+22=√5,设点F 到BD 的距离为h ,则有12•BD •h =12•BF •DF ,∴h =2√55, 故选:B .12.(4分)如图,在平面直角坐标系中,矩形ABCD 的对角线AC 的中点与坐标原点重合,点E 是x 轴上一点,连接AE .若AD 平分∠OAE ,反比例函数y =kx (k >0,x >0)的图象经过AE 上的两点A ,F ,且AF =EF ,△ABE 的面积为18,则k 的值为( )A .6B .12C .18D .24【解答】解:如图,连接BD ,OF ,过点A 作AN ⊥OE 于N ,过点F 作FM ⊥OE 于M .∵AN ∥FM ,AF =FE , ∴MN =ME , ∴FM =12AN ,∵A ,F 在反比例函数的图象上, ∴S △AON =S △FOM =k2, ∴12•ON •AN =12•OM •FM ,∴ON =12OM , ∴ON =MN =EM , ∴ME =13OE , ∴S △FME =13S △FOE , ∵AD 平分∠OAE , ∴∠OAD =∠EAD , ∵四边形ABCD 是矩形,∴OA=OD,∴∠OAD=∠ODA=∠DAE,∴AE∥BD,∴S△ABE=S△AOE,∴S△AOE=18,∵AF=EF,∴S△EOF=12S△AOE=9,∴S△FME=13S△EOF=3,∴S△FOM=S△FOE﹣S△FME=9﹣3=6=k 2,∴k=12.故选:B.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4分)计算:(π﹣1)0+|﹣2|=3.【解答】解:(π﹣1)0+|﹣2|=1+2=3,故答案为:3.14.(4分)一个多边形的内角和等于它的外角和的2倍,则这个多边形的边数是6.【解答】解:设这个多边形的边数为n,依题意,得:(n﹣2)•180°=2×360°,解得n=6.故答案为:6.15.(4分)现有四张正面分别标有数字﹣1,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背面朝上洗均匀,随机抽取一张,记下数字后放回,背面朝上洗均匀,再随机抽取一张记下数宇,前后两次抽取的数字分别记为m,n.则点P(m,n)在第二象限的概率为316.【解答】解:画树状图为:共有16种等可能的结果数,其中点P(m,n)在第二象限的结果数为3,所以点P(m,n)在第二象限的概率=3 16.故答案为316.16.(4分)如图,在边长为2的正方形ABCD中,对角线AC的中点为O,分别以点A,C 为圆心,以AO的长为半径画弧,分别与正方形的边相交,则图中的阴影部分的面积为4﹣π.(结果保留π)【解答】解:∵四边形ABCD为正方形,∴AB=BC=2,∠DAB=∠DCB=90°,由勾股定理得,AC=√AB2+BC2=2√2,∴OA=OC=√2,∴图中的阴影部分的面积=22−90π×(√2)2360×2=4﹣π,故答案为:4﹣π.17.(4分)A,B两地相距240km,甲货车从A地以40km/h的速度匀速前往B地,到达B 地后停止.在甲出发的同时,乙货车从B地沿同一公路匀速前往A地,到达A地后停止.两车之间的路程y(km)与甲货车出发时间x(h)之间的函数关系如图中的折线CD﹣DE ﹣EF所示.其中点C的坐标是(0,240),点D的坐标是(2.4,0),则点E的坐标是(4,160).【解答】解:根据题意可得,乙货车的速度为:240÷2.4﹣40=60(40km /h ), ∴乙货车从B 地到A 地所用时间为:240÷60=4(小时), 当乙货车到底A 地时,甲货车行驶的路程为:40×4=160(千米), ∴点E 的坐标是(4,160). 故答案为:(4,160).18.(4分)火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3:5:2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加的营业额占总增加的营业额的25,则摆摊的营业额将达到7月份总营业额的720,为使堂食、外卖7月份的营业额之比为8:5,则7月份外卖还需增加的营业额与7月份总营业额之比是 1:8 .【解答】解:设6月份堂食、外卖、摆摊三种方式的营业额为3a ,5a ,2a ,设7月份总的增加营业额为5x ,摆摊增加的营业额为2x ,7月份总营业额20b ,摆摊7月份的营业额为7b ,堂食7月份的营业额为8b ,外卖7月份的营业额为5b , 由题意可得:{7b −2a =2x 20b −10a =5x ,解得:{a =x6b =x 3,∴7月份外卖还需增加的营业额与7月份总营业额之比=(5b ﹣5a ):20b =1:8, 故答案为:1:8.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(10分)计算:(1)(x +y )2+x (x ﹣2y );(2)(1−m m+3)÷m 2−9m 2+6m+9. 【解答】解:(1)(x +y )2+x (x ﹣2y ), =x 2+2xy +y 2+x 2﹣2xy , =2x 2+y 2; (2)(1−m m+3)÷m 2−9m 2+6m+9, =(m+3m+3−mm+3)×(m+3)2(m+3)(m−3),=3m+3×m+3m−3, =3m−3. 20.(10分)为了解学生掌握垃圾分类知识的情况,增强学生环保意识.某学校举行了“垃圾分类人人有责”的知识测试活动,现从该校七、八年级中各随机抽取20名学生的测试成绩(满分10分,6分及6分以上为合格)进行整理、描述和分析,下面给出了部分信息.七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6.八年级20名学生的测试成绩条形统计图如图:七、八年级抽取的学生的测试成绩的平均数、众数、中位数、8分及以上人数所占百分比如下表所示:年级 平均数 众数 中位数 8分及以上人数所占百分比七年级 7.5 a 7 45% 八年级7.58bc根据以上信息,解答下列问题:(1)直接写出上述表中的a ,b ,c 的值;(2)根据上述数据,你认为该校七、八年级中哪个年级学生掌握垃极分类知识较好?请说明理由(写出一条理由即可);(3)该校七、八年级共1200名学生参加了此次测试活动,估计参加此次测试活动成绩合格的学生人数是多少?【解答】解:(1)∵七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6,∴a=7,由条形统计图可得,b=(7+8)÷2=7.5,c=(5+2+3)÷20×100%=50%,即a=7,b=7.5,c=50%;(2)八年级学生掌握垃极分类知识较好,理由:八年级的8分及以上人数所占百分比大于七年级,故八年级学生掌握垃极分类知识较好;(3)∵从调查的数据看,七年级2人的成绩不合格,八年级2人的成绩不合格,∴参加此次测试活动成绩合格的学生有1200×(20−2)+(20−2)20+20=1080(人),即参加此次测试活动成绩合格的学生有1080人.21.(10分)如图,在平行四边形ABCD中,对角线AC,BD相交于点O,分别过点A,C 作AE⊥BD,CF⊥BD,垂足分别为E,F.AC平分∠DAE.(1)若∠AOE=50°,求∠ACB的度数;(2)求证:AE=CF.【解答】(1)解:∵AE⊥BD,∴∠AEO=90°,∵∠AOE=50°,∴∠EAO=40°,∵CA平分∠DAE,∴∠DAC=∠EAO=40°,∵四边形ABCD是平行四边形,∴AD∥BC,∠ACB=∠DAC=40°,(2)证明:∵四边形ABCD是平行四边形,∴OA=OC,∵AE⊥BD,CF⊥BD,∴∠AEO=∠CFO=90°,∵∠AOE=∠COF,∴△AEO≌△CFO(AAS),∴AE=CF.22.(10分)在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数y=6xx2+1性质及其应用的部分过程,请按要求完成下列各小题.(1)请把下表补充完整,并在图中补全该函数图象;x…﹣5﹣4﹣3﹣2﹣1012345…y= 6x x2+1…−1513−2417−95−125﹣3031259524171513…(2)根据函数图象,判断下列关于该函数性质的说法是否正确,正确的在答题卡上相应的括号内打“√”,错误的在答题卡上相应的括号内打“×”;①该函数图象是轴对称图形,它的对称轴为y轴.②该函数在自变量的取值范围内,有最大值和最小值.当x=1时,函数取得最大值3;当x=﹣1时,函数取得最小值﹣3.③当x<﹣1或x>1时,y随x的增大而减小;当﹣1<x<1时,y随x的增大而增大.(3)已知函数y=2x﹣1的图象如图所示,结合你所画的函数图象,直接写出不等式6xx2+1>2x﹣1的解集(保留1位小数,误差不超过0.2).【解答】解:(1)补充完整下表为:x… ﹣5 ﹣4 ﹣3 ﹣2 ﹣1 0 1 2 3 4 5 … y =6x x 2+1… −1513 −2417 −95 −125 ﹣3 0 3 125 95 2417 1513… 画出函数的图象如图: ;(2)根据函数图象:①该函数图象是轴对称图形,它的对称轴为y 轴,说法错误;②该函数在自变量的取值范围内,有最大值和最小值.当x =1时,函数取得最大值3;当x =﹣1时,函数取得最小值﹣3,说法正确;③当x <﹣1或x >1时,y 随x 的增大而减小;当﹣1<x <1时,y 随x 的增大而增大,说法正确.(3)由图象可知:不等式6xx 2+1>2x ﹣1的解集为x <﹣1或﹣0.3<1.8.23.(10分)在整数的除法运算中,只有能整除与不能整除两种情况,当不能整除时,就会产生余数,现在我们利用整数的除法运算来研究一种数﹣﹣“差一数”.定义:对于一个自然数,如果这个数除以5余数为4,且除以3余数为2,则称这个数为“差一数”.例如:14÷5=2…4,14÷3=4…2,所以14是“差一数”;19÷5=3…4,但19÷3=6…1,所以19不是“差一数”.(1)判断49和74是否为“差一数”?请说明理由;(2)求大于300且小于400的所有“差一数”.【解答】解:(1)49÷5=9…4,但49÷3=16…1,所以49不是“差一数”;74÷5=14…4,74÷3=24…2,所以74是“差一数”.(2)大于300且小于400的数除以5余数为4的有304,309,314,319,324,329,334,339,344,349,354,359,364,369,374,379,384,389,394,399,其中除以3余数为2的有314,329,344,359,374,389.故大于300且小于400的所有“差一数”有314,329,344,359,374,389.24.(10分)“中国人的饭碗必须牢牢掌握在咱们自己手中”.为优选品种,提高产量,某农业科技小组对A ,B 两个小麦品种进行种植对比实验研究.去年A ,B 两个品种各种植了10亩.收获后A ,B 两个品种的售价均为2.4元/kg ,且B 的平均亩产量比A 的平均亩产量高100kg ,A ,B 两个品种全部售出后总收入为21600元.(1)请求出A ,B 两个品种去年平均亩产量分别是多少?(2)今年,科技小组加大了小麦种植的科研力度,在A ,B 种植亩数不变的情况下,预计A ,B 两个品种平均亩产量将在去年的基础上分别增加a %和2a %.由于B 品种深受市场的欢迎,预计每千克价格将在去年的基础上上涨a %,而A 品种的售价不变.A ,B 两个品种全部售出后总收入将在去年的基础上增加209a %.求a 的值.【解答】解:(1)设A 、B 两个品种去年平均亩产量分别是x 千克和y 千克;根据题意得,{y −x =10010×2.4(x +y)=21600, 解得:{x =400y =500, 答:A 、B 两个品种去年平均亩产量分别是400千克和500千克;(2)2.4×400×10(1+a %)+2.4(1+a %)×500×10(1+2a %)=21600(1+209a %), 解得:a =10,答:a 的值为10.25.(10分)如图,在平面直角坐标系中,已知抛物线y =x 2+bx +c 与直线AB 相交于A ,B两点,其中A (﹣3,﹣4),B (0,﹣1).(1)求该抛物线的函数表达式;(2)点P 为直线AB 下方抛物线上的任意一点,连接P A ,PB ,求△P AB 面积的最大值;(3)将该抛物线向右平移2个单位长度得到抛物线y =a 1x 2+b 1x +c 1(a 1≠0),平移后的抛物线与原抛物线相交于点C ,点D 为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点E ,使以点B ,C ,D ,E 为顶点的四边形为菱形,若存在,请直接写出点E 的坐标;若不存在,请说明理由.【解答】解:(1)将点A 、B 的坐标代入抛物线表达式得{−4=9−3b +c c =−1,解得{b =4c =−1, 故抛物线的表达式为:y =x 2+4x ﹣1;(2)设直线AB 的表达式为:y =kx +t ,则{−4=−3k +t t =−1,解得{k =1t =−1, 故直线AB 的表达式为:y =x ﹣1,过点P 作y 轴的平行线交AB 于点H ,设点P (x ,x 2+4x ﹣1),则H (x ,x ﹣1),△P AB 面积S =12×PH ×(x B ﹣x A )=12(x ﹣1﹣x 2﹣4x +1)×(0+3)=−32x 2−92x , ∵−32<0,故S 有最大值,当x =−32时,S 的最大值为278;(3)抛物线的表达式为:y =x 2+4x ﹣1=(x +2)2﹣5,则平移后的抛物线表达式为:y =x 2﹣5,联立上述两式并解得:{x =−1y =−4,故点C (﹣1,﹣4);设点D (﹣2,m )、点E (s ,t ),而点B 、C 的坐标分别为(0,﹣1)、(﹣1,﹣4); ①当BC 为菱形的边时,点C 向右平移1个单位向上平移3个单位得到B ,同样D (E )向右平移1个单位向上平移3个单位得到E (D ),即﹣2+1=s 且m +3=t ①或﹣2﹣1=s 且m ﹣3=t ②,当点D 在E 的下方时,则BE =BC ,即s 2+(t +1)2=12+32③,当点D 在E 的上方时,则BD =BC ,即22+(m +1)2=12+32④,联立①③并解得:s =﹣1,t =2或﹣4(舍去﹣4),故点E (﹣1,3);联立②④并解得:s =1,t =﹣4±√6,故点E (1,﹣4+√6)或(1,﹣4−√6); ②当BC 为菱形的的对角线时,则由中点公式得:﹣1=s ﹣2且﹣4﹣1=m +t ⑤,此时,BD =BE ,即22+(m +1)2=s 2+(t +1)2⑥,联立⑤⑥并解得:s =1,t =﹣3,故点E (1,﹣3),综上,点E 的坐标为:(﹣1,2)或(1,﹣4+√6)或(1,﹣4−√6)或(1,﹣3).四、解答题:(本大题1个小题,共8分)解答时必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.26.(8分)如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D是BC边上一动点,连接AD,把AD绕点A逆时针旋转90°,得到AE,连接CE,DE.点F是DE的中点,连接CF.(1)求证:CF=√22AD;(2)如图2所示,在点D运动的过程中,当BD=2CD时,分别延长CF,BA,相交于点G,猜想AG与BC存在的数量关系,并证明你猜想的结论;(3)在点D运动的过程中,在线段AD上存在一点P,使P A+PB+PC的值最小.当P A+PB+PC的值取得最小值时,AP的长为m,请直接用含m的式子表示CE的长.【解答】证明:(1)∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∵把AD绕点A逆时针旋转90°,得到AE,∴AD=AE,∠DAE=90°=∠BAC,∴∠BAD=∠CAE,DE=√2AD,又∵AB=AC,∴△BAD≌△CAE(SAS),∴∠ABD=∠ACE=45°,∴∠BCE=∠BCA+∠ACE=90°,∵点F是DE的中点,∴CF=12DE=√22AD;(2)AG=√26BC,理由如下:如图2,过点G作GH⊥BC于H,∵BD=2CD,∴设CD=a,则BD=2a,BC=3a,∵∠BAC=90°,AB=AC,∴AB=AC=BC√2=3√22a,由(1)可知:△BAD≌△CAE,∴BD=CE=2a,∵CF=DF,∴∠FDC=∠FCD,∴tan∠FDC=tan∠FCD,∴CECD =GHCH=2,∴GH=2CH,∵GH⊥BC,∠ABC=45°,∴∠ABC=∠BGH=45°,∴BH=GH,∴BG=√2BH∵BH+CH=BC=3a,∴CH=a,BH=GH=2a,∴BG=2√2a,∴AG=BG﹣AB=√22a=√22CD=√26BC;(3)如图3﹣1,将△BPC绕点B顺时针旋转60°得到△BNM,连接PN,∴BP=BN,PC=NM,∠PBN=60°,∴△BPN是等边三角形,∴BP=PN,∴P A+PB+PC=AP+PN+MN,∴当点A,点P,点N,点M共线时,P A+PB+PC值最小,此时,如图3﹣2,连接MC,∵将△BPC绕点B顺时针旋转60°得到△BNM,∴BP=BN,BC=BM,∠PBN=60°=∠CBM,∴△BPN是等边三角形,△CBM是等边三角形,∴∠BPN=∠BNP=60°,BM=CM,∵BM=CM,AB=AC,∴AM垂直平分BC,∵AD⊥BC,∠BPD=60°,∴BD=√3PD,∵AB=AC,∠BAC=90°,AD⊥BC,∴AD=BD,∴√3PD=PD+AP,∴PD=√3+12m,∴BD=√3PD=3+√32m,由(1)可知:CE=BD=3+√32m.。

【真题】重庆市2020年中考数学试题(b卷)含答案解析(Word版)

【真题】重庆市2020年中考数学试题(b卷)含答案解析(Word版)

2020年重庆市中考数学试卷(B卷)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑1.(4.00分)下列四个数中,是正整数的是()A.﹣1 B.0 C.D.12.(4.00分)下列图形中,是轴对称图形的是()A.B.C.D.3.(4.00分)下列图形都是由同样大小的黑色正方形纸片组成,其中第①个图中有3张黑色正方形纸片,第②个图中有5张黑色正方形纸片,第③个图中有7张黑色正方形纸片,…,按此规律排列下去第⑥个图中黑色正方形纸片的张数为()A.11 B.13 C.15 D.174.(4.00分)下列调查中,最适合采用全面调查(普查)的是()A.对我市中学生每周课外阅读时间情况的调查B.对我市市民知晓“礼让行人”交通新规情况的调查C.对我市中学生观看电影《厉害了,我的国》情况的调查D.对我国首艘国产航母002型各零部件质量情况的调查5.(4.00分)制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是()A.360元B.720元C.1080元D.2160元6.(4.00分)下列命题是真命题的是()A.如果一个数的相反数等于这个数本身,那么这个数一定是0B.如果一个数的倒数等于这个数本身,那么这个数一定是1C.如果一个数的平方等于这个数本身,那么这个数一定是0D.如果一个数的算术平方根等于这个数本身,那么这个数一定是07.(4.00分)估计5﹣的值应在()A.5和6之间B.6和7之间C.7和8之间D.8和9之间8.(4.00分)根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于()A.9 B.7 C.﹣9 D.﹣79.(4.00分)如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)()A.21.7米B.22.4米C.27.4米D.28.8米10.(4.00分)如图,△ABC中,∠A=30°,点O是边AB上一点,以点O为圆心,以OB为半径作圆,⊙O恰好与AC相切于点D,连接BD.若BD平分∠ABC,AD=2,则线段CD的长是()A.2 B.C.D.11.(4.00分)如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y=(k≠0,x>0)的图象同时经过顶点C,D.若点C的横坐标为5,BE=3DE,则k的值为()A.B.3 C.D.512.(4.00分)若数a使关于x的不等式组,有且仅有三个整数解,且使关于y的分式方程+=1有整数解,则满足条件的所有a的值之和是()A.﹣10 B.﹣12 C.﹣16 D.﹣18二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上13.(4.00分)计算:|﹣1|+20=.14.(4.00分)如图,在边长为4的正方形ABCD中,以点B为圆心,以AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是(结果保留π)15.(4.00分)某企业对一工人在五个工作日里生产零件的数量进行调查,并绘制了如图所示的折线统计图,则在这五天里该工人每天生产零件的平均数是个.16.(4.00分)如图,在Rt△ABC中,∠ACB=90°,BC=6,CD是斜边AB上的中线,将△BCD沿直线CD翻折至△ECD的位置,连接AE.若DE∥AC,计算AE的长度等于.17.(4.00分)一天早晨,小玲从家出发匀速步行到学校,小玲出发一段时间后,她的妈妈发现小玲忘带了一件必需的学习用品,于是立即下楼骑自行车,沿小玲行进的路线,匀速去追小玲,妈妈追上小玲将学习用品交给小玲后,立即沿原路线匀速返回家里,但由于路上行人渐多,妈妈返回时骑车的速度只是原来速度的一半,小玲继续以原速度步行前往学校,妈妈与小玲之间的距离y(米)与小玲从家出发后步行的时间x(分)之间的关系如图所示(小玲和妈妈上、下楼以及妈妈交学习用品给小玲耽搁的时间忽略不计).当妈妈刚回到家时,小玲离学校的距离为米.18.(4.00分)为实现营养套餐的合理搭配,某电商推出两款适合不同人群的甲、乙两种袋装的混合粗粮.甲种袋装粗粮每袋含有3千克A粗粮,1千克B粗粮,1千克C粗粮;乙种袋装粗粮每袋含有1千克A粗粮,2千克B粗粮,2千克C 粗粮.甲、乙两种袋装粗粮每袋成本分别等于袋中的A、B、C三种粗粮成本之和.已知每袋甲种粗粮的成本是每千克A种粗粮成本的7.5倍,每袋乙种粗粮售价比每袋甲种粗粮售价高20%,乙种袋装粗粮的销售利润率是20%.当销售这两款袋装粗粮的销售利润率为24%时,该电商销售甲、乙两种袋装粗粮的袋数之比是(商品的销售利润率=×100%)三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上19.(8.00分)如图,AB∥CD,△EFG的顶点F,G分别落在直线AB,CD上,GE交AB于点H,GE平分∠FGD.若∠EFG=90°,∠E=35°,求∠EFB的度数.20.(8.00分)某学校开展以素质提升为主题的研学活动,推出了以下四个项目供学生选择:A.模拟驾驶;B.军事竞技;C.家乡导游;D.植物识别.学校规定:每个学生都必须报名且只能选择其中一个项目.八年级(3)班班主任刘老师对全班学生选择的项目情况进行了统计,并绘制了如下两幅不完整的统计图.请结合统计图中的信息,解决下列问题:(1)八年级(3)班学生总人数是,并将条形统计图补充完整;(2)刘老师发现报名参加“植物识别”的学生中恰好有两名男生,现准备从这些学生中任意挑选两名担任活动记录员,请用列表或画树状图的方法,求恰好选中1名男生和1名女生担任活动记录员的概率.四、解答题:(本大题5个小题,每小题10分,共50分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上21.(10.00分)计算:(1)(x+2y)2﹣(x+y)(x﹣y);(2)(a﹣1﹣)÷22.(10.00分)如图,在平面直角坐标系中,直线l1:y=x与直线l2交点A的横坐标为2,将直线l1沿y轴向下平移4个单位长度,得到直线l3,直线l3与y 轴交于点B,与直线l2交于点C,点C的纵坐标为﹣2.直线l2与y轴交于点D.(1)求直线l2的解析式;(2)求△BDC的面积.23.(10.00分)在美丽乡村建设中,某县政府投入专项资金,用于乡村沼气池和垃圾集中处理点建设.该县政府计划:2020年前5个月,新建沼气池和垃圾集中处理点共计50个,且沼气池的个数不低于垃圾集中处理点个数的4倍.(1)按计划,2020年前5个月至少要修建多少个沼气池?(2)到2020年5月底,该县按原计划刚好完成了任务,共花费资金78万元,且修建的沼气池个数恰好是原计划的最小值.据核算,前5个月,修建每个沼气池与垃圾集中处理点的平均费用之比为1:2.为加大美丽乡村建设的力度,政府计划加大投入,今年后7个月,在前5个月花费资金的基础上增加投入10a%,全部用于沼气池和垃圾集中处理点建设.经测算:从今年6月起,修建每个沼气池与垃圾集中处理点的平均费用在2020年前5个月的基础上分别增加a%,5a%,新建沼气池与垃圾集中处理点的个数将会在2020年前5个月的基础上分别增加5a%,8a%,求a的值.24.(10.00分)如图,在▱ABCD中,∠ACB=45°,点E在对角线AC上,BE=BA,BF⊥AC于点F,BF的延长线交AD于点G.点H在BC的延长线上,且CH=AG,连接EH.(1)若BC=12,AB=13,求AF的长;(2)求证:EB=EH.25.(10.00分)对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数.若四位数m为“极数”,记D(m)=,求满足D(m)是完全平方数的所有m.五、解答题:(本大题1个小题,共12分)解答时每小题必须给出必要的演算过程或推理步骤请将解答书写在答题卡中对应的位置上26.(12.00分)抛物线y=﹣x2﹣x+与x轴交于点A,B(点A在点B 的左边),与y轴交于点C,点D是该抛物线的顶点.(1)如图1,连接CD,求线段CD的长;(2)如图2,点P是直线AC上方抛物线上一点,PF⊥x轴于点F,PF与线段AC交于点E;将线段OB沿x轴左右平移,线段OB的对应线段是O1B1,当PE+EC 的值最大时,求四边形PO1B1C周长的最小值,并求出对应的点O1的坐标;(3)如图3,点H是线段AB的中点,连接CH,将△OBC沿直线CH翻折至△O2B2C的位置,再将△O2B2C绕点B2旋转一周在旋转过程中,点O2,C的对应点分别是点O3,C1,直线O3C1分别与直线AC,x轴交于点M,N.那么,在△O2B2C 的整个旋转过程中,是否存在恰当的位置,使△AMN是以MN为腰的等腰三角形?若存在,请直接写出所有符合条件的线段O2M的长;若不存在,请说明理由.2020年重庆市中考数学试卷(B卷)参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑1.(4.00分)下列四个数中,是正整数的是()A.﹣1 B.0 C.D.1【分析】正整数是指既是正数还是整数,由此即可判定求解.【解答】解:A、﹣1是负整数,故选项错误;B、0是非正整数,故选项错误;C、是分数,不是整数,错误;D、1是正整数,故选项正确.故选:D.【点评】此题主要考查正整数概念,解题主要把握既是正数还是整数两个特点,比较简单.2.(4.00分)下列图形中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.(4.00分)下列图形都是由同样大小的黑色正方形纸片组成,其中第①个图中有3张黑色正方形纸片,第②个图中有5张黑色正方形纸片,第③个图中有7张黑色正方形纸片,…,按此规律排列下去第⑥个图中黑色正方形纸片的张数为()A.11 B.13 C.15 D.17【分析】仔细观察图形知道第一个图形有3个正方形,第二个有5=3+2×1个,第三个图形有7=3+2×2个,由此得到规律求得第⑥个图形中正方形的个数即可.【解答】解:观察图形知:第一个图形有3个正方形,第二个有5=3+2×1个,第三个图形有7=3+2×2个,…故第⑥个图形有3+2×5=13(个),故选:B.【点评】此题主要考查了图形的变化规律,是根据图形进行数字猜想的问题,关键是通过归纳与总结,得到其中的规律,然后利用规律解决一般问题.4.(4.00分)下列调查中,最适合采用全面调查(普查)的是()A.对我市中学生每周课外阅读时间情况的调查B.对我市市民知晓“礼让行人”交通新规情况的调查C.对我市中学生观看电影《厉害了,我的国》情况的调查D.对我国首艘国产航母002型各零部件质量情况的调查【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、对我市中学生每周课外阅读时间情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;B、对我市市民知晓“礼让行人”交通新规情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;C、对我市中学生观看电影《厉害了,我的国》情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;D、对我国首艘国产航母002型各零部件质量情况的调查,意义重大,应采用普查,故此选项正确;故选:D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.(4.00分)制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是()A.360元B.720元C.1080元D.2160元【分析】根据题意求出长方形广告牌每平方米的成本,根据相似多边形的性质求出扩大后长方形广告牌的面积,计算即可.【解答】解:3m×2m=6m2,∴长方形广告牌的成本是120÷6=20元/m2,将此广告牌的四边都扩大为原来的3倍,则面积扩大为原来的9倍,∴扩大后长方形广告牌的面积=9×6=54m2,∴扩大后长方形广告牌的成本是54×20=1080m2,故选:C.【点评】本题考查的是相似多边形的性质,掌握相似多边形的面积比等于相似比的平方是解题的关键.6.(4.00分)下列命题是真命题的是()A.如果一个数的相反数等于这个数本身,那么这个数一定是0B.如果一个数的倒数等于这个数本身,那么这个数一定是1C.如果一个数的平方等于这个数本身,那么这个数一定是0D.如果一个数的算术平方根等于这个数本身,那么这个数一定是0【分析】根据相反数是它本身的数为0;倒数等于这个数本身是±1;平方等于它本身的数为1和0;算术平方根等于本身的数为1和0进行分析即可.【解答】解:A、如果一个数的相反数等于这个数本身,那么这个数一定是0,是真命题;B、如果一个数的倒数等于这个数本身,那么这个数一定是1,是假命题;C、如果一个数的平方等于这个数本身,那么这个数一定是0,是假命题;D、如果一个数的算术平方根等于这个数本身,那么这个数一定是0,是假命题;故选:A.【点评】此题主要考查了命题与定理,关键是掌握正确的命题为真命题,错误的命题为假命题.7.(4.00分)估计5﹣的值应在()A.5和6之间B.6和7之间C.7和8之间D.8和9之间【分析】先合并后,再根据无理数的估计解答即可.【解答】解:,∵7<<8,∴5﹣的值应在7和8之间,故选:C.【点评】本题考查了估算无理数的大小,解决本题的关键是估算出无理数的大小.8.(4.00分)根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于()A.9 B.7 C.﹣9 D.﹣7【分析】先求出x=7时y的值,再将x=4、y=﹣1代入y=2x+b可得答案.【解答】解:∵当x=7时,y=6﹣7=﹣1,∴当x=4时,y=2×4+b=﹣1,解得:b=﹣9,故选:C.【点评】本题主要考查函数值,解题的关键是掌握函数值的计算方法.9.(4.00分)如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)()A.21.7米B.22.4米C.27.4米D.28.8米【分析】作BM⊥ED交ED的延长线于M,CN⊥DM于N.首先解直角三角形Rt △CDN,求出CN,DN,再根据tan24°=,构建方程即可解决问题;【解答】解:作BM⊥ED交ED的延长线于M,CN⊥DM于N.在Rt△CDN中,∵==,设CN=4k,DN=3k,∴CD=10,∴(3k)2+(4k)2=100,∴k=2,∴CN=8,DN=6,∵四边形BMNC是矩形,∴BM=CN=8,BC=MN=20,EM=MN+DN+DE=66,在Rt△AEM中,tan24°=,∴0.45=,∴AB=21.7(米),故选:A.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.10.(4.00分)如图,△ABC中,∠A=30°,点O是边AB上一点,以点O为圆心,以OB为半径作圆,⊙O恰好与AC相切于点D,连接BD.若BD平分∠ABC,AD=2,则线段CD的长是()A.2 B.C.D.【分析】连接OD,得Rt△OAD,由∠A=30°,AD=2,可求出OD、AO的长;由BD平分∠ABC,OB=OD可得OD 与BC间的位置关系,根据平行线分线段成比例定理,得结论.【解答】解:连接OD∵OD是⊙O的半径,AC是⊙O的切线,点D是切点,∴OD⊥AC在Rt△AOD中,∵∠A=30°,AD=2,∴OD=OB=2,AO=4,∴∠ODB=∠OBD,又∵BD平分∠ABC,∴∠OBD=∠CBD∴∠ODB=∠CBD∴OD∥CB,∴即∴CD=.故选:B.【点评】本题考查了圆的切线的性质、含30°角的直角三角形的性质及平行线分线段成比例定理,解决本题亦可说明∠C=90°,利用∠A=30°,AB=6,先得AC的长,再求CD.遇切点连圆心得直角,是通常添加的辅助线.11.(4.00分)如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y=(k≠0,x>0)的图象同时经过顶点C,D.若点C的横坐标为5,BE=3DE,则k的值为()A.B.3 C.D.5【分析】由已知,可得菱形边长为5,设出点D坐标,即可用勾股定理构造方程,进而求出k值.【解答】解:过点D做DF⊥BC于F由已知,BC=5∵四边形ABCD是菱形∴DC=5∵BE=3DE∴设DE=x,则BE=3x∴DF=3x,BF=x,FC=5﹣x在Rt△DFC中,DF2+FC2=DC2∴(3x)2+(5﹣x)2=52∴解得x=1∴DE=3,FD=3设OB=a则点D坐标为(1,a+3),点C坐标为(5,a)∵点D、C在双曲线上∴1×(a+3)=5a∴a=∴点C坐标为(5,)∴k=故选:C.【点评】本题是代数几何综合题,考查了数形结合思想和反比例函数k值性质.解题关键是通过勾股定理构造方程.12.(4.00分)若数a使关于x的不等式组,有且仅有三个整数解,且使关于y的分式方程+=1有整数解,则满足条件的所有a的值之和是()A.﹣10 B.﹣12 C.﹣16 D.﹣18【分析】根据不等式的解集,可得a的范围,根据方程的解,可得a的值,根据有理数的加法,可得答案.【解答】解:,解①得x≥﹣3,解②得x≤,不等式组的解集是﹣3≤x≤.∵仅有三个整数解,∴﹣1≤<0∴﹣8≤a<﹣3,+=13y﹣a﹣12=y﹣2.∴y=∵y≠﹣2,∴a≠﹣6,又y=有整数解,∴a=﹣8或﹣4,所有满足条件的整数a的值之和是﹣8﹣4=﹣12,故选:B.【点评】本题考查了分式方程的解,利用不等式的解集及方程的解得出a的值是解题关键.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上13.(4.00分)计算:|﹣1|+20=2.【分析】本题涉及零指数幂、绝对值2个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:|﹣1|+20=1+1=2.故答案为:2.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、绝对值等考点的运算.14.(4.00分)如图,在边长为4的正方形ABCD中,以点B为圆心,以AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是8﹣2π(结果保留π)【分析】根据S阴=S△ABD﹣S扇形BAE计算即可;【解答】解:S阴=S△ABD﹣S扇形BAE=×4×4﹣=8﹣2π,故答案为8﹣2π.【点评】本题考查扇形的面积的计算,正方形的性质等知识,解题的关键是学会用分割法求阴影部分面积.15.(4.00分)某企业对一工人在五个工作日里生产零件的数量进行调查,并绘制了如图所示的折线统计图,则在这五天里该工人每天生产零件的平均数是34个.【分析】根据平均数的计算解答即可.【解答】解:,故答案为:34【点评】此题考查折线统计图,关键是根据平均数的计算解答.16.(4.00分)如图,在Rt△ABC中,∠ACB=90°,BC=6,CD是斜边AB上的中线,将△BCD沿直线CD翻折至△ECD的位置,连接AE.若DE∥AC,计算AE的长度等于.【分析】根据题意、解直角三角形、菱形的性质、翻折变化可以求得AE的长.【解答】解:由题意可得,DE=DB=CD=AB,∴∠DEC=∠DCE=∠DCB,∵DE∥AC,∠DCE=∠DCB,∠ACB=90°,∴∠DEC=∠ACE,∴∠DCE=∠ACE=∠DCB=30°,∴∠ACD=60°,∠CAD=60°,∴△ACD是等边三角形,∴AC=CD,∴AC=DE,∵AC∥DE,AC=CD,∴四边形ACDE是菱形,∵在Rt△ABC中,∠ACB=90°,BC=6,∠B=30°,∴AC=,∴AE=.【点评】本题考查翻折变化、平行线的性质、直角三角形斜边上的中线,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.17.(4.00分)一天早晨,小玲从家出发匀速步行到学校,小玲出发一段时间后,她的妈妈发现小玲忘带了一件必需的学习用品,于是立即下楼骑自行车,沿小玲行进的路线,匀速去追小玲,妈妈追上小玲将学习用品交给小玲后,立即沿原路线匀速返回家里,但由于路上行人渐多,妈妈返回时骑车的速度只是原来速度的一半,小玲继续以原速度步行前往学校,妈妈与小玲之间的距离y(米)与小玲从家出发后步行的时间x(分)之间的关系如图所示(小玲和妈妈上、下楼以及妈妈交学习用品给小玲耽搁的时间忽略不计).当妈妈刚回到家时,小玲离学校的距离为200米.【分析】由图象可知:家到学校总路程为1200米,分别求小玲和妈妈的速度,妈妈返回时,根据“妈妈返回时骑车的速度只是原来速度的一半”,得速度为60米/分,可得返回时又用了10分钟,此时小玲已经走了25分,还剩5分钟的总程.【解答】解:由图象得:小玲步行速度:1200÷30=40(米/分),由函数图象得出,妈妈在小玲10分后出发,15分时追上小玲,设妈妈去时的速度为v米/分,(15﹣10)v=15×40,v=120,则妈妈回家的时间:=10,(30﹣15﹣10)×40=200.故答案为:200.【点评】本题考查了一次函数的图象的性质的运用,路程=速度×时间之间的关系的运用,分别求小玲和妈妈的速度是关键,解答时熟悉并理解函数的图象.18.(4.00分)为实现营养套餐的合理搭配,某电商推出两款适合不同人群的甲、乙两种袋装的混合粗粮.甲种袋装粗粮每袋含有3千克A粗粮,1千克B粗粮,1千克C粗粮;乙种袋装粗粮每袋含有1千克A粗粮,2千克B粗粮,2千克C 粗粮.甲、乙两种袋装粗粮每袋成本分别等于袋中的A、B、C三种粗粮成本之和.已知每袋甲种粗粮的成本是每千克A种粗粮成本的7.5倍,每袋乙种粗粮售价比每袋甲种粗粮售价高20%,乙种袋装粗粮的销售利润率是20%.当销售这两款袋装粗粮的销售利润率为24%时,该电商销售甲、乙两种袋装粗粮的袋数之比是(商品的销售利润率=×100%)【分析】根据每袋甲种粗粮的成本是每千克A种粗粮成本的7.5倍,可得甲的成本,乙的成本;根据乙种袋装粗粮的销售利润率是20%,可得乙的售价,根据每袋乙种粗粮售价比每袋甲种粗粮售价高20%,可得甲的售价,根据甲的利润+乙的利润=(甲的成本+乙的成本)×24%,根据等式的性质,可得答案.【解答】解:设A的单价为x元,B的单价为y元,C的单价为z元,当销售这两款袋装粗粮的销售利润率为24%时,该电商销售甲的销售量为a袋,乙的销售量为b袋,由题意,得A一袋的成本是7.5x=3x+y+z,化简,得y+z=4.5x;乙一袋的成本是x+2y+2z=x+2(y+z)=x+9x=10x,乙一袋的售价为10x(1+20%)=12x,甲一袋的售价为10x.根据甲乙的利润,得(10x﹣7.5x)a+20%×10xb=(7.5xa+10xb)×24%化简,得2.5a+2b=1.8a+2.4b0.7a=0.4b=,故答案为:.【点评】本题考查了二元一次方程的应用,利润、成本价与利润率之间的关系的应用,理解题意得出等量关系是解题的关键.三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上19.(8.00分)如图,AB∥CD,△EFG的顶点F,G分别落在直线AB,CD上,GE交AB于点H,GE平分∠FGD.若∠EFG=90°,∠E=35°,求∠EFB的度数.【分析】依据三角形内角和定理可得∠FGH=55°,再根据GE平分∠FGD,AB∥CD,即可得到∠FHG=∠HGD=∠FGH=55°,再根据∠FHG是△EFH的外角,即可得出∠EFB=55°﹣35°=20°.【解答】解:∵∠EFG=90°,∠E=35°,∴∠FGH=55°,∵GE平分∠FGD,AB∥CD,∴∠FHG=∠HGD=∠FGH=55°,∵∠FHG是△EFH的外角,∴∠EFB=55°﹣35°=20°.【点评】考查了平行线的性质,两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.20.(8.00分)某学校开展以素质提升为主题的研学活动,推出了以下四个项目供学生选择:A.模拟驾驶;B.军事竞技;C.家乡导游;D.植物识别.学校规定:每个学生都必须报名且只能选择其中一个项目.八年级(3)班班主任刘老师对全班学生选择的项目情况进行了统计,并绘制了如下两幅不完整的统计图.请结合统计图中的信息,解决下列问题:(1)八年级(3)班学生总人数是40人,并将条形统计图补充完整;(2)刘老师发现报名参加“植物识别”的学生中恰好有两名男生,现准备从这些学生中任意挑选两名担任活动记录员,请用列表或画树状图的方法,求恰好选中1名男生和1名女生担任活动记录员的概率.【分析】(1)利用A项目的频数除以它所占的百分比得到调查的总人数,然后计算出C项目的人数后补全条形统计图;(2)画树状图展示所有12种等可能的结果数,再找出恰好选中1名男生和1名女生担任活动记录员的结果数,然后利用概率公式求解.【解答】解:(1)调查的总人数为12÷30%=40(人),。

2020届重庆市中考数学(a卷)试题(有答案)(word版)(加精)

2020届重庆市中考数学(a卷)试题(有答案)(word版)(加精)

重庆市初中毕业暨高中招生考试数学试卷(A卷)(全卷共五个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括辅助线)请一律用黑色签字笔完成;4.考试结束,由监考人员将试题和答题卡一并回收.参考公式:抛物线)(a2≠++=cbxaxy的顶点坐标为⎪⎪⎭⎫⎝⎛--abacab44,22,对称轴为abx2-=一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了A、B、C、D的四个答案,其中只有一个是正确的,请讲答题卡上题号右侧正确答案所对应的框涂黑.1、在实数2-,2,0,1-中,最小的数是()A. 2- B. 2 C. 0 D. 1-2.下列图形中是轴对称的是()A B C D3.计算23aa⋅正确的是()A. aB. 5aC. 6aD. 9a4.下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市直辖区内长江流域水质情况的调查B.对乘坐飞机的旅客是否携带违禁物品的调查C.对一个社区每天丢弃塑料袋数量的调查D.对重庆电视台“天天630”栏目收视率的调查5.如图,AB//CD,直线l交AB于点E,交CD于点F,若∠2=80°,则∠1等于()A.120°B.110°C.100°D.80°6.若1,2==ba,则32++ba的值为()A.-1B.3C.6D.57.函数21+=xy中,x的取值范围是()A. 0≠x B. 2->x C. 2-<x D. 2≠x8.△ABC与△DEF的相似比为1:4,则△ABC与△DEF的周长比为()A. 1:2B. 1:3C. 1:4D. 1:169.如图,以AB为直径,点O为圆心的半径经过点C,若2==BCAB,则图中阴影部分的面积是()A.4πB.421π+ C.2πD.221π+10.下列图形都是有同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列下去,第⑦个图形中小圆圈的个数为()A.64B.77C.80D.8511.某数学兴趣小组同学进行测量大树CD高度的综合实践活动,如图在点A处测得直立于地面的大树顶端C 的仰角为36°,然后沿同一剖面的斜坡AB行走13米至坡顶B处,然后再沿水平方向行走6米至大树脚底点D处,斜面AB的坡度(或坡比)i=1:2.4,那么大树CD的高度约为()(参考数据:sin36°≈0.95,cos36°≈0.81,tan36°≈0.73)A.8.1米B.17.2米C.19.7米D.25.5米12.从3,1,21,1-,3-这五个数中,随机抽取一个数,记为a,若数a使关于x的不等式组⎪⎩⎪⎨⎧<-≥+3)72(31axx无解,且使关于x的分式方程1323-=----xaxx有整数解,那么这5个数中所有满足条件的a的值之和是()A.-3B.-2C.23- D.21二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上。

重庆市2020年部编人教版中考数学试题(A卷)有答案精析.doc

重庆市2020年部编人教版中考数学试题(A卷)有答案精析.doc

重庆市2020年中考数学试卷(A卷)(word版含解析)一、选择题(本题共12个小题,每小题4分,共48分)1.在实数﹣2,2,0,﹣1中,最小的数是()A.﹣2 B.2 C.0 D.﹣1【分析】找出实数中最小的数即可.【解答】解:在实数﹣2,2,0,﹣1中,最小的数是﹣2,故选A【点评】此题考查了实数大小比较,熟练掌握两个负数比较大小的方法是解本题的关键.2.下列图形中是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、不是轴对称图形,不符合题意;B、不是轴对称图形,不符合题意;C、不是轴对称图形,不符合题意;D、是轴对称图形,对称轴有两条,符合题意.故选:D.【点评】此题主要考查了轴对称图形,确定轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.计算a3a2正确的是()A.a B.a5C.a6D.a9【分析】根据同底数幂相乘,底数不变,指数相加计算后直接选取答案.【解答】解:a3a2=a3+2=a5.故选B.【点评】本题主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键.4.下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市辖区内长江流域水质情况的调查B.对乘坐飞机的旅客是否携带违禁物品的调查C.对一个社区每天丢弃塑料袋数量的调查D.对重庆电视台“天天630”栏目收视率的调查【分析】逐项分析四个选项中们案例最适合的调查方法,即可得出结论.【解答】解:A、对重庆市辖区内长江流域水质情况的调查,应采用抽样调查;B、对乘坐飞机的旅客是否携带违禁物品的调查,应采用全面调查;C、对一个社区每天丢弃塑料袋数量的调查,应采用抽样调查;D、对重庆电视台“天天630”栏目收视率的调查,应采用抽样调查.故选B.【点评】本题考查了全面调查与抽样调查,解题的关键是逐项分析四个选项应用的调查方法.本题属于基础题,难度不大,解决该题型题目时,联系实际选择调查方法是关键.5.如图,AB∥CD,直线l交AB于点E,交CD于点F,若∠2=80°,则∠1等于()A.120°B.110°C.100°D.80°【分析】由平行线的性质得出∠1+∠DFE=180°,由对顶角相等求出∠DFE=∠2=80°,即可得出结果.【解答】解:∵AB∥CD,∴∠1+∠DFE=180°,∵∠DFE=∠2=80°,∴∠1=180°﹣80°=100°;故选:C.【点评】本题考查了平行线的性质、对顶角相等的性质;熟记平行线的性质,由对顶角相等求出∠DFE是解决问题的关键.6.若a=2,b=﹣1,则a+2b+3的值为()A.﹣1 B.3 C.6 D.5【分析】把a与b代入原式计算即可得到结果.【解答】解:当a=2,b=﹣1时,原式=2﹣2+3=3,故选B【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.7.函数y=中,x的取值范围是()A.x≠0 B.x>﹣2 C.x<﹣2 D.x≠﹣2【分析】由分式有意义的条件得出不等式,解不等式即可.【解答】解:根据题意得:x+2≠0,解得x≠﹣2.故选:D.【点评】本题考查了函数中自变量的取值范围、分式有意义的条件;由分式有意义得出不等式是解决问题的关键.8.△ABC与△DEF的相似比为1:4,则△ABC与△DEF的周长比为()A.1:2 B.1:3 C.1:4 D.1:16【分析】由相似三角形周长的比等于相似比即可得出结果.【解答】解:∵△ABC与△DEF的相似比为1:4,∴△ABC与△DEF的周长比为1:4;故选:C.【点评】本题考查了相似三角形的性质;熟记相似三角形周长的比等于相似比是解决问题的关键.9.如图,以AB 为直径,点O 为圆心的半圆经过点C ,若AC=BC=,则图中阴影部分的面积是( ) A .B .C .D . +【分析】先利用圆周角定理得到∠ACB=90°,则可判断△ACB 为等腰直角三角形,接着判断△AOC 和△BOC 都是等腰直角三角形,于是得到S △AOC =S △BOC ,然后根据扇形的面积公式计算图中阴影部分的面积. 【解答】解:∵AB 为直径,∴∠ACB=90°, ∵AC=BC=,∴△ACB 为等腰直角三角形, ∴OC ⊥AB ,∴△AOC 和△BOC 都是等腰直角三角形, ∴S △AOC =S △BOC ,OA=AC=1, ∴S 阴影部分=S 扇形AOC ==. 故选A .【点评】本题考查了扇形面积的计算:圆面积公式:S=πr 2,(2)扇形:由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.求阴影面积常用的方法:①直接用公式法; ②和差法; ③割补法.求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.10.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列,则第⑦个图形中小圆圈的个数为( )A.64 B.77 C.80 D.85【分析】观察图形特点,从中找出规律,小圆圈的个数分别是3+12,6+22,10+32,15+42,…,总结出其规律为+n2,根据规律求解.【解答】解:通过观察,得到小圆圈的个数分别是:第一个图形为:+12=4,第二个图形为:+22=6,第三个图形为:+32=10,第四个图形为:+42=15,…,所以第n个图形为:+n2,当n=7时,+72=85,故选D.【点评】此题主要考查了学生分析问题、观察总结规律的能力.关键是通过观察分析得出规律.11.某数学兴趣小组同学进行测量大树CD高度的综合实践活动,如图,在点A处测得直立于地面的大树顶端C的仰角为36°,然后沿在同一剖面的斜坡AB行走13米至坡顶B处,然后再沿水平方向行走6米至大树脚底点D处,斜面AB的坡度(或坡比)i=1:2.4,那么大树CD的高度约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)()A.8.1米B.17.2米C.19.7米D.25.5米【分析】作BF⊥AE于F,则FE=BD=6米,DE=BF,设BF=x米,则AF=2.4米,在Rt△ABF 中,由勾股定理得出方程,解方程求出DE=BF=5米,AF=12米,得出AE的长度,在Rt△ACE 中,由三角函数求出CE,即可得出结果.【解答】解:作BF⊥AE于F,如图所示:则FE=BD=6米,DE=BF,∵斜面AB的坡度i=1:2.4,∴AF=2.4BF,设BF=x米,则AF=2.4x米,在Rt△ABF中,由勾股定理得:x2+(2.4x)2=132,解得:x=5,∴DE=BF=5米,AF=12米,∴AE=AF+FE=18米,在Rt△ACE中,CE=AEtan36°=18×0.73=13.14米,∴CD=CE﹣DE=13.14米﹣5米≈8.1米;故选:A.【点评】本题考查了解直角三角形的应用、勾股定理、三角函数;由勾股定理得出方程是解决问题的关键.12.从﹣3,﹣1,,1,3这五个数中,随机抽取一个数,记为a,若数a使关于x的不等式组无解,且使关于x的分式方程﹣=﹣1有整数解,那么这5个数中所有满足条件的a的值之和是()A.﹣3 B.﹣2 C.﹣D.【分析】根据不等式组无解,求得a≤1,解方程得x=,于是得到a=﹣3或1,即可得到结论.【解答】解:解得,∵不等式组无解,∴a≤1,解方程﹣=﹣1得x=,∵x=为整数,a≤1,∴a=﹣3或1,∴所有满足条件的a的值之和是﹣2,故选B.【点评】本题考查了解分式方程,解一元一次不等式组,熟练掌握解分式方程和一元一次不等式组的方法是解题的关键.二、填空题(本题6个下题,每小题4分,共24分)13.据报道,2020年某市城镇非私营单位就业人员年平均工资超过60500元,将数60500用科学计数法表示为 6.05×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于60500有5位,所以可以确定n=5﹣1=4.【解答】解:60500=6.05×104.故答案为:6.05×104.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.14.计算:+(﹣2)0=3.【分析】根据开平方,非零的零次幂等于1,可得答案.【解答】解:+(﹣2)0=2+1=3.故答案为:3.【点评】本题考查了零指数幂,利用非零的零次幂等于1是解题关键.15.如图,OA,OB是⊙O的半径,点C在⊙O上,连接AC,BC,若∠AOB=120°,则∠ACB= 60度.【分析】根据圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半可得答案.【解答】解:∵OA⊥OB,∴∠AOB=120°,∴∠ACB=120°×=60°,故答案为:60.【点评】此题主要考查了圆周角定理,关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.16.从数﹣2,﹣,0,4中任取一个数记为m,再从余下的三个数中,任取一个数记为n,若k=mn,则正比例函数y=kx的图象经过第三、第一象限的概率是.【分析】根据题意先画出图形,求出总的情况数,再求出符合条件的情况数,最后根据概率公式进行计算即可.【解答】解:根据题意画图如下:共有12种情况,∵正比例函数y=kx的图象经过第三、第一象限,∴k>0,∵k=mn,∴mn>0,∴符合条件的情况数有2种,∴正比例函数y=kx的图象经过第三、第一象限的概率是=;故答案为:.【点评】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.17.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示,则乙到终点时,甲距终点的距离是175米.【分析】根据图象先求出甲、乙的速度,再求出乙到达终点时所用的时间,然后求出乙到达终点时甲所走的路程,最后用总路程﹣甲所走的路程即可得出答案.【解答】解:根据题意得,甲的速度为:75÷30=2.5米/秒,设乙的速度为m米/秒,则(m﹣2.5)×150=75,解得:m=3米/秒,则乙的速度为3米/秒,乙到终点时所用的时间为:=500(秒),此时甲走的路程是:2.5×(500+30)=1325(米),甲距终点的距离是1500﹣1325=175(米).故答案为:175.【点评】本题考查了一次函数的应用,读懂题目信息,理解并得到乙先到达终点,然后求出甲、乙两人所用的时间是解题的关键.18.正方形ABCD中,对角线AC,BD相交于点O,DE平分∠ADO交AC于点E,把△ADE 沿AD翻折,得到△ADE′,点F是DE的中点,连接AF,BF,E′F.若AE=.则四边形ABFE′的面积是.【分析】如图,连接EB、EE′,作EM⊥AB于M,EE′交AD于N.易知△AEB≌△AED≌△ADE′,先求出正方形AMEN的边长,再求出AB,根据S=S四边形ABFE′+S△AEB+S△EFB即可解决问题.四边形AEFE′【解答】解:如图,连接EB、EE′,作EM⊥AB于M,EE′交AD于N.∵四边形ABCD是正方形,∴AB=BC=CD=DA,AC⊥BD,AO=OB=OD=OC,∠DAC=∠CAB=∠DAE′=45°,根据对称性,△ADE≌△ADE′≌△ABE,∴DE=DE′,AE=AE′,∴AD垂直平分EE′,∴EN=NE′,∵∠NAE=∠NEA=∠MAE=∠MEA=45°,AE=,∴AM=EM=EN=AN=1,∵ED平分∠ADO,EN⊥DA,EO⊥DB,∴EN=EO=1,AO=+1,∴AB=AO=2+,∴S△AEB=S△AED=S△ADE′=×1(2+)=1+,S△BDE=S△ADB﹣2S△AEB=1+,∵DF=EF,∴S△EFB=,∴S△DEE′=2S△ADE﹣S△AEE′=+1,S△DFE′=S△DEE′=,∴S四边形AEFE′=2S△ADE﹣S△DFE′=,∴S四边形ABFE′=S四边形AEFE′+S△AEB+S△EFB=.故答案为.【点评】本题考查正方形的性质、翻折变换、全等三角形的性质,角平分线的性质、等腰直角三角形的性质等知识,解题的关键是添加辅助线,学会利用分割法求四边形面积,属于中考填空题中的压轴题.三、解答题(本题共2个小题,每小题7分,共14分)19.如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.【分析】根据CE∥DF,可得∠ACE=∠D,再利用SAS证明△ACE≌△FDB,得出对应边相等即可.【解答】证明:∵CE∥DF,∴∠ACE=∠D,在△ACE和△FDB中,,∴△ACE≌△FDB(SAS),∴AE=FB.【点评】此题主要考查全等三角形的判定与性质和平行线的性质;熟练掌握平行线的性质,证明三角形全等是解决问题的关键.20.为响应“全民阅读”号召,某校在七年级800名学生中随机抽取100名学生,对概念机学生在2020年全年阅读中外名著的情况进行调查,整理调查结果发现,学生阅读中外名著的本数,最少的有5本,最多的有8本,并根据调查结果绘制了如图所示的不完整的条形统计图,其中阅读了6本的人数占被调查人数的30%,根据图中提供的信息,补全条形统计图并估计该校七年级全体学生在2020年全年阅读中外名著的总本数.【分析】由阅读了6本的人数占被调查人数的30%可求得阅读6本的人数,将总人数减去阅读数是5、6、8本的人数可得阅读7本人数,据此补全条形图可得;根据样本计算出平均每人的阅读量,再用平均数乘以七年级学生总数即可得答案.【解答】解:根据题意,阅读了6本的人数为100×30%=30(人),阅读了7本的人数为:100﹣20﹣30﹣﹣15=35(人),补全条形图如图:∵平均每位学生的阅读数量为:=6.45(本),∴估计该校七年级全体学生在2020年全年阅读中外名著的总本数为800×6.45=5160本,答:估计该校七年级全体学生在2020年全年阅读中外名著的总本数约为5160本.【点评】本题主要考查条形统计图,条形统计图能清楚地表示出每个项目的数据,熟知各项目数据个数之和等于总数,也考查了用样本估计总体.四、解答题(本题共4个下题,每小题10分,共40分)21.计算:(1)(a+b)2﹣b(2a+b)(2)(+x﹣1)÷.【分析】(1)根据完全平方公式和单项式乘多项式的法则计算即可;(2)根据分式的混合运算法则进行计算.【解答】解:(1)(a+b)2﹣b(2a+b)=a2+2ab+b2﹣2ab﹣b2=a2;(2)(+x﹣1)÷=×=×=.【点评】本题考查的是整式的混合运算、分式的混合运算,掌握完全平方公式、分式的混合运算法则是解题的关键.22.在平面直角坐标系中,一次函数y=ax+b(a≠0)的图形与反比例函数y=(k≠0)的图象交于第二、四象限内的A、B两点,与y轴交于C点,过点A作AH⊥y轴,垂足为H,OH=3,tan∠AOH=,点B的坐标为(m,﹣2).(1)求△AHO的周长;(2)求该反比例函数和一次函数的解析式.【分析】(1)根据正切函数,可得AH的长,根据勾股定理,可得AO的长,根据三角形的周长,可得答案;(2)根据待定系数法,可得函数解析式.【解答】解:(1)由OH=3,tan∠AOH=,得AH=4.即A(﹣4,3).由勾股定理,得AO==5,△AHO的周长=AO+AH+OH=3+4+5=12;(2)将A点坐标代入y=(k≠0),得k=﹣4×3=﹣12,反比例函数的解析式为y=;当y=﹣2时,﹣2=,解得x=6,即B(6,﹣2).将A、B点坐标代入y=ax+b,得,解得,一次函数的解析式为y=﹣x+1.【点评】本题考查了反比例函数与一次函数的交点问题,利用待定系数法是解题关键.23.近期猪肉价格不断走高,引起了民众与政府的高度关注.当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.(1)从今年年初至5月20日,猪肉价格不断走高,5月20日比年初价格上涨了60%.某市民在今年5月20日购买2.5千克猪肉至少要花100元钱,那么今年年初猪肉的最低价格为每千克多少元?(2)5月20日,猪肉价格为每千克40元.5月21日,某市决定投入储备猪肉并规定其销售价在每千克40元的基础上下调a%出售.某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格仍为每千克40元的情况下,该天的两种猪肉总销量比5月20日增加了a%,且储备猪肉的销量占总销量的,两种猪肉销售的总金额比5月20日提高了a%,求a的值.【分析】(1)设今年年初猪肉价格为每千克x元;根据题意列出一元一次不等式,解不等式即可;(2)设5月20日两种猪肉总销量为1;根据题意列出方程,解方程即可.【解答】解:(1)设今年年初猪肉价格为每千克x元;根据题意得:2.5×(1+60%)x≥100,解得:x≥25.答:今年年初猪肉的最低价格为每千克25元;(2)设5月20日两种猪肉总销量为1;根据题意得:40(1﹣a%)×(1+a%)+40×(1+a%)=40(1+a%),令a%=y,原方程化为:40(1﹣y)×(1+y)+40×(1+y)=40(1+y),整理得:5y2﹣y=0,解得:y=0.2,或y=0(舍去),则a%=0.2,∴a=20;答:a的值为20.【点评】本题考查了一元一次不等式的应用、一元二次方程的应用;根据题意列出不等式和方程是解决问题的关键.24.我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所有3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数a是另外一个正整数b的平方,我们称正整数a是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t为“吉祥数”,求所有“吉祥数”中F(t)的最大值.【分析】(1)根据题意可设m=n2,由最佳分解定义可得F(m)==1;(2)根据“吉祥数”定义知(10y+x)﹣(10x+y)=18,即y=x+2,结合x的范围可得2位数的“吉祥数”,求出每个“吉祥数”的F(t),比较后可得最大值.【解答】解:(1)对任意一个完全平方数m,设m=n2(n为正整数),∵|n﹣n|=0,∴n×n是m的最佳分解,∴对任意一个完全平方数m,总有F(m)==1;(2)设交换t的个位上的数与十位上的数得到的新数为t′,则t′=10y+x,∵t为“吉祥数”,∴t′﹣t=(10y+x)﹣(10x+y)=9(y﹣x)=18,∴y=x+2,∵1≤x≤y≤9,x,y为自然数,∴“吉祥数”有:13,24,35,46,57,68,79,∴F(13)=,F(24)==,F(35)=,F(46)=,F(57)=,F(68)=,F(79)=,∵>>>>>,∴所有“吉祥数”中,F(t)的最大值是.【点评】本题主要考查实数的运算,理解最佳分解、“吉祥数”的定义,并将其转化为实数的运算是解题的关键.五、解答题(本题2个小题,每小题12分,共24分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上.25.在△ABC中,∠B=45°,∠C=30°,点D是BC上一点,连接AD,过点A作AG⊥AD,在AG上取点F,连接DF.延长DA至E,使AE=AF,连接EG,DG,且GE=DF.(1)若AB=2,求BC的长;(2)如图1,当点G在AC上时,求证:BD=CG;(3)如图2,当点G在AC的垂直平分线上时,直接写出的值.【分析】(1)如图1中,过点A作AH⊥BC于H,分别在RT△ABH,RT△AHC中求出BH、HC即可.(2)如图1中,过点A作AP⊥AB交BC于P,连接PG,由△ABD≌△APG推出BD=PG,再利用30度角性质即可解决问题.(3)如图2中,作AH⊥BC于H,AC的垂直平分线交AC于P,交BC于M.则AP=PC,作DK⊥AB于K,设BK=DK=a,则AK=a,AD=2a,只要证明∠BAD=30°即可解决问题.【解答】解:(1)如图1中,过点A作AH⊥BC于H.∴∠AHB=∠AHC=90°,在RT△AHB中,∵AB=2,∠B=45°,∴BH=ABcosB=2×=2,AH=ABsinB=2,在RT△AHC中,∵∠C=30°,∴AC=2AH=4,CH=ACcosC=2,∴BC=BH+CH=2+2.(2)证明:如图1中,过点A作AP⊥AB交BC于P,连接PG,∵AG⊥AD,∴∠DAF=∠EAC=90°,在△DAF和△GAE中,,∴△DAF≌△GAE,∴AD=AG,∴∠BAP=90°=∠DAG,∴∠BAD=∠PAG,∵∠B=∠APB=45°,∴AB=AP,在△ABD和△APG中,,∴△ABD≌△APG,∴BD=PG,∠B=∠APG=45°,∴∠GPB=∠GPC=90°,∵∠C=30°,∴PG=GC,∴BD=CG.(3)如图2中,作AH⊥BC于H,AC的垂直平分线交AC于P,交BC于M.则AP=PC,在RT△AHC中,∵∠ACH=30°,∴AC=2AH,∴AH=AP,在RT△AHD和RT△APG中,,∴△AHD≌△APG,∴∠DAH=∠GAP,∵GM⊥AC,PA=PC,∴MA=MC,∴∠MAC=∠MCA=∠MAH=30°,∴∠DAM=∠GAM=45°,∴∠DAH=∠GAP=15°,∴∠BAD=∠BAH﹣∠DAH=30°,作DK⊥AB于K,设BK=DK=a,则AK=a,AD=2a,∴==,∵AG=CG=AD,∴=.【点评】本题考查相似三角形综合题、全等三角形的判定和性质、直角三角形30度角性质、线段垂直平分线性质等知识,解题的关键是添加辅助线构造全等三角形,学会设参数解决问题,属于中考压轴题.26.如图1,在平面直角坐标系中,抛物线y=﹣x2+x+3与x轴交于A,B两点(点A在点B左侧),与y轴交于点C,抛物线的顶点为点E.(1)判断△ABC的形状,并说明理由;(2)经过B,C两点的直线交抛物线的对称轴于点D,点P为直线BC上方抛物线上的一动点,当△PCD的面积最大时,Q从点P出发,先沿适当的路径运动到抛物线的对称轴上点M处,再沿垂直于抛物线对称轴的方向运动到y轴上的点N处,最后沿适当的路径运动到点A处停止.当点Q的运动路径最短时,求点N的坐标及点Q经过的最短路径的长;(3)如图2,平移抛物线,使抛物线的顶点E在射线AE上移动,点E平移后的对应点为点E′,点A的对应点为点A′,将△AOC绕点O顺时针旋转至△A1OC1的位置,点A,C的对应点分别为点A1,C1,且点A1恰好落在AC上,连接C1A′,C1E′,△A′C1E′是否能为等腰三角形?若能,请求出所有符合条件的点E′的坐标;若不能,请说明理由.【分析】(1)先求出抛物线与x轴和y轴的交点坐标,再用勾股定理的逆定理判断出△ABC 是直角三角形;(2)先求出S△PCD最大时,点P(,),然后判断出所走的路径最短,即最短路径的长为PM+MN+NA的长,计算即可;(3)△A′C1E′是等腰三角形,分三种情况分别建立方程计算即可.【解答】解:(1)△ABC为直角三角形,当y=0时,即﹣x2+x+3=0,∴x1=﹣,x2=3∴A(﹣,0),B(3,0),∴OA=,OB=3,当x=0时,y=3,∴C(0,3),∴OC=3,根据勾股定理得,AC2=OB2+OC2=12,BC2=OB2+OC2=36,∴AC2+BC2=48,∵AB2=[3﹣(﹣)]2=48,∴AC2+BC2=AB2,∴△ABC是直角三角形,(2)如图,∵B(3,0),C(0,3),∴直线BC解析式为y=﹣x+3,过点P作∥y轴,设P(a,﹣a2+a+3),∴G(a,﹣a+3),∴PG=﹣a2+a,设点D的横坐标为x D,C点的横坐标为x C,S△PCD=×(x D﹣x C)×PG=﹣(a﹣)2+,∵0<a<3,∴当a=时,S△PCD最大,此时点P(,),将点P向左平移个单位至P′,连接AP′,交y轴于点N,过点N作MN⊥抛物线对称轴于点M,连接PM,点Q沿P→M→N→A,运动,所走的路径最短,即最短路径的长为PM+MN+NA 的长,∴P(,)∴P′(,),∵点A(﹣,0),∴直线AP′的解析式为y=x+,当x=0时,y=,∴N(0,),过点P′作P′H⊥x轴于点H,∴AH=,P′H=,AP′=,∴点Q运动得最短路径长为PM+MN+AN=+=;(3)在Rt△AOC中,∵tan∠OAC==,∴∠OAC=60°,∵OA=OA1,∴△OAA1为等边三角形,∴∠AOA1=60°,∴∠BOC1=30°,∵OC1=OC=3,∴C1(,),∵点A(﹣,0),E(,4),∴AE=2,∴A′E′=AE=2,∵直线AE的解析式为y=x+2,设点E′(a,a+2),∴A′(a﹣2,﹣2)∴C1E′2=(a﹣2)2+(+2﹣)2=a2﹣a+7,C1A′2=(a﹣2﹣)2+(﹣2﹣)2=a2﹣a+49,①若C1A′=C1E′,则C1A′2=C1E′2即:a2﹣a+7=a2﹣a+49,∴a=,∴E′(,5),②若A′C1=A′E′,∴A′C12=A′E′2即:a2﹣a+49=28,∴a1=,a2=,∴E′(,7+),或(,7﹣),③若E′A′=E′C1,∴E′A′2=E′C12即:a2﹣a+7=28,∴a1=,a2=(舍),∴E′(,3+),即,符合条件的点E′(,5),(,7+),或(,7﹣),(,3+).【点评】此题是二次函数综合题,主要考查了函数极值的确定方法,等边三角形的判定和性质,勾股定理的逆定理,等腰三角形的性质,解本题的关键是分类讨论,也是解本题的难点.。

2020重庆市中考数学试题(word版含答案)共2套

2020重庆市中考数学试题(word版含答案)共2套

重庆市中考数学试题(一)(全卷共五个大题,满分150分,考试时间120分钟)一、选择题:1.4的倒数是 ( D ) A.-4 B.4 C.41-D.41 2.下列交通指示标识中,不是轴对称图形的是( C )3.据重庆商报2016年5月23日报道,第十九届中国(重庆)国际驼子曁全球采购会(简称渝洽会)集中签约86个项目,投资总额1636亿元人民币,将数1636用科学记数法表示是( B ) A.0.1636×104 B.1.636×103 C.16.36×102 D.163.6×104.如图,直线a ,b 被直线c 所截,且a//b ,若∠1=55°,则∠2等于( C )A.35°B.45°C.55°D.125°5.计算(x 2y )3的结果是( A )A.x 6y 3B.x 5y 3C.x 5y 3D.x 2y 36.下列调查中,最适合采用全面调查(普查)方式的是 ( D ) A.对重庆市居民日平均用水量的调查 B.对一批LED 节能灯使用寿命的调查C.对重庆新闻频道“天天630”栏目收视率的调查D.对某校九年级(1)班同学的身高情况的调查7.若二次根式2 a 有意义,则a 的取值范围是( A ) A.a ≥2 B.a ≤2 C.a>2 D.a ≠28.若m=-2,则代数式m 2-2m-1的值是( B ) A.9 B.7 C.-1 D.-99.观察下列一组图形,其中图形1中共有2颗星,图形2中共有6颗星,图形3中共有11颗星,图形4中共有17颗星,。

,按此规律,图形8中星星的颗数是( C )A.43B.45C.51D.5310.如图,在边长为6的菱形ABCD 中,∠DAB=60°,以点D 为圆心,菱形的高DF 为半径画弧,交AD 于点E ,交CD 于点G ,则图形阴影部分的面积是( A ) A.π9-318 B.π3-18 C.29-39πD.π3-31811.如图所示,某办公大楼正前方有一根高度是15米的旗杆ED ,从办公大楼顶端A 测得旗杆顶端E 的俯角α是45°,旗杆低端D 到大楼前梯砍底边的距离DC 是20米,梯坎坡长BC 是12米,梯坎坡度i=1:3,则大楼AB 的高度约为(精确到0.1米,参考数据:45.2673.1341.12≈≈≈,,) ( D ) A.30.6米 B.32.1 米 C.37.9米 D.39.4米12.如果关于x 的分式方程1131+-=-+x x x a 有负分数解,且关于x 的不等式组⎪⎩⎪⎨⎧+<+--≥-1243,4)(2x x x x a 的解集为x<-2,那么符合条件的所有整数a 的积是 ( D ) A.-3 B.0 C.3 D.9 二、填空题13.在21-,0,-1,1这四个数中,最小的数是__-1___. 14.计算:02-3)1(318--+⎪⎭⎫⎝⎛+π=____8______.15.如图,CD 是○O 的直径,若AB ⊥CD ,垂足为B ,∠OAB=40°,则∠C=__25__度.16.点P 的坐标是(a,b ),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P (a ,b )在平面直角坐标系中第二象限内的概率是_51____. 17.为增强学生体质,某中学在体育课中加强了学生的长跑训练。

重庆市2020年中考数学试卷(A卷)(Word版,含答案与解析)

重庆市2020年中考数学试卷(A卷)(Word版,含答案与解析)

重庆市2020年中考数学试卷(A卷)一、选择题:(本大题12个小题,每小题4分,共48分)(共12题;共48分)1.下列各数中,最小的数是()A. ﹣3B. 0C. 1D. 2【答案】A【考点】有理数大小比较【解析】【解答】解:∵﹣3<0<1<2,∴这四个数中最小的数是﹣3.故答案为:A.【分析】有理数的大小比较:越靠近正方向越大,反之,越靠近反方向的越小.2.下列图形是轴对称图形的是()A. B. C. D.【答案】A【考点】轴对称图形【解析】【解答】解:B、C、D都不是轴对称图形,A是轴对称图形.故答案为:A.【分析】轴对称图形定义:如果把一个图形沿某条直线对折,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;常见的轴对称图形:线段、圆、正多边形、矩形、等腰三角形、等腰梯形等.3.在今年举行的第127届“广交会”上,有近26000家厂家进行“云端销售”.其中数据26000用科学记数法表示为()A. 26×103B. 2.6×103C. 2.6×104D. 0.26×105【答案】C【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:26000=2.6×104.故答案为:C.【分析】用表示大于等于10的数为a×10n,其中(n为正整数,1≤a<10).4.把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形,…,按此规律排列下去,则第⑤个图案中黑色三角形的个数为()A. 10B. 15C. 18D. 21【答案】B【考点】探索图形规律【解析】【解答】解:∵第①个图案中黑色三角形的个数为1,第②个图案中数黑色三角形的个数3=1+2,第③个图案中黑色三角形的个数6=1+2+3,……∴第⑤个图案中黑色三角形的个数为1+2+3+4+5=15,故答案为:B.【分析】分别找出图①、②、③中黑色三角形的个数,找到规律代入即可.5.如图,AB是⊙O的切线,A为切点,连接OA,OB,若∠B=20°,则∠AOB的度数为()A. 40°B. 50°C. 60°D. 70°【答案】 D【考点】切线的性质【解析】【解答】解:∵AB是⊙O的切线,A为切点,∴∠A=90°,∵∠B=20°,∴∠AOB=90°﹣20°=70°.故答案为:D.【分析】根据切线性质:圆的切线垂直于过切点的半径可得∠A=90°,根据直角三角形两锐角互余即可计算∠AOB.6.下列计算中,正确的是()A. √2+ √3=√5B. 2+ √2=2 √2C. √2× √3=√6D. 2 √3﹣2=√3【答案】C【考点】二次根式的乘除法,同类二次根式,二次根式的加减法【解析】【解答】解:A. √2与√3不是同类二次根式,不能合并,此选项计算错误;B.2与√2不是同类二次根式,不能合并,此选项计算错误;C. √2× √3=√2×3=√6,此选项计算正确;D.2 √3与﹣2不是同类二次根式,不能合并,此选项错误.故答案为:C.【分析】由经过化简后,被开方数相同的二次根式称为同类二次根式,同类二次根式可进行加减可判断A、B、D;根据二次根式的乘法法则,根指数不变,把被开方数相乘即可判断C.7.解一元一次方程12(x+1)=1﹣13x时,去分母正确的是()A. 3(x+1)=1﹣2xB. 2(x+1)=1﹣3xC. 2(x+1)=6﹣3xD. 3(x+1)=6﹣2x【答案】 D【考点】解含分数系数的一元一次方程【解析】【解答】解:方程两边都乘以6,得:3(x+1)=6﹣2x,故答案为:D.【分析】在方程左右两边同乘6即可.8.如图,在平面直角坐标系中,△ABC的顶点坐标分别是A(1,2),B(1,1),C(3,1),以原点为位似中心,在原点的同侧画△DEF,使△DEF与△ABC成位似图形,且相似比为2:1,则线段DF的长度为()A. √5B. 2C. 4D. 2 √5【答案】 D【考点】勾股定理,位似变换【解析】【解答】解:∵以原点为位似中心,在原点的同侧画△DEF,使△DEF与△ABC成位似图形,且相似比为2:1,而A(1,2),C(3,1),∴D(2,4),F(6,2),∴DF=√(2−6)2+(4−2)2=2 √5.故答案为:D.【分析】根据△DEF与△ABC以原点为位似中心成位似图形,且相似比为2:1,从而即可由点A,C的坐标得出点D,F的坐标,进而根据两点间的距离公式即可算出DF的长.9.如图,在距某居民楼AB楼底B点左侧水平距离60m的C点处有一个山坡,山坡CD的坡度(或坡比)i =1:0.75,山坡坡底C点到坡顶D点的距离CD=45m,在坡顶D点处测得居民楼楼顶A点的仰角为28°,居民楼AB与山坡CD的剖面在同一平面内,则居民楼AB的高度约为(参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)()A. 76.9mB. 82.1mC. 94.8mD. 112.6m【答案】 B【考点】解直角三角形的应用﹣坡度坡角问题,解直角三角形的应用﹣仰角俯角问题【解析】【解答】解:如图,由题意得,∠ADF =28°,CD =45,BC =60,在Rt △DEC 中,∵山坡CD 的坡度i =1:0.75,∴ DE EC = 10.75 = 43 ,设DE =4x ,则EC =3x ,由勾股定理可得CD =5x ,又CD =45,即5x =45,∴x =9,∴EC =3x =27,DE =4x =36=FB ,∴BE =BC+EC =60+27=87=DF ,在Rt △ADF 中,AF =tan28°×DF≈0.53×87≈46.11,∴AB =AF+FB =46.11+36≈82.1,故答案为:B.【分析】由山坡CD 的坡度i =1:0.75可得DE :EC=4:3,设DE =4x ,则EC =3x ,由勾股定理可得CD =5x 且CD =45即可分别计算DE 、EC ,可得BE ;由“在坡顶D 点处测得居民楼楼顶A 点的仰角为28°”可由AF =tan28°×DF ,即可计算AB.10.若关于x 的一元一次不等式组 {3x−12≤x +3x ≤a的解集为x≤a ;且关于y 的分式方程 y−a y−2 + 3y−4y−2 =1有正整数解,则所有满足条件的整数a 的值之积是( ) A. 7 B. ﹣14 C. 28 D. ﹣56【答案】 A【考点】分式方程的解及检验,一元一次不等式组的应用【解析】【解答】解:不等式组整理得: {x ≤7x ≤a, 由解集为x≤a ,得到a≤7,分式方程去分母得:y ﹣a+3y ﹣4=y ﹣2,即3y ﹣2=a ,解得:y = a+23 ,由y为正整数解,得到a=1,4,7当a=4时,y=2,此时分式方程无解,故a=1,71×7=7.故答案为:A.【分析】由不等式组的解集为x≤a可得a≤7,解分式方程可得y=a+23,由分式方程有正整数解可得y≠2,即a≠4,且a≤7且a+2能整除3,故a=1或7即可得结果.11.如图,三角形纸片ABC,点D是BC边上一点,连接AD,把△ABD沿着AD翻折,得到△AED,DE与AC 交于点G,连接BE交AD于点F.若DG=GE,AF=3,BF=2,△ADG的面积为2,则点F到BC的距离为()A. √55B. 2√55C. 4√55D. 4√33【答案】B【考点】勾股定理,翻折变换(折叠问题)【解析】【解答】解:∵DG=GE,∴S△ADG=S△AEG=2,∴S△ADE=4,由翻折可知,△ADB≌△ADE,BE⊥AD,∴S△ABD=S△ADE=4,∠BFD=90°,∴12•(AF+DF)•BF=4,∴12•(3+DF)•2=4,∴DF=1,∴DB=√BF2+DF2=√12+22=√5,点F到BD的距离为h,则有12•BD•h=12•BF•DF,∴h=2√55,故答案为:B.【分析】由三角形的中线平分三角形面积可得S△ADE,再又翻折可得S△ABD,由勾股定理可得BD,由面积公式可得12•BD•h=12•BF•DF即可求解.12.如图,在平面直角坐标系中,矩形ABCD的对角线AC的中点与坐标原点重合,点E是x轴上一点,连接AE.若AD平分∠OAE,反比例函数y=kx(k>0,x>0)的图象经过AE上的两点A,F,且AF=EF,△ABE 的面积为18,则k的值为()A. 6B. 12C. 18D. 24【答案】B【考点】平行线的判定,矩形的性质,反比例函数图象上点的坐标特征【解析】【解答】解:如图,连接BD,OF,过点A作AN⊥OE于N,过点F作FM⊥OE于M.∵AN∥FM,AF=FE,∴MN=ME,∴FM=12AN,∵A,F在反比例函数的图象上,∴S△AON=S△FOM=k2,∴12•ON•AN=12•OM•FM,∴ON=12OM,∴ON=MN=EM,∴ME=13OE,∴S△FME=13S△FOE,∵AD平分∠OAE,∴∠OAD=∠EAD,∵四边形ABCD 是矩形,∴OA =OD ,∴∠OAD =∠ODA =∠DAE ,∴AE ∥BD ,∴S △ABE =S △AOE ,∴S △AOE =18,∵AF =EF ,∴S △EOF = 12 S △AOE =9,∴S △FME = 13 S △EOF =3,∴S △FOM =S △FOE ﹣S △FME =9﹣3=6= k 2, ∴k =12.故答案为:B.【分析】先证明OB ∥AE ,得出S △ABE =S △AOE , 设点A (a,k a )可求出点E 、F 坐标,可得S △AOE=12×3a ×k a 即可. 二、填空题:(本大题6个小题,每小题4分,共24分)(共6题;共24分)13.计算:(π﹣1)0+|﹣2|=________.【答案】 3【考点】绝对值及有理数的绝对值,0指数幂的运算性质,有理数的加法【解析】【解答】解:(π﹣1)0+|﹣2|=1+2=3.故答案为:3.【分析】根据任何非0 数的0次幂为1,负数的绝对值等于它的相反数分别计算,再利用有理数加法计算即可.14.一个多边形的内角和等于它的外角和的2倍,则这个多边形的边数是________.【答案】 6【考点】多边形内角与外角【解析】【解答】解:设这个多边形的边数为n ,依题意,得:(n ﹣2)•180°=2×360°,解得n =6.故答案为:6.【分析】由n 边形内角和(n ﹣2)×180°和n 边形外角和360°可列方程求解.15.现有四张正面分别标有数字﹣1,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背面朝上洗均匀,随机抽取一张,记下数字后放回,背面朝上洗均匀,再随机抽取一张记下数宇,前后两次抽取的数字分别记为m ,n.则点P (m ,n )在第二象限的概率为________.【答案】 316【考点】列表法与树状图法【解析】【解答】解:画树状图为:共有16种等可能的结果数,其中点P(m,n)在第二象限的结果数为3,.所以点P(m,n)在第二象限的概率=316.故答案为:316【分析】无放回事件,可列出所有可能情况,找出点在第二象限(横坐标为负,纵坐标为正),利用概率公式即可计算.16.如图,在边长为2的正方形ABCD中,对角线AC的中点为O,分别以点A,C为圆心,以AO的长为半径画弧,分别与正方形的边相交,则图中的阴影部分的面积为________.(结果保留π)【答案】4﹣π【考点】勾股定理,正方形的性质,扇形面积的计算【解析】【解答】解:∵四边形ABCD为正方形,∴AB=BC=2,∠DAB=∠DCB=90°,由勾股定理得,AC=√AB2+BC2=2 √2,∴OA=OC=√2,∴图中的阴影部分的面积=22﹣90π×(√2)2×2=4﹣π,360故答案为:4﹣π.【分析】由正方形的性质可得AB=BC=2,由勾股定理得AC,即可得扇形半径为AC一半,故图中的阴,其中n=180°,r=AC一半.影部分的面积=正方形面积-扇形面积,再带入扇形面积公式nπr236017.A,B两地相距240km,甲货车从A地以40km/h的速度匀速前往B地,到达B地后停止.在甲出发的同时,乙货车从B地沿同一公路匀速前往A地,到达A地后停止.两车之间的路程y(km)与甲货车出发时间x(h)之间的函数关系如图中的折线CD﹣DE﹣EF所示.其中点C的坐标是(0,240),点D的坐标是(2.4,0),则点E的坐标是________.【答案】 (4,160)【考点】通过函数图象获取信息并解决问题【解析】【解答】解:根据题意可得,乙货车的速度为:240÷2.4﹣40=60(40km/h ),∴乙货车从B 地到A 地所用时间为:240÷60=4(小时),当乙货车到底A 地时,甲货车行驶的路程为:40×4=160(千米),∴点E 的坐标是(4,160).故答案为:(4,160).【分析】由CD 段可得乙货车的速度,再由两车行驶速度分析点E 的意义即可求解。

重庆市2020年部编人教版中考数学试题(A卷)有答案精析.doc

重庆市2020年部编人教版中考数学试题(A卷)有答案精析.doc

重庆市 2020 年中考数学试卷( A 卷)( word 版含分析)一、选择题(本题共12 个小题,每题 4 分,共 48 分)1.在实数﹣ 2, 2, 0,﹣ 1 中,最小的数是()A.﹣ 2 B . 2C. 0D.﹣ 1【剖析】找出实数中最小的数即可.【解答】解:在实数﹣2, 2, 0,﹣ 1 中,最小的数是﹣2,应选 A【评论】本题考察了实数大小比较,娴熟掌握两个负数比较大小的方法是解本题的重点.2.以下图形中是轴对称图形的是()A.B.C.D.【剖析】依据轴对称图形的观点:假如一个图形沿一条直线折叠,直线两旁的部分能够相互重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行剖析即可.【解答】解: A 、不是轴对称图形,不切合题意;B、不是轴对称图形,不切合题意;C、不是轴对称图形,不切合题意;D、是轴对称图形,对称轴有两条,切合题意.应选: D.【评论】本题主要考察了轴对称图形,确立轴对称图形的重点是找寻对称轴,图形两部分沿对称轴折叠后可重合.3.计算 a 3a2正确的选项是()A . aB . a 5C. a6D. a9【剖析】依据同底数幂相乘,底数不变,指数相加计算后直接选用答案.【解答】解: a 3a2=a3+2=a5.应选 B.【评论】本题主要考察同底数幂的乘法的性质,娴熟掌握性质是解题的重点.4.以下检查中,最合适采纳全面检查(普查)方式的是()A.对重庆市辖区内长江流域水质状况的检查B.对乘坐飞机的游客能否携带违禁物件的检查C.对一个社区每日抛弃塑料袋数目的检查D.对重庆电视台“每日630”栏目收视率的检查【剖析】逐项剖析四个选项中们事例最合适的检查方法,即可得出结论.【解答】解: A 、对重庆市辖区内长江流域水质状况的检查,应采纳抽样检查;B、对乘坐飞机的游客能否携带违禁物件的检查,应采纳全面检查;C、对一个社区每日抛弃塑料袋数目的检查,应采纳抽样检查;D、对重庆电视台“每日630”栏目收视率的检查,应采纳抽样检查.应选 B.【评论】本题考察了全面检查与抽样检查,解题的重点是逐项剖析四个选项应用的检查方法.本题属于基础题,难度不大,解决该题型题目时,联系实质选择检查方法是重点.5.如图, AB ∥CD ,直线 l 交 AB 于点 E,交 CD 于点 F,若∠ 2=80°,则∠ 1 等于()A . 120°B . 110°C. 100°D. 80°【剖析】由平行线的性质得出∠1+ ∠ DFE=180 °,由对顶角相等求出∠ DFE= ∠2=80°,即可得出结果.【解答】解:∵ AB ∥ CD,∴ ∠ 1+∠ DFE=180 °,∵ ∠ DFE= ∠ 2=80°,∴ ∠ 1=180 °﹣ 80°=100°;应选: C.【评论】本题考察了平行线的性质、对顶角相等的性质;熟记平行线的性质,由对顶角相等求出∠ DFE 是解决问题的重点.6.若 a=2, b=﹣ 1,则 a+2b+3 的值为()A.﹣ 1 B . 3C. 6D. 5【剖析】把 a 与 b 代入原式计算即可获得结果.【解答】解:当a=2, b=﹣ 1 时,原式 =2 ﹣ 2+3=3,应选 B【评论】本题考察了代数式求值,娴熟掌握运算法例是解本题的重点.7.函数y=中, x的取值范围是()A . x≠0B . x>﹣ 2C. x<﹣ 2D. x≠﹣2【剖析】由分式存心义的条件得出不等式,解不等式即可.【解答】解:依据题意得:x+2 ≠0,解得 x≠﹣ 2.应选: D.【评论】本题考察了函数中自变量的取值范围、分式存心义的条件;由分式存心义得出不等式是解决问题的重点.8.△ ABC 与△ DEF 的相像比为1: 4,则△ ABC 与△ DEF 的周长比为()A.1:2B.1:3C. 1:4D.1:16【剖析】由相像三角形周长的比等于相像比即可得出结果.【解答】解:∵ △ ABC 与△ DEF 的相像比为1: 4,∴ △ ABC 与△ DEF 的周长比为1: 4;应选: C.【点】本考了相像三角形的性;熟相像三角形周的比等于相像比是解决的关.9.如,以AB 直径,点O 心的半点C,若 AC=BC= ,中暗影部分的面是()A .B .C.D.+【剖析】先利用周角定理获得∠ ACB=90 °,可判断△ ACB 等腰直角三角形,接着判断△ AOC 和△ BOC 都是等腰直角三角形,于是获得S△AOC=S△BOC,而后依据扇形的面公式算中暗影部分的面.【解答】解:∵ AB 直径,∴ ∠ ACB=90 °,∵ AC=BC= ,∴ △ ACB 等腰直角三角形,∴OC⊥AB ,∴△AOC和△ BOC都是等腰直角三角形,∴ S△AOC =S△BOC, OA=AC=1,∴ S 暗影部分 =S扇形 AOC==.故 A .【点】本考了扇形面的算:面公式:S=πr2,( 2)扇形:由成心角的两条半径和心角所的弧所成的形叫做扇形.求暗影面常用的方法:① 直接用公式法;② 和差法;③ 割法.求暗影面的主要思路是将不形面化形的面.10.以下形都是由同大小的小圈按必定律所成的,此中第① 个形中一共有4个小圈,第②个形中一共有10 个小圈,第③ 个形中一共有19 个小圈,⋯,按此律摆列,第⑦ 个形中小圈的个数()A .64B .77C . 80D . 85【剖析】 察 形特色, 从中找出 律, 小 圈的个数分 是3+12,6+2 2,10+32,15+42,⋯,出其 律 +n 2,依据 律求解.【解答】解:通 察,获得小 圈的个数分 是:第一个 形 :+12=4,第二个 形 :+22=6,第三个 形 :+32=10,第四个 形 :+42=15,⋯,因此第 n 个 形 :+n 2,当 n=7 , +72=85 ,故 D .【点 】 此 主要考 了学生剖析 、 察 律的能力. 关 是通 察剖析得出 律.11.某数学 趣小 同学 行 量大CD 高度的 合 践活 ,如 ,在点 A 得直立于地面的大 端C 的仰角 36°,而后沿在同一剖面的斜坡 AB 行走 13 米至坡B ,而后再沿水平方向行走6 米至大 脚底点 D ,斜面 AB 的坡度(或坡比)i=1 :2.4,那么大 CD 的高度 (参照数据:sin36°≈0.59, cos36°≈0.81,tan36°≈0.73)( )A .8.1 米B .17.2 米C . 19.7 米D . 25.5 米【剖析】作BF ⊥ AE于F ,FE=BD=6米,DE=BF ,BF=x米,AF=2.4米,在 Rt △ ABF中,由勾股定理得出方程, 解方程求出 DE=BF=5 米,AF=12 米,得出 AE 的 度,在 Rt △ ACE中,由三角函数求出CE ,即可得出 果.【解答】解:作 BF ⊥ AE 于 F ,如 所示:则 FE=BD=6 米, DE=BF ,∵斜面 AB 的坡度 i=1 : 2.4,∴AF=2.4BF ,设 BF=x 米,则 AF=2.4x 米,在 Rt△ ABF 中,由勾股定理得:x2+( 2.4x )2=13 2,解得: x=5 ,∴DE=BF=5 米, AF=12 米,∴AE=AF+FE=18 米,在 Rt△ ACE 中, CE=AEtan36 °=18 ×0.73=13.14 米,∴CD=CE ﹣ DE=13.14 米﹣ 5 米≈8.1 米;应选: A.勾股定理、三角函数;由勾股定理得出方程是解【评论】本题考察认识直角三角形的应用、决问题的重点.12.从﹣ 3,﹣ 1,, 1,3 这五个数中,随机抽取一个数,记为a,若数 a 使对于x 的不等式组无解,且使对于x 的分式方程﹣=﹣ 1 有整数解,那么这 5 个数中全部知足条件的 a 的值之和是()A.﹣ 3B.﹣ 2C.﹣D.【剖析】依据不等式组无解,求得a≤1,解方程得x=,于是获得a=﹣3 或 1,即可获得结论.【解答】解:解得,∵ 不等式组无解,∴a≤1,解方程﹣ =﹣ 1 得 x= ,∵x= 为整数, a≤1,∴ a=﹣ 3 或 1,∴全部知足条件的 a 的值之和是﹣ 2,应选 B.【评论】 本题考察认识分式方程, 解一元一次不等式组, 娴熟掌握解分式方程和一元一次不等式组的方法是解题的重点.二、填空题(本题 6 个下题,每题 4 分,共 24 分)13.据报导, 2020 年某市城镇非私营单位就业人员年均匀薪资超出 60500 元,将数 60500用科学计数法表示为6.05×104.【剖析】科学记数法的表示形式为a ×10n的形式,此中 1≤|a|< 10,n 为整数.确立 n 的值是易错点,因为 60500 有 5 位,因此能够确立n=5 ﹣ 1=4.【解答】解: 60500=6.05 ×104.故答案为: 6.05×104.【评论】本题考察科学记数法表示较大的数的方法,正确确立a 与 n 值是重点.14.计算: +(﹣ 2)0= 3 .【剖析】依据开平方,非零的零次幂等于1,可得答案.【解答】解:+(﹣ 2)=2+1=3 .故答案为: 3.【评论】本题考察了零指数幂,利用非零的零次幂等于1 是解题重点.15.如图,OA ,OB 是 ⊙ O 的半径,点 C 在 ⊙O 上,连结 AC ,BC ,若∠ AOB=120 °,则∠ ACB=60 度.【剖析】 依据圆周角定理:在同圆或等圆中, 同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半可得答案.【解答】解: ∵ OA ⊥ OB ,∴ ∠ AOB=120 °,∴ ∠ ACB=120 °×=60 °,故答案为: 60.【评论】本题主要考察了圆周角定理,重点是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.16.从数﹣2,﹣,0,4 中任取一个数记为m,再从余下的三个数中,任取一个数记为n,若 k=mn,则正比率函数y=kx 的图象经过第三、第一象限的概率是.【剖析】依据题意先画出图形,求出总的状况数,再求出切合条件的状况数,最后依据概率公式进行计算即可.【解答】解:依据题意绘图以下:共有 12 种状况,∵正比率函数y=kx 的图象经过第三、第一象限,∴ k> 0,∵ k=mn ,∴ mn>0,∴切合条件的状况数有 2 种,∴正比率函数y=kx 的图象经过第三、第一象限的概率是故答案为:.【评论】本题考察了概率的知识.用到的知识点为:概率=;=所讨状况数与总状况数之比.17.甲、乙两人在直线道路上同起点、同终点、同方向,分别以不一样的速度匀速跑步 1500 米,先到终点的人原地歇息,已知甲先出发 30 秒后,乙才出发,在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系以下图,则乙到终点时,甲距终点的距离是175米.【剖析】依据图象先求出甲、乙的速度,再求出乙抵达终点时所用的时间,终点时甲所走的行程,最后用总行程﹣甲所走的行程即可得出答案.【解答】解:依据题意得,甲的速度为: 75÷30=2.5 米 /秒,而后求出乙抵达设乙的速度为m 米 /秒,则( m﹣2.5)×150=75,解得: m=3 米 /秒,则乙的速度为 3 米 /秒,乙到终点时所用的时间为:=500(秒),此时甲走的行程是: 2.5×( 500+30) =1325(米),甲距终点的距离是1500﹣ 1325=175 (米).故答案为: 175.【评论】本题考察了一次函数的应用,读懂题目信息,理解并获得乙先抵达终点,而后求出甲、乙两人所用的时间是解题的重点.18.正方形 ABCD 中,对角线 AC ,BD 订交于点O,DE 均分∠ ADO 交 AC 于点 E,把△ ADE 沿 AD 翻折,获得△ADE ′,点 F 是 DE 的中点,连结 AF ,BF ,E′F.若 AE= .则四边形 ABFE ′的面积是.【剖析】如图,连结EB、 EE′,作 EM⊥ AB 于 M ,EE′交 AD 于△ AEB ≌ △ AED ≌ △ADE ′,先求出正方形A MEN 的边长,再求出N.易知AB ,依据S 四边形ABFE′=S四边形 AEFE ′+S△ AEB+S△EFB 即可解决问题.【解答】解:如图,连结EB 、 EE′,作EM ⊥AB于 M,EE′交AD于 N .∵四边形 ABCD 是正方形,∴AB=BC=CD=DA , AC⊥ BD , AO=OB=OD=OC ,∠DAC= ∠CAB= ∠DAE ′=45 °,依据对称性,△ ADE ≌ △ ADE ′≌△ ABE ,∴DE=DE ′, AE=AE ′,∴AD 垂直均分 EE ′,∴EN=NE ′,∵ ∠ NAE= ∠NEA= ∠ MAE= ∠ MEA=45 °, AE= ,∴AM=EM=EN=AN=1 ,∵ED 均分∠ADO ,EN⊥DA ,EO⊥ DB,∴ EN=EO=1 , AO=+1 ,∴ AB=AO=2+ ,∴ S△AEB =S△AED =S△ADE′=×1( 2+) =1+, S△BDE=S△ADB﹣ 2S△AEB=1+ ,∵DF=EF ,∴ S △EFB =,∴S△DEE ′=2S △ADE﹣ S△AEE ′=+1 ,S △DFE ′=S △DEE ′=,∴ S 四边形 AEFE ′=2S △ADE ﹣S△DFE ′=,∴ S 四边形 ABFE ′=S 四边形 AEFE ′+S △AEB +S △EFB =.故答案为.【评论】本题考察正方形的性质、翻折变换、全等三角形的性质,角均分线的性质、等腰直角三角形的性质等知识, 解题的重点是增添协助线, 学会利用切割法求四边形面积, 属于中考填空题中的压轴题.三、解答题(本题共2 个小题,每题 7 分,共 14 分)19.如图,点 A , B ,C ,D 在同一条直线上,CE ∥DF , EC=BD ,AC=FD .求证: AE=FB .【剖析】依据 CE ∥ DF ,可得 ∠ACE= ∠ D ,再利用 SAS 证明 △ ACE ≌ △ FDB ,得出对应边相等即可.【解答】证明: ∵ CE ∥ DF ,∴∠ACE= ∠D ,在 △ ACE 和 △FDB 中,,∴ △ ACE ≌ △FDB ( SAS ),∴ AE=FB .【评论】本题主要考察全等三角形的判断与性质和平行线的性质;娴熟掌握平行线的性质,证明三角形全等是解决问题的重点.20.为响应 “全民阅读 ”呼吁,某校在七年级 800 名学生中随机抽取100 名学生,对观点机学生在 2020 年整年阅读中外名著的状况进行检查,整理检查结果发现,学生阅读中外名著的本数, 最少的有 5 本,最多的有 8 本,并依据检查结果绘制了以下图的不完好的条形统计图,此中阅读了 6 本的人数占被检查人数的30%,依据图中供给的信息,补全条形统计图并预计该校七年级全体学生在 2020 年整年阅读中外名著的总本数.【剖析】由阅读了 6 本的人数占被检查人数的30%可求得阅读 6 本的人数,将总人数减去阅读数是5、6、8 本的人数可得阅读7 自己数,据此补全条形图可得;依据样本计算出均匀每人的阅读量,再用均匀数乘以七年级学生总数即可得答案.【解答】解:依据题意,阅读了 6 本的人数为100×30%=30 (人),阅读了 7 本的人数为: 100﹣ 20﹣30﹣﹣ 15=35(人),补全条形图如图:∵ 均匀每位学生的阅读数目为:=6.45 (本),∴ 预计该校七年级全体学生在2020 年整年阅读中外名著的总本数为800×6.45=5160 本,答:预计该校七年级全体学生在2020 年整年阅读中外名著的总本数约为5160 本.【评论】本题主要考察条形统计图,条形统计图能清楚地表示出每个项目的数据,目数据个数之和等于总数,也考察了用样本预计整体.熟知各项四、解答题(本题共 4 个下题,每题10 分,共 40 分)21.计算:( 1)( a+b)2﹣ b( 2a+b)( 2)( +x ﹣ 1)÷.【剖析】( 1)依据完好平方公式和单项式乘多项式的法例计算即可;( 2)依据分式的混淆运算法例进行计算.【解答】解:(1)( a+b)2﹣ b(2a+b)=a 2+2ab+b2﹣ 2ab﹣b2=a 2;( 2)( +x ﹣ 1)÷=×=×=.【评论】本题考察的是整式的混淆运算、分式的混淆运算,掌握完好平方公式、分式的混淆运算法例是解题的重点.22.在平面直角坐标系中,一次函数y=ax+b ( a≠0)的图形与反比率函数y=( k≠0)的图象交于第二、四象限内的 A 、B 两点,与 y 轴交于 C 点,过点 A 作 AH ⊥ y 轴,垂足为 H,OH=3 ,tan∠ AOH= ,点 B 的坐标为( m,﹣ 2).(1)求△ AHO 的周长;(2)求该反比率函数和一次函数的分析式.AO的长,依据三角形【剖析】( 1)依据正切函数,可得AH 的长,依据勾股定理,可得的周长,可得答案;(2)依据待定系数法,可得函数分析式.【解答】解:( 1)由 OH=3 , tan∠ AOH= ,得AH=4 .即 A (﹣ 4,3).由勾股定理,得AO==5 ,△AHO 的周长 =AO+AH+OH=3+4+5=12 ;( 2)将 A 点坐标代入 y= (k≠0),得k= ﹣4×3=﹣ 12,反比率函数的分析式为y= ;当 y=﹣ 2 时,﹣ 2= ,解得 x=6 ,即 B (6,﹣2).将 A 、 B 点坐标代入 y=ax+b ,得,解得,一次函数的分析式为 y=﹣ x+1 .【评论】本题考察了反比率函数与一次函数的交点问题,利用待定系数法是解题重点.23.近期猪肉价钱不停走高,惹起了公众与政府的高度关注.当市场猪肉的均匀价钱每千克达到必定的单价时,政府将投入贮备猪肉以平抑猪肉价钱.( 1)从今年年初至 5 月 20 日,猪肉价钱不停走高, 5 月 20 日比年初价钱上升了 60%.某市民在今年 5 月 20 日购置 2.5 千克猪肉起码要花 100 元钱,那么今年年初猪肉的最廉价钱为每千克多少元?( 2)5 月 20 日,猪肉价钱为每千克40 元 .5 月 21 日,某市决定投入贮备猪肉并规定其销售价在每千克 40 元的基础上下调 a%销售.某商场按规订价销售一批贮备猪肉,该商场在非贮备猪肉的价钱仍为每千克40 元的状况下,该天的两种猪肉总销量比5 月20 日增添了a%,且贮备猪肉的销量占总销量的,两种猪肉销售的总金额比5 月20 日提升了a%,求 a 的值.【剖析】( 1)设今年年初猪肉价钱为每千克x 元;依据题意列出一元一次不等式,解不等式即可;( 2)设 5 月 20 日两种猪肉总销量为1;依据题意列出方程,解方程即可.【解答】解:( 1)设今年年初猪肉价钱为每千克x 元;依据题意得: 2.5×( 1+60% ) x ≥100,解得: x ≥25.答:今年年初猪肉的最廉价钱为每千克 25 元; ( 2)设 5 月 20 日两种猪肉总销量为1;依据题意得: 40( 1﹣ a%) ×( 1+a%)+40 ×( 1+a%)=40 ( 1+a%),令 a%=y ,原方程化为: 40( 1﹣ y ) ×( 1+y ) +40 ×( 1+y ) =40 (1+y ),整理得: 5y 2﹣ y=0,解得: y=0.2 ,或 y=0 (舍去),则 a%=0.2,∴ a=20;答: a 的值为 20.【评论】 本题考察了一元一次不等式的应用、一元二次方程的应用;依据题意列出不等式和方程是解决问题的重点.24.我们知道, 随意一个正整数在 n 的全部这类分解中,假如解.并规定: F ( n )=.比如n 都能够进行这样的分解: n=p ×q ( p ,q 是正整数, 且 p ≤q ), p , q 两因数之差的绝对值最小,我们就称p ×q 是 n 的最正确分12 能够分解成 1×12,2×6 或 3×4,因为 12﹣ 1>6﹣ 2> 4﹣ 3,全部 3×4 是 12 的最正确分解,因此 F (12) =.( 1)假如一个正整数 a 是此外一个正整数 b 的平方,我们称正整数 a 是完好平方数.求证:对随意一个完好平方数m,总有F( m) =1;( 2)假如一个两位正整数t, t=10x+y ( 1≤x≤y≤9, x, y 为自然数),互换其个位上的数与十位上的数获得的新数减去本来的两位正整数所得的差为18,那么我们称这个数t 为“祥瑞数”,求全部“祥瑞数”中 F( t)的最大值.【剖析】(1)依据题意可设m=n2,由最正确分解定义可得F( m)==1 ;( 2)依据“祥瑞数”定义知(10y+x )﹣( 10x+y )=18,即y=x+2 ,联合x 的范围可得 2 位数的“祥瑞数”,求出每个“祥瑞数”的F( t ),比较后可得最大值.【解答】解:(1)对随意一个完好平方数m,设∵ |n﹣ n|=0,m=n2( n 为正整数),∴n×n 是 m 的最正确分解,∴对随意一个完好平方数 m,总有 F( m) ==1 ;( 2)设互换t 的个位上的数与十位上的数获得的新数为∵ t 为“祥瑞数”,t ′,则t′=10y+x ,∴ t′﹣ t=( 10y+x )﹣(10x+y ) =9( y﹣ x) =18,∴ y=x+2 ,∵ 1≤x≤y≤9, x, y 为自然数,∴ “祥瑞数”有: 13, 24, 35, 46, 57, 68, 79,∴F( 13) =,F( 24)== , F( 35) =, F( 46)=, F( 57) =, F( 68) =,F( 79)=,∵ >>>>>,∴全部“祥瑞数”中, F( t )的最大值是.【评论】本题主要考察实数的运算,理解最正确分解、“”祥瑞数的定义,并将其转变为实数的运算是解题的重点.五、解答题(本题 2 个小题,每题12 分,共 24 分)解答时每题一定给出必需的演算过程或推理步骤,画出必需的图形,请将解答过程书写在答题卡中对应的地点上.25.在△ABC 中,∠ B=45 °,∠ C=30°,点 D 是 BC 上一点,连结AD ,过点 A 作 AG ⊥ AD ,在 AG 上取点 F,连结 DF.延伸 DA 至 E,使 AE=AF ,连结 EG, DG,且 GE=DF .(1)若 AB=2 ,求 BC 的长;(2)如图 1,当点 G 在 AC 上时,求证: BD=CG ;(3)如图 2,当点 G 在 AC 的垂直均分线上时,直接写出的值.【剖析】( 1)如图 1 中,过点 A 作 AH ⊥ BC 于 H ,分别在 RT △ ABH , RT△ AHC 中求出BH 、HC 即可.(2)如图 1 中,过点 A 作 AP ⊥AB 交 BC 于 P,连结 PG,由△ ABD ≌ △ APG 推出 BD=PG ,再利用 30 度角性质即可解决问题.( 3)如图 2 中,作 AH ⊥ BC 于 H ,AC 的垂直均分线交AC 于 P,交 BC 于 M .则 AP=PC ,作 DK ⊥ AB 于 K ,设 BK=DK=a ,则 AK=a , AD=2a ,只需证明∠ BAD=30 °即可解决问题.【解答】解:(1)如图 1 中,过点 A 作 AH ⊥BC 于 H.∴ ∠ AHB= ∠AHC=90 °,在 RT△AHB 中,∵ AB=2 ,∠ B=45 °,∴ BH=ABcosB=2 ×=2 ,AH=ABsinB=2 ,在 RT△AHC 中,∵ ∠ C=30°,∴AC=2AH=4 , CH=ACcosC=2 ,∴BC=BH+CH=2+2 .( 2)证明:如图 1 中,过点 A 作 AP⊥AB 交 BC 于 P,连结 PG,∵AG ⊥ AD ,∴∠ DAF= ∠EAC=90 °,在△DAF 和△GAE 中,,∴△DAF ≌△GAE ,∴AD=AG ,∴∠ BAP=90 °=∠ DAG ,∴∠ BAD= ∠PAG ,∵ ∠ B= ∠APB=45 °,∴AB=AP ,在△ABD 和△ APG 中,,∴△ABD ≌△APG ,∴BD=PG ,∠ B= ∠ APG=45 °,∴∠ GPB= ∠ GPC=90 °,∵ ∠ C=30°,∴PG=GC ,∴BD=CG .( 3)如图 2 中,作 AH ⊥ BC 于 H ,AC 的垂直均分线交AC 于 P,交 BC 于 M .则 AP=PC ,在 RT△AHC 中,∵ ∠ ACH=30 °,∴AC=2AH ,∴AH=AP ,在 RT△AHD 和 RT△ APG 中,,∴△AHD ≌△APG,∴∠DAH= ∠GAP,∵GM ⊥ AC ,PA=PC ,∴ MA=MC ,∴ ∠ MAC= ∠ MCA= ∠MAH=30 °,∴ ∠ DAM= ∠ GAM=45 °,∴ ∠ DAH= ∠ GAP=15 °,∴ ∠ BAD= ∠BAH ﹣∠ DAH=30 °,作 DK ⊥ AB 于 K ,设 BK=DK=a ,则 AK=a , AD=2a ,∴==,∵ AG=CG=AD ,∴ =.【评论】 本题考察相像三角形综合题、全等三角形的判断和性质、 直角三角形 30 度角性质、线段垂直均分线性质等知识, 解题的重点是增添协助线结构全等三角形, 学会设参数解决问题,属于中考压轴题.26.如图 1,在平面直角坐标系中,抛物线 y= ﹣ x 2+x+3 与 x 轴交于 A , B 两点(点 A 在点 B 左边),与 y 轴交于点 C ,抛物线的极点为点 E .( 1)判断 △ ABC 的形状,并说明原因;( 2)经过 B , C 两点的直线交抛物线的对称轴于点D ,点 P 为直线 BC 上方抛物线上的一动点,当 △ PCD 的面积最大时, Q 从点 P 出发,先沿合适的路径运动到抛物线的对称轴上 点 M 处,再沿垂直于抛物线对称轴的方向运动到 y 轴上的点 N 处,最后沿合适的路径运动 到点 A 处停止.当点 Q 的运动路径最短时,求点N 的坐标及点 Q 经过的最短路径的长;( 3)如图 2,平移抛物线,使抛物线的极点E 在射线 AE 上挪动,点 E 平移后的对应点为点 E ′,点 A 的对应点为点 A ′,将 △ AOC 绕点 O 顺时针旋转至 △ A 1OC 1 的地点,点 A ,C 的对应点分别为点 A 1,C 1,且点 A 1 恰巧落在 AC 上,连结 C 1A ′,C 1E ′,△ A ′C 1E ′能否能为等腰三角形?若能,恳求出全部切合条件的点E ′的坐标;若不可以,请说明原因.【剖析】(1)先求出抛物线与 x 轴和 y 轴的交点坐标, 再用勾股定理的逆定理判断出△ABC是直角三角形;( 2)先求出 S △PCD 最大时,点 P (,),而后判断出所走的路径最短,即最短路径的长为PM+MN+NA 的长,计算即可;( 3) △ A ′C 1E ′是等腰三角形,分三种状况分别成立方程计算即可.【解答】解:( 1) △ ABC 为直角三角形,当 y=0 时,即﹣ x 2+x+3=0 ,∴ x 1=﹣, x 2=3∴ A (﹣, 0), B ( 3, 0),∴ OA= , OB=3 ,当 x=0 时, y=3,∴ C ( 0,3),∴ OC=3,依据勾股定理得, AC 2=OB 2+OC 2=12 , BC 2 =OB 2+OC 2=36 ,∴ AC 2+BC 2=48 ,∵ AB 2=[3 ﹣(﹣) ] 2=48, ∴ AC 2+BC 2=AB 2,∴ △ ABC 是直角三角形,( 2)如图,∵ B ( 3,0), C ( 0, 3), ∴ 直线 BC 分析式为 y= ﹣x+3 ,过点 P 作 ∥y 轴,设 P ( a ,﹣ a 2+a+3),∴ G ( a ,﹣ a+3),∴ P G= ﹣a 2+a ,设点 D 的横坐标为 x D , C 点的横坐标为 x C ,S △ PCD =×(x D ﹣ x C ) ×PG=﹣( a ﹣) 2+,∵ 0< a < 3,∴ 当 a=时, S △ PCD 最大,此时点 P (,),将点 P 向左平移个单位至P ′,连结 AP ′,交 y 轴于点 N ,过点 N 作 MN ⊥抛物线对称轴于点M ,连结 PM ,点 Q 沿 P →M →N →A ,运动,所走的路径最短,即最短路径的长为PM+MN+NA的长,∴P (,)∴P ′(,),∵点 A (﹣, 0),∴ 直线 AP ′的分析式为 y=x+ ,当 x=0 时, y=,∴ N ( 0,),过点 P ′作 P ′H ⊥ x 轴于点 H ,∴ AH= , P ′H=, AP ′=,∴ 点 Q 运动得最短路径长为PM+MN+AN=+= ;( 3)在 Rt △ AOC 中,∵ tan ∠OAC== , ∴ ∠ OAC=60 °,∵ OA=OA 1,∴ △ OAA 1 为等边三角形,∴ ∠ AOA 1=60 °,∴ ∠ BOC 1=30°,∵ OC 1=OC=3 ,∴ C 1(,),∵ 点 A (﹣, 0), E (, 4), ∴ AE=2 ,∴ A ′E ′=AE=2 ,∵ 直线 AE 的分析式为y=x+2 ,设点 E ′( a , a+2),∴ A ′( a ﹣ 2,﹣ 2)22+( +2 2 2∴ C 1E ′=( a ﹣ 2) ﹣) =a ﹣ a+7,1 2 2+(﹣ 2﹣) 2 2﹣a+49, C A ′=( a ﹣ 2﹣) =a22① 若 C 1A ′=C 1E ′,则 C 1A ′=C 1E ′22∴ a=,∴ E ′(, 5),② 若 A ′C1=A ′E ′,2 2∴ A ′C 1 =A ′E ′即: a 2﹣ a+49=28,∴ a 1=,a 2=,∴ E ′(, 7+),或(, 7﹣),③ 若 E ′A ′=E ′C 1,2 2∴ E ′A ′=E ′C 1即: a 2﹣ a+7=28,∴ a 1=,a 2=(舍),∴ E ′(, 3+),即,切合条件的点E ′(, 5),(, 7+),或(, 7﹣),(, 3+ ).【评论】 本题是二次函数综合题, 主要考察了函数极值确实定方法, 等边三角形的判断和性质,勾股定理的逆定理, 等腰三角形的性质, 解本题的重点是分类议论, 也是解本题的难点.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中毕业暨高中招生考试数 学 试 卷(全卷共五个大题 满分150分 考试时间120分钟)题 号 一二三四五总分总分人得 分参考公式: 抛物线)0(2≠++=a c bx ax y 的顶点坐标为)44,2(2a b ac a b --,对称轴公式为ab x 2-= 一、选择题 (本大题10个小题,每小题4分,共40分 )在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在题后的括号中.1. 2的倒数是( )A .21 B .-2 C . -21D . 2 2. 计算3x +x 的结果是( ) A . 3x 2B . 2xC . 4xD . 4x 23. 数据 14 ,10 ,12, 13, 11 的中位数是 ( ) A .14B .12C .13D .114. 如图,已知AB 为⊙O 的直径,点C 在⊙O 上,∠C =15°,则∠BOC 的度数为( )A .15°B . 30°C . 45°D .60°5. 已知函数y =11-x 的自变量x 取值范围是( ) A .x ﹥1 B . x ﹤-1 C . x ≠-1 D . x ≠16. 如右下图,是由4个大小相同的正方体搭成的几何体,其俯视图是 ( )7. 不等式2x +3≥5的解集在数轴上表示正确的是( )得 分 评 卷 人ABCO题图4正面题图6ABCDA B C D7题图8. 方程23+x =11+x 的解为( ) A .x =54 B .x = -21 C .x =-2 D .无解9.如图,△ABC 经过怎样的平移得到△DEF ( ) A .把△ABC 向左平移4个单位,再向下平移2个单位 B .把△ABC 向右平移4个单位,再向下平移2个单位 C .把△ABC 向右平移4个单位,再向上平移2个单位 D .把△ABC 向左平移4个单位,再向上平移2个单位10.如图,四边形ABCD 是边长为1 的正方形,四边形EFGH 是边长为2的正方形,点D 与点F 重合,点B ,D (F ),H 在同一条直线上,将正方形ABCD 沿F →H 方向平移至点B 与点H 重合时停止,设点D 、F 之间的距离为x ,正方形ABCD 与正方形EFGH 重叠部分的面积为y ,则能大致反映y 与 x 之间函数关系的图象是( )二、填空题:(本大题6个小题,每小题4分,共24分)在每小题中,请将答案直接填在题后的横线上.11. 2010年我县举行“菜花节”共接待游客约520000人,请将数字520000用科学记数法表示为: .12. △ABC 与△DEF 的相似比为3:4,则△ABC 与△DEF 的周长比为 . 13. 计算:=+312 .14. 一套运动装标价200元,按标价的八折销售,则这套运动装的实际售价为 元.题图9GH E(F)A BCD题图10⎩⎨⎧=-=+.252,20y x y x 15. 如图,在矩形ABCD 中,AB =6 , BC =4, ⊙O 是以AB 为直径的圆,则直线DC 与⊙O 的位置关系是 .16. 如图所示,小明在家里楼顶上的点A 处,测量建在与小明家楼房同一水平线上相邻的电梯楼的高,在点A 处看电梯楼顶部点B 处的仰角为60°,在点A 处看这栋电梯楼底部点C 处的俯角为45°,两栋楼之间的距离为30m ,则电梯楼的高BC 为 米(精确到0.1).(参考数据:414.12≈732.13≈)三、解答题:(本大题4个小题,每小题6分,共24分)解答时每小题必须给出必要的演算过程或推理步骤.17. (6分)计算:(π-3.14)0-|-3|+121-⎪⎭⎫⎝⎛-(-1)2010.18.(6分)解方程组19.(6分)画一个等腰△ABC ,使底边长BC=a ,底边上的高为h (要求:用尺规作图,保留作图痕迹,写出已知,求作,不写作法和证明).得 分 评 卷 人已知:求作:20.(6分)根据市教委提出的学生每天体育锻炼不少于1小时的要求,为确保阳光体育运动时间得到落实,某校对中考学生每天参加体育锻炼的时间作了一次抽样调查,其中部分结果记录如下:频数分布表:请你将频数分布表和频数分布直方图补充完整.四、解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.21.(10分)先化简,再求值:)11(x -÷11222-+-x x x ,其中x =2.22. (10分)“清明节”前夕,我县某校决定从八年级(一)班、(二)班中选一个班去杨闇公烈士陵园扫墓,为了公平,有同学设计了一个方法,其规则如下:在一个不透明的盒子里装有形状、大小、ah5.2频数分布直方图题图20质地等完全相同的3个小球,把它们分别标上数字1、2、3,由(一)班班长从中随机摸出一个小球,记下小球上的数字;在一个不透明口袋中装有形状、大小、质地等完全相同的4个小球,把它们分别标上数字1、2、3、4,由(二)班班长从口袋中随机摸出一个小球,记下小球上的数字,然后计算出这两个数字的和,若两个数字的和为奇数,则选(一)班去;若两个数字的和为偶数,则选(二)班去.(1)用树状图或列表的方法求八年级(一)班被选去扫墓的概率;(2)你认为这个方法公平吗?若公平,请说明理由;若不公平,请设计一个公平的方法.23.(10分)如图, 已知在平面直角坐标系xOy 中,一次函数b kx y +=(k ≠0)的图象与反比例函数x m y =(m ≠0)的图象相交于A 、B 两点,且点B 的纵坐标为21-,过点A 作AC ⊥x 轴于点C , AC =1,OC =2. 求:(1)求反比例函数的解析式;(2)求一次函数的解析式.24.(10分) 如图,四边形ABCD 是边长为2的正方形,点G 是BC 延长线上一点,连结AG ,点E 、F分别在AG 上,连接BE 、DF ,∠1=∠2 , ∠3=∠4.题图23(1)证明:△AB E ≌△DAF ;(2)若∠AGB =30°,求EF 的长.五、解答题:(本大题2个小题,第25小题10分,第26小题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤.25. (10分)某镇道路改造工程,由甲、乙两工程队合作20天可完成.甲工程队单独施工比乙工程队单独施工多用30天完成此项工程.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)若甲工程队独做a 天后,再由甲、乙两工程队合作 天(用含a 的代数式表示)可完成此项工程;(3)如果甲工程队施工每天需付施工费1万元,乙工程队施工每天需付施工费2.5万元,甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使施工费不超过64万元?题图2426.(12分)如图, 已知抛物线c bx x y ++=221与y 轴相交于C ,与x 轴相交于A 、B ,点A 的坐标为(2,0),点C 的坐标为(0,-1). (1)求抛物线的解析式;(2)点E 是线段AC 上一动点,过点E 作DE ⊥x 轴于点D ,连结DC ,当△DCE 的面积最大时,求点D 的坐标;(3)在直线BC 上是否存在一点P ,使△ACP 为等腰三角形,若存在,求点P 的坐标,若不存在,说明理由.题图26潼南县2010年初中毕业暨高中招生考试数学试卷参考答案与评分意见一、1.A 2.C 3.B 4.B 5.D 6.A 7.D 8.B 9.C 10.B二、11. 5.2×105 12. 3:4 13. 3314. 160 15. 相离 16. 82.0三、17. 解:原式=1-3+2-1 ----------------------------5分= -1 ------------------------------------6分18. 解:由①+②,得3x=45x=15------------------------------------------3分把x=15代入①,得15+y=20y=5-----------------------------------------------5分∴这个方程组的解是⎩⎨⎧==515yx---------------------------------------6分19. 已知:线段a、h求作:一个等腰△ABC使底边BC=a,底边BC上的高为h----------------------------------------------1分画图(保留作图痕迹图略)--------------------------6分备用图频数分布直方图t ≤1﹤1.5 10 0.2 t ≤5.1﹤2 50.1 t ≤2﹤2.550.1 合计501四、21. 解:原式=)1)(1()1(12-+-÷-x x x x x -------------4分 2)1()1)(1(1--+⋅-=x x x x x -----------6分 =xx 1+ -----------------8分 当x =2时, 原式=212+=23-----------------10分22. 解: (1)法一:------4分 ------6分解法二:P(和为奇数)=126=21. ----------------------------------8分 (2)公平.理由为:P(和为偶数)=126=21∵P(和为奇数)= P(和为偶数)∴该方法公平----------------------------------------10分 23.解:(1)∵A C ⊥x 轴 AC=1 OC=2∴点A 的坐标为(2,1)------------------------------1分∵反比例函数xmy =的图像经过点A (2,1) ∴ m =2------------------------------------------4分 ∴反比例函数的解析式为xy 2=---------------------5分(2)由(1)知,反比例函数的解析式为xy 2=∵反比例函数x y 2=的图像经过点B 且点B 的纵坐标为-21 ∴点B 的坐标为(-4,-21)---------------------------6分∵一次函数y =kx +b 的图象经过点A (2,1)点B (-4,-21)∴⎪⎩⎪⎨⎧-=+-=+21412b k b k解得:k =41 b =21----------------------------------9分 ∴一次函数的解析式为2141+=x y ----------------------10分24.解:(1)∵四边形ABCD 是正方形∴AB=AD在△ABE 和△DAF 中⎪⎩⎪⎨⎧∠=∠=∠=∠3412DA AB ∴△ABE ≌△DAF -----------------------4分(2)∵四边形ABCD 是正方形∴∠1+∠4=900∵∠3=∠4∴∠1+∠3=900∴∠AFD=900----------------------------6分 在正方形ABCD 中, AD ∥BC∴∠1=∠AGB=300在Rt △ADF 中,∠AFD=900AD=2∴AF=3 DF =1----------------------------------------8分 由(1)得△ABE ≌△ADF ∴AE=DF=1∴EF=AF-AE=13- -----------------------------------------10分五、25. 解:(1)设乙独做x 天完成此项工程,则甲独做(x+30)天完成此项工程.由题意得:20(3011++x x )=1 -----------------2分 整理得:x 2-10x -600=0(解得:x 1=30 x 2=-20 -----------------------------3分 经检验:x 1=30 x 2=-20都是分式方程的解,但x 2=-20不符合题意舍去---------------------------4分x +30=60答:甲、乙两工程队单独完成此项工程各需要60天、30天.----5分(2)设甲独做a 天后,甲、乙再合做(20-3a )天,可以完成 此项工程.-------------------------------------------7分(3)由题意得:1×64)320)(5.21(≤-++a a解得:a ≥36---------------------------------------9分 答:甲工程队至少要独做36天后,再由甲、乙两队合作完成剩下的此项工程,才能使施工费不超过64万元. ---------------------------10分26. 解:(1)∵二次函数c bx x y ++=221的图像经过点A (2,0)C(0,-1) ∴⎩⎨⎧-==++1022c c b解得: b =-21 c =-1-------------------2分 ∴二次函数的解析式为121212--=x x y --------3分 (2)设点D 的坐标为(m ,0) (0<m <2)∴ OD =m ∴AD =2-m由△AD E ∽△AOC 得,OC DE AO AD = --------------4分 ∴122DE m =- ∴DE =22m ------------------------------------5分 ∴△CDE 的面积=21×22m -×m =242m m +-=41)1(412+--m 当m =1时,△CDE 的面积最大∴点D 的坐标为(1,0)--------------------------8分(3)存在 由(1)知:二次函数的解析式为121212--=x x y 设y=0则1212102--=x x 解得:x 1=2 x 2=-1 ∴点B 的坐标为(-1,0) C (0,-1)设直线BC 的解析式为:y =kx +b∴ ⎩⎨⎧-==+-10b b k 解得:k =-1 b =-1∴直线BC 的解析式为: y =-x -1在Rt △AOC 中,∠AOC=900 OA=2 OC=1由勾股定理得:AC=5∵点B(-1,0) 点C (0,-1) ∴OB=OC ∠BCO=450①当以点C 为顶点且PC=AC=5时, 设P(k , -k -1)过点P 作PH ⊥y 轴于H∴∠HCP=∠BCO=450CH=PH=∣k ∣ 在Rt △PCH 中k 2+k 2=()25 解得k 1=210, k 2=-210 ∴P 1(210,-1210-) P 2(-210,1210-)---10分 ②以A 为顶点,即AC=AP=5设P(k , -k -1)过点P 作PG ⊥x 轴于GAG=∣2-k ∣ GP=∣-k -1∣在Rt △APG 中 AG 2+PG 2=AP 2(2-k )2+(-k -1)2=5解得:k 1=1,k 2=0(舍)∴P 3(1, -2) ----------------------------------11分 ③以P 为顶点,PC=AP 设P(k , -k -1) 过点P 作PQ ⊥y 轴于点QPL ⊥x 轴于点L∴L(k ,0)∴△QPC 为等腰直角三角形PQ=CQ=k由勾股定理知CP=PA=2k∴AL=∣k -2∣, PL=|-k -1|在Rt △PLA 中 (2k)2=(k -2)2+(k +1)2解得:k =25∴P 4(25,-27) ------------------------12分 综上所述: 存在四个点:P 1(210,-1210-)P 2(-210,1210 ) P 3(1, -2) P 4(25,-27)。

相关文档
最新文档