2020重庆中考数学试题及复习资料Word版
2020年重庆市中考数学试卷(A卷)答案及解析(Word版)
2020年~2021年最新重庆市中考数学试卷(A 卷)答案及解析一、选择题 (本大题12个小题,每小题4分,共48分。
)1.2的相反数是 A .2- B .12-C .12D .2【答案】A【解析】根据一个数的相反数就是在这个数的前面添加上“-”即可求解 【点评】本题考查了相反数的定义,属于中考中的简单题2.下列图形中一定是轴对称图形的是A.B.C.D.【答案】D【解析】A40°的直角三角形不是对称图形;B 两个角是直角的四边形不一定是轴对称图形;C 平行四边形是中心对称图形不是轴对称图形;D 矩形是轴对称图形,有两条对称轴【点评】此题主要考查基本几何图形中的轴对称图形和中心对称图形,难度系数不大,考生主要注意看清楚题目要求。
3.为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是 A.企业男员工 B.企业年满50岁及以上的员工 C.用企业人员名册,随机抽取三分之一的员工 D.企业新进员工【答案】C【解析】A 调查对象只涉及到男性员工;B 调查对象只涉及到即将退休的员工;D 调查对象只涉及到新进员工【点评】此题主要考查考生对抽样调查中科学选取样本的理解,属于中考当中的简单题。
4.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为A .12B .14C .16D .18【答案】C 【解析】40°直角三角形四边形平行四边形矩形∵第1个图案中的三角形个数为:2+2=2×2=4;第2个图案中的三角形个数为:2+2+2=2×3=6;第3个图案中的三角形个数为:2+2+2+2=2×4=8;……∴第7个图案中的三角形个数为:2+2+2+2+2+2+2+2=2×8=16;【点评】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,从而计算出正确结果。
重庆市2020年中考数学试题A卷及详解(word版)
第一部分:重庆市2020年初中学业水平暨高中招生考试数学试题(A 卷)(1-10)第一部分:重庆市2020年初中学业水平暨高中招生考试数学试题解析(A 卷)(11-25)一、选择题1.下列各数中,最小的数是( )A. -3B. 0C. 1D. 22.下列图形是轴对称图形的是( ) A. B. C. D.3.在今年举行的第127届“广交会”上,有近26000家厂家进行“云端销售”.其中数据26000用科学记数法表示为( )A. 32610⨯B. 32.610⨯C. 42.610⨯D. 50.2610⨯4.把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形,…,按此规律排列下去,则第⑤个图案中黑色三角形的个数为( )A. 10B. 15C. 18D. 21 5.如图,AB 是O 的切线,A 切点,连接OA ,OB ,若20B ∠=︒,则AOB ∠的度数为( )A. 40°B. 50°C. 60°D. 70°6.下列计算中,正确的是( ) A. 235= B. 2222+= C. 236= D. 2323=7.解一元一次方程11(1)123x x +=-时,去分母正确的是( ) A. 3(1)12x x +=-B. 2(1)13x x +=-C. 2(1)63x x +=-D. 3(1)62x x +=-8.如图,在平面直角坐标系中,ABC 的顶点坐标分别是(1,2)A ,(1,1)B ,(3,1)C ,以原点为位似中心,在原点的同侧画DEF ,使DEF 与ABC 成位似图形,且相似比为2:1,则线段DF 的长度为( )A. 5B. 2C. 4D. 259.如图,在距某居民楼AB 楼底B 点左侧水平距离60m 的C 点处有一个山坡,山坡CD 的坡度(或坡比)1:0.75i =,山坡坡底C 点到坡顶D 点的距离45m CD =,在坡顶D 点处测得居民楼楼顶A 点的仰角为28°,居民楼AB 与山坡CD 的剖面在同一平面内,则居民楼AB 的高度约为( )(参考数据:sin 280.47︒≈,cos280.88︒≈,tan 280.53︒≈)A. 76.9mB. 82.1mC. 94.8mD. 112.6m10.若关于x 的一元一次不等式结3132x x x a-⎧≤+⎪⎨⎪≤⎩的解集为x a ≤;且关于y 的分式方程34122y a y y y --+=--有正整数解,则所有满足条件的整数a 的值之积是( )A. 7B. -14C. 28D. -5611.如图,三角形纸片ABC ,点D 是BC 边上一点,连接AD ,把ABD △沿着AD 翻折,得到AED ,DE与AC 交于点G ,连接BE 交AD 于点F .若DG GE =,3AF =,2BF =,ADG 的面积为2,则点F 到BC 的距离为( )A. 5B. 25C. 45D. 43 12.如图,在平面直角坐标系中,矩形ABCD 的对角线AC 的中点与坐标原点重合,点E 是x 轴上一点,连接AE .若AD 平分OAE ∠,反比例函数(0,0)k y k x x=>>的图象经过AE 上的两点A ,F ,且AF EF =,ABE △的面积为18,则k 的值为( )A. 6B. 12C. 18D. 24二、填空题13.计算:0(1)|2|π-+-=__________.14.一个多边形的内角和是外角和的2倍,则这个多边形的边数为________.15.现有四张正面分别标有数字﹣1,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背而面朝上洗均匀,随机抽取一张,记下数字后放回..,背面朝上洗均匀,再随机抽取一张记下数字,前后两次抽取的数字分别记为m ,n ,则点P (m ,n )在第二象限的概率为__________.16.如图,在边长为2的正方形ABCD 中,对角线AC 的中点为O ,分别以点A ,C 为圆心,以AO 的长为半径画弧,分别与正方形的边相交.则图中的阴影部分的面积为__________.(结果保留π)17.A ,B 两地相距240 km ,甲货车从A 地以40km/h 的速度匀速前往B 地,到达B 地后停止,在甲出发的同时,乙货车从B 地沿同一公路匀速前往A 地,到达A 地后停止,两车之间的路程y (km )与甲货车出发时间x (h )之间的函数关系如图中的折线CD DE EF --所示.其中点C 的坐标是()0240,,点D 的坐标是()2.40,,则点E 的坐标是__________.18.火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3:5:2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加的营业额占总增加的营业额的25,则摆摊的营业额将达到7月份总营业额的720,为使堂食、外卖7月份的营业额之比为8:5,则7月份外卖还需增加的营业额与7月份总营业额之比是__________.三、解答题19.计算:(1)2()(2)x y x x y ++-; (2)2291369m m m m m -⎛⎫-÷ ⎪+++⎝⎭.20.为了解学生掌握垃圾分类知识的情况,增强学生环保意识,某学校举行了“垃圾分类人人有责”的知识测试活动,现从该校七、八年级中各随机抽取20名学生的测试成绩(满分10分,6分及6分以上为合格)进行整理、描述和分析,下面给出了部分信息.七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6.七、八年级抽取的学生的测试成绩的平均数、众数、中位数、8分及以上人数所占百分比如下表所示:年级平均数众数中位数8分及以上人数所占百分比七年级7.5 a 7 45%八年级7.5 8 b c八年级20名学生的测试成绩条形统计图如图:根据以上信息,解答下列问题:(1)直接写出上述表中的a,b,c的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握垃圾分类知识较好?请说明理由(写出一条理由即可);(3)该校七、八年级共1200名学生参加了此次测试活动,估计参加此次测试活动成绩合格学生人数是多少?21.如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,分别过点A ,C 作AE BD ⊥,CF BD ⊥,垂足分别为E ,F .AC 平分DAE ∠.(1)若50AOE ∠=︒,求ACB ∠的度数;(2)求证:AE CF =.22.在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数261x y x =+性质及其应用的部分过程,请按要求完成下列各小题. (1)请把下表补充..完整,并在图中补全..该函数图象; x… -5 -4 -3 -2 -1 0 1 2 3 4 5 … 261x y x =+ … 1513- 2417- 125- -3 0 3 125 2417 1513 …(2)根据函数图象,判断下列关于该函数性质的说法是否正确,正确的在相应的括号内打“√”,错误的在相应的括号内打“×”;①该函数图象是轴对称图形,它的对称轴为y 轴;( )②该函数在自变量的取值范围内,有最大值和最小值,当1x =时,函数取得最大值3;当1x =-时,函数取得最小值-3;( )③当1x <-或1x >时,y 随x 的增大而减小;当11x -<<时,y 随x 的增大而增大;( )(3)已知函数21y x =-的图象如图所示,结合你所画的函数图象,直接写出不等式26211x x x >-+的解集(保留1位小数,误差不超过0.2).23.在整数的除法运算中,只有能整除与不能整除两种情况,当不能整除时,就会产生余数,现在我们利用整数的除法运算来研究一种数——“差一数”.定义:对于一个自然数,如果这个数除以5余数为4,且除以3余数为2,则称这个数为“差一数”. 例如:14524÷=,14342÷=,所以14是“差一数”;19534÷=,但19361÷=,所以19不“差一数”.(1)判断49和74是否为“差一数”?请说明理由;(2)求大于300且小于400的所有“差一数”.24.为响应“把中国人的饭碗牢牢端在自己手中”的号召,确保粮食安全,优选品种,提高产量,某农业科技小组对A、B两个玉米品种进行实验种植对比研究.去年A、B两个品种各种植了10亩.收获后A、B两个品种的售价均为2.4元/kg,且B品种的平均亩产量比A品种高100千克,A、B两个品种全部售出后总收入为21600元.(1)求A、B两个品种去年平均亩产量分别是多少千克?(2)今年,科技小组优化了玉米的种植方法,在保持去年种植面积不变的情况下,预计A、B两个品种平均亩产量将在去年的基础上分别增加a%和2a%.由于B品种深受市场欢迎,预计每千克售价将在去年的基础上上涨a%,而A品种的售价保持不变,A、B两个品种全部售出后总收人将增加20%9a,求a的值.25.如图,在平面直角坐标系中,已知抛物线2y x bx c =++与直线AB 相交于A ,B 两点,其中()3,4A --,()0,1B -.(1)求该抛物线的函数表达式;(2)点P 为直线AB 下方抛物线上的任意一点,连接PA ,PB ,求PAB △面积的最大值;(3)将该抛物线向右平移2个单位长度得到抛物线()211110y a x b x c a =++≠,平移后的抛物线与原抛物线相交于点C ,点D 为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点E ,使以点B ,C ,D ,E 为顶点的四边形为菱形,若存在,请直接写出点E 的坐标;若不存在,请说明理由.26.如图,在Rt ABC 中,90BAC ∠=︒,AB AC =,点D 是BC 边上一动点,连接AD ,把AD 绕点A 逆时针旋转90°,得到AE ,连接CE ,DE .点F 是DE 的中点,连接CF .(1)求证:2CF AD =; (2)如图2所示,在点D 运动的过程中,当2BD CD =时,分别延长CF ,BA ,相交于点G ,猜想AG 与BC 存在的数量关系,并证明你猜想的结论;(3)在点D 运动的过程中,在线段AD 上存在一点P ,使PA PB PC ++的值最小.当PA PB PC ++的值取得最小值时,AP 的长为m ,请直接用含m 的式子表示CE 的长.重庆市2020年初中学业水平暨高中招生考试数学试题(A 卷)解析一、选择题1、有理数的大小比较法则:正数大于0,负数小于0,正数大于一切负数;两个负数,绝对值大的反而小.【详解】∵3012-<<<,∴最小的数是-3,故选:A .2、根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A 、是轴对称图形,故本选项正确;B 、不是轴对称图形,故本选项错误;C 、不是轴对称图形,故本选项错误;D 、不是轴对称图形,故本选项错误;故选:A .3、科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】42.62600010⨯=,故选:C .4、根据前三个图案中黑色三角形的个数得出第n 个图案中黑色三角形的个数为1+2+3+4+……+n ,据此可得第⑤个图案中黑色三角形的个数.【详解】解:∵第①个图案中黑色三角形的个数为1,第②个图案中黑色三角形的个数3=1+2,第③个图案中黑色三角形的个数6=1+2+3,……∴第⑤个图案中黑色三角形的个数为1+2+3+4+5=15,故选:B .5、根据切线的性质可得90?OAB ∠=,再根据三角形内角和求出AOB ∠.【详解】∵AB 是O 的切线 ∴90?OAB ∠=∵20B ∠=︒∴18070AOB OAB B ∠=︒-∠-∠=︒故选D.6、根据同类二次根式的概念与二次根式的乘法逐一判断可得答案.【详解】解:AB .2不是同类二次根式,不能合并,此选项计算错误;C ==D .2不是同类二次根式,不能合并,此选项错误;故选:C .7、根据等式的基本性质将方程两边都乘以6可得答案.【详解】解:方程两边都乘以6,得:3(x +1)=6﹣2x ,故选:D .8、把A 、C 的横纵坐标都乘以2得到D 、F 的坐标,然后利用两点间的距离公式计算线段DF 的长.【详解】解:∵以原点为位似中心,在原点的同侧画△DEF ,使△DEF 与△ABC 成位似图形,且相似比为2:1,而A (1,2),C (3,1),∴D (2,4),F (6,2),∴DF故选:D .9、构造直角三角形,利用坡比的意义和直角三角形的边角关系,分别计算出DE 、EC 、BE 、DF 、AF ,进而求出AB .【详解】解:如图,由题意得,∠ADF =28°,CD =45,BC =60,在Rt DEC中,∵山坡CD的坡度i=1:0.75,∴DEEC=10.75=43,设DE=4x,则EC=3x,由勾股定理可得CD=5x,又CD=45,即5x=45,∴x=9,∴EC=3x=27,DE=4x=36=FB,∴BE=BC+EC=60+27=87=DF,在Rt ADF中,AF=tan28°×DF≈0.53×87≈46.11,∴AB=AF+FB=46.11+36≈82.1,故选:B.10、不等式组整理后,根据已知解集确定出a的范围,分式方程去分母转化为正整数方程,由分式方程有非负整数解,确定出a的值,求出之和即可.【详解】解:解不等式3132xx-≤+,解得x≤7,∴不等式组整理的7 xx a≤≤⎧⎨⎩,由解集为x≤a,得到a≤7,分式方程去分母得:y−a+3y−4=y−2,即3y−2=a,解得:y=+23a,由y为正整数解,得到a=1,7,1×7=7,故选:A.11、首先求出ABD 的面积.根据三角形的面积公式求出DF ,设点F 到BD 的距离为h ,根据12•BD •h =12•BF •DF ,求出BD 即可解决问题. 【详解】解:∵DG =GE ,∴S △ADG =S △AEG =2,∴S △ADE =4,由翻折可知,ADB ≌ADE ,BE ⊥AD ,∴S △ABD =S △ADE =4,∠BFD =90°,∴12•(AF +DF )•BF =4, ∴12•(3+DF )•2=4, ∴DF =1,∴DB =22BF DF +=2212+=5,设点F 到BD 的距离为h ,则12•BD •h =12•BF •DF , ∴h =25, 故选:B .12、先证明OB ∥AE ,得出S △ABE =S △OAE =18,设A 的坐标为(a ,k a ),求出F 点的坐标和E 点的坐标,可得S △OAE =12×3a ×k a=18,求解即可. 【详解】解:如图,连接BD ,∵四边形ABCD 为矩形,O 为对角线,∴AO=OD ,∴∠ODA=∠OAD ,又∵AD 为∠DAE 的平分线,∴∠OAD=∠EAD ,∴∠EAD=∠ODA ,∴OB ∥AE ,∵S △ABE =18,∴S △OAE =18,设A 的坐标为(a ,k a ), ∵AF=EF ,∴F 点的纵坐标为2k a, 代入反比例函数解析式可得F 点的坐标为(2a ,2k a ), ∴E 点的坐标为(3a ,0),S △OAE =12×3a ×k a=18, 解得k=12,故选:B .二、填空题13、根据零指数幂及绝对值计算即可.【详解】0(1)|2|1+2=3π-+-=;故答案为3.14、由多边形的外角和等于360°,可得多边形的内角和为720°,根据多边形的内角和公式,即可求解.【详解】∵多边形的外角和是360度,多边形的内角和是外角和的2倍,∴内角和是720度,∵720÷180+2=6, ∴这个多边形是六边形.故答案为:6.15、画树状图展示所有16种等可能结果数,利用第二象限内点的坐标特征确定点P (m ,n )在第二象限的结果数,然后根据概率公式求解.【详解】解:画树状图:共有16种等可能的结果数,其中点P (m ,n )在第二象限的结果数为3,所以点P (m ,n )在第二象限的概率=316. 故答案为:316. 16、根据图形可得S 2ABCD S S =-阴影扇形,由正方形的性质可求得扇形的半径,利用扇形面积公式求出扇形的面积,即可求出阴影部分面积.【详解】由图可知,S 2ABCD S S =-阴影扇形,224ABCD S =⨯=,∵四边形ABCD 是正方形,边长为2, ∴=22AC∵点O 是AC 的中点,∴2, ∴2902)3602S ππ︒==︒扇形, ∴S 2=4-ABCD S S π=-阴影扇形,故答案为:4π-.17、先根据CD 段的求出乙货车的行驶速度,再根据两车的行驶速度分析出点E 表示的意义,由此即可得出答案.【详解】设乙货车的行驶速度为/akm h由题意可知,图中的点D 表示的是甲、乙货车相遇点C 的坐标是()0,240,点D 的坐标是()2.4,0∴此时甲、乙货车行驶的时间为2.4h ,甲货车行驶的距离为40 2.496()km ⨯=,乙货车行驶的距离为24096144()km -=∴144 2.460(/)a km h =÷=∴乙货车从B 地前往A 地所需时间为240604()h ÷=由此可知,图中点E 表示的是乙货车行驶至A 地,EF 段表示的是乙货车停止后,甲货车继续行驶至B 地 则点E 的横坐标为4,纵坐标为在乙货车停止时,甲货车行驶的距离,即404160⨯=即点E 的坐标为(4,160)故答案为:(4,160).18、先根据题意设出相应的未知数,再结合题目的等量关系列出相应的方程组,最后求解即可求得答案.【详解】解:设6月份该火锅店堂食、外卖、摆摊三种方式的营业额分别为3k ,5k ,2k ,7月份总增加的营业额为m ,则7月份摆摊增加的营业额为25m ,设7月份外卖还需增加的营业额为x . ∵7月份摆摊的营业额是总营业额的720,且7月份的堂食、外卖营业额之比为8:5, ∴7月份的堂食、外卖、摆摊三种方式的营业额之比为8:5:7,∴设7月份的堂食、外卖、摆摊三种方式的营业额分别为8a ,5a ,7a , 由题意可知:3385552275k m x a k x am k a ⎧+-=⎪⎪+=⎨⎪⎪+=⎩ , 解得:125215k a x a m a ⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩, ∴512857208a x a a a a ==++, 故答案为:18. 三、解答题 19、(1)利用完全平方公式和整式乘法展开后合并同类型即可; (2)先把分子分母因式分解,然后按顺序计算即可;【详解】(1)解:原式22222x xy y x xy =+++-222x y =+(2)解:原式23(3)3(3)(3)m m m m m m +-+=⋅++- 23(3)3(3)(3)m m m m +=⋅++- 33m =- 20、(1)七年级20名学生的测试成绩的众数找出现次数最多的即可得出a 的值,由条形统计图即可得出八年级抽取的学生的测试成绩的中位数,八年级8分及以上人数除以总人数20人即可得出c 的值;(2)分别比较七年级和八年级的平均数、众数、中位数、8分及以上人数所占百分比即可得出结论;(3)用七八年级的合格总人数除以总人数40人,得到这两个年级测试活动成绩合格的百分比,再乘以1200即可得出答案.【详解】解:(1)七年级20名学生的测试成绩的众数是:7,∴7a =, 由条形统计图可得,八年级抽取的学生的测试成绩的中位数是:787.52+=, ∴7.5b =,八年级8分及以上人数有10人,所占百分比为:50%∴50%c =,(2)八年级学生掌握垃圾分类知识较好,理由:根据以上数据,七、八年级的平均数相同,八年级的众数、中位数、8分及以上人数所占百分比比七年级的高;(3)七年级合格人数:18人,八年级合格人数:18人, 181********%108040+⨯⨯=人, 答:估计参加此次测试活动成绩合格的人数有1080人.21、(1)利用三角形内角和定理求出EAO ∠,利用角平分线的定义求出DAC ∠,再利用平行线的性质解决问题即可.(2)证明()AEOCFO AAS 可得结论. 【详解】(1)解:AE BD ⊥,90AEO ∴∠=︒,50AOE, 40EAO , CA 平分DAE ∠,40DAC EAO ,四边形ABCD 是平行四边形,//AD BC ∴,40ACB DAC ∠=∠=︒,(2)证明:四边形ABCD 是平行四边形,OA OC ∴=,AE BD ⊥,CF BD ⊥,90AEO CFO ,AOE COF ∠=∠,()AEO CFO AAS ,AE CF ∴=.22、(1)代入x=3和x=-3即可求出对应的y 值,再补全函数图象即可; (2)结合函数图象可从增减性及对称性进行判断;(3)根据图象求解即可.【详解】解:(1)当x=-3时,2618911x y x -==++95=-, 当x=3时,2618911x y x ===++95, 函数图象如下:(2)①由函数图象可得它是中心对称图形,不是轴对称图形;故答案为:×, ②结合函数图象可得:该函数在自变量的取值范围内,有最大值和最小值,当1x =时,函数取得最大值3;当1x =-时,函数取得最小值-3;故答案为:√ ,③观察函数图象可得:当1x <-或1x >时,y 随x 的增大而减小;当11x -<<时,y 随x 的增大而增大; 故答案为:√.(3)1x <-,0.28 1.78(0.280.2 1.780.2)x x -<<-±<<±26211x x x =-+时,()2(1)2310x x x +--=得11x =-,2 1.8x =≈,30.3x ≈-, 故该不等式的解集为: x <−1或−0.3<x <1.8.23、(1)直接根据“差一数”的定义计算即可; (2)根据“差一数”的定义可知被5除余4的数个位数字为4或9;被3除余2的数各位数字之和被3除余2,由此可求得大于300且小于400的所有“差一数”.【详解】解:(1)∵49594÷=;493161÷=,∴49不是“差一数”,∵745144÷=;743242÷=, ∴74是“差一数”;(2)∵“差一数”这个数除以5余数为4,∴“差一数”这个数的个位数字为4或9,∴大于300且小于400的符合要求的数为304、309、314、319、324、329、334、339、344、349、354、359、364、369、374、379、384、389、394、399,∵“差一数”这个数除以3余数为2,∴“差一数”这个数的各位数字之和被3除余2,∴大于300且小于400的所有“差一数”为314、329、344、359、374、389.24、(1)设A 、B 两个品种去年平均亩产量分别是x 、y 千克,根据题意列出方程组,解方程组即可得到答案;(2)根据题意分别表示A 品种、B 品种今年的收入,利用总收入等于A 品种、B 品种今年的收入之和,列出一元二次方程求解即可得到答案.【详解】(1)设A 、B 两个品种去年平均亩产量分别是x 、y 千克,由题意得1002.410 2.41021600y x x y =+⎧⎨⨯+⨯=⎩,解得400500x y =⎧⎨=⎩. 答:A .B 两个品种去年平均亩产量分别是400、500千克(2)根据题意得:()()()20244001%241%50012%216001%9a a a a ⎛⎫⨯+++⨯+=+ ⎪⎝⎭. 令a %=m ,则方程化为:()()()20244001241500122160019m m m m ⎛⎫⨯+++⨯+=+ ⎪⎝⎭. 整理得10m 2-m =0,解得:m 1=0(不合题意,舍去),m 2=0.1所以a %=0.1,所以a =10,答:a 的值为10.25、(1)将点A 、B 的坐标代入抛物线表达式,即可求解; (2)设AB y kx b =+,求得解析式,过点P 作x 轴得垂线与直线AB 交于点F ,设点()2,41P a a a +-,则(,1)F a a -,1||2PAB B A S PF x x ∆=⋅-23327228a ⎛⎫=-++ ⎪⎝⎭,即可求解; (3)分BC 为菱形的边、菱形的的对角线两种情况,分别求解即可.【详解】解:(1)∵抛物线过(3,4)A --,(0,1)B -∴9341b c c -+=-⎧⎨=-⎩∴41b c =⎧⎨=-⎩ ∴241y x x =+-(2)设AB y kx b =+,将点()3,4A --(0,1)B -代入AB y∴1AB y x =-过点P 作x 轴得垂线与直线AB 交于点F设点()2,41P a a a +-,则(,1)F a a - 由铅垂定理可得 1||2PAB B A SPF x x ∆=⋅- ()231412a a a =---+ ()2332a a =-- 23327228a ⎛⎫=-++ ⎪⎝⎭ ∴PAB △面积最大值为278(3)(3)抛物线的表达式为:y =x 2+4x−1=(x +2)2−5,则平移后的抛物线表达式为:y =x 2−5,联立上述两式并解得:14x y -⎧⎨-⎩==,故点C (−1,−4);设点D (−2,m )、点E (s ,t ),而点B 、C 的坐标分别为(0,−1)、(−1,−4);①当BC 为菱形的边时,点C 向右平移1个单位向上平移3个单位得到B ,同样D (E )向右平移1个单位向上平移3个单位得到E(D ),即−2+1=s 且m +3=t ①或−2−1=s 且m−3=t ②,当点D 在E 的下方时,则BE =BC ,即s 2+(t +1)2=12+32③,当点D 在E 的上方时,则BD =BC ,即22+(m +1)2=12+32④,联立①③并解得:s =−1,t =2或−4(舍去−4),故点E (−1,2);联立②④并解得:s =-3,t =,故点E (-3,-4)或(-3,-);②当BC 为菱形的的对角线时,则由中点公式得:−1=s−2且−4−1=m +t ⑤,此时,BD =BE ,即22+(m +1)2=s 2+(t +1)2⑥,联立⑤⑥并解得:s =1,t =−3,故点E (1,−3),综上,点E 的坐标为:(−1,2)或(34--,,或(34--,或(1,−3).∴存在,1234(12)(34(34(13)E E E E ---+----,,,,,, 26、(1)先证△BAD ≌△CAE ,可得∠ABD =∠ACE =45°,可求∠BCE =90°,由直角三角形的性质和等腰直角三角形的性质可得结论;(2)由(1)得ABD ACE ∆≅∆,CE BD =,45ACE ABD ︒∠=∠=,推出454590DCB BCA ACE ︒︒︒∠=∠+∠=+=,然后根据现有条件说明在Rt DCB △中,DE ==,点A ,D ,C ,E 四点共圆,F 为圆心,则CF AF =,在Rt AGC中,推出AG =,即可得出答案; (3)设点P 存在,由费马定理可得120APB BPC CPA ∠=∠=∠=︒,设PD 为a ,得出BD =,AD BD =,得出a m +=,解出a ,根据BD CE =即可得出答案.【详解】解:(1)证明如下:∵90BAC DAE ∠=∠=︒,∴BAD CAE ∠=∠,∵AB AC =,AD AE =,∴在ABD △和ACE △中BAD CAE AB AC AD AE ∠=∠⎧⎪=⎨⎪=⎩,∴ABD ACE ∆≅∆,∴45ABD ACE ∠=∠=︒,∴90DCE ACB ACE ∠︒=∠+∠=,在Rt ADE 中,F 为DE 中点(同时AD AE =),45ADE AED ∠=∠=︒, ∴AF DE ⊥,即Rt ADF 为等腰直角三角形, ∴22AF DF AD ==, ∵CF DF =,∴2CF AD =; (2)由(1)得ABD ACE ∆≅∆,CE BD =,45ACE ABD ︒∠=∠=, ∴454590DCB BCA ACE ︒︒︒∠=∠+∠=+=,在Rt DCB △中,22225DE CD CE CD BD CD =+=+=,∵F 为DE 中点,∴152DE EF DE CD ===, 在四边形ADCE 中,有90CAG DCE ︒∠=∠=,180CZG DCE ︒∠+∠=, ∴点A ,D ,C ,E 四点共圆,∵F 为DE 中点,∴F 为圆心,则CF AF =,在Rt AGC 中,∵CF AF =,∴F 为CG 中点,即CG 2CF 5CD ==,∴222218254AG CG AC CD CD CD =-=-=, 即32BC AG =;(3)设点P 存在,由费马定理可得120APB BPC CPA ∠=∠=∠=︒,∴60BPD ∠=︒,设PD为a,∴BD=,又AD BD=,∴a m+,=m a1)a=又BD CE∴CE.。
2020年重庆市中考数学试卷-(含答案)
2020年重庆市中考数学试卷一、选择题(共12个小题). 1.下列各数中,最小的数是( ) A .3-B .0C .1D .22.下列图形是轴对称图形的是( )A .B .C .D .3.在今年举行的第127届“广交会”上,有近26000家厂家进行“云端销售”.其中数据26000用科学记数法表示为( ) A .32610⨯B .32.610⨯C .42.610⨯D .50.2610⨯4.把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形,⋯,按此规律排列下去,则第⑤个图案中黑色三角形的个数为( )A .10B .15C .18D .215.如图,AB 是O 的切线,A 为切点,连接OA ,OB ,若20B ∠=︒,则AOB ∠的度数为( )A .40︒B .50︒C .60︒D .70︒6.下列计算中,正确的是( ) A .235+=B .2222+=C .236⨯=D .2323-=7.解一元一次方程11(1)123x x +=-时,去分母正确的是( ) A .3(1)12x x +=- B .2(1)13x x +=-C .2(1)63x x +=-D .3(1)62x x +=-8.如图,在平面直角坐标系中,ABC ∆的顶点坐标分别是(1,2)A ,(1,1)B ,(3,1)C ,以原点为位似中心,在原点的同侧画DEF ∆,使DEF ∆与ABC ∆成位似图形,且相似比为2:1,则线段DF 的长度为( )A .5B .2C .4D .259.如图,在距某居民楼AB 楼底B 点左侧水平距离60m 的C 点处有一个山坡,山坡CD 的坡度(或坡比)1:0.75i =,山坡坡底C 点到坡顶D 点的距离45CD m =,在坡顶D 点处测得居民楼楼顶A 点的仰角为28︒,居民楼AB 与山坡CD 的剖面在同一平面内,则居民楼AB 的高度约为(参考数据:sin 280.47︒≈,cos 280.88︒≈,tan 280.53)(︒≈ )A .76.9mB .82.1mC .94.8mD .112.6m10.若关于x 的一元一次不等式组313,2x x x a-⎧+⎪⎨⎪⎩的解集为x a ;且关于y 的分式方程34122y a y y y --+=--有正整数解,则所有满足条件的整数a 的值之积是( ) A .7B .14-C .28D .56-11.如图,三角形纸片ABC ,点D 是BC 边上一点,连接AD ,把ABD ∆沿着AD 翻折,得到AED ∆,DE 与AC 交于点G ,连接BE 交AD 于点F .若DG GE =,3AF =,2BF =,ADG ∆的面积为2,则点F 到BC 的距离为( )A .55B .255C .455D .43312.如图,在平面直角坐标系中,矩形ABCD 的对角线AC 的中点与坐标原点重合,点E 是x 轴上一点,连接AE .若AD 平分OAE ∠,反比例函数(0,0)k y k x x=>>的图象经过AE 上的两点A ,F ,且AF EF =,ABE ∆的面积为18,则k 的值为( )A .6B .12C .18D .24二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.计算:0(1)|2|π-+-= .14.一个多边形的内角和等于它的外角和的2倍,则这个多边形的边数是 .15.现有四张正面分别标有数字1-,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背面朝上洗均匀,随机抽取一张,记下数字后放回,背面朝上洗均匀,再随机抽取一张记下数宇,前后两次抽取的数字分别记为m ,n .则点(,)P m n 在第二象限的概率为 .16.如图,在边长为2的正方形ABCD 中,对角线AC 的中点为O ,分别以点A ,C 为圆心,以AO 的长为半径画弧,分别与正方形的边相交,则图中的阴影部分的面积为 .(结果保留)π17.A ,B 两地相距240km ,甲货车从A 地以40/km h 的速度匀速前往B 地,到达B 地后停止.在甲出发的同时,乙货车从B 地沿同一公路匀速前往A 地,到达A 地后停止.两车之间的路程()y km 与甲货车出发时间()x h 之间的函数关系如图中的折线CD DE EF --所示.其中点C 的坐标是(0,240),点D 的坐标是(2.4,0),则点E 的坐标是 .18.火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3:5:2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加的营业额占总增加的营业额的25,则摆摊的营业额将达到7月份总营业额的720,为使堂食、外卖7月份的营业额之比为8:5,则7月份外卖还需增加的营业额与7月份总营业额之比是 .三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上. 19.(10分)计算: (1)2()(2)x y x x y ++-;(2)229(1)369m m m m m --÷+++. 20.(10分)为了解学生掌握垃圾分类知识的情况,增强学生环保意识.某学校举行了“垃圾分类人人有责”的知识测试活动,现从该校七、八年级中各随机抽取20名学生的测试成绩(满分10分,6分及6分以上为合格)进行整理、描述和分析,下面给出了部分信息.七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6.八年级20名学生的测试成绩条形统计图如图:七、八年级抽取的学生的测试成绩的平均数、众数、中位数、8分及以上人数所占百分比如下表所示:年级 平均数 众数中位数 8分及以上人数所占百分比七年级 7.5 a745% 八年级7.58bc根据以上信息,解答下列问题:(1)直接写出上述表中的a ,b ,c 的值;(2)根据上述数据,你认为该校七、八年级中哪个年级学生掌握垃极分类知识较好?请说明理由(写出一条理由即可);(3)该校七、八年级共1200名学生参加了此次测试活动,估计参加此次测试活动成绩合格的学生人数是多少?21.(10分)如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,分别过点A ,C 作AE BD ⊥,CF BD ⊥,垂足分别为E ,F .AC 平分DAE ∠.(1)若50AOE ∠=︒,求ACB ∠的度数; (2)求证:AE CF =.22.(10分)在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数261xy x =+性质及其应用的部分过程,请按要求完成下列各小题.(1)请把下表补充完整,并在图中补全该函数图象;x⋯ 5- 4-3- 2- 1- 0 1 2 34 5 ⋯261x y x =+ ⋯ 1513- 2417-125- 3- 0 31252417 1513⋯ (2)根据函数图象,判断下列关于该函数性质的说法是否正确,正确的在答题卡上相应的括号内打“√”,错误的在答题卡上相应的括号内打“⨯”; ①该函数图象是轴对称图形,它的对称轴为y 轴.②该函数在自变量的取值范围内,有最大值和最小值.当1x =时,函数取得最大值3;当1x =-时,函数取得最小值3-.③当1x <-或1x >时,y 随x 的增大而减小;当11x -<<时,y 随x 的增大而增大. (3)已知函数21y x =-的图象如图所示,结合你所画的函数图象,直接写出不等式26211xx x >-+的解集(保留1位小数,误差不超过0.2).23.(10分)在整数的除法运算中,只有能整除与不能整除两种情况,当不能整除时,就会产生余数,现在我们利用整数的除法运算来研究一种数-- “差一数”.定义:对于一个自然数,如果这个数除以5余数为4,且除以3余数为2,则称这个数为“差一数”. 例如:14524÷=⋯,14342÷=⋯,所以14是“差一数”; 19534÷=⋯,但19361÷=⋯,所以19不是“差一数”. (1)判断49和74是否为“差一数”?请说明理由; (2)求大于300且小于400的所有“差一数”.24.(10分)“中国人的饭碗必须牢牢掌握在咱们自己手中”.为优选品种,提高产量,某农业科技小组对A ,B 两个小麦品种进行种植对比实验研究.去年A ,B 两个品种各种植了10亩.收获后A ,B 两个品种的售价均为2.4元/kg ,且B 的平均亩产量比A 的平均亩产量高100kg ,A ,B 两个品种全部售出后总收入为21600元.(1)请求出A ,B 两个品种去年平均亩产量分别是多少?(2)今年,科技小组加大了小麦种植的科研力度,在A ,B 种植亩数不变的情况下,预计A ,B 两个品种平均亩产量将在去年的基础上分别增加%a 和2%a .由于B 品种深受市场的欢迎,预计每千克价格将在去年的基础上上涨%a ,而A 品种的售价不变.A ,B 两个品种全部售出后总收入将在去年的基础上增加20%9a .求a 的值. 25.(10分)如图,在平面直角坐标系中,已知抛物线2y x bx c =++与直线AB 相交于A ,B 两点,其中(3,4)A --,(0,1)B -.(1)求该抛物线的函数表达式;(2)点P 为直线AB 下方抛物线上的任意一点,连接PA ,PB ,求PAB ∆面积的最大值;(3)将该抛物线向右平移2个单位长度得到抛物线21111(0)y a x b x c a =++≠,平移后的抛物线与原抛物线相交于点C ,点D 为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点E ,使以点B ,C ,D ,E 为顶点的四边形为菱形,若存在,请直接写出点E 的坐标;若不存在,请说明理由.四、解答题:(本大题1个小题,共8分)解答时必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.26.(8分)如图,在Rt ABC ∆中,90BAC ∠=︒,AB AC =,点D 是BC 边上一动点,连接AD ,把AD 绕点A 逆时针旋转90︒,得到AE ,连接CE ,DE .点F 是DE 的中点,连接CF . (1)求证:22CF AD =; (2)如图2所示,在点D 运动的过程中,当2BD CD =时,分别延长CF ,BA ,相交于点G ,猜想AG 与BC 存在的数量关系,并证明你猜想的结论;(3)在点D 运动的过程中,在线段AD 上存在一点P ,使PA PB PC ++的值最小.当PA PB PC ++的值取得最小值时,AP 的长为m ,请直接用含m 的式子表示CE 的长.2020年重庆市中考数学试卷答案1.A . 2.A . 3.C . 4.B . 5.D . 6.C 7.D 8.D 9.B 10.A 11.B 12.B13.3. 14.6. 15.316. 16.4π-. 17.(4,160). 18.1:8.19.解:(1)2()(2)x y x x y ++-,22222x xy y x xy =+++-, 222x y =+;(2)229(1)369m m m m m --÷+++, 23(3)()33(3)(3)m m m m m m m ++=-⨯+++-, 3333m m m +=⨯+-, 33m =-. 20.解:(1)七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6,7a ∴=,由条形统计图可得,(78)27.5b =+÷=,(523)20100%50%c =++÷⨯=,即7a =,7.5b =,50%c =;(2)八年级学生掌握垃极分类知识较好,理由:八年级的8分及以上人数所占百分比大于七年级,故八年级学生掌握垃极分类知识较好;(3)从调查的数据看,七年级2人的成绩不合格,八年级2人的成绩不合格,∴参加此次测试活动成绩合格的学生有(202)(202)120010802020-+-⨯=+(人),即参加此次测试活动成绩合格的学生有1080人. 21.(1)解:AE BD ⊥,90AEO ∴∠=︒, 50AOE ∠=︒, 40EAO ∴∠=︒, CA 平分DAE ∠,40DAC EAO ∴∠=∠=︒,四边形ABCD 是平行四边形,//AD BC ∴, 40ACB DAC ∠=∠=︒,(2)证明:四边形ABCD 是平行四边形,OA OC ∴=,AE BD ⊥,CF BD ⊥, 90AEO CFO ∴∠=∠=︒,AOE COF ∠=∠,()AEO CFO AAS ∴∆≅∆, AE CF ∴=.22.解:(1)补充完整下表为:x⋯5- 4- 3- 2- 1-0 1 2 3 4 5⋯261xy x =+ ⋯ 1513- 2417-95- 125-3-0 3 125 95 24171513⋯ 画出函数的图象如图:;(2)根据函数图象:①该函数图象是轴对称图形,它的对称轴为y 轴,说法错误;②该函数在自变量的取值范围内,有最大值和最小值.当1x =时,函数取得最大值3;当1x =-时,函数取得最小值3-,说法正确;③当1x <-或1x >时,y 随x 的增大而减小;当11x -<<时,y 随x 的增大而增大,说法正确.(3)由图象可知:不等式26211xx x >-+的解集为1x <-或0.3 1.8-<. 23.解:(1)49594÷=⋯,但493161÷=⋯,所以49不是“差一数”; 745144÷=⋯,743242÷=⋯,所以74是“差一数”. (2)大于300且小于400的数除以5余数为4的有304,309,314,319,324,329,334,339,344,349,354,359,364,369,374,379,384,389,394,399, 其中除以3余数为2的有314,327,344,359,374,389.故大于300且小于400的所有“差一数”有314,327,344,359,374,389. 24.解:(1)设A 、B 两个品种去年平均亩产量分别是x 千克和y 千克;根据题意得,10010 2.4()21600y x x y -=⎧⎨⨯+=⎩,解得:400500x y =⎧⎨=⎩,答:A 、B 两个品种去年平均亩产量分别是400千克和500千克; (2)202.440010(1%) 2.4(1%)50010(12%)21600(1%)9a a a a ⨯⨯+++⨯⨯+=+, 解得:0.1a =, 答:a 的值为0.1.25.解:(1)将点A 、B 的坐标代入抛物线表达式得4931b c c -=-=⎧⎨=-⎩,解得41b c =⎧⎨=-⎩,故抛物线的表达式为:241y x x =+-;(2)设直线AB 的表达式为:y kx t =+,则431k t t -=-+⎧⎨=-⎩,解得11k t =⎧⎨=-⎩,故直线AB 的表达式为:1y x =-, 过点P 作y 轴的平行线交AB 于点H ,设点2(,41)P x x x +-,则(,1)H x x -,PAB ∆面积221139()(141)(03)2222B A S PH x x x x x x x =⨯⨯-=---+⨯+=--, 302-<,故S 有最大值,当32x =-时,S 的最大值为278; (3)抛物线的表达式为:2241(2)5y x x x =+-=+-, 则平移后的抛物线表达式为:25y x =-, 联立上述两式并解得:14x y =-⎧⎨=-⎩,故点(1,4)C --;设点(2,)D m -、点(,)E s t ,而点B 、C 的坐标分别为(0,1)-、(1,4)--; ①当BC 为菱形的边时,点C 向右平移1个单位向上平移3个单位得到B ,同样D (E )向右平移1个单位向上平移3个单位得到E (D ),即21s -+=且3m t +=①或21s --=且3m t -=②,当点D 在E 的下方时,则BE BC =,即2222(1)13s t ++=+③, 当点D 在E 的上方时,则BD BC =,即22222(1)13m ++=+④, 联立①③并解得:1s =-,2t =或4-(舍去4)-,故点(1,3)E -;联立②④并解得:1s =,46t =-±,故点(1,46)E -+或(1,46)--; ②当BC 为菱形的的对角线时,则由中点公式得:12s -=-且41m t --=+⑤, 此时,BD BE =,即22222(1)(1)m s t ++=++⑥, 联立⑤⑥并解得:1s =,3t =-, 故点(1,3)E -,综上,点E 的坐标为:(1,2)-或(1,46)-+或(1,46)--或(1,3)-. 26.证明:(1)AB AC =,90BAC ∠=︒,45ABC ACB ∴∠=∠=︒,把AD 绕点A 逆时针旋转90︒,得到AE ,AD AE ∴=,90DAE BAC ∠=︒=∠, BAD CAE ∴∠=∠,2DE AD =,又AB AC =,()BAD CAE SAS ∴∆≅∆, 45ABD ACE ∴∠=∠=︒, 90BCE BCA ACE ∴∠=∠+∠=︒,点F 是DE 的中点,1222CF DE AD ∴==;(2)26AG BC =, 理由如下:如图2,过点G 作GH BC ⊥于H ,2BD CD =,∴设CD a =,则2BD a =,3BC a =,90BAC ∠=︒,AB AC =,3222BC AB AC a ∴===, 由(1)可知:BAD CAE ∆≅∆,2BD CE a ∴==, CF DF =, FDC FCD ∴∠=∠, tan tan FDC FCD ∴∠=∠, ∴2CE GHCD CH==, 2GH CH ∴=,GH BC ⊥,45ABC ∠=︒, 45ABC BGH ∴∠=∠=︒, BH GH ∴=,2BG BH ∴= 3BH CH BC a +==, CH a ∴=,2BH GH a ==,22BG a ∴=,222226AG BG AB a CD BC ∴=-===; (3)如图31-,将BPC ∆绕点B 顺时针旋转60︒得到BNM ∆,连接PN ,BP BN ∴=,PC NM =,60PBN ∠=︒, BPN ∴∆是等边三角形, BP PN ∴=,PA PB PC AP PN MN ∴++=++,∴当点A ,点P ,点N ,点M 共线时,PA PB PC ++值最小,此时,如图32-,连接MC ,将BPC ∆绕点B 顺时针旋转60︒得到BNM ∆,BP BN ∴=,BC BM =,60PBN CBM ∠=︒=∠, BPN ∴∆是等边三角形,CBM ∆是等边三角形, 60BPN BNP ∴∠=∠=︒,BM CM =, BM CM =,AB AC =,AM ∴垂直平分BC , AD BC ⊥,60BPD ∠=︒,3BD ∴=,AB AC =,90BAC ∠=︒,AD BC ⊥,AD BD ∴=, ∴3PD PD AP =+,312PD +∴=, 3332BD PD +∴==, 由(1)可知:332CE BD +==.。
2020年重庆中考数学复习含根号3的几何题专题训练(Word修改版)
含3的几何题专题训练1、如图,在菱形ABCD中,AC,BD相交于点O,BC=2OC,E为BC边上一点.(1)若CE=6,∠ACE=15°,求BC的长;(2)若F为BO上一点,且BF=EF,G为CE中点,连接FG,AG,求证:AG=3FG.G F ODCEO DABE2、如图1,在ABCD中,BD为对角线,且AB⊥BD,AB=BD.将BD绕点B顺时针旋转060得到BE,连接AE 与∠ABD的角平分线交于点F,连接DF.(1)若AF=2,求CD的长度(2)如图2,以AD为边在ABCD外作△DAG,且∠DGA=60°,连接GF.求证3GFDFEDFEG图1 图23、已知ABCD 中,点P 为AD 上一点,连CP ,交对角线BD 于点E ,使∠EPD=∠EDP ,过点E 作EH ⊥BC 于点H ,点F 为EH 上一点,连接DF 、CF ,且DFC ∆是等边三角形.(1)若13,5,BD DC FH EH ====求DP 的长度;(2)求证:+.3DE EF BC =A4、如图,已知ABCD 中,E 为AD 上一点,连接BE ,CE ,BF 平分EBC ∠交CD 于F.且FH 为EC 的直平分线, 060CBE ∠=.(1)若BF=12,FC=8,求AD 的长度; (2)求证:.BC BE +=A5、在菱形ABCD 中,∠ABC=60°,BD 为菱形的一条对角线.(1)如图1,过A 作AE ⊥BC 于点E,交BD 于点F,若EF=2,求菱形ABCD 的面积;(2)如图2,M 为菱形ABCD 外一点,过A 作AN ⊥BM 交BM 的延长线于点M,连接AM ,DM ,AG ⊥DM 于点G,且∠AMN=∠AMD,求证:3.DM BM AM =+6、如图,平行四边形ABCD 中,DB=DC, 0120BDC ∠=,点M 是底边上一动点,连接DM,以线段DM 为边向线段DM 的右侧作等边△DME,连接BE,点F 是线段BE 中点,连接DF 。
2020年重庆市中考数学试题(word版)(含答案)
2020年重庆市中考数学试题(word 版)(含答案)〔全卷共五个大题,总分值150分,考试时刻120分钟〕题号 一 二 三 四 五 总分 总分人得分参考公式:抛物线y =ax 2+bx +c (a ≠0)的顶点坐标为〔—b 2a ,4ac —b 24a 〕,对称轴公式为x =—b2a. 一、选择题:〔本大题共10个小题,每题4分,共40分〕在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案中,其中只有一个是正确的,请将正确答案的代号填表在题后的括号中. 1.3的倒数是〔〕A .13B .— 13 C .3 D .—32.运算2x 3·x 2的结果是〔〕A .2xB .2x 5C .2x 6D .x 5 3.不等式组⎩⎨⎧>≤-62,31x x 的解集为〔〕A .x >3B .x ≤4C .3<x <4D .3<x ≤44.如图,点B 是△ADC 的边AD 的延长线上一点,DE ∥BC ,假设∠C =50°,∠BDE =60°,那么∠CDB 的度数等于〔〕A .70°B .100°C .110°D .120° 5.以下调查中,适宜采纳全面调查〔普查〕方式的是〔〕A .对全国中学生心理健康现状的调查B .对冷饮市场上冰淇淋质量情形的调查C .对我市市民实施低碳生活情形的调查D .以我国首架大型民用直升机各零部件的检查6.如图,△ABC 是⊙O 的内接三角形,假设∠ABC =70°,那么∠AOC 的度数等于〔〕 A .140° B .130° C .120° D .110° 7.由四个大小相同的正方体组成的几何体如下图,那么它的俯视图是〔〕8.有两个完全重合的矩形,将其中一个始终保持不动,另一个矩形绕其对称中心O 按逆时针方向进行旋转,每次均旋转45°,第1次旋转后得到图①,第2次旋转后得到图②,……,那么第10次旋转后得到的图形与图①~④中相同的是〔〕A .图①B .图②C .图③D .图④9.小华的爷爷每天坚持体育锤炼,某天他慢步到离家较远的绿岛公园,打了一会儿太极拳后跑步回家。
2020年重庆市中考数学试卷(A卷)(含详细解析)
外………………○……_______班级:_内………………○……保密★启用前2020年重庆市中考数学试卷(A 卷)注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 一、单选题1.下列各数中,最小的数是( ) A .-3B .0C .1D .22.下列图形是轴对称图形的是( )A .B .C .D .3.在今年举行的第127届“广交会”上,有近26000家厂家进行“云端销售”.其中数据26000用科学记数法表示为( ) A .32610⨯B .32.610⨯C .42.610⨯D .50.2610⨯4.把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形,…,按此规律排列下去,则第⑤个图案中黑色三角形的个数为( )A .10B .15C .18D .215.如图,AB 是O 的切线,A 切点,连接OA ,OB ,若20B ∠=︒,则AOB ∠的度数为( )○…………外…装…………○…………………○……※※要※※在※※装※※订※※线※※○…………内…装…………○…………………○……A .40°B .50°C .60°D .70°6.下列计算中,正确的是( ) A =B .2+=C =D .27.解一元一次方程11(1)123x x +=-时,去分母正确的是( )A .3(1)12x x +=-B .2(1)13x x +=-C .2(1)63x x +=-D .3(1)62x x +=-8.如图,在平面直角坐标系中,ABC 的顶点坐标分别是(1,2)A ,(1,1)B ,(3,1)C ,以原点为位似中心,在原点的同侧画DEF ,使DEF 与ABC 成位似图形,且相似比为2:1,则线段DF 的长度为( )A B .2 C .4D .9.如图,在距某居民楼AB 楼底B 点左侧水平距离60m 的C 点处有一个山坡,山坡CD 的坡度(或坡比)1:0.75i =,山坡坡底C 点到坡顶D 点的距离45m CD =,在坡顶D 点处测得居民楼楼顶A 点的仰角为28°,居民楼AB 与山坡CD 的剖面在同一平面内,则居民楼AB 的高度约为( )(参考数据:sin 280.47︒≈,cos280.88︒≈,tan 280.53︒≈)…○…………装…………………○…学校:___________姓名:_______考号:___________…○…………装…………………○…10.若关于x的一元一次不等式结3132xxx a-⎧≤+⎪⎨⎪≤⎩的解集为x a≤;且关于y的分式方程34122y a yy y--+=--有正整数解,则所有满足条件的整数a的值之积是()A.7 B.-14 C.28 D.-5611.如图,三角形纸片ABC,点D是BC边上一点,连接AD,把ABD△沿着AD翻折,得到AED,DE与AC交于点G,连接BE交AD于点F.若DG GE=,3AF=,2BF=,ADG的面积为2,则点F到BC的距离为( )A B C D12.如图,在平面直角坐标系中,矩形ABCD的对角线AC的中点与坐标原点重合,点E是x轴上一点,连接AE.若AD平分OAE∠,反比例函数(0,0)ky k xx=>>的图象经过AE上的两点A,F,且AF EF=,ABE△的面积为18,则k的值为()A.6 B.12 C.18 D.24二、填空题13.计算:0(1)|2|π-+-=__________.14.如果一个多边形的内角和等于它的外角和的2倍,那么这个多边形是_____ 边形.15.现有四张正面分别标有数字﹣1,1,2,3的不透明卡片,它们除数字外其余完全…装…………○………○…………不※※要※※在※※装※※※※题※※…装…………○………○…………相同,将它们背而面朝上洗均匀,随机抽取一张,记下数字后放回..,背面朝上洗均匀,再随机抽取一张记下数字,前后两次抽取的数字分别记为m ,n ,则点P (m ,n )在第二象限的概率为__________.16.如图,在边长为2的正方形ABCD 中,对角线AC 的中点为O ,分别以点A ,C 为圆心,以AO 的长为半径画弧,分别与正方形的边相交.则图中的阴影部分的面积为__________.(结果保留π)17.A ,B 两地相距240 km ,甲货车从A 地以40km/h 的速度匀速前往B 地,到达B 地后停止,在甲出发的同时,乙货车从B 地沿同一公路匀速前往A 地,到达A 地后停止,两车之间的路程y (km )与甲货车出发时间x (h )之间的函数关系如图中的折线CD DE EF --所示.其中点C 的坐标是()0240,,点D 的坐标是()2.40,,则点E 的坐标是__________.18.火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3:5:2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加的营业额占总增加的营业额的25,则摆摊的营业额将达到7月份总营业额的720,为使堂食、外卖7月份的营业额之比为8:5,则7月份外卖还需增加的营业额与7月份总营业额之比是__________. 三、解答题19.计算:(1)2()(2)x y x x y ++-; (2)2291m m -⎛⎫-÷⎪.…………○…………名:___________班级:_________…………○…………20.为了解学生掌握垃圾分类知识的情况,增强学生环保意识,某学校举行了“垃圾分类人人有责”的知识测试活动,现从该校七、八年级中各随机抽取20名学生的测试成绩(满分10分,6分及6分以上为合格)进行整理、描述和分析,下面给出了部分信息. 七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6.七、八年级抽取的学生的测试成绩的平均数、众数、中位数、8分及以上人数所占百分比如下表所示:八年级20名学生的测试成绩条形统计图如图:根据以上信息,解答下列问题:(1)直接写出上述表中的a ,b ,c 的值;(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握垃圾分类知识较好?请说明理由(写出一条理由即可);(3)该校七、八年级共1200名学生参加了此次测试活动,估计参加此次测试活动成绩合格的学生人数是多少?21.如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,分别过点A ,C 作AE BD ⊥,CF BD ⊥,垂足分别为E ,F .AC 平分DAE ∠.(1)若50AOE ∠=︒,求ACB ∠的度数; (2)求证:AE CF =.……外…………○……………○……※※请……内…………○……………○……22.在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数261xy x =+性质及其应用的部分过程,请按要求完成下列各小题.(1)请把下表补充..完整,并在图中补全..该函数图象;(2)根据函数图象,判断下列关于该函数性质的说法是否正确,正确的在相应的括号内打“√”,错误的在相应的括号内打“×”;①该函数图象是轴对称图形,它的对称轴为y 轴;( )②该函数在自变量的取值范围内,有最大值和最小值,当1x =时,函数取得最大值3;当1x =-时,函数取得最小值-3;( )③当1x <-或1x >时,y 随x 的增大而减小;当11x -<<时,y 随x 的增大而增大;( ) (3)已知函数21y x =-的图象如图所示,结合你所画的函数图象,直接写出不等式26211xx x >-+的解集(保留1位小数,误差不超过0.2).23.在整数的除法运算中,只有能整除与不能整除两种情况,当不能整除时,就会产生余数,现在我们利用整数的除法运算来研究一种数——“差一数”.定义:对于一个自然数,如果这个数除以5余数为4,且除以3余数为2,则称这个数○…………外…………○…………内…………为“差一数”. 例如:14524÷=,14342÷=,所以14是“差一数”;19534÷=,但19361÷=,所以19不是“差一数”.(1)判断49和74是否为“差一数”?请说明理由; (2)求大于300且小于400的所有“差一数”.24.为响应“把中国人的饭碗牢牢端在自己手中”的号召,确保粮食安全,优选品种,提高产量,某农业科技小组对A 、B 两个玉米品种进行实验种植对比研究.去年A 、B 两个品种各种植了10亩.收获后A 、B 两个品种的售价均为2.4元/kg ,且B 品种的平均亩产量比A 品种高100千克,A 、B 两个品种全部售出后总收入为21600元. (1)求A 、B 两个品种去年平均亩产量分别是多少千克?(2)今年,科技小组优化了玉米的种植方法,在保持去年种植面积不变的情况下,预计A 、B 两个品种平均亩产量将在去年的基础上分别增加a %和2a %.由于B 品种深受市场欢迎,预计每千克售价将在去年的基础上上涨a %,而A 品种的售价保持不变,A 、B 两个品种全部售出后总收人将增加20%9a ,求a 的值. 25.如图,在平面直角坐标系中,已知抛物线2y x bx c =++与直线AB 相交于A ,B 两点,其中()3,4A --,()0,1B -. (1)求该抛物线的函数表达式;(2)点P 为直线AB 下方抛物线上的任意一点,连接PA ,PB ,求PAB △面积的最大值;(3)将该抛物线向右平移2个单位长度得到抛物线()211110y a x b x c a =++≠,平移后的抛物线与原抛物线相交于点C ,点D 为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点E ,使以点B ,C ,D ,E 为顶点的四边形为菱形,若存在,请直接写出点E 的坐标;若不存在,请说明理由.……订…………○…※※内※※答※※题※※……订…………○…26.如图,在Rt ABC 中,90BAC ∠=︒,AB AC =,点D 是BC 边上一动点,连接AD ,把AD 绕点A 逆时针旋转90°,得到AE ,连接CE ,DE .点F 是DE 的中点,连接CF .(1)求证:CF ; (2)如图2所示,在点D 运动的过程中,当2BD CD =时,分别延长CF ,BA ,相交于点G ,猜想AG 与BC 存在的数量关系,并证明你猜想的结论;(3)在点D 运动的过程中,在线段AD 上存在一点P ,使PA PB PC ++的值最小.当PA PB PC ++的值取得最小值时,AP 的长为m ,请直接用含m 的式子表示CE 的长.参考答案1.A【解析】【分析】有理数的大小比较法则:正数大于0,负数小于0,正数大于一切负数;两个负数,绝对值大的反而小.【详解】-<<<,∵3012∴最小的数是-3,故选:A.【点睛】本题考查有理数的大小比较,属于基础应用题,只需熟练掌握有理数的大小比较法则,即可完成.2.A【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误;故选:A.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】42.62600010⨯=,故选:C . 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中 1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 4.B 【解析】 【分析】根据前三个图案中黑色三角形的个数得出第n 个图案中黑色三角形的个数为1+2+3+4+……+n ,据此可得第⑤个图案中黑色三角形的个数. 【详解】解:∵第①个图案中黑色三角形的个数为1, 第②个图案中黑色三角形的个数3=1+2, 第③个图案中黑色三角形的个数6=1+2+3, ……∴第⑤个图案中黑色三角形的个数为1+2+3+4+5=15, 故选:B . 【点睛】本题主要考查图形的变化规律,解题的关键是根据已知图形得出规律:第n 个图案中黑色三角形的个数为1+2+3+4+……+n . 5.D 【解析】 【分析】根据切线的性质可得90?OAB ∠=,再根据三角形内角和求出AOB ∠.∵AB 是O 的切线∴90?OAB ∠=∵20B ∠=︒∴18070AOB OAB B ∠=︒-∠-∠=︒故选D.【点睛】本题考查切线的性质,由切线得到直角是解题的关键.6.C【解析】【分析】根据同类二次根式的概念与二次根式的乘法逐一判断可得答案.【详解】解:AB .2不是同类二次根式,不能合并,此选项计算错误;C ==D .2不是同类二次根式,不能合并,此选项错误;故选:C .【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的乘法法则与同类二次根式的概念.7.D【解析】【分析】根据等式的基本性质将方程两边都乘以6可得答案.【详解】解:方程两边都乘以6,得:3(x +1)=6﹣2x ,【点睛】本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的步骤和等式的基本性质.8.D【解析】【分析】把A、C的横纵坐标都乘以2得到D、F的坐标,然后利用两点间的距离公式计算线段DF的长.【详解】解:∵以原点为位似中心,在原点的同侧画△DEF,使△DEF与△ABC成位似图形,且相似比为2:1,而A(1,2),C(3,1),∴D(2,4),F(6,2),∴DF故选:D.【点睛】本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k.9.B【解析】【分析】构造直角三角形,利用坡比的意义和直角三角形的边角关系,分别计算出DE、EC、BE、DF、AF,进而求出AB.【详解】解:如图,由题意得,∠ADF=28°,CD=45,BC=60,在Rt DEC中,∵山坡CD的坡度i=1:0.75,∴DEEC=10.75=43,设DE=4x,则EC=3x,由勾股定理可得CD=5x,又CD=45,即5x=45,∴x=9,∴EC=3x=27,DE=4x=36=FB,∴BE=BC+EC=60+27=87=DF,在Rt ADF中,AF=tan28°×DF≈0.53×87≈46.11,∴AB=AF+FB=46.11+36≈82.1,故选:B.【点睛】本题考查直角三角形的边角关系,掌握坡比的意义和直角三角形的边角关系是正确计算的前提.10.A【解析】【分析】不等式组整理后,根据已知解集确定出a的范围,分式方程去分母转化为正整数方程,由分式方程有非负整数解,确定出a的值,求出之和即可.【详解】解:解不等式3132xx-≤+,解得x≤7,∴不等式组整理的7 xx a≤⎧⎨≤⎩,由解集为x≤a,得到a≤7,分式方程去分母得:y−a+3y−4=y−2,即3y−2=a,解得:y=+23a,由y为正整数解且y≠2,得到a=1,7,1×7=7,故选:A.【点睛】此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.11.B【解析】【分析】首先求出ABD的面积.根据三角形的面积公式求出DF,设点F到BD的距离为h,根据1 2•BD•h=12•BF•DF,求出BD即可解决问题.【详解】解:∵DG=GE,∴S△ADG=S△AEG=2,∴S△ADE=4,由翻折可知,ADB≌ADE,BE⊥AD,∴S△ABD=S△ADE=4,∠BFD=90°,∴12•(AF+DF)•BF=4,∴12•(3+DF)•2=4,∴DF=1,∴DB设点F到BD的距离为h,则12•BD•h=12•BF•DF,∴h,故选:B.【点睛】本题考查翻折变换,三角形的面积,勾股定理二次根式的运算等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数构建方程解决问题.12.B【解析】【分析】先证明OB ∥AE ,得出S △ABE =S △OAE =18,设A 的坐标为(a ,k a),求出F 点的坐标和E 点的坐标,可得S △OAE =12×3a ×ka =18,求解即可.【详解】解:如图,连接BD ,∵四边形ABCD 为矩形,O 为对角线,∴AO=OD ,∴∠ODA=∠OAD ,又∵AD 为∠DAE 的平分线,∴∠OAD=∠EAD ,∴∠EAD=∠ODA ,∴OB ∥AE ,∵S △ABE =18,∴S △OAE =18,设A 的坐标为(a ,ka ),∵AF=EF ,∴F 点的纵坐标为2ka ,代入反比例函数解析式可得F 点的坐标为(2a ,2k a ), ∴E 点的坐标为(3a ,0),S △OAE =12×3a ×k a=18, 解得k=12,故选:B .【点睛】本题考查了反比例函数和几何综合,矩形的性质,平行线的判定,得出S △ABE =S △OAE =18是解题关键.13.3【解析】【分析】根据零指数幂及绝对值计算即可.【详解】0(1)|2|1+2=3π-+-=;故答案为3.【点睛】本题比较简单,考查含零指数幂的简单实数混合运算,熟记公式0(01)x x =≠是关键. 14.六【解析】【分析】n 边形的内角和可以表示成(n ﹣2)•180°,外角和为360°,根据题意列方程求解.【详解】设多边形的边数为n ,依题意,得:(n ﹣2)•180°=2×360°,解得n =6,故答案为:六.【点睛】本题考查了多边形的内角和计算公式,多边形的外角和.关键是根据题意利用多边形的外角和及内角和之间的关系列出方程求边数.15.316【解析】【分析】画树状图展示所有16种等可能的结果数,利用第二象限内点的坐标特征确定点P (m ,n )在第二象限的结果数,然后根据概率公式求解.【详解】解:画树状图为:共有16种等可能的结果数,其中点P (m ,n )在第二象限的结果数为3,所以点P (m ,n )在第二象限的概率=316. 故答案为:316. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.也考查了点的坐标.16.4π-【解析】【分析】根据图形可得S 2ABCD S S =-阴影扇形,由正方形的性质可求得扇形的半径,利用扇形面积公式求出扇形的面积,即可求出阴影部分面积.【详解】由图可知,S 2ABCD S S =-阴影扇形,224ABCD S =⨯=,∵四边形ABCD 是正方形,边长为2,∴AC∵点O 是AC 的中点,∴,∴2903602S ππ︒==︒扇形, ∴S 2=4-ABCD S S π=-阴影扇形,故答案为:4π-.【点睛】本题考查了求阴影部分面积,扇形面积公式,正方形的性质,解题的关键是观察图形得出S 2ABCD S S =-阴影扇形.17.()4,160【解析】【分析】先根据CD 段的求出乙货车的行驶速度,再根据两车的行驶速度分析出点E 表示的意义,由此即可得出答案.【详解】设乙货车的行驶速度为/akm h由题意可知,图中的点D 表示的是甲、乙货车相遇点C 的坐标是()0,240,点D 的坐标是()2.4,0∴此时甲、乙货车行驶的时间为2.4h ,甲货车行驶的距离为40 2.496()km ⨯=,乙货车行驶的距离为24096144()km -=∴144 2.460(/)a km h =÷=∴乙货车从B 地前往A 地所需时间为240604()h ÷=由此可知,图中点E 表示的是乙货车行驶至A 地,EF 段表示的是乙货车停止后,甲货车继续行驶至B 地则点E 的横坐标为4,纵坐标为在乙货车停止时,甲货车行驶的距离,即404160⨯= 即点E 的坐标为(4,160)故答案为:(4,160).【点睛】本题考查了一次函数的实际应用,读懂函数图象是解题关键.18.18【解析】【分析】先根据题意设出相应的未知数,再结合题目的等量关系列出相应的方程组,最后求解即可求得答案.【详解】解:设6月份该火锅店堂食、外卖、摆摊三种方式的营业额分别为3k ,5k ,2k ,7月份总增加的营业额为m ,则7月份摆摊增加的营业额为25m ,设7月份外卖还需增加的营业额为x . ∵7月份摆摊的营业额是总营业额的720,且7月份的堂食、外卖营业额之比为8:5, ∴7月份的堂食、外卖、摆摊三种方式的营业额之比为8:5:7,∴设7月份的堂食、外卖、摆摊三种方式的营业额分别为8a ,5a ,7a , 由题意可知:3385552275k m x a k x am k a ⎧+-=⎪⎪+=⎨⎪⎪+=⎩ ,解得:125215k a x a m a ⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩, ∴512857208a x a a a a ==++, 故答案为:18. 【点睛】 本题主要考查了三元一次方程组的应用,根据题意设出相应的未知数,结合题目中的等量关系列出方程组是解决本题的关键.19.(1)222x y +;(2)33m - 【解析】【分析】(1)利用完全平方公式和整式乘法展开后合并同类型即可;(2)先把分子分母因式分解,然后按顺序计算即可;【详解】(1)解:原式22222x xy y x xy =+++-222x y =+(2)解:原式23(3)3(3)(3)m m m m m m +-+=⋅++- 23(3)3(3)(3)m m m m +=⋅++- 33m =- 【点睛】本题考查整式的运算和分式的混合运算,熟记运算法则是解题的关键.20.(1)7a =,7.5b =,50%c =;(2)八年级学生掌握垃圾分类知识较好,理由:根据以上数据,七、八年级的平均数相同,八年级的众数、中位数、8分及以上人数所占百分比比七年级的高;(3)估计参加此次测试活动成绩合格的人数有1080人【解析】【分析】(1)七年级20名学生的测试成绩的众数找出现次数最多的即可得出a 的值,由条形统计图即可得出八年级抽取的学生的测试成绩的中位数,八年级8分及以上人数除以总人数20人即可得出c 的值;(2)分别比较七年级和八年级的平均数、众数、中位数、8分及以上人数所占百分比即可得出结论;(3)用七八年级的合格总人数除以总人数40人,得到这两个年级测试活动成绩合格的百分比,再乘以1200即可得出答案.【详解】解:(1)七年级20名学生的测试成绩的众数是:7,∴7a =, 由条形统计图可得,八年级抽取的学生的测试成绩的中位数是:787.52+=, ∴7.5b =,八年级8分及以上人数有10人,所占百分比为:50%∴50%c =,(2)八年级学生掌握垃圾分类知识较好,理由:根据以上数据,七、八年级的平均数相同,八年级的众数、中位数、8分及以上人数所占百分比比七年级的高;(3)七年级合格人数:18人,八年级合格人数:18人, 181********%108040+⨯⨯=人, 答:估计参加此次测试活动成绩合格的人数有1080人.【点睛】本题考查了平均数,众数,中位数,条形统计图等知识,熟练掌握平均数的求法,众数、中位数的概念是解决本题的关键.21.(1)40ACB ∠=︒;(2)见解析【解析】【分析】(1)利用三角形内角和定理求出EAO ∠,利用角平分线的定义求出DAC ∠,再利用平行线的性质解决问题即可.(2)证明()AEOCFO AAS 可得结论. 【详解】(1)解:AE BD ⊥,90AEO ∴∠=︒,50AOE, 40EAO , CA 平分DAE ∠,40DAC EAO ,四边形ABCD 是平行四边形,//AD BC ∴,40ACB DAC ∠=∠=︒,(2)证明:四边形ABCD 是平行四边形,OA OC ∴=,AE BD ⊥,CF BD ⊥,90AEO CFO ,AOE COF ∠=∠,()AEO CFO AAS ,AE CF ∴=.【点睛】本题考查平行四边形的性质,全等三角形的判定和性质等知识,解题的关键是熟练掌握相关的知识点.22.(1)95-,95;(2)①× ②√ ③√;(3)x <−1或−0.3<x <1.8. 【解析】【分析】(1)代入x=3和x=-3即可求出对应的y 值,再补全函数图象即可;(2)结合函数图象可从增减性及对称性进行判断;(3)根据图象求解即可.【详解】解:(1)当x=-3时,2618911x y x -==++95=-, 当x=3时,2618911x y x ===++95, 函数图象如下:(2)①由函数图象可得它是中心对称图形,不是轴对称图形;故答案为:×, ②结合函数图象可得:该函数在自变量的取值范围内,有最大值和最小值,当1x =时,函数取得最大值3;当1x =-时,函数取得最小值-3;故答案为:√ ,③观察函数图象可得:当1x <-或1x >时,y 随x 的增大而减小;当11x -<<时,y 随x 的增大而增大;故答案为:√.(3)1x <-,0.28 1.78(0.280.2 1.780.2)x x -<<-±<<±26211x x x =-+时,()2(1)2310x x x +--=得11x =-,2 1.8x ≈,30.3x =≈-, 故该不等式的解集为: x <−1或−0.3<x <1.8.【点睛】本题主要考查一次函数的图象和性质,一次函数与一元一次不等式,会用描点法画出函数图象,利用数形结合的思想得到函数的性质是解题的关键.23.(1)49不是“差一数”, 74是“差一数”,理由见解析;(2)314、329、344、359、374、389【解析】【分析】(1)直接根据“差一数”的定义计算即可;(2)根据“差一数”的定义可知被5除余4的数个位数字为4或9;被3除余2的数各位数字之和被3除余2,由此可求得大于300且小于400的所有“差一数”.【详解】解:(1)∵49594÷=;493161÷=,∴49不是“差一数”,∵745144÷=;743242÷=, ∴74是“差一数”;(2)∵“差一数”这个数除以5余数为4,∴“差一数”这个数的个位数字为4或9,∴大于300且小于400的符合要求的数为304、309、314、319、324、329、334、339、344、349、354、359、364、369、374、379、384、389、394、399,∵“差一数”这个数除以3余数为2,∴“差一数”这个数的各位数字之和被3除余2,∴大于300且小于400的所有“差一数”为314、329、344、359、374、389.【点睛】此题主要考查了带余数的除法运算,本题用逐步增加条件的方法依此找到满足条件的所有数是解决本题的关键.24.(1)A 品种去年平均亩产量是400、B 品种去年平均亩产量是500千克;(2)10.【解析】【分析】(1)设A 、B 两个品种去年平均亩产量分别是x 、y 千克,根据题意列出方程组,解方程组即可得到答案;(2)根据题意分别表示A 品种、B 品种今年的收入,利用总收入等于A 品种、B 品种今年的收入之和,列出一元二次方程求解即可得到答案.【详解】(1)设A 、B 两个品种去年平均亩产量分别是x 、y 千克,由题意得1002.410 2.41021600y x x y =+⎧⎨⨯+⨯=⎩, 解得400500x y =⎧⎨=⎩. 答:A .B 两个品种去年平均亩产量分别是400、500千克(2)根据题意得:()()()20244001%241%50012%216001%9a a a a ⎛⎫⨯+++⨯+=+ ⎪⎝⎭. 令a %=m ,则方程化为:()()()20244001241500122160019m m m m ⎛⎫⨯+++⨯+=+⎪⎝⎭. 整理得10m 2-m =0,解得:m 1=0(不合题意,舍去),m 2=0.1所以a %=0.1,所以a =10,答:a 的值为10.【点睛】本题考查的是二元一次方程组的应用,一元二次方程的应用,掌握列方程或方程组解应用题的方法与步骤是解题的关键.25.(1)241y x x =+-;(2)PAB △面积最大值为278;(3)存在,1234(12)(34(34(13)E E E E ---+----,,,,,,【解析】【分析】(1)将点A 、B 的坐标代入抛物线表达式,即可求解;(2)设AB y kx b =+,求得解析式,过点P 作x 轴得垂线与直线AB 交于点F ,设点()2,41P a a a +-,则(,1)F a a -,1||2PAB B A S PF x x ∆=⋅-23327228a ⎛⎫=-++ ⎪⎝⎭,即可求解; (3)分BC 为菱形的边、菱形的的对角线两种情况,分别求解即可.【详解】解:(1)∵抛物线过(3,4)A --,(0,1)B -∴9341b c c -+=-⎧⎨=-⎩∴41b c =⎧⎨=-⎩∴241y x x =+-(2)设AB y kx b =+,将点()3,4A --(0,1)B -代入AB y∴1AB y x =-过点P 作x 轴得垂线与直线AB 交于点F设点()2,41P a a a +-,则(,1)F a a - 由铅垂定理可得1||2PAB B A S PF x x ∆=⋅- ()231412a a a =---+ ()2332a a =--23327228a ⎛⎫=-++ ⎪⎝⎭ ∴PAB △面积最大值为278(3)(3)抛物线的表达式为:y =x 2+4x−1=(x +2)2−5,则平移后的抛物线表达式为:y =x 2−5,联立上述两式并解得:14x y -⎧⎨-⎩==,故点C (−1,−4);设点D (−2,m )、点E (s ,t ),而点B 、C 的坐标分别为(0,−1)、(−1,−4); ①当BC 为菱形的边时,点C 向右平移1个单位向上平移3个单位得到B ,同样D (E )向右平移1个单位向上平移3个单位得到E (D ),即−2+1=s 且m +3=t ①或−2−1=s 且m−3=t ②,当点D 在E 的下方时,则BE =BC ,即s 2+(t +1)2=12+32③,当点D 在E 的上方时,则BD =BC ,即22+(m +1)2=12+32④,联立①③并解得:s =−1,t =2或−4(舍去−4),故点E (−1,2);联立②④并解得:s =-3,t =,故点E (-3,-4)或(-3,-); ②当BC 为菱形的的对角线时,则由中点公式得:−1=s−2且−4−1=m +t ⑤,此时,BD =BE ,即22+(m +1)2=s 2+(t +1)2⑥,联立⑤⑥并解得:s =1,t =−3,故点E (1,−3),综上,点E 的坐标为:(−1,2)或(34--,,或(34--,或(1,−3).∴存在,1234(12)(34(34(13)E E E E ---+----,,,,,, 【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、菱形的性质、图形的平移、面积的计算等,其中(3),要注意分类求解,避免遗漏.26.(1)证明见解析;(2)BC =;(3)CE 【解析】【分析】(1)先证△BAD ≌△CAE ,可得∠ABD =∠ACE =45°,可求∠BCE =90°,由直角三角形的性质和等腰直角三角形的性质可得结论;(2)由(1)得ABD ACE ∆≅∆,CE BD =,45ACE ABD ︒∠=∠=,推出454590DCB BCA ACE ︒︒︒∠=∠+∠=+=,然后根据现有条件说明在Rt DCB △中,DE ===,点A ,D ,C ,E 四点共圆,F 为圆心,则CF AF =,在Rt AGC 中,推出2AG ==,即可得出答案;(3)设点P 存在,由费马定理可得120APB BPC CPA ∠=∠=∠=︒,设PD 为a ,得出BD =,AD BD =,得出a m +,解出a ,根据BD CE =即可得出答案.【详解】解:(1)证明如下:∵90BAC DAE ∠=∠=︒,∴BAD CAE ∠=∠,∵AB AC =,AD AE =, ∴在ABD △和ACE △中BAD CAE AB AC AD AE ∠=∠⎧⎪=⎨⎪=⎩,∴ABD ACE ∆≅∆,∴45ABD ACE ∠=∠=︒,∴90DCE ACB ACE ∠︒=∠+∠=,在Rt ADE △中,F 为DE 中点(同时AD AE =),45ADE AED ∠=∠=︒,∴AF DE ⊥,即Rt ADF 为等腰直角三角形,∴2AF DF AD ==, ∵CF DF =,∴CF AD =; (2)由(1)得ABD ACE ∆≅∆,CE BD =,45ACE ABD ︒∠=∠=,∴454590DCB BCA ACE ︒︒︒∠=∠+∠=+=,在Rt DCB △中,DE ==,∵F 为DE 中点,∴12DE EF DE ==, 在四边形ADCE 中,有90CAG DCE ︒∠=∠=,180CZG DCE ︒∠+∠=,∴点A ,D ,C ,E 四点共圆,∵F 为DE 中点,∴F 为圆心,则CF AF =,在Rt AGC 中,∵CF AF =,∴F 为CG 中点,即CG 2CF =,∴AG ===,即BC =;(3)设点P 存在,由费马定理可得120APB BPC CPA ∠=∠=∠=︒,∴60BPD ∠=︒,设PD 为a ,∴BD =,又AD BD =,∴a m +,1)m a =a =又BD CE =∴CE . 【点睛】本题是几何变换综合题,考查了全等三角形的判定和性质,等腰直角三角形的性质,旋转的性质,锐角三角函数等知识,灵活运用所学知识是解本题的关键.。
2020年重庆市中考数学试卷-含详细解析
2020年重庆市中考数学试卷(A卷)含详细解析姓名:___________班级:___________得分:___________一、选择题(本大题共12小题,共48.0分)1.下列各数中,最小的数是()A. −3B. 0C. 1D. 22.下列图形是轴对称图形的是()A. B. C. D.3.在今年举行的第127届“广交会”上,有近26000家厂家进行“云端销售”.其中数据26000用科学记数法表示为()A. 26×103B. 2.6×103C. 2.6×104D. 0.26×1054.把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形,…,按此规律排列下去,则第⑤个图案中黑色三角形的个数为()A. 10B. 15C. 18D. 215.如图,AB是⊙O的切线,A为切点,连接OA,OB,若∠B=20°,则∠AOB的度数为()A. 40°B. 50°C. 60°D. 70°6.下列计算中,正确的是()A. √2+√3=√5B. 2+√2=2√2C. √2×√3=√6D. 2√3−2=√37.解一元一次方程12(x+1)=1−13x时,去分母正确的是()A. 3(x+1)=1−2xB. 2(x+1)=1−3xC. 2(x+1)=6−3xD. 3(x+1)=6−2x8.如图,在平面直角坐标系中,△ABC的顶点坐标分别是A(1,2),B(1,1),C(3,1),以原点为位似中心,在原点的同侧画△DEF,使△DEF与△ABC成位似图形,且相似比为2:1,则线段DF的长度为()A. √5B. 2C. 4D. 2√59.如图,在距某居民楼AB楼底B点左侧水平距离60m的C点处有一个山坡,山坡CD的坡度(或坡比)i=1:0.75,山坡坡底C点到坡顶D点的距离CD=45m,在坡顶D点处测得居民楼楼顶A点的仰角为28°,居民楼AB与山坡CD的剖面在同一平面内,则居民楼AB的高度约为(参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)()A. 76.9mB. 82.1mC. 94.8mD. 112.6m10.若关于x的一元一次不等式组{3x−12≤x+3,x≤a的解集为x≤a;且关于y的分式方程y−a y−2+3y−4y−2=1有正整数解,则所有满足条件的整数a的值之积是()A. 7B. −14C. 28D. −5611.如图,三角形纸片ABC,点D是BC边上一点,连接AD,把△ABD沿着AD翻折,得到△AED,DE与AC交于点G,连接BE交AD于点F.若DG=GE,AF=3,BF=2,△ADG的面积为2,则点F到BC的距离为()A. √55B. 2√55C. 4√55D. 4√3312.如图,在平面直角坐标系中,矩形ABCD的对角线AC的中点与坐标原点重合,点E是x轴上一点,连接AE.若AD平分∠OAE,反比例函数y=kx(k>0,x>0)的图象经过AE上的两点A,F,且AF=EF,△ABE的面积为18,则k的值为()A. 6B. 12C. 18D. 24二、填空题(本大题共6小题,共24.0分)13.计算:(π−1)0+|−2|=______.14. 一个多边形的内角和等于它的外角和的2倍,则这个多边形的边数是______. 15. 现有四张正面分别标有数字−1,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背面朝上洗均匀,随机抽取一张,记下数字后放回,背面朝上洗均匀,再随机抽取一张记下数宇,前后两次抽取的数字分别记为m ,n.则点P(m,n)在第二象限的概率为______.16. 如图,在边长为2的正方形ABCD 中,对角线AC 的中点为O ,分别以点A ,C 为圆心,以AO 的长为半径画弧,分别与正方形的边相交,则图中的阴影部分的面积为______.(结果保留π)17. A ,B 两地相距240km ,甲货车从A 地以40km/ℎ的速度匀速前往B 地,到达B 地后停止.在甲出发的同时,乙货车从B 地沿同一公路匀速前往A 地,到达A 地后停止.两车之间的路程y(km)与甲货车出发时间x(ℎ)之间的函数关系如图中的折线CD −DE −EF 所示.其中点C 的坐标是(0,240),点D 的坐标是(2.4,0),则点E 的坐标是______.18. 火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3:5:2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加的营业额占总增加的营业额的25,则摆摊的营业额将达到7月份总营业额的720,为使堂食、外卖7月份的营业额之比为8:5,则7月份外卖还需增加的营业额与7月份总营业额之比是______. 三、解答题(本大题共8小题,共78.0分) 19. 计算:(1)(x +y)2+x(x −2y);(2)(1−mm+3)÷m 2−9m 2+6m+9.20. 为了解学生掌握垃圾分类知识的情况,增强学生环保意识.某学校举行了“垃圾分类人人有责”的知识测试活动,现从该校七、八年级中各随机抽取20名学生的测试成绩(满分10分,6分及6分以上为合格)进行整理、描述和分析,下面给出了部分信息.七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6.八年级20名学生的测试成绩条形统计图如图:七、八年级抽取的学生的测试成绩的平均数、众数、中位数、8分及以上人数所占百分比如下表所示:年级平均数众数中位数8分及以上人数所占百分比七年级7.5a745%八年级7.58b c根据以上信息,解答下列问题:(1)直接写出上述表中的a,b,c的值;(2)根据上述数据,你认为该校七、八年级中哪个年级学生掌握垃极分类知识较好?请说明理由(写出一条理由即可);(3)该校七、八年级共1200名学生参加了此次测试活动,估计参加此次测试活动成绩合格的学生人数是多少?21.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,分别过点A,C作AE⊥BD,CF⊥BD,垂足分别为E,F.AC平分∠DAE.(1)若∠AOE=50°,求∠ACB的度数;(2)求证:AE=CF.22.在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数y=6xx2+1性质及其应用的部分过程,请按要求完成下列各小题.(1)请把下表补充完整,并在图中补全该函数图象;x…−5−4−3−2−1012345…y=6xx2+1…−1513−2417______ −125−303125______24171513…(2)根据函数图象,判断下列关于该函数性质的说法是否正确,正确的在答题卡上相应的括号内打“√”,错误的在答题卡上相应的括号内打“×”;①该函数图象是轴对称图形,它的对称轴为y轴.②该函数在自变量的取值范围内,有最大值和最小值.当x=1时,函数取得最大值3;当x=−1时,函数取得最小值−3.③当x<−1或x>1时,y随x的增大而减小;当−1<x<1时,y随x的增大而增大.(3)已知函数y=2x−1的图象如图所示,结合你所画的函数图象,直接写出不等式6xx2+1>2x−1的解集(保留1位小数,误差不超过0.2).23.在整数的除法运算中,只有能整除与不能整除两种情况,当不能整除时,就会产生余数,现在我们利用整数的除法运算来研究一种数--“差一数”.定义:对于一个自然数,如果这个数除以5余数为4,且除以3余数为2,则称这个数为“差一数”.例如:14÷5=2…4,14÷3=4…2,所以14是“差一数”;19÷5=3…4,但19÷3=6…1,所以19不是“差一数”.(1)判断49和74是否为“差一数”?请说明理由;(2)求大于300且小于400的所有“差一数”.24.“中国人的饭碗必须牢牢掌握在咱们自己手中”.为优选品种,提高产量,某农业科技小组对A,B两个小麦品种进行种植对比实验研究.去年A,B两个品种各种植了10亩.收获后A,B两个品种的售价均为2.4元/kg,且B的平均亩产量比A 的平均亩产量高100kg,A,B两个品种全部售出后总收入为21600元.(1)请求出A,B两个品种去年平均亩产量分别是多少?(2)今年,科技小组加大了小麦种植的科研力度,在A,B种植亩数不变的情况下,预计A,B两个品种平均亩产量将在去年的基础上分别增加a%和2a%.由于B 品种深受市场的欢迎,预计每千克价格将在去年的基础上上涨a%,而A品种的售a%.求a的价不变.A,B两个品种全部售出后总收入将在去年的基础上增加209值.25.如图,在平面直角坐标系中,已知抛物线y=x2+bx+c与直线AB相交于A,B两点,其中A(−3,−4),B(0,−1).(1)求该抛物线的函数表达式;(2)点P为直线AB下方抛物线上的任意一点,连接PA,PB,求△PAB面积的最大值;(3)将该抛物线向右平移2个单位长度得到抛物线y=a1x2+b1x+c1(a1≠0),平移后的抛物线与原抛物线相交于点C,点D为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点E,使以点B,C,D,E为顶点的四边形为菱形,若存在,请直接写出点E的坐标;若不存在,请说明理由.26.如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D是BC边上一动点,连接AD,把AD绕点A逆时针旋转90°,得到AE,连接CE,DE.点F是DE的中点,连接CF.(1)求证:CF=√2AD;2(2)如图2所示,在点D运动的过程中,当BD=2CD时,分别延长CF,BA,相交于点G,猜想AG与BC存在的数量关系,并证明你猜想的结论;(3)在点D运动的过程中,在线段AD上存在一点P,使PA+PB+PC的值最小.当PA+PB+PC的值取得最小值时,AP的长为m,请直接用含m的式子表示CE的长.答案和解析1.【答案】A【解析】解:∵−3<0<1<2,∴这四个数中最小的数是−3.故选:A.根据正数大于0,0大于负数,正数大于负数,可得答案.本题考查了有理数比较大小,正数大于0,0大于负数,正数大于负数.2.【答案】A【解析】解:B、C、D都不是轴对称图形,A是轴对称图形,故选:A.根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.此题主要考查了轴对称图形,关键是掌握轴对称图形的概念,找出图形的对称轴.3.【答案】C【解析】解:26000=2.6×104,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】B【解析】解:∵第①个图案中黑色三角形的个数为1,第②个图案中黑色三角形的个数3=1+2,第③个图案中黑色三角形的个数6=1+2+3,……∴第⑤个图案中黑色三角形的个数为1+2+3+4+5=15,故选:B.根据前三个图案中黑色三角形的个数得出第n个图案中黑色三角形的个数为1+2+ 3+4+⋯…+n,据此可得第⑤个图案中黑色三角形的个数.本题主要考查图形的变化规律,解题的关键是根据已知图形得出规律:第n个图案中黑色三角形的个数为1+2+3+4+⋯…+n.5.【答案】D【解析】解:∵AB是⊙O的切线,A为切点,∴∠A=90°,∵∠B=20°,∴∠AOB=90°−20°=70°,故选:D.根据切线的性质和三角形的内角和即可得到结论.本题考查了切线的性质,三角形的内角和,熟练掌握切线的性质是解题的关键.6.【答案】C【解析】解:A.√2与√3不是同类二次根式,不能合并,此选项计算错误;B.2与√2不是同类二次根式,不能合并,此选项计算错误;C.√2×√3=√2×3=√6,此选项计算正确;D.2√3与−2不是同类二次根式,不能合并,此选项错误;故选:C.根据同类二次根式的概念与二次根式的乘法逐一判断可得答案.本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的乘法法则与同类二次根式的概念.7.【答案】D【解析】解:方程两边都乘以6,得:3(x+1)=6−2x,故选:D.根据等式的基本性质将方程两边都乘以6可得答案.本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的步骤和等式的基本性质.8.【答案】D【解析】解:∵以原点为位似中心,在原点的同侧画△DEF,使△DEF与△ABC成位似图形,且相似比为2:1,而A(1,2),C(3,1),∴D(2,4),F(6,2),∴DF=√(2−6)2+(4−2)2=2√5.故选:D.把A、C的横纵坐标都乘以2得到D、F的坐标,然后利用两点间的距离公式计算线段DF的长.本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k.9.【答案】B【解析】解:如图,由题意得,∠ADF=28°,CD=45,BC=60,在Rt△DEC中,∵山坡CD的坡度i=1:0.75,∴DEEC =10.75=43,设DE=4x,则EC=3x,由勾股定理可得CD=5x,又CD=45,即5x=45,∴x=9,∴EC=3x=27,DE=4x=36=FB,∴BE=BC+EC=60+27=87=DF,在Rt△ADF中,AF=tan28°×DF≈0.53×87≈46.11,∴AB=AF+FB=46.11+36≈82.1,故选:B.构造直角三角形,利用坡比的意义和直角三角形的边角关系,分别计算出DE、EC、BE、DF、AF,进而求出AB.本题考查直角三角形的边角关系,掌握坡比的意义和直角三角形的边角关系是正确计算的前提.10.【答案】C【解析】解:不等式组整理得:{x ≤7x ≤a,由解集为x ≤a ,得到a ≤7,分式方程去分母得:y −a +3y −4=y −2,即3y −2=a , 解得:y =a+23,由y 为正整数解,得到a =1,4,7 1×4×7=28, 故选:C .不等式组整理后,根据已知解集确定出a 的范围,分式方程去分母转化为正整数方程,由分式方程有非负整数解,确定出a 的值,求出之和即可.此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.11.【答案】B【解析】解:∵DG =GE , ∴S △ADG =S △AEG =2, ∴S △ADE =4,由翻折可知,△ADB≌△ADE ,BE ⊥AD , ∴S △ABD =S △ADE =4,∠BFD =90°, ∴12⋅(AF +DF)⋅BF =4, ∴12⋅(3+DF)⋅2=4,∴DF =1,∴DB =√BF 2+DF 2=√12+22=√5,设点F 到BD 的距离为h ,则有12⋅BD ⋅ℎ=12⋅BF ⋅DF , ∴ℎ=2√55,故选:B .首先求出△ABD 的面积.根据三角形的面积公式求出DF ,设点F 到BD 的距离为h ,根据12⋅BD ⋅ℎ=12⋅BF ⋅DF ,求出BD 即可解决问题.本题考查翻折变换,三角形的面积,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数构建方程解决问题. 12.【答案】B【解析】解:如图,连接BD ,OF ,过点A 作AN ⊥OE 于N ,过点F 作FM ⊥OE 于M .∵AN//FM,AF=FE,∴MN=ME,∴FM=12AN,∵A,F在反比例函数的图象上,∴S△AON=S△FOM=k2,∴12⋅ON⋅AN=12⋅OM⋅FM,∴ON=12OM,∴ON=MN=EM,∴ME=13OE,∴S△FME=13S△FOE,∵AD平分∠OAE,∴∠OAD=∠EAD,∵四边形ABCD是矩形,∴OA=OD,∴∠OAD=∠ODA=∠DAE,∴AE//BD,∴S△ABE=S△AOE,∴S△AOE=18,∵AF=EF,∴S△EOF=12S△AOE=9,∴S△FME=13S△EOF=3,∴S△FOM=S△FOE−S△FME=9−3=6=k2,∴k=12.故选:B.如图,连接BD,OF,过点A作AN⊥OE于N,过点F作FM⊥OE于M.证明BD//AE,推出S△ABE=S△AOE=18,推出S△EOF=12S△AOE=9,可得S△FME=13S△EOF=3,由此即可解决问题.本题考查反比例函数的性质,矩形的性质,平行线的判断和性质,等高模型等知识,解题的关键是证明BD//AE,利用等高模型解决问题,属于中考选择题中的压轴题.13.【答案】3【解析】解:(π−1)0+|−2|=1+2=3,故答案为:3.根据零次幂和绝对值的意义,进行计算即可.本题考查零次幂和绝对值的性质,掌握零次幂和绝对值的性质是正确计算的前提.14.【答案】6【解析】解:设这个多边形的边数为n,依题意,得:(n−2)⋅180°=2×360°,解得n=6.故答案为:6.n边形的内角和可以表示成(n−2)⋅180°,外角和为360°,根据题意列方程求解.本题考查多边形的内角和计算公式,多边形的外角和.关键是根据题意利用多边形的外角和及内角和之间的关系列出方程求边数.15.【答案】316【解析】解:画树状图为:共有16种等可能的结果数,其中点P(m,n)在第二象限的结果数为3,.所以点P(m,n)在第二象限的概率=316.故答案为316画树状图展示所有16种等可能的结果数,利用第二象限内点的坐标特征确定点P(m,n)在第二象限的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了点的坐标.16.【答案】4−π【解析】解:∵四边形ABCD为正方形,∴AB=BC=2,∠DAB=∠DCB=90°,由勾股定理得,AC=√AB2+BC2=2√2,∴OA=OC=√2,∴图中的阴影部分的面积=22−90π×(√2)2×2=4−π,360故答案为:4−π.根据勾股定理求出AC,得到OA、OC的长,根据正方形的面积公式、扇形面积公式计算,得到答案.本题考查的是扇形面积计算、正方形的性质,掌握扇形面积公式是解题的关键.17.【答案】(4,160)【解析】解:根据题意可得,乙货车的速度为:240÷2.4−40=60(40km/ℎ), ∴乙货车从B 地到A 地所用时间为:240÷60=4(小时),当乙货车到底A 地时,甲货车行驶的路程为:40×4=160(千米), ∴点E 的坐标是(4,160). 故答案为:(4,160).根据点C 与点D 的坐标即可得出乙货车的速度,进而得出乙货车从B 地到A 地所用时间,据此即可得出点E 的坐标.本题考查一次函数的应用,解题的关键是读懂图象信息,掌握路程、速度、时间之间的关系,属于中考常考题型. 18.【答案】1:8【解析】解:设6月份堂食、外卖、摆摊三种方式的营业额为3a ,5a ,2a ,设7月份总的增加营业额为5x ,摆摊增加的营业额为2x ,7月份总营业额20b ,摆摊7月份的营业额为7b ,堂食7月份的营业额为8b ,外卖7月份的营业额为5b , 由题意可得:{7b −2a =2x20b −10a =5x ,解得:{a =x6b =x 3,∴7月份外卖还需增加的营业额与7月份总营业额之比=(5b −5a):20b =1:8, 故答案为:1:8.设6月份堂食、外卖、摆摊三种方式的营业额为3a ,5a ,2a ,设7月份总的增加营业额为5x ,摆摊增加的营业额为2x ,7月份总营业额20b ,摆摊7月份的营业额为7b ,堂食7月份的营业额为8b ,外卖7月份的营业额为5b ,由题意列出方程组,可求a ,b 的值,即可求解.本题考查了三元一次方程组的应用,理解题意,找到正确的等量关系是本题的关键. 19.【答案】解:(1)(x +y)2+x(x −2y), =x 2+2xy +y 2+x 2−2xy , =2x 2+y 2;(2)(1−mm+3)÷m 2−9m 2+6m+9, =(m+3m+3−mm+3)×(m+3)2(m+3)(m−3), =3m+3×m+3m−3, =3m−3.【解析】(1)根据整式的四则运算的法则进行计算即可;(2)先计算括号内的减法,再计算除法,注意约分和因式分解.考查整式、分式的四则混合运算,掌握计算法则和因式分解是正确计算的前提. 20.【答案】解:(1)∵七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6, ∴a =7,由条形统计图可得,b =(7+8)÷2=7.5, c =(5+2+3)÷20×100%=50%,即a=7,b=7.5,c=50%;(2)八年级学生掌握垃极分类知识较好,理由:八年级的8分及以上人数所占百分比大于七年级,故八年级学生掌握垃极分类知识较好;(3)∵从调查的数据看,七年级2人的成绩不合格,八年级2人的成绩不合格,∴参加此次测试活动成绩合格的学生有1200×(20−2)+(20−2)20+20=1080(人),即参加此次测试活动成绩合格的学生有1080人.【解析】(1)根据题目中的数据和条形统计图中的数据,可以得到a、b、c的值;(2)根据统计表中的数据,可以得到该校七、八年级中哪个年级学生掌握垃极分类知识较好,然后说明理由即可,注意本题答案不唯一,理由只要合理即可;(3)根据题目中的数据和条形统计图中的数据,可以计算出参加此次测试活动成绩合格的学生人数是多少.本题考查条形统计图、中位数、众数、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.21.【答案】(1)解:∵AE⊥BD,∴∠AEO=90°,∵∠AOE=50°,∴∠EAO=40°,∵CA平分∠DAE,∴∠DAC=∠EAO=40°,∵四边形ABCD是平行四边形,∴AD//BC,∠ACB=∠DAC=40°,(2)证明:∵四边形ABCD是平行四边形,∴OA=OC,∵AE⊥BD,CF⊥BD,∴∠AEO=∠CFO=90°,∵∠AOE=∠COF,∴△AEO≌△CFO(AAS),∴AE=CF.【解析】(1)利用三角形内角和定理求出∠EAO,利用角平分线的定义求出∠DAC,再利用平行线的性质解决问题即可.(2)证明△AEO≌△CFO(AAS)可得结论.本题考查平行四边形的性质,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.【答案】−959 5【解析】解:(1)补充完整下表为:画出函数的图象如图:;(2)根据函数图象:①该函数图象是轴对称图形,它的对称轴为y 轴,说法错误;②该函数在自变量的取值范围内,有最大值和最小值.当x =1时,函数取得最大值3;当x =−1时,函数取得最小值−3,说法正确;③当x <−1或x >1时,y 随x 的增大而减小;当−1<x <1时,y 随x 的增大而增大,说法正确.(3)由图象可知:不等式6xx 2+1>2x −1的解集为x <−1或−0.3<1.8.(1)将x =−3,3分别代入解析式即可得y 的值,再画出函数的图象; (2)结合图象可从函数的增减性及对称性进行判断; (3)根据图象求得即可.本题主要考查一次函数的图象和性质,一次函数与一元一次不等式,会用描点法画出函数图象,利用数形结合的思想得到函数的性质是解题的关键.23.【答案】解:(1)49÷5=9…4,但49÷3=16…1,所以49不是“差一数”; 74÷5=14…4,74÷3=24…2,所以74是“差一数”.(2)大于300且小于400的数除以5余数为4的有304,309,314,319,324,329,334,339,344,349,354,359,364,369,374,379,384,389,394,399, 其中除以3余数为2的有314,327,344,359,374,389.故大于300且小于400的所有“差一数”有314,327,344,359,374,389.【解析】(1)根据“差一数”的定义即可求解; (2)根据“差一数”的定义即可求解.考查了因式分解的应用,本题是一个新定义题,关键是根据新定义的特征和仿照样例进行解答,主要考查学生的自学能力.24.【答案】解:(1)设A 、B 两个品种去年平均亩产量分别是x 千克和y 千克; 根据题意得,{y −x =10010×2.4(x +y)=21600,解得:{x =400y =500,答:A 、B 两个品种去年平均亩产量分别是400千克和500千克;(2)2.4×400×10(1+a%)+2.4(1+a%)×500×10(1+2a%)=21600(1+209a%),解得:a =0.1,答:a 的值为0.1.【解析】(1)设A 、B 两个品种去年平均亩产量分别是x 千克和y 千克;根据题意列方程组即可得到结论;(2)根据题意列方程即可得到结论.本题考查了一元二次方程的应用,二元一次方程组的应用,正确的理解题意是解题的关键.25.【答案】解:(1)将点A 、B 的坐标代入抛物线表达式得{−4=9−3b =c c =−1,解得{b =4c =−1, 故抛物线的表达式为:y =x 2+4x −1;(2)设直线AB 的表达式为:y =kx +t ,则{−4=−3k +t t =−1,解得{k =1t =−1,故直线AB 的表达式为:y =x −1,过点P 作y 轴的平行线交AB 于点H ,设点P(x,x 2+4x −1),则H(x,x −1),△PAB 面积S =12×PH ×(x B −x A )=12(x −1−x 2−4x +1)×(0+3)=−32x 2−92x ,∵−32<0,故S 有最大值,当x =−32时,S 的最大值为278;(3)抛物线的表达式为:y =x 2+4x −1=(x +2)2−5, 则平移后的抛物线表达式为:y =x 2−5, 联立上述两式并解得:{x =−1y =−4,故点C(−1,−4);设点D(−2,m)、点E(s,t),而点B、C的坐标分别为(0,−1)、(−1,−4);①当BC为菱形的边时,点C向右平移1个单位向上平移3个单位得到B,同样D(E)向右平移1个单位向上平移3个单位得到E(D),即−2+1=s且m+3=t①或−2−1=s且m−3=t②,当点D在E的下方时,则BE=BC,即s2+(t+1)2=12+32③,当点D在E的上方时,则BD=BC,即22+(m+1)2=12+32④,联立①③并解得:s=−1,t=2或−4(舍去−4),故点E(−1,3);联立②④并解得:s=1,t=−4±√6,故点E(1,−4+√6)或(1,−4−√6);②当BC为菱形的的对角线时,则由中点公式得:−1=s−2且−4−1=m+t⑤,此时,BD=BE,即22+(m+1)2=s2+(t+1)2⑥,联立⑤⑥并解得:s=1,t=−3,故点E(1,−3),综上,点E的坐标为:(−1,2)或(1,−4+√6)或(1,−4−√6)或(1,−3).【解析】(1)将点A、B的坐标代入抛物线表达式,即可求解;(2)△PAB面积S=12×PH×(x B−x A)=12(x−1−x2−4x+1)×(0+3)=−32x2−92x,即可求解;(3)分BC为菱形的边、菱形的的对角线两种情况,分别求解即可.本题考查的是二次函数综合运用,涉及到一次函数的性质、菱形的性质、图形的平移、面积的计算等,其中(3),要注意分类求解,避免遗漏.26.【答案】证明:(1)∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∵把AD绕点A逆时针旋转90°,得到AE,∴AD=AE,∠DAE=90°=∠BAC,∴∠BAD=∠CAE,DE=√2AD,又∵AB=AC,∴△BAD≌△CAE(SAS),∴∠ABD=∠ACE=45°,∴∠BCE=∠BCA+∠ACE=90°,∵点F是DE的中点,∴CF=12DE=√22AD;(2)AG=√26BC,理由如下:如图2,过点G作GH⊥BC于H,∵BD=2CD,∴设CD=a,则BD=2a,BC=3a,∵∠BAC=90°,AB=AC,∴AB=AC=√2=3√22a,由(1)可知:△BAD≌△CAE,∴BD=CE=2a,∵CF=DF,∴∠FDC=∠FCD,∴tan∠FDC=tan∠FCD,∴CECD =GHCH=2,∴GH=2CH,∵GH⊥BC,∠ABC=45°,∴∠ABC=∠BGH=45°,∴BH=GH,∴BG=√2BH ∵BH+CH=BC=3a,∴CH=a,BH=GH=2a,∴BG=2√2a,∴AG=BG−AB=√22a=√22CD=√26BC;(3)如图3−1,将△BPC绕点B顺时针旋转60°得到△BNM,连接PN,∴BP=BN,PC=NM,∠PBN=60°,∴△BPN是等边三角形,∴BP=PN,∴PA+PB+PC=AP+PN+MN,∴当点A,点P,点N,点M共线时,PA+PB+PC值最小,此时,如图3−2,连接MC,∵将△BPC绕点B顺时针旋转60°得到△BNM,∴BP=BN,BC=BM,∠PBN=60°=∠CBM,∴△BPN是等边三角形,△CBM是等边三角形,∴∠BPN=∠BNP=60°,BM=CM,∵BM=CM,AB=AC,∴AM垂直平分BC,∵AD⊥BC,∠BPD=60°,∴BD=√3PD,∵AB=AC,∠BAC=90°,AD⊥BC,∴AD=BD,∴√3PD=PD+AP,∴PD=√3+12m,∴BD=√3PD=3+√32m,由(1)可知:CE=BD=3+√32m.【解析】(1)由“SAS”可证△BAD≌△CAE,可得∠ABD=∠ACE=45°,可求∠BCE= 90°,由直角三角形的性质和等腰直角三角形的性质可得结论;(2)过点G作GH⊥BC于H,设CD=a,可得BD=2a,BC=3a,AB=AC=3√22a,由全等三角形的性质可得BD=CE=2a,由锐角三角函数可求GH=2CH,可求CH=a,可求BG的长,即可求AG=√22a=√22CD=√26BC;(3)将△BPC绕点B顺时针旋转60°得到△BNM,连接PN,可得当点A,点P,点N,点M共线时,PA+PB+PC值最小,由旋转的性质可得△BPN是等边三角形,△CBM 是等边三角形,可得∠BPN=∠BNP=60°,BM=CM,由直角三角形的性质可求解.本题是几何变换综合题,考查了全等三角形的判定和性质,等腰直角三角形的性质,旋转的性质,锐角三角函数等知识,确定点P的位置是本题的关键.。
2020年重庆市中考数学试卷-含详细解析
2020年重庆市中考数学试卷(A卷)含详细解析姓名:___________班级:___________得分:___________一、选择题(本大题共12小题,共48.0分)1.下列各数中,最小的数是()A.−3B.0C.1D.22.下列图形是轴对称图形的是()A. B. C. D.3.在今年举行的第127届“广交会”上,有近26000家厂家进行“云端销售”.其中数据26000用科学记数法表示为()A.26×103B.2.6×103C.2.6×104D.0.26×1054.把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形,…,按此规律排列下去,则第⑤个图案中黑色三角形的个数为()A.10B.15C.18D.215.如图,AB是⊙O的切线,A为切点,连接OA,OB,若∠B=20°,则∠AOB的度数为()A.40°B.50°C.60°D.70°6.下列计算中,正确的是()A.√2+√3=√5B.2+√2=2√2C.√2×√3=√67.解一元一次方程1(x+1)=1−1x时,去分母正确的是()23D.2√3−2=√3A.3(x+1)=1−2x C.2(x+1)=6−3xB.2(x+1)=1−3x D.3(x+1)=6−2x8.如图,在平面直角坐标系中,△ABC的顶点坐标分别是A(1,2),B(1,1),C(3,1),以原点为位似中心,在原点的同侧画△DEF△,使DEF△与ABC成位似图形,且相似比为2:1,则线段DF的长度为()≤x+3,A.√5B.2C.4D.2√59.如图,在距某居民楼AB楼底B点左侧水平距离60m的C点处有一个山坡,山坡CD的坡度(或坡比)i=1:0.75,山坡坡底C点到坡顶D点的距离CD=45m,在坡顶D点处测得居民楼楼顶A点的仰角为28°,居民楼AB与山坡CD的剖面在同一平面内,则居民楼AB的高度约为(参考数据:si n28°≈0.47,cos28°≈0.88,tan28°≈0.53)()A.76.9mB.82.1mC.94.8mD.112.6m10.若关于x的一元一次不等式组{3x1x≤a2的解集为x≤a;且关于y的分式方程yay2+3y4=1有正整数解,则所有满足条件的整数a的值之积是()y2A.7B.14C.28D.5611.如图,三角形纸片ABC,点D是BC边上一点,连接AD△,把ABD沿着AD翻折,得到△AED,DE与AC交于点G,连接BE交AD于点F.若DG=GE,AF=3,BF=2,△ADG的面积为2,则点F到BC的距离为()A.√55B.2√55C.4√55D.4√3312.如图,在平面直角坐标系中,矩形ABCD的对角线AC的中点与坐标原点重合,点E是x轴上一点,连接AE.若AD平分∠OAE,反比例函数y=k(k>0,x>0)的x 图象经过AE上的两点A,F,且AF=EF,△ABE的面积为18,则k的值为()第2页,共19页m+3)÷14.一个多边形的内角和等于它的外角和的2倍,则这个多边形的边数是______.15.现有四张正面分别标有数字−1,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背面朝上洗均匀,随机抽取一张,记下数字后放回,背面朝上洗均匀,再随机抽取一张记下数宇,前后两次抽取的数字分别记为m,n.则点P(m,n)在第二象限的概率为______.16.如图,在边长为2的正方形ABCD中,对角线AC的中点为O,分别以点A,C为圆心,以AO的长为半径画弧,分别与正方形的边相交,则图中的阴影部分的面积为______.(结果保留π)17.A,B两地相距240km,甲货车从A地以40km/ℎ的速度匀速前往B地,到达B地后停止.在甲出发的同时,乙货车从B地沿同一公路匀速前往A地,到达A地后停止.两车之间的路程y(km)与甲货车出发时间x(ℎ)之间的函数关系如图中的折线CD−DE−EF所示.其中点C的坐标是(0,240),点D的坐标是(2.4,0),则点E的坐标是______.18.火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3:5:2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加的营业额占总增加的营业额的2,则摆摊的营业额将达5到7月份总营业额的7,为使堂食、外卖7月份的营业额之比为8:5,则7月份20外卖还需增加的营业额与7月份总营业额之比是______.三、解答题(本大题共8小题,共78.0分)19.计算:(1)(x+y)2+x(x−2y);(2)(1−m m2−9m2+6m+9.20.为了解学生掌握垃圾分类知识的情况,增强学生环保意识.某学校举行了“垃圾测试成绩(满分10分,6分及6分以上为合格)进行整理、描述和分析,下面给出了部分信息.七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6.八年级20名学生的测试成绩条形统计图如图:七、八年级抽取的学生的测试成绩的平均数、众数、中位数、8分及以上人数所占百分比如下表所示:年级七年级平均数7.5众数a中位数78分及以上人数所占百分比45%八年级7.58b c根据以上信息,解答下列问题:(1)直接写出上述表中的a,b,c的值;(2)根据上述数据,你认为该校七、八年级中哪个年级学生掌握垃极分类知识较好?请说明理由(写出一条理由即可);(3)该校七、八年级共1200名学生参加了此次测试活动,估计参加此次测试活动成绩合格的学生人数是多少?21.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,分别过点A,C作AE⊥BD,CF⊥BD,垂足分别为E,F.AC平分∠DAE.(1)若∠AOE=50°,求∠ACB的度数;(2)求证:AE=CF.x21性质及其应用的部分过程,…−−______−−30x21>2x−1的解集(保留1位小数,误差不超过0.2).22.在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数y=6x请按要求完成下列各小题.(1)请把下表补充完整,并在图中补全该函数图象;x…−5−4−3−2−1012345…y=6xx21152412131753125______24151713…(2)根据函数图象,判断下列关于该函数性质的说法是否正确,正确的在答题卡上相应的括号内打“√”,错误的在答题卡上相应的括号内打“×”;①该函数图象是轴对称图形,它的对称轴为y轴.②该函数在自变量的取值范围内,有最大值和最小值.当x=1时,函数取得最大值3;当x=−1时,函数取得最小值−3.③当x<−1或x>1时,y随x的增大而减小;当−1<x<1时,y随x的增大而增大.(3)已知函数y=2x−1的图象如图所示,结合你所画的函数图象,直接写出不等式6x23.在整数的除法运算中,只有能整除与不能整除两种情况,当不能整除时,就会产生余数,现在我们利用整数的除法运算来研究一种数--“差一数”.定义:对于一个自然数,如果这个数除以5余数为4,且除以3余数为2,则称这个数为“差一数”..19 ÷ 5 = 3 … 4,但19 ÷ 3 = 6 … 1,所以 19 不是“差一数”. (1)判断 49 和 74 是否为“差一数”?请说明理由; (2)求大于 300 且小于 400 的所有“差一数”.24. “中国人的饭碗必须牢牢掌握在咱们自己手中” 为优选品种,提高产量,某农业科技小组对 A ,B 两个小麦品种进行种植对比实验研究.去年 A ,B 两个品种各种 植了 10 亩.收获后 A ,B 两个品种的售价均为2.4元/kg ,且 B 的平均亩产量比 A 的平均亩产量高 100kg ,A ,B 两个品种全部售出后总收入为 21600 元. (1)请求出 A ,B 两个品种去年平均亩产量分别是多少?(2)今年,科技小组加大了小麦种植的科研力度,在 A ,B 种植亩数不变的情况下,预计 A ,B 两个品种平均亩产量将在去年的基础上分别增加a%和2a%.由于 B 品种深受市场的欢迎,预计每千克价格将在去年的基础上上涨a%,而 A 品种的售价不变.A ,B 两个品种全部售出后总收入将在去年的基础上增加20 a%.求 a 的9值.25. 如图,在平面直角坐标系中,已知抛物线y = x 2 + bx + c 与直线 AB 相交于 A ,B两点,其中A (−3, −4),B(0, −1). (1)求该抛物线的函数表达式;(2)点 P 为直线 AB 下方抛物线上的任意一点,连接 P A ,PB △,求 PAB 面积的最大值;(3)将该抛物线向右平移 2 个单位长度得到抛物线y = a 1x 2 + b 1x + c 1(a 1 ≠ 0),平 移后的抛物线与原抛物线相交于点 C ,点 D 为原抛物线对称轴上的一点,在平面 直角坐标系中是否存在点 E ,使以点 B ,C ,D ,E 为顶点的四边形为菱形,若存 在,请直接写出点 E 的坐标;若不存在,请说明理由.26.如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D是BC边上一动点,连接AD,把AD绕点A逆时针旋转90°,得到AE,连接CE,DE.点F是DE的中点,连接CF.(1)求证:CF=√2AD;2(2)如图2所示,在点D运动的过程中,当BD=2CD时,分别延长CF,BA,相交于点G,猜想AG与BC存在的数量关系,并证明你猜想的结论;(3)在点D运动的过程中,在线段AD上存在一点P,使PA+PB+PC的值最小.当PA+PB+PC的值取得最小值时,AP的长为m,请直接用含m的式子表示CE的长.答案和解析1.【答案】A【解析】解:∵−3<0<1<2,∴这四个数中最小的数是−3.故选:A.根据正数大于0,0大于负数,正数大于负数,可得答案.本题考查了有理数比较大小,正数大于0,0大于负数,正数大于负数.2.【答案】A【解析】解:B、C、D都不是轴对称图形,A是轴对称图形,故选:A.根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.此题主要考查了轴对称图形,关键是掌握轴对称图形的概念,找出图形的对称轴.3.【答案】C【解析】解:26000=2.6×104,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】B【解析】解:∵第①个图案中黑色三角形的个数为1,第②个图案中黑色三角形的个数3=1+2,第③个图案中黑色三角形的个数6=1+2+3,……∴第⑤个图案中黑色三角形的个数为1+2+3+4+5=15,故选:B.根据前三个图案中黑色三角形的个数得出第n个图案中黑色三角形的个数为1+2+ 3+4+⋯…+n,据此可得第⑤个图案中黑色三角形的个数.本题主要考查图形的变化规律,解题的关键是根据已知图形得出规律:第n个图案中黑色三角形的个数为1+2+3+4+⋯…+n.5.【答案】D【解析】解:∵AB是⊙O的切线,A为切点,∴∠A=90°,∵∠B=20°,∴∠AOB=90°−20°=70°,故选:D.根据切线的性质和三角形的内角和即可得到结论.本题考查了切线的性质,三角形的内角和,熟练掌握切线的性质是解题的关键.6.【答案】C0.75=4,【解析】解:A.√2与√3不是同类二次根式,不能合并,此选项计算错误;B.2与√2不是同类二次根式,不能合并,此选项计算错误;C.√2×√3=√2×3=√6,此选项计算正确;D.2√3与−2不是同类二次根式,不能合并,此选项错误;故选:C.根据同类二次根式的概念与二次根式的乘法逐一判断可得答案.本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的乘法法则与同类二次根式的概念.7.【答案】D【解析】解:方程两边都乘以6,得:3(x+1)=6−2x,故选:D.根据等式的基本性质将方程两边都乘以6可得答案.本题主要考查解一元一次方程,解题的关键是掌握解一元一次方程的步骤和等式的基本性质.8.【答案】D【解析】解:∵以原点为位似中心,在原点的同侧画△DEF△,使DEF△与ABC成位似图形,且相似比为2:1,而A(1,2),C(3,1),∴D(2,4),F(6,2),∴DF=√(2−6)2+(4−2)2=2√5.故选:D.把A、C的横纵坐标都乘以2得到D、F的坐标,然后利用两点间的距离公式计算线段DF的长.本题考查了位似变换:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k.9.【答案】B【解析】解:如图,由题意得,∠ADF=28°,CD=45,BC=60,在Rt△DEC中,∵山坡CD的坡度i=1:0.75,∴DE=EC 13设DE=4x,则EC=3x,由勾股定理可得CD=5x,又CD=45,即5x=45,∴x=9,∴EC=3x=27,DE=4x=36=FB,∴BE=BC+EC=60+27=87=DF,在Rt△ADF中,AF=tan28°×DF≈0.53×87≈46.11,∴AB=AF+FB=46.11+36≈82.1,故选:B.构造直角三角形,利用坡比的意义和直角三角形的边角关系,分别计算出D E、EC、BE、DF、AF,进而求出AB.本题考查直角三角形的边角关系,掌握坡比的意义和直角三角形的边角关系是正确计【解析】解:不等式组整理得:{ ,10.【答案】Cx ≤ 7x ≤ a由解集为x ≤ a ,得到a ≤ 7,分式方程去分母得:y − a + 3y − 4 = y − 2,即3y − 2 = a ,解得:y = a+2 ,3由 y 为正整数解,得到a = 1,4,7 1 × 4 × 7 = 28, 故选:C .不等式组整理后,根据已知解集确定出 a 的范围,分式方程去分母转化为正整数方 程,由分式方程有非负整数解,确定出 a 的值,求出之和即可.此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的 关键.11.【答案】B【解析】解:∵ DG = GE , ∴ △?? ADG = △?? AEG = 2, ∴ △?? ADE = 4,由翻折可知,△ ADB≌△ ADE ,BE ⊥ AD , ∴ △?? ABD = △?? ADE = 4,∠BFD = 90°,∴ 1 ⋅ (AF + DF) ⋅ BF = 4,2∴ 1 ⋅ (3 + DF) ⋅ 2 = 4,2∴ DF = 1,∴ DB = √BF 2 + DF 2 = √12 + 22 = √5,设点 F 到 BD 的距离为 h ,则有1 ⋅ BD ⋅ ℎ = 1 ⋅ BF ⋅ DF ,22∴ ℎ = 2√5,5故选:B .首先求出△ ABD 的面积.根据三角形的面积公式求出 DF ,设点 F 到 BD 的距离为 h ,根据1 ⋅ BD ⋅ ℎ = 1 ⋅ BF ⋅ DF ,求出 BD 即可解决问题.22本题考查翻折变换,三角形的面积,勾股定理等知识,解题的关键是灵活运用所学知 识解决问题,学会利用参数构建方程解决问题.12.【答案】B【解析】解:如图,连接 BD ,OF ,过点 A 作AN ⊥ OE 于 N ,过点 F 作FM ⊥ OE 于 M .△??3 EOF = 3,由此即可解决问题.21 1 1 21∵ AN//FM ,AF = FE , ∴ MN = ME ,∴ FM = 1 AN ,2∵ A ,F 在反比例函数的图象上,∴ △?? AON = △?? FOM = k,∴ 1 ⋅ ON ⋅ AN = 1 ⋅ OM ⋅ FM ,22∴ ON = 1 OM ,2∴ ON = MN = EM ,∴ ME = 1 OE ,3∴ △?? FME = 3 △?? FOE ,∵ AD 平分∠OAE , ∴ ∠OAD = ∠EAD ,∵四边形 ABCD 是矩形, ∴ OA = OD ,∴ ∠OAD = ∠ODA = ∠DAE , ∴ AE//BD , ∴ △?? ABE = △?? AOE , ∴ △?? AOE = 18, ∵ AF = EF ,∴ △?? EOF = 2 △?? AOE = 9,∴ △?? FME = 3 △?? EOF = 3,∴ △?? FOM = △?? FOE − △?? FME = 9 − 3 = 6 = k ,∴ k = 12. 故选:B .如图,连接 BD ,OF ,过点 A 作AN ⊥ OE 于 N ,过点 F 作FM ⊥ OE 于M.证明BD//AE ,推出△?? ABE = △?? AOE = 18,推出△?? EOF = 2 △?? AOE = 9,可得△?? FME =116.解题的关键是证明BD//AE,利用等高模型解决问题,属于中考选择题中的压轴题.13.【答案】3【解析】解:(π−1)0+|−2|=1+2=3,故答案为:3.根据零次幂和绝对值的意义,进行计算即可.本题考查零次幂和绝对值的性质,掌握零次幂和绝对值的性质是正确计算的前提.14.【答案】6【解析】解:设这个多边形的边数为n,依题意,得:(n−2)⋅180°=2×360°,解得n=6.故答案为:6.n边形的内角和可以表示成(n−2)⋅180°,外角和为360°,根据题意列方程求解.本题考查多边形的内角和计算公式,多边形的外角和.关键是根据题意利用多边形的外角和及内角和之间的关系列出方程求边数.15.【答案】316【解析】解:画树状图为:共有16种等可能的结果数,其中点P(m,n)在第二象限的结果数为3,所以点P(m,n)在第二象限的概率=3故答案为3.16画树状图展示所有16种等可能的结果数,利用第二象限内点的坐标特征确定点P(m,n)在第二象限的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了点的坐标.16.【答案】4−π【解析】解:∵四边形ABCD为正方形,∴AB=BC=2,∠DAB=∠DCB=90°,由勾股定理得,AC=√AB2+BC2=2√2,∴OA=OC=√2,∴图中的阴影部分的面积=22−90π×(√2)2×2=4−π,360故答案为:4−π.根据勾股定理求出AC,得到OA、OC的长,根据正方形的面积公式、扇形面积公式计算,得到答案.由题意可得:{,解得:{6,b=m+3)÷m+3)×(m+3)(m−3),m+3×m+3,m−3.17.【答案】(4,160)【解析】解:根据题意可得,乙货车的速度为:240÷2.4−40=60(40km/ℎ),∴乙货车从B地到A地所用时间为:240÷60=4(小时),当乙货车到底A地时,甲货车行驶的路程为:40×4=160(千米),∴点E的坐标是(4,160).故答案为:(4,160).根据点C与点D的坐标即可得出乙货车的速度,进而得出乙货车从B地到A地所用时间,据此即可得出点E的坐标.本题考查一次函数的应用,解题的关键是读懂图象信息,掌握路程、速度、时间之间的关系,属于中考常考题型.18.【答案】1:8【解析】解:设6月份堂食、外卖、摆摊三种方式的营业额为3a,5a,2a,设7月份总的增加营业额为5x,摆摊增加的营业额为2x,7月份总营业额20b,摆摊7月份的营业额为7b,堂食7月份的营业额为8b,外卖7月份的营业额为5b,7b−2a=2x20b−10a=5xa=xx3∴7月份外卖还需增加的营业额与7月份总营业额之比=(5b−5a):20b=1:8,故答案为:1:8.设6月份堂食、外卖、摆摊三种方式的营业额为3a,5a,2a,设7月份总的增加营业额为5x,摆摊增加的营业额为2x,7月份总营业额20b,摆摊7月份的营业额为7b,堂食7月份的营业额为8b,外卖7月份的营业额为5b,由题意列出方程组,可求a,b 的值,即可求解.本题考查了三元一次方程组的应用,理解题意,找到正确的等量关系是本题的关键.19.【答案】解:(1)(x+y)2+x(x−2y),=x2+2xy+y2+x2−2xy,=2x2+y2;(2)(1−m m2−9m2+6m+9,=(m+3−m+3m(m+3)2= =33m−3【解析】(1)根据整式的四则运算的法则进行计算即可;(2)先计算括号内的减法,再计算除法,注意约分和因式分解.考查整式、分式的四则混合运算,掌握计算法则和因式分解是正确计算的前提.20.【答案】解:(1)∵七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6,∴a=7,由条形统计图可得,b=(7+8)÷2=7.5,2020=1080(人),即a=7,b=7.5,c=50%;(2)八年级学生掌握垃极分类知识较好,理由:八年级的8分及以上人数所占百分比大于七年级,故八年级学生掌握垃极分类知识较好;(3)∵从调查的数据看,七年级2人的成绩不合格,八年级2人的成绩不合格,∴参加此次测试活动成绩合格的学生有1200×(202)(202)即参加此次测试活动成绩合格的学生有1080人.【解析】(1)根据题目中的数据和条形统计图中的数据,可以得到a、b、c的值;(2)根据统计表中的数据,可以得到该校七、八年级中哪个年级学生掌握垃极分类知识较好,然后说明理由即可,注意本题答案不唯一,理由只要合理即可;(3)根据题目中的数据和条形统计图中的数据,可以计算出参加此次测试活动成绩合格的学生人数是多少.本题考查条形统计图、中位数、众数、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.21.【答案】(1)解:∵AE⊥BD,∴∠AEO=90°,∵∠AOE=50°,∴∠EAO=40°,∵CA平分∠DAE,∴∠DAC=∠EAO=40°,∵四边形ABCD是平行四边形,∴AD//BC,∠ACB=∠DAC=40°,(2)证明:∵四边形ABCD是平行四边形,∴OA=OC,∵AE⊥BD,CF⊥BD,∴∠AEO=∠CFO=90°,∵∠AOE=∠COF,∴△AEO≌△CFO(AAS),∴AE=CF.【解析】(1)利用三角形内角和定理求出∠EAO,利用角平分线的定义求出∠DAC,再利用平行线的性质解决问题即可.(2)△证明AEO≌△CFO(AAS)可得结论.本题考查平行四边形的性质,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.【答案】9955【解析】解:(1)补充完整下表为:x…54321012345…y=6x1524…x211317951253031259524151713…(3)由图象可知:不等式x21>2x−1的解集为x<−1或−0.3<1.8.画出函数的图象如图:;(2)根据函数图象:①该函数图象是轴对称图形,它的对称轴为y轴,说法错误;②该函数在自变量的取值范围内,有最大值和最小值.当x=1时,函数取得最大值3;当x=−1时,函数取得最小值−3,说法正确;③当x<−1或x>1时,y随x的增大而减小;当−1<x<1时,y随x的增大而增大,说法正确.6x(1)将x=−3,3分别代入解析式即可得y的值,再画出函数的图象;(2)结合图象可从函数的增减性及对称性进行判断;(3)根据图象求得即可.本题主要考查一次函数的图象和性质,一次函数与一元一次不等式,会用描点法画出函数图象,利用数形结合的思想得到函数的性质是解题的关键.23.【答案】解:(1)49÷5=9…4,但49÷3=16…1,所以49不是“差一数”;74÷5=14…4,74÷3=24…2,所以74是“差一数”.(2)大于300且小于400的数除以5余数为4的有304,309,314,319,324,329,334,339,344,349,354,359,364,369,374,379,384,389,394,399,其中除以3余数为2的有314,327,344,359,374,389.故大于300且小于400的所有“差一数”有314,327,344,359,374,389.【解析】(1)根据“差一数”的定义即可求解;(2)根据“差一数”的定义即可求解.考查了因式分解的应用,本题是一个新定义题,关键是根据新定义的特征和仿照样例进行解答,主要考查学生的自学能力.24.【答案】解:(1)设A、B两个品种去年平均亩产量分别是x千克和y千克;y−x=100根据题意得,{10×2.4(x y)=21600,x=400解得:{y=500,答:A、B两个品种去年平均亩产量分别是400千克和500千克;(2)2.4×400×10(1a%) 2.4(1a%)×500×10(12a%)=21600(120a%),9解得:a=0.1,25.【答案】解:(1)将点A、B的坐标代入抛物线表达式得{−4=9−3b=c,解得{,(2)设直线AB的表达式为:y=kx+t,则{,解得{,222答:a的值为0.1.【解析】(1)设A、B两个品种去年平均亩产量分别是x千克和y千克;根据题意列方程组即可得到结论;(2)根据题意列方程即可得到结论.本题考查了一元二次方程的应用,二元一次方程组的应用,正确的理解题意是解题的关键.c=−1b=4c=−1故抛物线的表达式为:y=x2+4x−1;−4=−3k+t k=1t=−1t=−1故直线AB的表达式为:y=x−1,过点P作y轴的平行线交AB于点H,设点P(x,x2+4x−1),则H(x,x−1),△PAB面积S=1×PH×(xB−xA)=1(x−1−x2−4x+1)×(0+3)=−3x2−9x,2∵−3<0,故S有最大值,当x=−3时,S的最大值为27;228(3)抛物线的表达式为:y=x2+4x−1=(x+2)2−5,则平移后的抛物线表达式为:y=x2−5,x=−1联立上述两式并解得:{y=−4,故点C(−1,−4);222设点D(−2, m)、点E(s, t ),而点 B 、C 的坐标分别为(0, −1)、(−1, −4); ①当 BC 为菱形的边时,点 C 向右平移 1 个单位向上平移 3 个单位得到 B ,同样D(E)向右平移 1 个单位向上平 移 3 个单位得到E(D),即−2 + 1 = s 且m + 3 = t①或−2 − 1 = s 且m − 3 = t②,当点 D 在 E 的下方时,则BE = BC ,即s 2 + (t + 1)2 = 12 + 32③, 当点 D 在 E 的上方时,则BD = BC ,即22 + (m + 1)2 = 12 + 32④,联立①③并解得:s = −1,t = 2或−4(舍去−4),故点E(−1,3);联立②④并解得:s = 1,t = −4 ± √6,故点E(1, −4 + √6)或(1, −4 − √6); ②当 BC 为菱形的的对角线时,则由中点公式得:−1 = s − 2且−4 − 1 = m + t⑤, 此时,BD = BE ,即22 + (m + 1)2 = s 2 + (t + 1)2⑥, 联立⑤⑥并解得:s = 1,t = −3, 故点E(1, −3),综上,点 E 的坐标为:(−1,2)或(1, −4 + √6)或(1, −4 − √6)或(1, −3).【解析】(1)将点 A 、B 的坐标代入抛物线表达式,即可求解;(2) △ PAB 面积S = 1 × PH × (x B − x A ) = 1 (x − 1 − x 2 − 4x + 1) × (0 + 3) = − 3 x 2 −9x ,即可求解;2(3)分 BC 为菱形的边、菱形的的对角线两种情况,分别求解即可.本题考查的是二次函数综合运用,涉及到一次函数的性质、菱形的性质、图形的平 移、面积的计算等,其中(3),要注意分类求解,避免遗漏. 26.【答案】证明:(1) ∵ AB = AC ,∠BAC = 90°, ∴ ∠ABC = ∠ACB = 45°,∵把 AD 绕点 A 逆时针旋转90°,得到 AE , ∴ AD = AE ,∠DAE = 90° = ∠BAC , ∴ ∠BAD = ∠CAE ,DE = √2AD , 又∵ AB = AC ,∴△ BAD≌△ CAE(SAS),∴ ∠ABD = ∠ACE = 45°,∴ ∠BCE = ∠BCA + ∠ACE = 90°, ∵点 F 是 DE 的中点,∴ CF = 1 DE = √2 AD ;22(2)AG = √2 BC ,6理由如下:如图 2,过点 G 作GH ⊥ BC 于 H ,∵ BD = 2CD ,∴设CD = a ,则BD = 2a ,BC = 3a , ∵ ∠BAC = 90°,AB = AC ,∴ AB = AC = BC = 3√2 a ,√22由(1)可知:△ BAD≌△ CAE , ∴ BD = CE = 2a , ∵ CF = DF ,∴ ∠FDC = ∠FCD ,∴ tan∠FDC = tan∠FCD ,∴ CE = GH = 2,CDCH∴ GH = 2CH ,∵ GH ⊥ BC ,∠ABC = 45°, ∴ ∠ABC = ∠BGH = 45°, ∴ BH = GH ,∴ BG = √2BH∵ BH + CH = BC = 3a ,∴ CH = a ,BH = GH = 2a , ∴ BG = 2√2a ,∴ AG = BG − AB = √2 a = √2 CD = √2 BC ;226(3)如图3 − 1△,将 BPC 绕点 B 顺时针旋转60°△得到 BNM ,连接 PN ,∴ BP = BN ,PC = NM ,∠PBN = 60°, ∴△ BPN 是等边三角形, ∴ BP = PN ,∴ PA + PB + PC = AP + PN + MN ,∴当点 A ,点 P ,点 N ,点 M 共线时,PA + PB + PC 值最小, 此时,如图3 − 2,连接 MC ,得到BNM,∵将△BPC绕点B顺时针旋转60°△∴BP=BN,BC=BM,∠PBN=60°=∠CBM,∴△BPN是等边三角形,△CBM是等边三角形,∴∠BPN=∠BNP=60°,BM=CM,∵BM=CM,AB=AC,∴AM垂直平分BC,∵AD⊥BC,∠BPD=60°,∴BD=√3PD,∵AB=AC,∠BAC=90°,AD⊥BC,∴AD=BD,∴√3PD=PD+AP,∴PD=√3+1m,2∴BD=√3PD=3+√3m,2由(1)可知:CE=BD=3+√3m.2【解析】(1)由“SAS”可证△BAD≌△CAE,可得∠ABD=∠ACE=45°,可求∠BCE=90°,由直角三角形的性质和等腰直角三角形的性质可得结论;(2)过点G作GH⊥BC于H,设CD=a,可得BD=2a,BC=3a,AB=AC=3√2a,2由全等三角形的性质可得BD=CE=2a,由锐角三角函数可求GH=2CH,可求CH=a,可求BG的长,即可求AG=√2a=√2CD=√2BC;226得到BNM,连接PN,可得当点A,点P,点N,(3)△将BPC绕点B顺时针旋转60°△点M共线时,PA+PB+PC值最小,由旋转的性质可得△BPN是等边三角形,△CBM是等边三角形,可得∠BPN=∠BNP=60°,BM=CM,由直角三角形的性质可求解.本题是几何变换综合题,考查了全等三角形的判定和性质,等腰直角三角形的性质,旋转的性质,锐角三角函数等知识,确定点P的位置是本题的关键.。
2020年重庆市中考数学试卷-(含答案)
2020年重庆市中考数学试卷一、选择题(共12个小题). 1.下列各数中,最小的数是( ) A .3-B .0C .1D .22.下列图形是轴对称图形的是( )A .B .C .D .3.在今年举行的第127届“广交会”上,有近26000家厂家进行“云端销售”.其中数据26000用科学记数法表示为( ) A .32610⨯B .32.610⨯C .42.610⨯D .50.2610⨯4.把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色三角形,第②个图案中有3个黑色三角形,第③个图案中有6个黑色三角形,⋯,按此规律排列下去,则第⑤个图案中黑色三角形的个数为( )A .10B .15C .18D .215.如图,AB 是O 的切线,A 为切点,连接OA ,OB ,若20B ∠=︒,则AOB ∠的度数为()A .40︒B .50︒C .60︒D .70︒6.下列计算中,正确的是( ) A 235=B .2222+=C .236=D .323=7.解一元一次方程11(1)123x x +=-时,去分母正确的是( )A .3(1)12x x +=-B .2(1)13x x +=-C .2(1)63x x +=-D .3(1)62x x +=-8.如图,在平面直角坐标系中,ABC ∆的顶点坐标分别是(1,2)A ,(1,1)B ,(3,1)C ,以原点为位似中心,在原点的同侧画DEF ∆,使DEF ∆与ABC ∆成位似图形,且相似比为2:1,则线段DF 的长度为( )A .5B .2C .4D .259.如图,在距某居民楼AB 楼底B 点左侧水平距离60m 的C 点处有一个山坡,山坡CD 的坡度(或坡比)1:0.75i =,山坡坡底C 点到坡顶D 点的距离45CD m =,在坡顶D 点处测得居民楼楼顶A 点的仰角为28︒,居民楼AB 与山坡CD 的剖面在同一平面内,则居民楼AB 的高度约为(参考数据:sin 280.47︒≈,cos 280.88︒≈,tan 280.53)(︒≈ )A .76.9mB .82.1mC .94.8mD .112.6m10.若关于x 的一元一次不等式组313,2x x x a-⎧+⎪⎨⎪⎩的解集为x a ;且关于y 的分式方程34122y a y y y --+=--有正整数解,则所有满足条件的整数a 的值之积是( ) A .7 B .14- C .28 D .56-11.如图,三角形纸片ABC ,点D 是BC 边上一点,连接AD ,把ABD ∆沿着AD 翻折,得到AED ∆,DE 与AC 交于点G ,连接BE 交AD 于点F .若DG GE =,3AF =,2BF =,ADG ∆的面积为2,则点F 到BC 的距离为( )A .55B .255C .455D .43312.如图,在平面直角坐标系中,矩形ABCD 的对角线AC 的中点与坐标原点重合,点E 是x 轴上一点,连接AE .若AD 平分OAE ∠,反比例函数(0,0)k y k x x=>>的图象经过AE 上的两点A ,F ,且AF EF =,ABE ∆的面积为18,则k 的值为( )A .6B .12C .18D .24二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.计算:0(1)|2|π-+-= .14.一个多边形的内角和等于它的外角和的2倍,则这个多边形的边数是 .15.现有四张正面分别标有数字1-,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背面朝上洗均匀,随机抽取一张,记下数字后放回,背面朝上洗均匀,再随机抽取一张记下数宇,前后两次抽取的数字分别记为m ,n .则点(,)P m n 在第二象限的概率为 . 16.如图,在边长为2的正方形ABCD 中,对角线AC 的中点为O ,分别以点A ,C 为圆心,以AO 的长为半径画弧,分别与正方形的边相交,则图中的阴影部分的面积为 .(结果保留)π17.A,B两地相距240km,甲货车从A地以40/km h的速度匀速前往B地,到达B地后停止.在甲出发的同时,乙货车从B地沿同一公路匀速前往A地,到达A地后停止.两车之间的路程()y km与甲货车出发时间()x h之间的函数关系如图中的折线CD DE EF--所示.其中点C的坐标是(0,240),点D的坐标是(2.4,0),则点E的坐标是.18.火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3:5:2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加的营业额占总增加的营业额的25,则摆摊的营业额将达到7月份总营业额的720,为使堂食、外卖7月份的营业额之比为8:5,则7月份外卖还需增加的营业额与7月份总营业额之比是.三、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.19.(10分)计算:(1)2()(2)x y x x y++-;(2)229 (1)369m mm m m--÷+++.20.(10分)为了解学生掌握垃圾分类知识的情况,增强学生环保意识.某学校举行了“垃圾分类人人有责”的知识测试活动,现从该校七、八年级中各随机抽取20名学生的测试成绩(满分10分,6分及6分以上为合格)进行整理、描述和分析,下面给出了部分信息.七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6.八年级20名学生的测试成绩条形统计图如图:七、八年级抽取的学生的测试成绩的平均数、众数、中位数、8分及以上人数所占百分比如下表所示: 年级 平均数 众数中位数 8分及以上人数所占百分比七年级 7.5 a745% 八年级7.58bc根据以上信息,解答下列问题:(1)直接写出上述表中的a ,b ,c 的值;(2)根据上述数据,你认为该校七、八年级中哪个年级学生掌握垃极分类知识较好?请说明理由(写出一条理由即可);(3)该校七、八年级共1200名学生参加了此次测试活动,估计参加此次测试活动成绩合格的学生人数是多少?21.(10分)如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,分别过点A ,C 作AE BD ⊥,CF BD ⊥,垂足分别为E ,F .AC 平分DAE ∠.(1)若50AOE ∠=︒,求ACB ∠的度数; (2)求证:AE CF =.22.(10分)在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数261xy x =+性质及其应用的部分过程,请按要求完成下列各小题.(1)请把下表补充完整,并在图中补全该函数图象;x⋯ 5- 4-3- 2- 1- 0 1 2 34 5 ⋯261x y x =+ ⋯ 1513- 2417-125- 3- 0 31252417 1513⋯ (2)根据函数图象,判断下列关于该函数性质的说法是否正确,正确的在答题卡上相应的括号内打“√”,错误的在答题卡上相应的括号内打“⨯”; ①该函数图象是轴对称图形,它的对称轴为y 轴.②该函数在自变量的取值范围内,有最大值和最小值.当1x =时,函数取得最大值3;当1x =-时,函数取得最小值3-.③当1x <-或1x >时,y 随x 的增大而减小;当11x -<<时,y 随x 的增大而增大. (3)已知函数21y x =-的图象如图所示,结合你所画的函数图象,直接写出不等式26211xx x >-+的解集(保留1位小数,误差不超过0.2).23.(10分)在整数的除法运算中,只有能整除与不能整除两种情况,当不能整除时,就会产生余数,现在我们利用整数的除法运算来研究一种数-- “差一数”.定义:对于一个自然数,如果这个数除以5余数为4,且除以3余数为2,则称这个数为“差一数”.例如:14524÷=⋯,14342÷=⋯,所以14是“差一数”; 19534÷=⋯,但19361÷=⋯,所以19不是“差一数”. (1)判断49和74是否为“差一数”?请说明理由; (2)求大于300且小于400的所有“差一数”.24.(10分)“中国人的饭碗必须牢牢掌握在咱们自己手中”.为优选品种,提高产量,某农业科技小组对A ,B 两个小麦品种进行种植对比实验研究.去年A ,B 两个品种各种植了10亩.收获后A ,B 两个品种的售价均为 2.4元/kg ,且B 的平均亩产量比A 的平均亩产量高100kg ,A ,B 两个品种全部售出后总收入为21600元.(1)请求出A ,B 两个品种去年平均亩产量分别是多少?(2)今年,科技小组加大了小麦种植的科研力度,在A ,B 种植亩数不变的情况下,预计A ,B 两个品种平均亩产量将在去年的基础上分别增加%a 和2%a .由于B 品种深受市场的欢迎,预计每千克价格将在去年的基础上上涨%a ,而A 品种的售价不变.A ,B 两个品种全部售出后总收入将在去年的基础上增加20%9a .求a 的值. 25.(10分)如图,在平面直角坐标系中,已知抛物线2y x bx c =++与直线AB 相交于A ,B 两点,其中(3,4)A --,(0,1)B -. (1)求该抛物线的函数表达式;(2)点P 为直线AB 下方抛物线上的任意一点,连接PA ,PB ,求PAB ∆面积的最大值; (3)将该抛物线向右平移2个单位长度得到抛物线21111(0)y a x b x c a =++≠,平移后的抛物线与原抛物线相交于点C ,点D 为原抛物线对称轴上的一点,在平面直角坐标系中是否存在点E ,使以点B ,C ,D ,E 为顶点的四边形为菱形,若存在,请直接写出点E 的坐标;若不存在,请说明理由.四、解答题:(本大题1个小题,共8分)解答时必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.26.(8分)如图,在Rt ABC ∆中,90BAC ∠=︒,AB AC =,点D 是BC 边上一动点,连接AD ,把AD 绕点A 逆时针旋转90︒,得到AE ,连接CE ,DE .点F 是DE 的中点,连接CF . (1)求证:22CF AD =; (2)如图2所示,在点D 运动的过程中,当2BD CD =时,分别延长CF ,BA ,相交于点G ,猜想AG 与BC 存在的数量关系,并证明你猜想的结论;(3)在点D运动的过程中,在线段AD上存在一点P,使PA PB PC++++的值最小.当PA PB PC 的值取得最小值时,AP的长为m,请直接用含m的式子表示CE的长.2020年重庆市中考数学试卷答案1.A . 2.A . 3.C . 4.B . 5.D . 6.C 7.D 8.D 9.B 10.A 11.B 12.B 13.3. 14.6. 15.316. 16.4π-. 17.(4,160). 18.1:8. 19.解:(1)2()(2)x y x x y ++-,22222x xy y x xy =+++-, 222x y =+;(2)229(1)369m m m m m --÷+++, 23(3)()33(3)(3)m m m m m m m ++=-⨯+++-, 3333m m m +=⨯+-, 33m =-. 20.解:(1)七年级20名学生的测试成绩为:7,8,7,9,7,6,5,9,10,9,8,5,8,7,6,7,9,7,10,6,7a ∴=,由条形统计图可得,(78)27.5b =+÷=,(523)20100%50%c =++÷⨯=,即7a =,7.5b =,50%c =;(2)八年级学生掌握垃极分类知识较好,理由:八年级的8分及以上人数所占百分比大于七年级,故八年级学生掌握垃极分类知识较好;(3)从调查的数据看,七年级2人的成绩不合格,八年级2人的成绩不合格,∴参加此次测试活动成绩合格的学生有(202)(202)120010802020-+-⨯=+(人),即参加此次测试活动成绩合格的学生有1080人. 21.(1)解:AE BD ⊥,90AEO ∴∠=︒, 50AOE ∠=︒, 40EAO ∴∠=︒,CA 平分DAE ∠, 40DAC EAO ∴∠=∠=︒,四边形ABCD 是平行四边形,//AD BC ∴, 40ACB DAC ∠=∠=︒,(2)证明:四边形ABCD 是平行四边形,OA OC ∴=,AE BD ⊥,CF BD ⊥, 90AEO CFO ∴∠=∠=︒, AOE COF ∠=∠,()AEO CFO AAS ∴∆≅∆, AE CF ∴=.22.解:(1)补充完整下表为:x⋯5- 4- 3- 2- 1-0 1 2 3 4 5⋯261xy x =+ ⋯ 1513- 2417-95- 125-3-0 3 125 95 24171513⋯ 画出函数的图象如图:;(2)根据函数图象:①该函数图象是轴对称图形,它的对称轴为y 轴,说法错误;②该函数在自变量的取值范围内,有最大值和最小值.当1x =时,函数取得最大值3;当1x =-时,函数取得最小值3-,说法正确;③当1x <-或1x >时,y 随x 的增大而减小;当11x -<<时,y 随x 的增大而增大,说法正确.(3)由图象可知:不等式26211x x x >-+的解集为1x <-或0.3 1.8-<. 23.解:(1)49594÷=⋯,但493161÷=⋯,所以49不是“差一数”;745144÷=⋯,743242÷=⋯,所以74是“差一数”. (2)大于300且小于400的数除以5余数为4的有304,309,314,319,324,329,334,339,344,349,354,359,364,369,374,379,384,389,394,399,其中除以3余数为2的有314,327,344,359,374,389.故大于300且小于400的所有“差一数”有314,327,344,359,374,389.24.解:(1)设A 、B 两个品种去年平均亩产量分别是x 千克和y 千克;根据题意得,10010 2.4()21600y x x y -=⎧⎨⨯+=⎩, 解得:400500x y =⎧⎨=⎩, 答:A 、B 两个品种去年平均亩产量分别是400千克和500千克;(2)202.440010(1%) 2.4(1%)50010(12%)21600(1%)9a a a a ⨯⨯+++⨯⨯+=+, 解得:0.1a =,答:a 的值为0.1.25.解:(1)将点A 、B 的坐标代入抛物线表达式得4931b c c -=-=⎧⎨=-⎩,解得41b c =⎧⎨=-⎩, 故抛物线的表达式为:241y x x =+-;(2)设直线AB 的表达式为:y kx t =+,则431k t t -=-+⎧⎨=-⎩,解得11k t =⎧⎨=-⎩, 故直线AB 的表达式为:1y x =-,过点P 作y 轴的平行线交AB 于点H ,设点2(,41)P x x x +-,则(,1)H x x -,PAB ∆面积221139()(141)(03)2222B A S PH x x x x x x x =⨯⨯-=---+⨯+=--, 302-<,故S 有最大值,当32x =-时,S 的最大值为278; (3)抛物线的表达式为:2241(2)5y x x x =+-=+-, 则平移后的抛物线表达式为:25y x =-, 联立上述两式并解得:14x y =-⎧⎨=-⎩,故点(1,4)C --;设点(2,)D m -、点(,)E s t ,而点B 、C 的坐标分别为(0,1)-、(1,4)--; ①当BC 为菱形的边时,点C 向右平移1个单位向上平移3个单位得到B ,同样D (E )向右平移1个单位向上平移3个单位得到E (D ),即21s -+=且3m t +=①或21s --=且3m t -=②, 当点D 在E 的下方时,则BE BC =,即2222(1)13s t ++=+③, 当点D 在E 的上方时,则BD BC =,即22222(1)13m ++=+④, 联立①③并解得:1s =-,2t =或4-(舍去4)-,故点(1,3)E -;。
【真题】重庆市2020年中考数学试题(b卷)含答案解析(Word版)
2020年重庆市中考数学试卷(B卷)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑1.(4.00分)下列四个数中,是正整数的是()A.﹣1 B.0 C.D.12.(4.00分)下列图形中,是轴对称图形的是()A.B.C.D.3.(4.00分)下列图形都是由同样大小的黑色正方形纸片组成,其中第①个图中有3张黑色正方形纸片,第②个图中有5张黑色正方形纸片,第③个图中有7张黑色正方形纸片,…,按此规律排列下去第⑥个图中黑色正方形纸片的张数为()A.11 B.13 C.15 D.174.(4.00分)下列调查中,最适合采用全面调查(普查)的是()A.对我市中学生每周课外阅读时间情况的调查B.对我市市民知晓“礼让行人”交通新规情况的调查C.对我市中学生观看电影《厉害了,我的国》情况的调查D.对我国首艘国产航母002型各零部件质量情况的调查5.(4.00分)制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是()A.360元B.720元C.1080元D.2160元6.(4.00分)下列命题是真命题的是()A.如果一个数的相反数等于这个数本身,那么这个数一定是0B.如果一个数的倒数等于这个数本身,那么这个数一定是1C.如果一个数的平方等于这个数本身,那么这个数一定是0D.如果一个数的算术平方根等于这个数本身,那么这个数一定是07.(4.00分)估计5﹣的值应在()A.5和6之间B.6和7之间C.7和8之间D.8和9之间8.(4.00分)根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于()A.9 B.7 C.﹣9 D.﹣79.(4.00分)如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)()A.21.7米B.22.4米C.27.4米D.28.8米10.(4.00分)如图,△ABC中,∠A=30°,点O是边AB上一点,以点O为圆心,以OB为半径作圆,⊙O恰好与AC相切于点D,连接BD.若BD平分∠ABC,AD=2,则线段CD的长是()A.2 B.C.D.11.(4.00分)如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y=(k≠0,x>0)的图象同时经过顶点C,D.若点C的横坐标为5,BE=3DE,则k的值为()A.B.3 C.D.512.(4.00分)若数a使关于x的不等式组,有且仅有三个整数解,且使关于y的分式方程+=1有整数解,则满足条件的所有a的值之和是()A.﹣10 B.﹣12 C.﹣16 D.﹣18二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上13.(4.00分)计算:|﹣1|+20=.14.(4.00分)如图,在边长为4的正方形ABCD中,以点B为圆心,以AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是(结果保留π)15.(4.00分)某企业对一工人在五个工作日里生产零件的数量进行调查,并绘制了如图所示的折线统计图,则在这五天里该工人每天生产零件的平均数是个.16.(4.00分)如图,在Rt△ABC中,∠ACB=90°,BC=6,CD是斜边AB上的中线,将△BCD沿直线CD翻折至△ECD的位置,连接AE.若DE∥AC,计算AE的长度等于.17.(4.00分)一天早晨,小玲从家出发匀速步行到学校,小玲出发一段时间后,她的妈妈发现小玲忘带了一件必需的学习用品,于是立即下楼骑自行车,沿小玲行进的路线,匀速去追小玲,妈妈追上小玲将学习用品交给小玲后,立即沿原路线匀速返回家里,但由于路上行人渐多,妈妈返回时骑车的速度只是原来速度的一半,小玲继续以原速度步行前往学校,妈妈与小玲之间的距离y(米)与小玲从家出发后步行的时间x(分)之间的关系如图所示(小玲和妈妈上、下楼以及妈妈交学习用品给小玲耽搁的时间忽略不计).当妈妈刚回到家时,小玲离学校的距离为米.18.(4.00分)为实现营养套餐的合理搭配,某电商推出两款适合不同人群的甲、乙两种袋装的混合粗粮.甲种袋装粗粮每袋含有3千克A粗粮,1千克B粗粮,1千克C粗粮;乙种袋装粗粮每袋含有1千克A粗粮,2千克B粗粮,2千克C 粗粮.甲、乙两种袋装粗粮每袋成本分别等于袋中的A、B、C三种粗粮成本之和.已知每袋甲种粗粮的成本是每千克A种粗粮成本的7.5倍,每袋乙种粗粮售价比每袋甲种粗粮售价高20%,乙种袋装粗粮的销售利润率是20%.当销售这两款袋装粗粮的销售利润率为24%时,该电商销售甲、乙两种袋装粗粮的袋数之比是(商品的销售利润率=×100%)三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上19.(8.00分)如图,AB∥CD,△EFG的顶点F,G分别落在直线AB,CD上,GE交AB于点H,GE平分∠FGD.若∠EFG=90°,∠E=35°,求∠EFB的度数.20.(8.00分)某学校开展以素质提升为主题的研学活动,推出了以下四个项目供学生选择:A.模拟驾驶;B.军事竞技;C.家乡导游;D.植物识别.学校规定:每个学生都必须报名且只能选择其中一个项目.八年级(3)班班主任刘老师对全班学生选择的项目情况进行了统计,并绘制了如下两幅不完整的统计图.请结合统计图中的信息,解决下列问题:(1)八年级(3)班学生总人数是,并将条形统计图补充完整;(2)刘老师发现报名参加“植物识别”的学生中恰好有两名男生,现准备从这些学生中任意挑选两名担任活动记录员,请用列表或画树状图的方法,求恰好选中1名男生和1名女生担任活动记录员的概率.四、解答题:(本大题5个小题,每小题10分,共50分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上21.(10.00分)计算:(1)(x+2y)2﹣(x+y)(x﹣y);(2)(a﹣1﹣)÷22.(10.00分)如图,在平面直角坐标系中,直线l1:y=x与直线l2交点A的横坐标为2,将直线l1沿y轴向下平移4个单位长度,得到直线l3,直线l3与y 轴交于点B,与直线l2交于点C,点C的纵坐标为﹣2.直线l2与y轴交于点D.(1)求直线l2的解析式;(2)求△BDC的面积.23.(10.00分)在美丽乡村建设中,某县政府投入专项资金,用于乡村沼气池和垃圾集中处理点建设.该县政府计划:2020年前5个月,新建沼气池和垃圾集中处理点共计50个,且沼气池的个数不低于垃圾集中处理点个数的4倍.(1)按计划,2020年前5个月至少要修建多少个沼气池?(2)到2020年5月底,该县按原计划刚好完成了任务,共花费资金78万元,且修建的沼气池个数恰好是原计划的最小值.据核算,前5个月,修建每个沼气池与垃圾集中处理点的平均费用之比为1:2.为加大美丽乡村建设的力度,政府计划加大投入,今年后7个月,在前5个月花费资金的基础上增加投入10a%,全部用于沼气池和垃圾集中处理点建设.经测算:从今年6月起,修建每个沼气池与垃圾集中处理点的平均费用在2020年前5个月的基础上分别增加a%,5a%,新建沼气池与垃圾集中处理点的个数将会在2020年前5个月的基础上分别增加5a%,8a%,求a的值.24.(10.00分)如图,在▱ABCD中,∠ACB=45°,点E在对角线AC上,BE=BA,BF⊥AC于点F,BF的延长线交AD于点G.点H在BC的延长线上,且CH=AG,连接EH.(1)若BC=12,AB=13,求AF的长;(2)求证:EB=EH.25.(10.00分)对任意一个四位数n,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a是另一个正整数b的平方,则称正整数a是完全平方数.若四位数m为“极数”,记D(m)=,求满足D(m)是完全平方数的所有m.五、解答题:(本大题1个小题,共12分)解答时每小题必须给出必要的演算过程或推理步骤请将解答书写在答题卡中对应的位置上26.(12.00分)抛物线y=﹣x2﹣x+与x轴交于点A,B(点A在点B 的左边),与y轴交于点C,点D是该抛物线的顶点.(1)如图1,连接CD,求线段CD的长;(2)如图2,点P是直线AC上方抛物线上一点,PF⊥x轴于点F,PF与线段AC交于点E;将线段OB沿x轴左右平移,线段OB的对应线段是O1B1,当PE+EC 的值最大时,求四边形PO1B1C周长的最小值,并求出对应的点O1的坐标;(3)如图3,点H是线段AB的中点,连接CH,将△OBC沿直线CH翻折至△O2B2C的位置,再将△O2B2C绕点B2旋转一周在旋转过程中,点O2,C的对应点分别是点O3,C1,直线O3C1分别与直线AC,x轴交于点M,N.那么,在△O2B2C 的整个旋转过程中,是否存在恰当的位置,使△AMN是以MN为腰的等腰三角形?若存在,请直接写出所有符合条件的线段O2M的长;若不存在,请说明理由.2020年重庆市中考数学试卷(B卷)参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A,B,C,D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑1.(4.00分)下列四个数中,是正整数的是()A.﹣1 B.0 C.D.1【分析】正整数是指既是正数还是整数,由此即可判定求解.【解答】解:A、﹣1是负整数,故选项错误;B、0是非正整数,故选项错误;C、是分数,不是整数,错误;D、1是正整数,故选项正确.故选:D.【点评】此题主要考查正整数概念,解题主要把握既是正数还是整数两个特点,比较简单.2.(4.00分)下列图形中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选:D.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.(4.00分)下列图形都是由同样大小的黑色正方形纸片组成,其中第①个图中有3张黑色正方形纸片,第②个图中有5张黑色正方形纸片,第③个图中有7张黑色正方形纸片,…,按此规律排列下去第⑥个图中黑色正方形纸片的张数为()A.11 B.13 C.15 D.17【分析】仔细观察图形知道第一个图形有3个正方形,第二个有5=3+2×1个,第三个图形有7=3+2×2个,由此得到规律求得第⑥个图形中正方形的个数即可.【解答】解:观察图形知:第一个图形有3个正方形,第二个有5=3+2×1个,第三个图形有7=3+2×2个,…故第⑥个图形有3+2×5=13(个),故选:B.【点评】此题主要考查了图形的变化规律,是根据图形进行数字猜想的问题,关键是通过归纳与总结,得到其中的规律,然后利用规律解决一般问题.4.(4.00分)下列调查中,最适合采用全面调查(普查)的是()A.对我市中学生每周课外阅读时间情况的调查B.对我市市民知晓“礼让行人”交通新规情况的调查C.对我市中学生观看电影《厉害了,我的国》情况的调查D.对我国首艘国产航母002型各零部件质量情况的调查【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、对我市中学生每周课外阅读时间情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;B、对我市市民知晓“礼让行人”交通新规情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;C、对我市中学生观看电影《厉害了,我的国》情况的调查,人数众多,意义不大,应采用抽样调查,故此选项错误;D、对我国首艘国产航母002型各零部件质量情况的调查,意义重大,应采用普查,故此选项正确;故选:D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5.(4.00分)制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是()A.360元B.720元C.1080元D.2160元【分析】根据题意求出长方形广告牌每平方米的成本,根据相似多边形的性质求出扩大后长方形广告牌的面积,计算即可.【解答】解:3m×2m=6m2,∴长方形广告牌的成本是120÷6=20元/m2,将此广告牌的四边都扩大为原来的3倍,则面积扩大为原来的9倍,∴扩大后长方形广告牌的面积=9×6=54m2,∴扩大后长方形广告牌的成本是54×20=1080m2,故选:C.【点评】本题考查的是相似多边形的性质,掌握相似多边形的面积比等于相似比的平方是解题的关键.6.(4.00分)下列命题是真命题的是()A.如果一个数的相反数等于这个数本身,那么这个数一定是0B.如果一个数的倒数等于这个数本身,那么这个数一定是1C.如果一个数的平方等于这个数本身,那么这个数一定是0D.如果一个数的算术平方根等于这个数本身,那么这个数一定是0【分析】根据相反数是它本身的数为0;倒数等于这个数本身是±1;平方等于它本身的数为1和0;算术平方根等于本身的数为1和0进行分析即可.【解答】解:A、如果一个数的相反数等于这个数本身,那么这个数一定是0,是真命题;B、如果一个数的倒数等于这个数本身,那么这个数一定是1,是假命题;C、如果一个数的平方等于这个数本身,那么这个数一定是0,是假命题;D、如果一个数的算术平方根等于这个数本身,那么这个数一定是0,是假命题;故选:A.【点评】此题主要考查了命题与定理,关键是掌握正确的命题为真命题,错误的命题为假命题.7.(4.00分)估计5﹣的值应在()A.5和6之间B.6和7之间C.7和8之间D.8和9之间【分析】先合并后,再根据无理数的估计解答即可.【解答】解:,∵7<<8,∴5﹣的值应在7和8之间,故选:C.【点评】本题考查了估算无理数的大小,解决本题的关键是估算出无理数的大小.8.(4.00分)根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于()A.9 B.7 C.﹣9 D.﹣7【分析】先求出x=7时y的值,再将x=4、y=﹣1代入y=2x+b可得答案.【解答】解:∵当x=7时,y=6﹣7=﹣1,∴当x=4时,y=2×4+b=﹣1,解得:b=﹣9,故选:C.【点评】本题主要考查函数值,解题的关键是掌握函数值的计算方法.9.(4.00分)如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)()A.21.7米B.22.4米C.27.4米D.28.8米【分析】作BM⊥ED交ED的延长线于M,CN⊥DM于N.首先解直角三角形Rt △CDN,求出CN,DN,再根据tan24°=,构建方程即可解决问题;【解答】解:作BM⊥ED交ED的延长线于M,CN⊥DM于N.在Rt△CDN中,∵==,设CN=4k,DN=3k,∴CD=10,∴(3k)2+(4k)2=100,∴k=2,∴CN=8,DN=6,∵四边形BMNC是矩形,∴BM=CN=8,BC=MN=20,EM=MN+DN+DE=66,在Rt△AEM中,tan24°=,∴0.45=,∴AB=21.7(米),故选:A.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.10.(4.00分)如图,△ABC中,∠A=30°,点O是边AB上一点,以点O为圆心,以OB为半径作圆,⊙O恰好与AC相切于点D,连接BD.若BD平分∠ABC,AD=2,则线段CD的长是()A.2 B.C.D.【分析】连接OD,得Rt△OAD,由∠A=30°,AD=2,可求出OD、AO的长;由BD平分∠ABC,OB=OD可得OD 与BC间的位置关系,根据平行线分线段成比例定理,得结论.【解答】解:连接OD∵OD是⊙O的半径,AC是⊙O的切线,点D是切点,∴OD⊥AC在Rt△AOD中,∵∠A=30°,AD=2,∴OD=OB=2,AO=4,∴∠ODB=∠OBD,又∵BD平分∠ABC,∴∠OBD=∠CBD∴∠ODB=∠CBD∴OD∥CB,∴即∴CD=.故选:B.【点评】本题考查了圆的切线的性质、含30°角的直角三角形的性质及平行线分线段成比例定理,解决本题亦可说明∠C=90°,利用∠A=30°,AB=6,先得AC的长,再求CD.遇切点连圆心得直角,是通常添加的辅助线.11.(4.00分)如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y=(k≠0,x>0)的图象同时经过顶点C,D.若点C的横坐标为5,BE=3DE,则k的值为()A.B.3 C.D.5【分析】由已知,可得菱形边长为5,设出点D坐标,即可用勾股定理构造方程,进而求出k值.【解答】解:过点D做DF⊥BC于F由已知,BC=5∵四边形ABCD是菱形∴DC=5∵BE=3DE∴设DE=x,则BE=3x∴DF=3x,BF=x,FC=5﹣x在Rt△DFC中,DF2+FC2=DC2∴(3x)2+(5﹣x)2=52∴解得x=1∴DE=3,FD=3设OB=a则点D坐标为(1,a+3),点C坐标为(5,a)∵点D、C在双曲线上∴1×(a+3)=5a∴a=∴点C坐标为(5,)∴k=故选:C.【点评】本题是代数几何综合题,考查了数形结合思想和反比例函数k值性质.解题关键是通过勾股定理构造方程.12.(4.00分)若数a使关于x的不等式组,有且仅有三个整数解,且使关于y的分式方程+=1有整数解,则满足条件的所有a的值之和是()A.﹣10 B.﹣12 C.﹣16 D.﹣18【分析】根据不等式的解集,可得a的范围,根据方程的解,可得a的值,根据有理数的加法,可得答案.【解答】解:,解①得x≥﹣3,解②得x≤,不等式组的解集是﹣3≤x≤.∵仅有三个整数解,∴﹣1≤<0∴﹣8≤a<﹣3,+=13y﹣a﹣12=y﹣2.∴y=∵y≠﹣2,∴a≠﹣6,又y=有整数解,∴a=﹣8或﹣4,所有满足条件的整数a的值之和是﹣8﹣4=﹣12,故选:B.【点评】本题考查了分式方程的解,利用不等式的解集及方程的解得出a的值是解题关键.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上13.(4.00分)计算:|﹣1|+20=2.【分析】本题涉及零指数幂、绝对值2个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:|﹣1|+20=1+1=2.故答案为:2.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、绝对值等考点的运算.14.(4.00分)如图,在边长为4的正方形ABCD中,以点B为圆心,以AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是8﹣2π(结果保留π)【分析】根据S阴=S△ABD﹣S扇形BAE计算即可;【解答】解:S阴=S△ABD﹣S扇形BAE=×4×4﹣=8﹣2π,故答案为8﹣2π.【点评】本题考查扇形的面积的计算,正方形的性质等知识,解题的关键是学会用分割法求阴影部分面积.15.(4.00分)某企业对一工人在五个工作日里生产零件的数量进行调查,并绘制了如图所示的折线统计图,则在这五天里该工人每天生产零件的平均数是34个.【分析】根据平均数的计算解答即可.【解答】解:,故答案为:34【点评】此题考查折线统计图,关键是根据平均数的计算解答.16.(4.00分)如图,在Rt△ABC中,∠ACB=90°,BC=6,CD是斜边AB上的中线,将△BCD沿直线CD翻折至△ECD的位置,连接AE.若DE∥AC,计算AE的长度等于.【分析】根据题意、解直角三角形、菱形的性质、翻折变化可以求得AE的长.【解答】解:由题意可得,DE=DB=CD=AB,∴∠DEC=∠DCE=∠DCB,∵DE∥AC,∠DCE=∠DCB,∠ACB=90°,∴∠DEC=∠ACE,∴∠DCE=∠ACE=∠DCB=30°,∴∠ACD=60°,∠CAD=60°,∴△ACD是等边三角形,∴AC=CD,∴AC=DE,∵AC∥DE,AC=CD,∴四边形ACDE是菱形,∵在Rt△ABC中,∠ACB=90°,BC=6,∠B=30°,∴AC=,∴AE=.【点评】本题考查翻折变化、平行线的性质、直角三角形斜边上的中线,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.17.(4.00分)一天早晨,小玲从家出发匀速步行到学校,小玲出发一段时间后,她的妈妈发现小玲忘带了一件必需的学习用品,于是立即下楼骑自行车,沿小玲行进的路线,匀速去追小玲,妈妈追上小玲将学习用品交给小玲后,立即沿原路线匀速返回家里,但由于路上行人渐多,妈妈返回时骑车的速度只是原来速度的一半,小玲继续以原速度步行前往学校,妈妈与小玲之间的距离y(米)与小玲从家出发后步行的时间x(分)之间的关系如图所示(小玲和妈妈上、下楼以及妈妈交学习用品给小玲耽搁的时间忽略不计).当妈妈刚回到家时,小玲离学校的距离为200米.【分析】由图象可知:家到学校总路程为1200米,分别求小玲和妈妈的速度,妈妈返回时,根据“妈妈返回时骑车的速度只是原来速度的一半”,得速度为60米/分,可得返回时又用了10分钟,此时小玲已经走了25分,还剩5分钟的总程.【解答】解:由图象得:小玲步行速度:1200÷30=40(米/分),由函数图象得出,妈妈在小玲10分后出发,15分时追上小玲,设妈妈去时的速度为v米/分,(15﹣10)v=15×40,v=120,则妈妈回家的时间:=10,(30﹣15﹣10)×40=200.故答案为:200.【点评】本题考查了一次函数的图象的性质的运用,路程=速度×时间之间的关系的运用,分别求小玲和妈妈的速度是关键,解答时熟悉并理解函数的图象.18.(4.00分)为实现营养套餐的合理搭配,某电商推出两款适合不同人群的甲、乙两种袋装的混合粗粮.甲种袋装粗粮每袋含有3千克A粗粮,1千克B粗粮,1千克C粗粮;乙种袋装粗粮每袋含有1千克A粗粮,2千克B粗粮,2千克C 粗粮.甲、乙两种袋装粗粮每袋成本分别等于袋中的A、B、C三种粗粮成本之和.已知每袋甲种粗粮的成本是每千克A种粗粮成本的7.5倍,每袋乙种粗粮售价比每袋甲种粗粮售价高20%,乙种袋装粗粮的销售利润率是20%.当销售这两款袋装粗粮的销售利润率为24%时,该电商销售甲、乙两种袋装粗粮的袋数之比是(商品的销售利润率=×100%)【分析】根据每袋甲种粗粮的成本是每千克A种粗粮成本的7.5倍,可得甲的成本,乙的成本;根据乙种袋装粗粮的销售利润率是20%,可得乙的售价,根据每袋乙种粗粮售价比每袋甲种粗粮售价高20%,可得甲的售价,根据甲的利润+乙的利润=(甲的成本+乙的成本)×24%,根据等式的性质,可得答案.【解答】解:设A的单价为x元,B的单价为y元,C的单价为z元,当销售这两款袋装粗粮的销售利润率为24%时,该电商销售甲的销售量为a袋,乙的销售量为b袋,由题意,得A一袋的成本是7.5x=3x+y+z,化简,得y+z=4.5x;乙一袋的成本是x+2y+2z=x+2(y+z)=x+9x=10x,乙一袋的售价为10x(1+20%)=12x,甲一袋的售价为10x.根据甲乙的利润,得(10x﹣7.5x)a+20%×10xb=(7.5xa+10xb)×24%化简,得2.5a+2b=1.8a+2.4b0.7a=0.4b=,故答案为:.【点评】本题考查了二元一次方程的应用,利润、成本价与利润率之间的关系的应用,理解题意得出等量关系是解题的关键.三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上19.(8.00分)如图,AB∥CD,△EFG的顶点F,G分别落在直线AB,CD上,GE交AB于点H,GE平分∠FGD.若∠EFG=90°,∠E=35°,求∠EFB的度数.【分析】依据三角形内角和定理可得∠FGH=55°,再根据GE平分∠FGD,AB∥CD,即可得到∠FHG=∠HGD=∠FGH=55°,再根据∠FHG是△EFH的外角,即可得出∠EFB=55°﹣35°=20°.【解答】解:∵∠EFG=90°,∠E=35°,∴∠FGH=55°,∵GE平分∠FGD,AB∥CD,∴∠FHG=∠HGD=∠FGH=55°,∵∠FHG是△EFH的外角,∴∠EFB=55°﹣35°=20°.【点评】考查了平行线的性质,两直线平行时,应该想到它们的性质,由两直线平行的关系得到角之间的数量关系,从而达到解决问题的目的.20.(8.00分)某学校开展以素质提升为主题的研学活动,推出了以下四个项目供学生选择:A.模拟驾驶;B.军事竞技;C.家乡导游;D.植物识别.学校规定:每个学生都必须报名且只能选择其中一个项目.八年级(3)班班主任刘老师对全班学生选择的项目情况进行了统计,并绘制了如下两幅不完整的统计图.请结合统计图中的信息,解决下列问题:(1)八年级(3)班学生总人数是40人,并将条形统计图补充完整;(2)刘老师发现报名参加“植物识别”的学生中恰好有两名男生,现准备从这些学生中任意挑选两名担任活动记录员,请用列表或画树状图的方法,求恰好选中1名男生和1名女生担任活动记录员的概率.【分析】(1)利用A项目的频数除以它所占的百分比得到调查的总人数,然后计算出C项目的人数后补全条形统计图;(2)画树状图展示所有12种等可能的结果数,再找出恰好选中1名男生和1名女生担任活动记录员的结果数,然后利用概率公式求解.【解答】解:(1)调查的总人数为12÷30%=40(人),。
2020重庆市中考数学试题(word版含答案)共2套
重庆市中考数学试题(一)(全卷共五个大题,满分150分,考试时间120分钟)一、选择题:1.4的倒数是 ( D ) A.-4 B.4 C.41-D.41 2.下列交通指示标识中,不是轴对称图形的是( C )3.据重庆商报2016年5月23日报道,第十九届中国(重庆)国际驼子曁全球采购会(简称渝洽会)集中签约86个项目,投资总额1636亿元人民币,将数1636用科学记数法表示是( B ) A.0.1636×104 B.1.636×103 C.16.36×102 D.163.6×104.如图,直线a ,b 被直线c 所截,且a//b ,若∠1=55°,则∠2等于( C )A.35°B.45°C.55°D.125°5.计算(x 2y )3的结果是( A )A.x 6y 3B.x 5y 3C.x 5y 3D.x 2y 36.下列调查中,最适合采用全面调查(普查)方式的是 ( D ) A.对重庆市居民日平均用水量的调查 B.对一批LED 节能灯使用寿命的调查C.对重庆新闻频道“天天630”栏目收视率的调查D.对某校九年级(1)班同学的身高情况的调查7.若二次根式2 a 有意义,则a 的取值范围是( A ) A.a ≥2 B.a ≤2 C.a>2 D.a ≠28.若m=-2,则代数式m 2-2m-1的值是( B ) A.9 B.7 C.-1 D.-99.观察下列一组图形,其中图形1中共有2颗星,图形2中共有6颗星,图形3中共有11颗星,图形4中共有17颗星,。
,按此规律,图形8中星星的颗数是( C )A.43B.45C.51D.5310.如图,在边长为6的菱形ABCD 中,∠DAB=60°,以点D 为圆心,菱形的高DF 为半径画弧,交AD 于点E ,交CD 于点G ,则图形阴影部分的面积是( A ) A.π9-318 B.π3-18 C.29-39πD.π3-31811.如图所示,某办公大楼正前方有一根高度是15米的旗杆ED ,从办公大楼顶端A 测得旗杆顶端E 的俯角α是45°,旗杆低端D 到大楼前梯砍底边的距离DC 是20米,梯坎坡长BC 是12米,梯坎坡度i=1:3,则大楼AB 的高度约为(精确到0.1米,参考数据:45.2673.1341.12≈≈≈,,) ( D ) A.30.6米 B.32.1 米 C.37.9米 D.39.4米12.如果关于x 的分式方程1131+-=-+x x x a 有负分数解,且关于x 的不等式组⎪⎩⎪⎨⎧+<+--≥-1243,4)(2x x x x a 的解集为x<-2,那么符合条件的所有整数a 的积是 ( D ) A.-3 B.0 C.3 D.9 二、填空题13.在21-,0,-1,1这四个数中,最小的数是__-1___. 14.计算:02-3)1(318--+⎪⎭⎫⎝⎛+π=____8______.15.如图,CD 是○O 的直径,若AB ⊥CD ,垂足为B ,∠OAB=40°,则∠C=__25__度.16.点P 的坐标是(a,b ),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P (a ,b )在平面直角坐标系中第二象限内的概率是_51____. 17.为增强学生体质,某中学在体育课中加强了学生的长跑训练。
2020年重庆市中考数学试卷和答案解析(b卷)
2020年重庆市中考数学试卷和答案解析( B 卷)一、选择题:(本大题 12 个小题,每小题 4 分,共 48 分)在每个小题的下面,都给出了代号为 A ,B,C,D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑. 1.(4分) 5 的倒数是()A.5 B.C.﹣ 5 D.﹣解析:根据倒数的定义,可得答案.参考答案:解: 5 得倒数是,故选: B.知识点:本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.(4 分)围成下列立体图形的各个面中,每个面都是平的是(解析:根据平面与曲面的概念判断即可.参考答案:解: A 、六个面都是平面,故本选项正确;B、侧面不是平面,故本选项错误;C、球面不是平面,故本选项错误;D、侧面不是平面,故本选项错误;故选: A .知识点:本题考查的是立体图形的认识,掌握平面与曲面的概念是解题的关键.3.(4 分)计算 a?a2结果正确的是()A .a B.a2C. a3D.a4解析:根据同底数幂的乘法法则计算即可.参考答案:解:a?a2= a1+2= a3.故选: C.知识点:本题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.4.(4 分)如图, AB 是⊙O 的切线, A 为切点,连接 OA,OB .若∠B= 35°,则∠AOB 的度数为C.45 D.35解析:根据切线的性质得到∠ OAB =90°,根据直角三角形的两锐角互余计算即可.参考答案:解:∵ AB 是⊙O 的切线,∴OA ⊥ AB ,∴∠OAB = 90∴∠AOB = 90°﹣∠B =55°, 故选: B .知识点: 本题考查的是切线的性质, 掌握圆的切线垂直于经过切点的半径是解题的关键.参考答案:解:当 a+b =4 时,=1+ ×4 =1+2 =3, 故选: A .知识点: 本题主要考查代数式求值, 解题的关键是得出待求代数式 与已知等式间的特点,利用整体代入的办法进行计算.6.(4 分)如图,△ABC 与△DEF 位似,点 O 为位似中心.已知 OA :OD =1:2,则△ABC 与△DEF 的面积比为( )C . 1:4D .1:5 解析:根据位似图形的概念求出△ ABC 与△DEF 的相似比,根据相 似三角形的性质计算5.(4 分)已知 a+b =4,则代数式 1+ + C .0 的值为( )A .3B .1 D .﹣1解析:将 a+b 的值代入原式= 1 a+b )计算可得.原式= 1 a+b) A .1:2 B .1:即可.参考答案:解:∵△ABC 与△DEF 是位似图形, OA :OD=1:2,∴△ABC 与△DEF 的位似比是 1: 2.∴△ABC 与△DEF 的相似比为 1: 2,∴△ABC 与△DEF 的面积比为 1: 4,故选: C.知识点:本题考查的是位似图形的概念、相似三角形的性质,掌握位似的两个三角形是相似三角形、相似三角形的面积比等于相似比的平方是解题的关键.7.(4 分)小明准备用 40 元钱购买作业本和签字笔.已知每个作业本 6 元,每支签字笔 2.2 元,小明买了 7 支签字笔,他最多还可以买的作业本个数为()A .5 B.4 C. 3 D.2解析:设还可以买 x 个作业本,根据总价=单价×数量结合总价不超过 40 元,即可得出关系 x 的一元一次不等式,解之取其中的最大整数值即可得出结论.参考答案:解:设还可以买 x 个作业本,依题意,得: 2.2×7+6x ≤40,解得: x≤4 .又∵x 为正整数,∴x 的最大值为 4.故选: B.知识点:本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.8.(4 分)下列图形都是由同样大小的实心圆点按一定规律组成的,其中第① 个图形一共有 5 个实心圆点,第② 个图形一共有 8 个实心圆点,第③ 个图形一共有 11个实心圆点,⋯,按此规律排列下去,第⑥ 个图形中实心圆点的个数为()A .18 B.19 C. 20 D.21解析:根据已知图形中实心圆点的个数得出规律:第 n 个图形中实心圆点的个数为 2n+n+2 ,据此求解可得.参考答案:解:∵第① 个图形中实心圆点的个数 5=2×1+3,第② 个图形中实心圆点的个数 8=2×2+4,第③ 个图形中实心圆点的个数 11=2×3+5,∴第⑥ 个图形中实心圆点的个数为 2×6+8= 20,故选: C.知识点:本题主要考查图形的变化规律,解题的关键是根据已知图形得出第 n 个图形中实心圆点的个数为 2n+n+2 的规律.9.(4 分)如图,垂直于水平面的 5G 信号塔 AB 建在垂直于水平面的悬崖边 B 点处,某测量员从山脚 C 点出发沿水平方向前行78 米到 D 点(点 A,B,C在同一直线上),再沿斜坡 DE 方向前行 78米到 E 点(点 A,B,C,D,E 在同一平面内),在点 E 处测得 5G 信号塔顶端 A 的仰角为 43°,悬崖BC 的高为144.5 米,斜坡 DE 的坡度(或坡比)i= 1:2.4,则信号塔 AB 的高度约为()参考数据: sin43°≈0.68,cos43°≈0.73, tan43°≈0.93)A.23米B.24 米C. 24.5米D.25米解析:过点 E 作 EF ⊥ DC 交 DC 的延长线于点 F,过点 E 作 EM ⊥AC 于点 M ,根据斜坡 DE 的坡度(或坡比) i=1:2.4 可设EF =x,则 DF =2.4x,利用勾股定理求出 x 的值,进而可得出EF 与 DF 的长,故可得出 CF 的长.由矩形的判定定理得出四边形 EFCM 是矩形,故可得出 EM =FC,CM=EF,再由锐角三角函数的定义求出 AM 的长,进而可得出答案.参考答案:解:过点 E作 EF⊥DC 交 DC 的延长线于点 F,过点E 作 EM ⊥AC 于点 M ,∵斜坡DE 的坡度(或坡比) i=1:2.4,BE=CD=78 米,∴设EF=x,则 DF =2.4x.在 Rt △DEF 中,∵EF2+DF2=DE2,即 x2+(2.4x)2=782,解得 x= 30,∴EF=30 米,DF=72 米,∴CF=DF+DC =72+78=150 米.∵EM ⊥AC,AC⊥CD,EF⊥CD,∴四边形 EFCM 是矩形,∴EM=CF=150米,CM=EF=30 米.在 Rt △AEM 中,∵∠AEM =43°,∴AM =EM ?tan43°≈150×0.93=139.5米,∴AC = AM+CM =139.5+30=169.5 米.∴AB = AC ﹣BC = 169.5﹣ 144.5= 25 米.故选: D.知识点:本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.10.(4 分)若关于 x 的一元一次不等式组≥5,且关于 y 的分式方程 + =﹣件的所有整数 a 的和为()的解集为 x 1 有非负整数解,则符解析:不等式组整理后,根据已知解集确定出 a 的范围,分式方程 去分母转化为正整数方程, 由分式方程有非负整数解, 确定出 a 的 值,求出之和即可.参考答案:解:不等式组整理得: ,由解集为 x ≥5,得到 2+a ≤5,即 a ≤3,分式方程去分母得: y ﹣a =﹣ y+2,即 2y ﹣2=a ,解得: y = +1,由 y 为非负整数,且 y ≠2,得到 a =0,﹣ 2,之和为﹣ 2, 故选: B .知识点:此题考查了分式方程的解,以及解一元一次不等式组,熟 练掌握运算法则是解本题的关键.11.(4 分)如图,在△ABC 中,AC =2 ,∠ABC =45°,∠BAC = 15°将,△ACB 沿直线 AC 翻折至△ABC 所在的平面内,得△ACD .过 点 A 作 AE ,使∠DAE =∠DAC ,与 CD 的延长线交于点 E ,连接 BE ,则线段 BE 的长为( )A .B .3C . 2D .4解析:延长 BC 交 AE 于 H ,由折叠的性质∠ DAC =∠BAC =15 ∠ADC =∠ABC = 45°,∠ACB =∠ACD =120°,由外角的性质可求 ∠AED =∠EAC ,可得 AC =EC ,由“ SAS ”可证△ABC≌△EBC , 可得 AB =BE ,∠ABC =∠EBC =45°,利用等腰直角A .﹣1B .﹣2C .﹣ 3D .三角形的性质和直角三角形的性质可求解.参考答案:解:如图,延长 BC 交 AE 于 H ,∵∠ABC = 45°,∠BAC =15°,∴∠ACB =120°,∵将△ACB 沿直线 AC 翻折,∴∠DAC =∠BAC =15°,∠ADC =∠ABC =45°,∠ACB =∠ACD =120°,∵∠DAE =∠DAC ,∴∠DAE =∠DAC = 15°,∴∠CAE = 30°,∵∠ADC =∠DAE+ ∠AED,∴∠AED =45°﹣15°=30°,∴∠AED =∠EAC ,∴AC =EC,又∵∠BCE =360°﹣∠ACB ﹣∠ACE =120°=∠ACB ,BC=BC,∴△ABC ≌△EBC (SAS),∴AB=BE,∠ABC =∠EBC = 45°,∴∠ABE =90°,∵AB=BE,∠ABC =∠EBC ,∴AH =EH ,BH ⊥AE,∵∠CAE = 30°,∴CH= AC=,AH = CH=,∴AE = 2 ,∵AB=BE,∠ABE =90°,∴BE== 2 ,故选: C.知识点:本题考查了旋转的性质,全等三角形的判定和性质,等腰直角三角形的性质等知识,灵活运用这些性质进行推理是本题的关键.12.(4 分)如图,在平面直角坐标系中,矩形 ABCD 的顶点A, C分别在 x 轴,y 轴的正半轴上,点 D(﹣ 2,3),AD=5,若反比解析:过 D 作 DE⊥x 轴于 E,过 B 作 BF⊥x 轴,BH⊥y 轴,得到的图象经过点 B,则 k 的值为()C.10 D.∠BHC = 90°,根据勾股定理得到 AE ==4,根据矩形的性质得到 AD =BC,根据全等三角形的性质得到 BH =AE=4,求得 AF =2,根据相似三角形的性质即可得到结论.参考答案:解:过 D 作 DE⊥x 轴于 E,过 B 作 BF⊥x 轴,BH ⊥y 轴,∴∠BHC = 90°,∵点D(﹣2,3),AD=5,∴DE=3,∴AE ==4,∵四边形 ABCD 是矩形,∴AD =BC,∴∠BCD =∠ADC = 90°,∴∠DCP+∠BCH =∠BCH+ ∠CBH =90°,∴∠CBH =∠DCH ,∵∠DCG+ ∠CPD=∠APO+ ∠DAE =90°,∠CPD=∠APO,∴∠DCP=∠DAE ,∴∠CBH =∠DAE ,∵∠AED =∠BHC = 90°,∴△ADE ≌△BCH ( AAS ),∴BH=AE=4,∵OE=2,∴OA =2,∴AF =2,∵∠APO+ ∠PAO=∠BAF+ ∠PAO=90°,∴∠APO =∠BAF ,∴△APO ∽△BAF ,∴,∴,∴=,∴=,,故选: D.知识点:本题考查了反比例函数图象上点的坐标特征,全等三角形的判定和性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.二、填空题:(本大题 6个小题,每小题 4分,共 24分)请将每小题的答案直接填在答题卡中对应的横线上.13.(4 分)计算:()﹣1﹣= 3 .解析:先计算负整数指数幂和算术平方根,再计算加减可得.参考答案:解:原式= 5﹣2= 3,故答案为: 3.知识点:本题主要考查实数的运算,解题的关键是掌握负整数指数幂的规定和算术平方根的定义.14.(4 分)经过多年的精准扶贫,截至 2019年底,我国的农村贫困人口减少了约 94000000 人.请把数 94000000用科学记数法表示为 9.4×107.解析:科学记数法的表示形式为 a×10n的形式,其中1≤|a|<10,n 为整数.确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值> 10 时, n 是正数;当原数的绝对值< 1 时,n 是负数.参考答案:解: 94000000=9.4×107,故答案为: 9.4×107.知识点:此题考查科学记数法的表示方法.科学记数法的表示形式为 a×10n的形式,其中 1≤|a|< 10, n 为整数,表示时关键要正确确定 a 的值以及 n 的值.15.(4 分)盒子里有 3 张形状、大小、质地完全相同的卡片,上面分别标着数字 1,2,3,从中随机抽出 1 张后不放回,再随机抽出 1 张,则两次抽出的卡片上的数字之和为奇数的概率是.解析:列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.参考答案:解:列表如下1 2 31 3 423 534 5由表可知,共有 6 种等可能结果,其中两次抽出的卡片上的数字之和为奇数的有 4 种结果,所以两次抽出的卡片上的数字之和为奇数的概率为=,故答案为:.知识点:本题考查了列表法和树状图法,利用列表法或树状图法展示某一随机事件中所有等可能出现的结果数 n,再找出其中某一事件所出现的可能数 m ,然后根据概率的定义可计算出这个事件的概率.16.(4 分)如图,在菱形 ABCD 中,对角线 AC,BD 交于点O,∠ABC = 120°,AB =2 ,以点 O 为圆心, OB 长为半径画弧,分别与菱形的边相交,则图中阴影部分的面积为 3 ﹣π .(结果保留π)解析:由菱形的性质可得 AC⊥BD,BO=DO,OA =OC,AB =AD ,∠DAB =60°,可证△BEO,△DFO 是等边三角形,由等边三角形的性质可求∠ EOF=60°由,扇形的面积公式和面积和差关系可求解.参考答案:解:如图,设连接以点 O 为圆心, OB 长为半径画弧,分别与 AB ,AD 相交于 E,F,连接 EO,FO,∵四边形 ABCD 是菱形,∠ABC=120°,∴AC⊥BD,BO=DO,OA=OC,AB=AD,∠DAB =60°,∴△ABD 是等边三角形,∴AB=BD=2 ,∠ABD =∠ADB =60°,∴BO = DO =,∵以点O 为圆心, OB 长为半径画弧,∴BO = OE =OD=OF,∴△BEO ,△DFO 是等边三角形,∴∠DOF=∠BOE=60°,∴∠EOF = 60°,∴阴影部分的面积= 2×( S△ABD ﹣ S△DFO ﹣ S△BEO ﹣S 扇形OEF )=2×(×12﹣ ×3﹣ ×3﹣)= 3 ﹣π,故答案为: 3 ﹣π.知识点:本题考查的是扇形面积计算,菱形的性质,掌握扇形面积公式是解题的关键.17.(4 分)周末,自行车骑行爱好者甲、乙两人相约沿同一路线从 A 地出发前往 B 地进行骑行训练,甲、乙分别以不同的速度匀速骑行,乙比甲早出发 5 分钟.乙骑行 25 分钟后,甲以原速的继续骑行,经过一段时间,甲先到达 B 地,乙一直保持原速前往 B 地.在此过程中,甲、乙两人相距的路程 y(单位:米)与乙骑行的时间 x(单位:分钟)之间的关系如图所示,则乙比甲晚12 分钟到解析:首先确定甲乙两人的速度,求出总里程,再求出甲到达 B 地时,乙离 B 地的距离即可解决问题.参考答案:解:由题意乙的速度为 1500÷5=300(米 /分),设甲的速度为 x 米/分.则有: 7500﹣20x=2500,解得 x= 250,25 分钟后甲的速度为 250× =400(米/分).由题意总里程= 250×20+61×400= 29400(米),86 分钟乙的路程为 86×300=25800(米),12(分钟).故答案为 12.知识点:本题考查一次函数的应用,解题的关键是读懂图象信息,灵活运用所学知识解决问题,属于中考填空题中的压轴题.18.(4 分)为刺激顾客到实体店消费,某商场决定在星期六开展促销活动.活动方案如下:在商场收银台旁放置一个不透明的箱子,箱子里有红、黄、绿三种颜色的球各一个(除颜色外大小、形状、质地等完全相同),顾客购买的商品达到一定金额可获得一次摸球机会,摸中红、黄、绿三种颜色的球可分别返还现金50 元、 30 元、 10 元.商场分三个时段统计摸球次数和返现金额,汇总统计结果为:第二时段摸到红球次数为第一时段的 3 倍,摸到黄球次数为第一时段的 2 倍,摸到绿球次数为第一时段的 4 倍;第三时段摸到红球次数与第一时段相同,摸到黄球次数为第一时段的 4 倍,摸到绿球次数为第一时段的 2 倍,三个时段返现总金额为 2510 元,第三时段返现金额比第一时段多 420 元,则第二时段返现金额为 1230 元.解析:设第一时段摸到红球 x 次,摸到黄球 y 次,摸到绿球z 次,(x, y, z 均为非负整数),则第一时段返现( 50x+30y+10z),根据“第三时段返现金额比第一时段多420 元”,得出 z= 42﹣9y,进而确定出 y≤ ,再根据“三个时段返现总金额为 2510 元”,得出 25x= 42y﹣ 43,进而得出≤y≤ ,再将满足题意的 y 的知代入④ ,计算 x ,进而得出x,z,即可得出结论.参考答案:解:设第一时段摸到红球 x 次,摸到黄球 y 次,摸到绿球 z 次,( x, y, z 均为非负整数),则第一时段返现金额为(50x+30y+10z),第二时段摸到红球 3x 次,摸到黄球 2y 次,摸到绿球 4z 次,则第二时段返现金额为( 50×3x+30×2y+10×4z),第三时段摸到红球 x 次,摸到黄球 4y 次,摸到绿球 2z 次,则第三时段返现金额为( 50x+30×4y+10×2z),∵第三时段返现金额比第一时段多 420 元,∴(50x+30×4y+10×2z)﹣( 50x+30y+10z)= 420,∴z=42﹣9y①,∵z 为非负整数,∴42﹣9y≥0,∵三个时段返现总金额为 2510 元,∴(50x+30y+10z)+(50x+30×4y+10×2z)+(50x+30×4y+10×2z) =2510,∴25x+21y+7z=251② ,将① 代入② 中,化简整理得, 25x=42y﹣43,④,∵x 为非负整数,≤y≤ ,∵y 为非负整数,∴y=2,34,当 y=2 时,x=,不符合题意,当 y=3 时,x=,不符合题意,当 y=4 时, x=5,则 z=6,∴第二时段返现金额为 50×3x+30×2y+10×4z= 10( 15×5+6×4+4× 6)= 1230(元),故答案为: 1230.知识点:此题主要考查了三元一次不定方程,审清题意,找出相等关系,确定出 y 的范围是解本题的关键.三、解答题:(本大题 7 个小题,每小题 10 分,共 70 分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程写在答题卡中对应的位置上.19.(10 分)计算:1)(x+y )2+y( 3x﹣ y);解析:(1)利用完全平方公式和多项式的乘法,进行计算即可;(2)根据分式的四则计算的法则进行计算即可,参考答案:解:(1)(x+y)2+y(3x﹣y),=x2+2xy+y2+3xy﹣y2,=x2+5xy;= × ,=﹣.知识点:本题考查整式、分式的四则运算,掌握计算法则是正确计算的前提.20.(10分)如图,在平行四边形 ABCD 中,AE ,CF 分别平分∠BAD 和∠DCB ,交对角线 BD 于点 E,F.(1)若∠BCF =60°,求∠ABC 的度数;(2)求证: BE = DF .解析:(1)根据平行四边形的性质得到 AB∥CD ,根据平行线的性质得到∠ABC+ ∠BCD =180°,根据角平分线的定义得到∠ BCD = 2 ∠BCF ,于是得到结论;(2)根据平行四边形的性质得到 AB∥CD,AB =CD,∠BAD =∠ DCB ,求得∠ABE =∠CDF ,根据角平分线的定义得到∠ BAE =∠ DCE,根据全等三角形的性质即可得到结论.参考答案:解:(1)∵四边形 ABCD 是平行四边形,∴AB ∥CD ,∴∠ABC+ ∠BCD = 180°,∵CF 平分∠DCB ,∴∠BCD = 2∠BCF ,∵∠BCF = 60°,∴∠BCD=120°,∴∠ABC =180°﹣120°=60°;(2)∵四边形 ABCD 是平行四边形,∴AB ∥CD , AB = CD ,∠BAD =∠DCB ,∴∠ABE =∠CDF ,∵AE , CF 分别平分∠BAD 和∠DCB ,∴∠BAE =∠DCE,∴△ABE ≌△CDF (ASA ),∴BE=CF.知识点:本题考查了平行四边形的性质,全等三角形的判定和性质,正确的识别图形是解题的关键.21.(10 分)每年的 4 月 15 日是我国全民国家安全教育日.某中学在全校七、八年级共 800 名学生中开展“国家安全法”知识竞赛,并从七、八年级学生中各抽取 20 名学生,统计这部分学生的竞赛成绩(竞赛成绩均为整数,满分 10 分, 6 分及以上为合格).相关数据统计、整理如下:八年级抽取的学生的竞赛成绩: 4,4,6,6,6,6,7,7,7,8,8,8,8,8,8,9,9,9,10, 10.七、八年级抽取的学生的竞赛成绩统计表年级七年级八年级平均数7.4 7.4中位数 a b众数7 c合格率85% 90%根据以上信息,解答下列问题:(1)填空: a= 7.5 ,b= 8 , c= 8 ;(2)估计该校七、八年级共 800 名学生中竞赛成绩达到 9 分及以上的人数;(3)根据以上数据分析,从一个方面评价两个年级“国家安全法” 知识竞赛的学生成绩谁更优异.(2)利用样本估计总体思想求解可得;(3)由八年级的合格率高于七年级的合格率,可得八年级“国家安全法”知识竞赛的学生成绩更优异.参考答案:解:( 1)由图表可得: a==7.5,b== 8,c=8,故答案为: 7.5, 8,8;2)该校七、八年级共 800 名学生中竞赛成绩达到 9 分及以上的人数= 800× =200(人),答:该校七、八年级共 800名学生中竞赛成绩达到 9 分及以上的人数为 200 人;(3)∵八年级的合格率高于七年级的合格率,∴八年级“国家安全法”知识竞赛的学生成绩更优异.知识点:本题考查中位数、众数、平均数的意义和计算方法,理解各个概念的内涵和计算方法,是解题的关键.22.(10分)在数的学习过程中,我们总会对其中一些具有某种特性的数充满好奇,如学习自然数时,我们发现一种特殊的自然数﹣﹣“好数”.定义:对于三位自然数 n,各位数字都不为 0,且百位数字与十位数字之和恰好能被个位数字整除,则称这个自然数 n 为“好数”.例如: 426是“好数”,因为 4,2,6 都不为 0,且 4+2=6,6 能被 6 整除;643不是“好数”,因为 6+4=10,10不能被 3 整除.(1)判断 312,675 是否是“好数”?并说明理由;(2)求出百位数字比十位数字大 5 的所有“好数”的个数,并说明理由.解析:(1)根据“好数”的意义,判断即可得出结论;(2)设十位数数字为 a,则百位数字为 a+5(0<a≤4 的整数),得出百位数字和十位数字的和为 2a+5,再分别取 a=1,2,3,4,计算判断即可得出结论.参考答案:解:(1) 312 是“好数”,因为 3,1,2 都不为 0,且 3+1=4,6 能被 2 整除,675不是“好数”,因为 6+7=13,13不能被 5 整除;(2)611,617,721,723,729,831,941共 7个,理由:设十位数数字为 a,则百位数字为 a+5( 0<a≤4 的整数),∴a+a+5=2a+5,当 a=1 时, 2a+5= 7,∴7能被 1,7整除,∴满足条件的三位数有 611, 617,当 a=2 时, 2a+5= 9,∴9能被 1,3,9整除,∴满足条件的三位数有 721, 723,729,当 a=3 时, 2a+5= 11,∴11能被 1 整除,∴满足条件的三位数有 831,当 a=4 时, 2a+5= 13,∴13能被 1整除,∴满足条件的三位数有 941,即满足条件的三位自然数为611,617,721, 723,729, 831,941共 7 个.知识点:此题主要考查了数的整除问题,新定义,理解并灵活运用新定义是解本题的关键.23.(10 分)探究函数性质时,我们经历了列表、描点、连线画出函数图象,观察分析图象特征,概括函数性质的过程.结合已有的学习经验,请画出函数y=﹣的图象并探究该函数的性质.x⋯﹣4 ﹣ 3 ﹣ 2 ﹣1 0 12 3 4y⋯﹣ a ﹣ 2 ﹣4 b ﹣ 4 ﹣2 ﹣﹣1)列表,写出表中 a,b 的值:a=﹣, b=﹣6;描点、连线,在所给的平面直角坐标系中画出该函数的图象.(2)观察函数图象,判断下列关于函数性质的结论是否正确(在答题卡相应位置正确的用“√”作答,错误的用“×”作答):① 函数 y =﹣的图象关于 y 轴对称;② 当 x=0 时,函数 y=﹣有最小值,最小值为﹣ 6;③ 在自变量的取值范围内函数 y 的值随自变量 x 的增大而减小.(3)已知函数 y=﹣ x﹣的图象如图所示,结合你所画的函数图象,直接写出不等式﹣ <﹣ x﹣的解集.解析:(1)将 x =﹣ 3,0分别代入解析式即可得 y 的值,再画出函 数的图象;(2)结合图象可从函数的增减性及对称性进行判断;(3)根据图象求得即可.参考答案:解:(1)x =﹣3、0 分别代入 y =﹣ ,得 a =﹣故答案为﹣ ,﹣ 6;故答案为﹣ ,﹣ 6;(2)根据函数图象:,b =﹣ =﹣6,画出函数的图象如② 当 x =0 时,函数 y =﹣ 有最小值,最小值为﹣ 6,说法正确;③ 在自变量的取值范围内函数 y 的值随自变量 x 的增大而减小,说 法错误.(3)由图象可知:不等式﹣ <﹣ x ﹣ 的解集为 x<﹣ 4 或 ﹣2<x<1.知识点: 本题主要考查一次函数的图象和性质, 一次函数与一元一 次不等式, 会用描点法画出函数图象, 利用数形结合的思想得到函 数的性质是解题的关键.24.(10 分)为响应“把中国人的饭碗牢牢端在自己手中”的号召, 确保粮食安全,优选品种,提高产量,某农业科技小组对 A , B 两个玉米品种进行实验种植对比研究.去年 A 、 B 两个品种各种 植了 10 亩.收获后 A 、B 两个品种的售价均为 2.4 元/kg ,且 B 品 种的平均亩产量比 A 品种高 100千克,A 、B 两个品种全部售出后 总收入为 21600 元.(1)求 A 、B 两个品种去年平均亩产量分别是多少千克?(2)今年,科技小组优化了玉米的种植方法,在保持去年种植面 积不变的情况下,预计 A 、B 两个品种平均亩产量将在去年的基础 上分别增加 a%和 2a%.由于 B 品种深受市场的图象关于 y 轴对称,说法正确; ① 函数 y欢迎,预计每千克售价将在去年的基础上上涨 a%,而 A 品种的售价保持不变, A 、B两个品种全部售出后总收入将增加a%.求 a 的值.解析:(1)设 A、B两个品种去年平均亩产量分别是 x 千克和 y 千克;根据题意列方程组即可得到结论;(2)根据题意列方程即可得到结论.参考答案:解:(1)设 A、B 两个品种去年平均亩产量分别是 x 千克和 y 千克;根据题意得,,,解得:答:A、B 两个品种去年平均亩产量分别是 400千克和 500 千克;(2)2.4×400×10(1+a%)+2.4(1+a%)×500×10(1+2a%)= 21600(1+ a% ),解得: a= 10,答:a 的值为 10.知识点:本题考查了一元二次方程的应用,二元一次方程组的应用,正确的理解题意是解题的关键.25.(10 分)如图,在平面直角坐标系中,抛物线 y=ax2+bx+2(a≠ 0)与 y 轴交于点 C,与 x轴交于 A,B两点(点 A 在点 B 的左侧),且 A 点坐标为(﹣,0),直线BC 的解析式为 y=﹣ x+2.(1)求抛物线的解析式;(2)过点 A 作 AD ∥BC,交抛物线于点 D,点 E 为直线 BC 上方抛物线上一动点,连接 CE,EB ,BD,DC.求四边形BECD 面积的最大值及相应点 E 的坐标;(3)将抛物线 y =ax 2+bx+2(a ≠0)向左平移 个单位, 已知点 M 为抛物线 y = ax 2+bx+2(a ≠0)的对称轴上一动点,点 N 为平移后的抛物线上一动点.在( 2)中,当四边形 BECD 的面积最大时,是否存在以 A ,E ,M ,N 为顶点的四边形为平行四边形?若存在,直接写出点 N 的坐标;若不存在,请说明理由.解析:(1)利用直线 BC 的解析式求出点 B 、C 的坐标,则 y = ax 2+bx+2= a (x+ )(x ﹣3 )=ax 2﹣2 a ﹣6a ,即﹣ 6a =2,解2)四边形 BECD 的面积 S =S △BCE +S △BCD = ﹣x C )×BH ,即可求解; (3)分 AE 是平行四边形的边、 AE 是平行四边形的对角线两种情 况,分别求解即可. 参考答案:解:(1)直线 BC 的解析式为 y =﹣ x+2,令 y =0, 则 x = 3 ,令 x =0,则 y = 2,故点 B 、 C 的坐标分别为( 3 , 0)、( 0,2);得:a ,即可求解;×EF×OB+ ×(x D则 y=ax2+bx+2=a(x+ )(x﹣3 )=a(x2﹣2 x﹣6)= ax2﹣2 a ﹣6a ,即﹣ 6a = 2,解得: a = , 故抛物线的表达式为: y =﹣ x 2+ x+2① ;2)如图,过点 B 、E 分别作 y 轴的平行线分别交 CD 于点 H ,∵AD ∥BC ,则设直线 AD 的表达式为: y = x+ )② ,联立 ①② 并解得: x =4 ,故点 D (4 , ), 由点 C 、D 的坐标得,直线 CD 的表达式为: x+2=﹣ 2,即点 H 当 x =3 时, y BC = y =﹣ x+2,3 ,﹣ 2),故 BH =2,设点 E ( x ,﹣ x 2+ )x+2),则点 F则四边形 BECD 的面积 S =S △BCE +S △BCD = x 2+ x+2+ x C )×BH = 22∵ < 0,故 S 有最大值,当 ×(﹣ x 2+3x+4 , x = ×EF ×OB+ ×(x D ﹣ x ﹣ 2)×3 + ×4 ×2 时,S 的最大值为 ,此 )时点 E);综上点 N 的坐标为: ( ,﹣)或(﹣ 知识点:本题考查的是二次函数综合运用, 涉及到一次函数的性质、平行四边形的性质、图形的平移、面积的计算等,其中( 3),要注意分类求解,避免遗漏.n 2+ =n+ = s =﹣ 3)存在,理由: ﹣ x 2+ x+2 = 向左平移 个单位,y = 2+ ,抛物线 y = ax 2+bx+2(a ≠0) y =﹣ x 2+ ,y =﹣ x 2+ , 点 A 、E 的坐标分别为(﹣ ,则新抛物线的表达式为: , );设点 M ( ,m ),+; ;① 当 AE 是平行四边形的边时,点 A 向右平移 个单位向上平移 个单位得到 E ,同样点 M (N )点 N (n , s ),s =﹣ 向右平移 即± 则 s =﹣ =n ,或,或, 故点 N 的坐标为( ,﹣② 当 AE 是平行四边形的对角线时, 由中点公式得:﹣ + n 2+ = n+ ,解得: n =﹣,)或(﹣ ).)或)故点 N 的坐四、解答题:(本大题 1 个小题,共 8 分)解答时必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上.26.(8 分)△ABC 为等边三角形, AB=8,AD⊥BC 于点D,E 为线段 AD 上一点, AE =2 .以 AE 为边在直线 AD 右侧构造等边三角形 AEF ,连接 CE,N 为 CE 的中点.(1)如图 1,EF 与 AC 交于点 G,连接 NG ,求线段 NG 的长;(2)如图 2,将△AEF 绕点 A 逆时针旋转,旋转角为α,M 为线段 EF 的中点,连接 DN,MN .当 30°<α<120°时,猜想∠DNM 的大小是否为定值,并证明你的结论;(3)连接 BN,在△AEF 绕点 A 逆时针旋转过程中,当线段 BN 最大时,请直接写出△ ADN 的面解析:(1)如图 1 中,连接 BE , CF.解直角三角形求出BE ,再利用全等三角形的性质证明 CF =BE ,利用三角形的中位线定理即可解决问题.(2)结论:∠ DNM =120°是定值.利用全等三角形的性质证明∠ EBC+ ∠BCF = 120°,再利用三角形的中位线定理,三角形的外角的性质证明∠ DNM =∠EBC+ ∠BCF 即可.(3)如图 3﹣1 中,取 AC 的中点,连接 BJ,BN.首先证明当点 N 在 BJ 的延长线上时, BN 的值最大,如图 3﹣2 中,过点 N 作 NH⊥AD 于 H,设 BJ 交 AD 于 K,连接 AN .解直角三角形求出 NH 即可解决问题.参考答案:解:(1)如图 1 中,连接 BE,CF.∵△ABC 是等边三角形, AD ⊥BC ,∴AB=BC=AC =8,BD=CD=4,∴AD = BD=4 ,∵AE =2 ,∴DE=AE =2 ,∴BE ===2 ,∵△ABC ,△AEF 答等边三角形,∴AB=AC,AE=AF,∠BAC =∠EAF =60°,∴∠BAE =∠CAF ,∴△BAE ≌△CAF (SAS),∴CF =BE = 2 ,∵EN=CN,EG=FG,∴GN= CF =.120°是定值.理由:连接 BE,CF.同法可证△BAE ≌△CAF (SAS),∴∠ABE =∠ACF ,∵∠ABC+ ∠ACB =60°+60°=120°,∴∠EBC+ ∠BCF =∠ABC ﹣∠ABE+ ∠ACB+ ∠ACF =120°,∵EN = NC,EM =MF ,∴MN ∥CF,∴∠ENM =∠ECM ,∵BD=DC,EN=NC,∴DN∥BE,∴∠CDN =∠EBC ,∵∠END =∠NDC+ ∠ACB ,∴∠DNM =∠DNE+ ∠ENM =∠NDC+ ∠ACN+ ∠ECM =∠EBC+ ∠ACB+ ∠ACF =∠EBC+ ∠BCF =120°.3)如图 3﹣1 中,取 AC 的中点,连接 BJ,BN.∵BJ = AD =4 ,∴BN≤BJ+JN ,∴BN ≤5 ,∴当点N 在 BJ 的延长线上时, BN 的值最大,如图 3﹣2 中,过点 N 作 NH⊥AD 于 H,设 BJ 交 AD 于 K,连接 AN.×4 × = 7 .知识点:本题属于几何变换综合题,考查了等边三角形的性质,全 等三角形的判定和性质, 三角形的中位线定理, 解直角三角形等知 识,解题的关键是学会添加常用辅助线, 构造全等三角形解决问题, 属于中考压轴题.∵KJ =AJ?tan30 ∴KN = ,= , JN = ,在 Rt △HKN 中,∵∠NHK =90°,∠NKH =∴S △ADN = ?AD?NH。
2020年重庆市中考数学试题
CBO A 初中毕业生学业暨高中招生考试数 学 试 卷(本卷共四个大题 满分150分 考试时间120分钟)参考公式:抛物线)0(2≠++=a c bx ax y 的顶点坐标为)44,2(2ab ac a b --,对称轴公式为abx 2-=一、选择题(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在题后的括号中.1、2的倒数是( )A 、21 B 、21- C 、21± D 、2 2、计算23x x ⋅的结果是( )A 、6xB 、5xC 、2x D 、x3、不等式042≥-x 的解集在数轴上表示正确的是( )A B CD4、数据2,1,0,3,4的平均数是( )A 、0B 、1C 、2D 、35、如图,AB 是⊙O 的直径,点C 在⊙O 上,则∠ACB 的度数为( )A 、30°B 、45°C 、60°D 、90°6、如图是由4个大小相同的正方体搭成的几何体,其主视图是( )7、计算28-的结果是()A 、6B 、6C 、2D 、28、若△ABC ∽△DEF ,△ABC 与△DEF 的相似比为2︰3,则S △ABC ︰S △DEF 为()A 、2△3B 、4△9C 、2△3D 、3△29、今年5月12日,四川汶川发生强烈地震后,我市立即抽调骨干医生组成医疗队赶赴灾区进行抗震救灾.某医院要从包括张医生在内的4名外科骨干医生中,随机地抽调2名医生参加抗震救灾医疗队,那么抽调到张医生的概率是( )2-220正面6题图5题图l 2l 1l 321ADBCA 、21 B 、31 C 、41 D 、61 10、如图,在直角梯形ABCD 中,DC△AB ,△A=90°,AB=28cm ,DC=24cm ,AD=4cm ,点M 从点D出发,以1cm/s 的速度向点C 运动,点N 从点B 同时出发,以2cm/s 的速度向点A 运动,当其中一个动点到达端点停止运动时,另一个动点也随之停止运动.则四边形AMND 的面积y (cm 2)与两动点运动的时间t (s )的函数图象大致是( )二、填空题:(本大题10个小题,每小题3分,共30分)在每小题中,请将答案直接填在题后的横线上.11、方程062=-x 的解为 . 12、分解因式:=-ay ax .13、截止2008年5月28日12时,全国共接受国内外社会各界为地震灾区人民捐赠款物约为3480000万元.那么3480000万元用科学记数法表示为 万元.14、在平面内,△O 的半径为5cm ,点P 到圆心O 的距离为3cm ,则点P与△O 的位置关系是 .15、如图,直线21l l 、被直线3l 所截,且1l △2l ,若△1=60°,则△2的度数为 . 16、如图,在□ABCD 中,AB=5cm ,BC=4cm ,则□ABCD 的周长为 cm.17、分式方程121+=x x 的解为 . 18、光明中学七年级甲、乙、丙三个班中,每班的学生人数都为40名,某次数学考试的成绩统计如下:(每组分数喊最小值,不含最大值)丙班数学成绩频数统计表分数 50~60 60~70 70~80 80~90 90~100B CM NA D 10题图 142856yOt2856yOt2856y Ot 142856y OtA B C D 15题图16题图AB CDO GFBDACE人数 1 4 15 11 9根据以上图、表提供的信息,则80~90分这一组人数最多的班是 . 19、如图△是一块瓷砖的图案,用这种瓷砖来铺设地面,如果铺成一个2×2的正方形图案(如图△),其中完整的圆共有5个,如果铺成一个3×3的正方形图案(如图△),其中完整的圆共有13个,如果铺成一个4×4的正方形图案(如图△),其中完整的圆共有25个,若这样铺成一个10×10的正方形图案,则其中完整的圆共有 个.20、如图,在正方形纸片ABCD 中,对角线AC 、BD 交于点O ,折叠正方形纸片ABCD ,使AD 落在BD 上,点A 恰好与BD 上的点F 重合.展开后,折痕DE 分别交AB 、AC 于点E 、G.连接GF.下列结论:△△AGD=112.5°;△tan△AED=2;△S△AGD=S△OGD ;△四边形AEFG 是菱形;△BE=2OG.其中正确结论的序号是 .三、解答题(本大题6个小题,每小题10分,共60分)解答时每小题必须给出必要的演算过程或推理步骤. 21、(每小题5分,共10分) (1)计算:)1()32(3)21(01-+-+-+-(2)解方程:0132=++x x22、(10分)作图题:(不要求写作法)如图,在10×10的方格纸中,有一个格点四边形ABCD (即四边形的顶点都在格点上) (1)在给出的方格纸中,画出四边形ABCD 向下平移5格后的四边形A 1B 1C 1D 1;(2)在给出的方格纸中,画出四边形ABCD 关于直线l 对称的四边形A 2B 2C 2D 2.19题图20题图YX C O A B23、(10分)先化简,再求值:32444)1225(222+=++-÷+++-a a a a a a a ,其中24、(10分)已知:如图,反比例函数的图象经过点A 、B ,点A 的坐标为(1,3),点B 的纵坐标为1,点C 的坐标为(2,0).(1)求该反比例函数的解析式;(2)求直线BC 的解析式.25、将背面完全相同,正面上分别写有数字1、2、3、4的四张卡片混合后,小明从中随机地抽取一张,把卡片上的数字做为被减数,将形状、大小完全相同,分别标有数字1、2、3的三个小球混合后,小华从中随机地抽取一个,把小球上的数字做为减数,然后计算出这两个数的差.(1)请你用画树状图或列表的方法,求这两数差为0的概率;(2)小明与小华做游戏,规则是:若这两数的差为非负数,则小明赢;否则,小华赢.你认为该游戏公平吗?请说明理由.如果不公平,请你修改游戏规则,使游戏公平. 26、(10分)已知:如图,在梯形ABCD 中,AD ∥BC ,BC=DC ,CF 平分∠BCD ,DF ∥AB ,BF 的延长线交DC 于点E 。
重庆市2020年中考数学试题(A卷,word版,含答案)
2020重庆中考数学试题(A 卷)一、选择题1、在实数-3,2,0,-4,最大的数是( )A 、-3B 、2C 、0D 、-4 2、下列图形中是轴对称图形的是( )A B C D 3、计算26x x ÷正确的解果是( )A 、3B 、3xC 、4x D 、8x 4、下列调查中,最适合采用全面调查(普查)方式的是( ) A 、对重庆市初中学生每天阅读时间的调查 B 、对端午节期间市场上粽子质量情况的调查 C 、对某批次手机的防水功能的调查D 、对某校九年级3班学生肺活量情况的调查 5、估计110+的值应在( )A 、3和4之间B 、4和5之间C 、5和6之间D 、6和7之间 6、若4,31-==y x ,则代数式33-+y x 的值为( ) A 、-6 B 、0 C 、2 D 、6 7、要使分式34-x 有意义,x 应满足的条件是( )A 、3 xB 、3=xC 、3 xD 、3≠x8、若ABC ∆DEF ∆,相似比为3:2,则对应高的比为( )A 、3:2B 、3:5C 、9:4D 、4:99、如图,矩形ABCD 的边AB=1,BE 平分ABC ∠,交AD 于点E ,若点E 是AD 的中点,以点B 为圆心,BE 为半径画弧,交BC 于点F ,则图中阴影部分的面积是( )A 、4-2πB 、4-23π C 、8-2π D 、8-23π10、下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有3个菱形,。
,按此规律排列下去,第⑨个图形中菱形的个数为( )A 、73B 、81C 、91D 、10911、如图,小王在长江边某瞭望台D 处,测得江面上的渔船A 的俯角为040,若DE=3米,CE=2米,CE 平行于江面AB ,迎水坡BC 的坡度75.0:1=i ,坡长BC=10米,则此时AB的长约为( )(参考数据:84.040tan ,77.040cos ,64.040sin 000≈≈≈)A 、5.1米B 、6.3米C 、7.1米D 、9.2米12、若数a 使关于x 的分式方程4112=-+-xax 的解为正数,且使关于y 的不等式组()⎪⎩⎪⎨⎧≤--+021232a y yy 的解集为2- y ,则符合条件的所有整数a 的和为( ) A 、10 B 、12 C 、14 D 、16 二、填空题13、“渝新欧”国际铁路联运大通道全长11000千米,成为服务“一带一路”的大动脉之一,将数11000用科学记数法表示为 。
重庆市2020年中考数学试卷(B卷)(Word版,含答案与解析)
重庆市2020年中考数学试卷(B 卷)一、选择题:(本大题12个小题,每小题4分,共48分)(共12题;共48分)1.5的倒数是( )A. 5B. 15 C. ﹣5 D. ﹣ 15 【答案】 B【考点】有理数的倒数【解析】【解答】解:5得倒数是 15 , 故答案为:B.【分析】乘积为1的两个数叫做互为倒数,根据定义即可一一判断得出答案. 2.围成下列立体图形的各个面中,每个面都是平的是( )A. 长方体B. 圆柱体C. 球体D. 圆锥体【答案】 A【考点】立体图形的初步认识【解析】【解答】解:A 、六个面都是平面,故本选项正确; B 、侧面不是平面,故本选项错误; C 、球面不是平面,故本选项错误; D 、侧面不是平面,故本选项错误. 故答案为:A.【分析】根据平面图形的格点在同一平面上即可作出判断. 3.计算a•a 2结果正确的是( )A. aB. a 2C. a 3D. a 4 【答案】 C【考点】同底数幂的乘法 【解析】【解答】解:a•a 2=a 1+2=a 3. 故答案为:C.【分析】由同底数幂相乘:底数不变,指数相加即可算出结果.4.如图,AB 是⊙O 的切线,A 为切点,连接OA ,OB.若∠B =35°,则∠AOB 的度数为( )A. 65°B. 55°C. 45°D. 35°【答案】B【考点】切线的性质【解析】【解答】解:∵AB是⊙O的切线,∴OA⊥AB,∴∠OAB=90°,∴∠AOB=90°﹣∠B=55°,故答案为:B.【分析】根据切线性质:圆的切线垂直于过切点的半径可得∠A=90°,根据直角三角形两锐角互余即可计算∠AOB.5.已知a+b=4,则代数式1+ a2+ b2的值为()A. 3B. 1C. 0D. ﹣1【答案】A【考点】代数式求值【解析】【解答】解:当a+b=4时,原式=1+ 12(a+b)=1+ 12×4=1+2=3,故答案为:A.【分析】利用提公因式可化简,再把a+b=4代入即可.6.如图,△ABC与△DEF位似,点O为位似中心.已知OA:OD=1:2,则△ABC与△DEF的面积比为()A. 1:2B. 1:3C. 1:4D. 1:5【答案】C【考点】相似三角形的性质,位似变换【解析】【解答】解:∵△ABC与△DEF是位似图形,OA:OD=1:2,∴△ABC与△DEF的位似比是1:2.∴△ABC与△DEF的相似比为1:2,∴△ABC与△DEF的面积比为1:4,故答案为:C.【分析】由相似三角形的面积之比=相似比的平方即可得出答案.7.小明准备用40元钱购买作业本和签字笔.已知每个作业本6元,每支签字笔2.2元,小明买了7支签字笔,他最多还可以买的作业本个数为()A. 5B. 4C. 3D. 2【答案】B【考点】一元一次不等式的应用【解析】【解答】解:设还可以买x个作业本,依题意,得:2.2×7+6x≤40,.解得:x≤4 110又∵x为正整数,∴x的最大值为4.故答案为:B.【分析】根据购买签字笔的费用+购买作业本的费用不超过40列出不等式求解即可.8.下列图形都是由同样大小的实心圆点按一定规律组成的,其中第①个图形一共有5个实心圆点,第②个图形一共有8个实心圆点,第③个图形一共有11个实心圆点,…,按此规律排列下去,第⑥个图形中实心圆点的个数为()A. 18B. 19C. 20D. 21【答案】C【考点】探索图形规律【解析】【解答】解:∵第①个图形中实心圆点的个数5=2×1+3,第②个图形中实心圆点的个数8=2×2+4,第③个图形中实心圆点的个数11=2×3+5,……∴第⑥个图形中实心圆点的个数为2×6+8=20,故答案为:C.【分析】分别找出图①、②、③中原点的个数,找到规律代入即可.9.如图,垂直于水平面的5G信号塔AB建在垂直于水平面的悬崖边B点处,某测量员从山脚C点出发沿水平方向前行78米到D点(点A,B,C在同一直线上),再沿斜坡DE方向前行78米到E点(点A,B,C,D,E在同一平面内),在点E处测得5G信号塔顶端A的仰角为43°,悬崖BC的高为144.5米,斜坡DE 的坡度(或坡比)i=1:2.4,则信号塔AB的高度约为()(参考数据:sin43°≈0.68,cos43°≈0.73,tan43°≈0.93)A. 23米B. 24米C. 24.5米D. 25米【答案】 D【考点】解直角三角形的应用﹣坡度坡角问题,解直角三角形的应用﹣仰角俯角问题【解析】【解答】解:过点E作EF⊥DC交DC的延长线于点F,过点E作EM⊥AC于点M,∵斜坡DE的坡度(或坡比)i=1:2.4,BE=CD=78米,∴设EF=x,则DF=2.4x.在Rt△DEF中,∵EF2+DF2=DE2,即x2+(2.4x)2=782,解得x=30,∴EF=30米,DF=72米,∴CF=DF+DC=72+78=150米.∵EM⊥AC,AC⊥CD,EF⊥CD,∴四边形EFCM是矩形,∴EM=CF=150米,CM=EF=30米.在Rt△AEM中,∵∠AEM=43°,∴AM=EM•tan43°≈150×0.93=139.5米,∴AC=AM+CM=139.5+30=169.5米.∴AB=AC﹣BC=169.5﹣144.5=25米.故答案为:D.【分析】由斜坡DE的坡度(或坡比)i=1:2.4可设EF=x,则DF=2.4x.由勾股定理可得EF2+DF2=DE2,即可求解EF、DF、CF,由AM=EM•tan43°可得AM、AC,即可求解AB.10.若关于x 的一元一次不等式组 {2x −1≤3(x −2)x−a 2>1的解集为x≥5,且关于y 的分式方程 y y−2 + a2−y =﹣1有非负整数解,则符合条件的所有整数a 的和为( ) A. ﹣1 B. ﹣2 C. ﹣3 D. 0 【答案】 B【考点】分式方程的解及检验,一元一次不等式组的应用 【解析】【解答】解:不等式组整理得: {x ≥5x >2+a , 由解集为x≥5,得到2+a≤5,即a≤3,分式方程去分母得:y ﹣a =﹣y+2,即2y ﹣2=a , 解得:y = a2 +1,由y 为非负整数,且y≠2,得到a =0,﹣2,之和为﹣2, 故答案为:B.【分析】由不等式组的解集为x ≤5可得a≤3,解分式方程可得y = a+22, 由分式方程有非负整数解可得y ≠2,即a ≠2,且a≤3且a+2能整除2,故a=0或-2即可得结果.11.如图,在△ABC 中,AC =2 √2 ,∠ABC =45°,∠BAC =15°,将△ACB 沿直线AC 翻折至△ABC 所在的平面内,得△ACD.过点A 作AE ,使∠DAE =∠DAC ,与CD 的延长线交于点E ,连接BE ,则线段BE 的长为( )A. √6B. 3C. 2 √3D. 4 【答案】 C【考点】三角形内角和定理,翻折变换(折叠问题),解直角三角形,线段垂直平分线的判定,三角形全等的判定(SAS )【解析】【解答】解:如图,延长BC 交AE 于H ,∵∠ABC =45°,∠BAC =15°, ∴∠ACB =120°,∵将△ACB 沿直线AC 翻折,∴∠DAC=∠BAC=15°,∠ADC=∠ABC=45°,∠ACB=∠ACD=120°,∵∠DAE=∠DAC,∴∠DAE=∠DAC=15°,∴∠CAE=30°,∵∠ADC=∠DAE+∠AED,∴∠AED=45°﹣15°=30°,∴∠AED=∠EAC,∴AC=EC,又∵∠BCE=360°﹣∠ACB﹣∠ACE=120°=∠ACB,BC=BC,∴△ABC≌△EBC(SAS),∴AB=BE,∠ABC=∠EBC=45°,∴∠ABE=90°,∵AB=BE,∠ABC=∠EBC,∴AH=EH,BH⊥AE,∵∠CAE=30°,∴CH=12AC=√2,AH=√3CH=√6,∴AE=2 √6,∵AB=BE,∠ABE=90°,∴BE=2=2 √3,故答案为:C.【分析】由三角形内角和定理和翻折可得∠ACB=∠ACD,AC=EC可得△ABC≌△EBC(SAS),由线段垂直平分线上的点到线段两端的距离相等可得BC是AE的中垂线,解直角三角形可得BE.12.如图,在平面直角坐标系中,矩形ABCD的顶点A,C分别在x轴,y轴的正半轴上,点D(﹣2,3),AD=5,若反比例函数y=kx(k>0,x>0)的图象经过点B,则k的值为()A. 163B. 8 C. 10 D. 323【答案】 D【考点】待定系数法求反比例函数解析式,勾股定理,矩形的性质,相似三角形的判定与性质,三角形全等的判定(AAS)【解析】【解答】解:过D作DE⊥x轴于E,过B作BF⊥x轴,BH⊥y轴,∴∠BHC=90°,∵点D(﹣2,3),AD=5,∴DE=3,∴AE=√AD2−DE2=4,∵四边形ABCD是矩形,∴AD=BC,∴∠BCD=∠ADC=90°,∴∠DCP+∠BCH=∠BCH+∠CBH=90°,∴∠CBH=∠DCH,∵∠DCG+∠CPD=∠APO+∠DAE=90°,∠CPD=∠APO,∴∠DCP=∠DAE,∴∠CBH=∠DAE,∵∠AED=∠BHC=90°,∴△ADE≌△BCH(AAS),∴BH=AE=4,∵OE=2,∴OA=2,∴AF=2,∵∠APO+∠PAO=∠BAF+∠PAO=90°,∴∠APO=∠BAF,∴△APO∽△BAF,∴OPAF =OABF,∴12×32=2BF,∴BF=83,∴B(4,83),∴k=323,故答案为:D.【分析】由点D坐标和AD=5可得点A和OA、AE,由同角的余角相可得∠CBH=∠DCH,∠CBH=∠DAE可得△ADE≌△BCH(AAS),故BH=AE=4,由△APO∽△BAF可得OPAF =OABF可得点B,用待定系数法可得k.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.(共6题;共24分)13.计算:(15)﹣1﹣√4=________.【答案】3【考点】算术平方根,负整数指数幂的运算性质,有理数的减法【解析】【解答】解:原式=5﹣2=3,故答案为:3.【分析】分别利用负指数幂:底变倒,指变反;有理数的算术平方根先化简,再根据有理数的加减法法则算出答案.14.经过多年的精准扶贫,截至2019年底,我国的农村贫困人口减少了约94000000人.请把数94000000用科学记数法表示为________.【答案】9.4×107【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:94000000=9.4×107,故答案为:9.4×107.【分析】用科学记数法表示大于等于10的数为a×10n,其中(n为正整数,1≤a<10).15.盒子里有3张形状、大小、质地完全相同的卡片,上面分别标着数字1,2,3,从中随机抽出1张后不放回,再随机抽出1张,则两次抽出的卡片上的数字之和为奇数的概率是________.【答案】23【考点】列表法与树状图法【解析】【解答】解:列表如下由表可知,共有6种等可能结果,其中两次抽出的卡片上的数字之和为奇数的有4种结果,所以两次抽出的卡片上的数字之和为奇数的概率为46=23,故答案为:23.【分析】由不放回可列出所有可能情况及两次抽出的卡片上的数字之和为奇数的结果数,再利用概率公式可求解.16.如图,在菱形ABCD中,对角线AC,BD交于点O,∠ABC=120°,AB=2 √3,以点O为圆心,OB长为半径画弧,分别与菱形的边相交,则图中阴影部分的面积为________.(结果保留π)【答案】3 √3﹣π【考点】等边三角形的判定与性质,菱形的性质,扇形面积的计算【解析】【解答】解:如图,设连接以点O为圆心,OB长为半径画弧,分别与AB,AD相交于E,F,连接EO,FO,∵四边形ABCD是菱形,∠ABC=120°,∴AC⊥BD,BO=DO,OA=OC,AB=AD,∠DAB=60°,∴△ABD是等边三角形,∴AB=BD=2 √3,∠ABD=∠ADB=60°,∴BO=DO=√3,∵以点O为圆心,OB长为半径画弧,∴BO=OE=OD=OF,∴△BEO,△DFO是等边三角形,∴∠DOF=∠BOE=60°,∴∠EOF=60°,∴阴影部分的面积=2×(S△ABD﹣S△DFO﹣S△BEO﹣S扇形OEF)=2×(√34×12﹣√34×3﹣√34×3﹣60°×π×3360°)=3 √3﹣π,故答案为:3 √3﹣π.【分析】由菱形性质可得△ABD是等边三角形,进而可证△BEO,△DFO是等边三角形,由故阴影部分的面积=2×(S△ABD﹣S△DFO﹣S△BEO﹣S扇形OEF)即可算出答案.17.周末,自行车骑行爱好者甲、乙两人相约沿同一路线从A地出发前往B地进行骑行训练,甲、乙分别以不同的速度匀速骑行,乙比甲早出发5分钟.乙骑行25分钟后,甲以原速的85继续骑行,经过一段时间,甲先到达B地,乙一直保持原速前往B地.在此过程中,甲、乙两人相距的路程y(单位:米)与乙骑行的时间x(单位:分钟)之间的关系如图所示,则乙比甲晚________分钟到达B地.【答案】12【考点】通过函数图象获取信息并解决问题【解析】【解答】解:由题意乙的速度为1500÷5=300(米/分),设甲的速度为x米/分.则有:7500﹣20x=2500,解得x=250,25分钟后甲的速度为250× 8=400(米/分).5由题意总里程=250×20+61×400=29400(米),86分钟乙的路程为86×300=25800(米),∴29400−25800=12(分钟).300故答案为:12.【分析】由图可得甲、乙的速度,求出总里程,再求出甲到达B地时,乙距离B地的距离即可.18.为刺激顾客到实体店消费,某商场决定在星期六开展促销活动.活动方案如下:在商场收银台旁放置一个不透明的箱子,箱子里有红、黄、绿三种颜色的球各一个(除颜色外大小、形状、质地等完全相同),顾客购买的商品达到一定金额可获得一次摸球机会,摸中红、黄、绿三种颜色的球可分别返还现金50元、30元、10元.商场分三个时段统计摸球次数和返现金额,汇总统计结果为:第二时段摸到红球次数为第一时段的3倍,摸到黄球次数为第一时段的2倍,摸到绿球次数为第一时段的4倍;第三时段摸到红球次数与第一时段相同,摸到黄球次数为第一时段的4倍,摸到绿球次数为第一时段的2倍,三个时段返现总金额为2510元,第三时段返现金额比第一时段多420元,则第二时段返现金额为________元.【答案】1230【考点】三元一次方程组解法及应用,一元一次不等式组的特殊解【解析】【解答】解:设第一时段摸到红球x次,摸到黄球y次,摸到绿球z次,(x,y,z均为非负整数),则第一时段返现金额为(50x+30y+10z),第二时段摸到红球3x次,摸到黄球2y次,摸到绿球4z次,则第二时段返现金额为(50×3x+30×2y+10×4z),第三时段摸到红球x次,摸到黄球4y次,摸到绿球2z次,则第三时段返现金额为(50x+30×4y+10×2z),∵第三时段返现金额比第一时段多420元,∴(50x+30×4y+10×2z)﹣(50x+30y+10z)=420,∴z=42﹣9y①,∵z为非负整数,∴42﹣9y≥0,∴y≤ 42,9∵三个时段返现总金额为2510元,∴(50x+30y+10z)+(50x+30×4y+10×2z)+(50x+30×4y+10×2z)=2510,∴25x+21y+7z=251②,将①代入②中,化简整理得,25x=42y﹣43,∴x=42y−4325④,∵x为非负整数,∴42y−4325≥0,∴y≥ 4342,∴4342≤y≤ 429,∵y为非负整数,∴y=2,3,4,当y=2时,x=4125,不符合题意,当y=3时,x=8325,不符合题意,当y=4时,x=5,则z=6,∴第二时段返现金额为50×3x+30×2y+10×4z=10(15×5+6×4+4×6)=1230(元),故答案为:1230.【分析】设第一时段摸到红球x次,摸到黄球y次,摸到绿球z次,(x,y,z均为非负整数),则第一时段返现金额为(50x+30y+10z),由“ 第三时段返现金额比第一时段多420元”可得z=42﹣9y,可得y≤42 9,由“ 三个时段返现总金额为2510元”可得25x=42y﹣43故4342≤y≤ 429,代入即可.三、解答题:(本大题7个小题,每小题10分,共70分)(共7题;共70分)19.计算:(1)(x+y)2+y(3x﹣y);(2)(4−a2a−1+a)÷ a2−16a−1.【答案】(1)解:(x+y)2+y(3x﹣y),=x2+2xy+y2+3xy﹣y2,=x2+5xy;(2)解:(4−a2a−1+a)÷ a2−16a−1,=(4−a2a−1+ a2−aa−1)× a−1(a+4)(a−4),=4−aa−1× a−1(a+4)(a−4),=﹣1a+4.【考点】整式的混合运算,分式的混合运算【解析】【分析】(1)由完全平方公式和单项式乘多项式法则分别去括号,再合并同类项即可;(2)通分计算括号内异分母分式的加法,再将各个分式的分子、分母能分解因式的分别分解因式,同时将除法转变为乘法,约分化为最简形式即可.20.如图,在平行四边形ABCD中,AE,CF分别平分∠BAD和∠DCB,交对角线BD于点E,F.(1)若∠BCF=60°,求∠ABC的度数;(2)求证:BE=DF.【答案】(1)解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ABC+∠BCD=180°,∵CF平分∠DCB,∴∠BCD=2∠BCF,∵∠BCF=60°,∴∠BCD=120°,∴∠ABC=180°﹣120°=60°;(2)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∠BAD=∠DCB,∴∠ABE=∠CDF,∵AE,CF分别平分∠BAD和∠DCB,∴∠BAE=12∠BAD,∠DCF=12∠BCD,∴∠BAE=∠DCE,∴△ABE≌△CDF(ASA),∴BE=CF.【考点】三角形全等及其性质,平行四边形的性质,三角形全等的判定(ASA)【解析】【分析】(1)由平行线性质可得∠ABC+∠BCD=180°,由角平分线可得∠BCD=2∠BCF即可;(2)由平行线性质可得∠ABE=∠CDF,由角平分线可得∠BAE=∠DCE,故从而利用ASA判断出△ABE≌△CDF即可解决问题.21.每年的4月15日是我国全民国家安全教育日.某中学在全校七、八年级共800名学生中开展“国家安全法”知识竞赛,并从七、八年级学生中各抽取20名学生,统计这部分学生的竞赛成绩(竞赛成绩均为整数,满分10分,6分及以上为合格).相关数据统计、整理如下:八年级抽取的学生的竞赛成绩:4,4,6,6,6,6,7,7,7,8,8,8,8,8,8,9,9,9,10,10.七,八年级抽取的学生的竞赛成绩统计表根据以上信息,解答下列问题:(1)填空:a=________,b=________,c=________;(2)估计该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数;(3)根据以上数据分析,从一个方面评价两个年级“国家安全法”知识竞赛的学生成绩谁更优异.【答案】(1)7.5;8;8(2)解:该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数=800× 5+540=200(人),答:该校七、八年级共800名学生中竞赛成绩达到9分及以上的人数为200人;(3)解:∵八年级的合格率高于七年级的合格率,∴八年级“国家安全法”知识竞赛的学生成绩更优异.【考点】用样本估计总体,统计表,条形统计图,利用统计图表分析实际问题【解析】【解答】解:(1)由图表可得:a=7+82=7.5,b=8+82=8,c=8,故答案为:7.5,8,8;【分析】(1)根据八年级的成绩可得b、c,根据条形统计图可得a;(2)用样本估计总体公式可得;(3)分析七八年级平均分可得.22.在数的学习过程中,我们总会对其中一些具有某种特性的数充满好奇,如学习自然数时,我们发现一种特殊的自然数﹣﹣“好数”.定义:对于三位自然数n,各位数字都不为0,且百位数字与十位数字之和恰好能被个位数字整除,则称这个自然数n为“好数”.例如:426是“好数”,因为4,2,6都不为0,且4+2=6,6能被6整除;643不是“好数”,因为6+4=10,10不能被3整除.(1)判断312,675是否是“好数”?并说明理由;(2)求出百位数字比十位数字大5的所有“好数”的个数,并说明理由.【答案】(1)解:(1)312是“好数”,因为3,1,2都不为0,且3+1=4,6能被2整除,675不是“好数”,因为6+7=13,13不能被5整除;(2)解:611,617,721,723,729,831,941共7个,理由:设十位数数字为a,则百位数字为a+5(0<a≤4的整数),∴a+a+5=2a+5,当a=1时,2a+5=7,∴7能被1,7整除,∴满足条件的三位数有611,617,当a=2时,2a+5=9,∴9能被1,3,9整除,∴满足条件的三位数有721,723,729,当a=3时,2a+5=11,∴11能被1整除,∴满足条件的三位数有831,当a=4时,2a+5=13,∴13能被1整除,∴满足条件的三位数有941,即满足条件的三位自然数为611,617,721,723,729,831,941共7个.【考点】有理数的除法,定义新运算【解析】【分析】(1)根据定义可得;(2)设十位数数字为a,则百位数字为a+5,(0<a≤4的整数),分别代入a的值即可.23.探究函数性质时,我们经历了列表、描点、连线画出函数图象,观察分析图象特征,概括函数性质的的图象并探究该函数的性质.过程.结合已有的学习经验,请画出函数y=﹣12x2+2(1)列表,写出表中a,b的值:a=_▲__,b=__▲_;描点、连线,在所给的平面直角坐标系中画出该函数的图象.(2)观察函数图象,判断下列关于函数性质的结论是否正确(在答题卡相应位置正确的用“√”作答,错误的用“×”作答):①函数y=﹣12x2+2的图象关于y轴对称;②当x=0时,函数y=﹣12x2+2有最小值,最小值为﹣6;③在自变量的取值范围内函数y的值随自变量x的增大而减小.(3)已知函数y=﹣23x﹣103的图象如图所示,结合你所画的函数图象,直接写出不等式﹣12x2+2<﹣2 3x﹣103的解集.【答案】(1)﹣1211;﹣6;解:画出函数的图象如图:(2)解:根据函数图象:①函数y=﹣12x2+2的图象关于y轴对称,说法正确;②当x=0时,函数y=﹣12x2+2有最小值,最小值为﹣6,说法正确;③在自变量的取值范围内函数y的值随自变量x的增大而减小,说法错误.(3)解:由图象可知:不等式﹣12x+2<﹣23x﹣103的解集为x<﹣4或﹣2<1.【考点】一次函数的图象,一次函数与不等式(组)的综合应用,一次函数的性质,描点法画函数图象【解析】【解答】解:(1)x=﹣3、0分别代入y=﹣12x2+2,得a=﹣129+2=﹣1211,b=﹣120+2=﹣6,故答案为﹣1211,﹣6;【分析】(1)把x=-3、0代入解析式即可求解;描点,连接成平滑的曲线即可;(2)观察图象,由图象的增减性和对称性可判断;(3)观察图象可得.24.为响应“把中国人的饭碗牢牢端在自己手中”的号召,确保粮食安全,优选品种,提高产量,某农业科技小组对A,B两个玉米品种进行实验种植对比研究.去年A、B两个品种各种植了10亩.收获后A、B两个品种的售价均为2.4元/kg,且B品种的平均亩产量比A品种高100千克,A、B两个品种全部售出后总收入为21600元.(1)求A、B两个品种去年平均亩产量分别是多少千克?(2)今年,科技小组优化了玉米的种植方法,在保持去年种植面积不变的情况下,预计A、B两个品种平均亩产量将在去年的基础上分别增加a%和2a%.由于B品种深受市场欢迎,预计每千克售价将在去年的基础上上涨a%,而A品种的售价保持不变,A、B两个品种全部售出后总收入将增加209a%.求a的值.【答案】(1)解:设A、B两个品种去年平均亩产量分别是x千克和y千克;根据题意得,{y−x=10010×2.4(x+y)=21600,解得:{x=400y=500,答:A、B两个品种去年平均亩产量分别是400千克和500千克;(2)解:2.4×400×10(1+a%)+2.4(1+a%)×500×10(1+2a%)=21600(1+ 209a%),解得:a=0.1,答:a的值为0.1.【考点】二元一次方程组的其他应用,一元二次方程的应用【解析】【分析】(1)设未知数,根据“ B的平均亩产量比A的平均亩产量高100kg,A,B两个品种全部售出后总收入为21600元.”可列方程组,求解即可;(2)根据题意可列一元二次方程,求解即可.25.如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与y轴交于点C,与x轴交于A,B两点(点A在点B的左侧),且A点坐标为(﹣√2,0),直线BC的解析式为y=﹣√23x+2.(1)求抛物线的解析式;(2)过点A作AD∥BC,交抛物线于点D,点E为直线BC上方抛物线上一动点,连接CE,EB,BD,DC.求四边形BECD面积的最大值及相应点E的坐标;(3)将抛物线y=ax2+bx+2(a≠0)向左平移√2个单位,已知点M为抛物线y=ax2+bx+2(a≠0)的对称轴上一动点,点N为平移后的抛物线上一动点.在(2)中,当四边形BECD的面积最大时,是否存在以A,E,M,N为顶点的四边形为平行四边形?若存在,直接写出点N的坐标;若不存在,请说明理由.【答案】(1)解:直线BC的解析式为y=﹣√23x+2,令y=0,则x=3 √2,令x=0,则y=2,故点B、C的坐标分别为(3 √2,0)、(0,2);则y=ax2+bx+2=a(x+ √2)(x﹣3 √2)=a(x2﹣2 √2x﹣6)=ax2﹣2 √2a﹣6a,即﹣6a=2,解得:a=13,故抛物线的表达式为:y=﹣13x2+ 2√23x+2①;(2)解:如图,过点B、E分别作y轴的平行线分别交CD于点H,交BC于点F,∵AD∥BC,则设直线AD的表达式为:y=﹣√23(x+ √2)②,联立①②并解得:x=4 √2,故点D(4 √2,﹣103),由点C、D的坐标得,直线CD的表达式为:y=﹣2√23x+2,当x=3 √2时,y BC=﹣√23x+2=﹣2,即点H(3 √2,﹣2),故BH=2,设点E(x,﹣13x2+ 2√23x+2),则点F(x,﹣√23x+2),则四边形BECD的面积S=S△BCE+S△BCD=12×EF×OB+ 12×(x D﹣x C)×BH=12×(﹣13x2+ 2√23x+2+ √23x﹣2)×3 √2+ 12×4 √2×2=﹣√22x2+3x+4 √2,∵−√22<0,故S有最大值,当x=2√23时,S的最大值为25√24,此时点E(2√23,52);(3)解:存在,理由:y=﹣13x2+ 2√23x+2=﹣13(x −√2)2+ 83,抛物线y=ax2+bx+2(a≠0)向左平移√2个单位,则新抛物线的表达式为:y=﹣13x2+ 83,点A、E的坐标分别为(﹣√2,0)、(2√23,52);设点M(√2,m),点N(n,s),s=﹣13n2+83;①当AE是平行四边形的边时,点A向右平移5√22个单位向上平移52个单位得到E,同样点M(N)向右平移5√22个单位向上平移52个单位得到N(M),即√2± 5√22=n,则s=﹣13n2+ 83=﹣112或56,故点N的坐标为(7√22,﹣112)或(﹣3√22,56);②当AE是平行四边形的对角线时,由中点公式得:﹣√2+ 3√22=n+ √2,解得:n=﹣√22,s=﹣13n2+ 83=156,故点N的坐标(﹣√22,156);综上点N的坐标为:(7√22,﹣112)或(﹣3√22,56)或(﹣√22,156).【考点】二次函数图象的几何变换,待定系数法求二次函数解析式,平行四边形的判定,二次函数与一次函数的综合应用【解析】【分析】(1)由可得点B、C坐标,代入即可;(2)由AD∥BC,,故可得点D坐标,四边形BECD的面积S=,再由二次函数的最值公式即可求解;(3)分别讨论AE 是平行四边形的边和对角线即可。
2020届重庆市中考数学(a卷)试题(有答案)(word版)(已纠错)
重庆市初中毕业暨高中招生考试数学试卷(A卷)(全卷共五个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括辅助线)请一律用黑色签字笔完成;4.考试结束,由监考人员将试题和答题卡一并回收.参考公式:抛物线)(a2≠++=cbxaxy的顶点坐标为⎪⎪⎭⎫⎝⎛--abacab44,22,对称轴为abx2-=一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了A、B、C、D的四个答案,其中只有一个是正确的,请讲答题卡上题号右侧正确答案所对应的框涂黑.1、在实数2-,2,0,1-中,最小的数是()A. 2- B. 2 C. 0 D. 1-2.下列图形中是轴对称的是()A B C D3.计算23aa⋅正确的是()A. aB. 5aC. 6aD. 9a4.下列调查中,最适合采用全面调查(普查)方式的是()A.对重庆市直辖区内长江流域水质情况的调查B.对乘坐飞机的旅客是否携带违禁物品的调查C.对一个社区每天丢弃塑料袋数量的调查D.对重庆电视台“天天630”栏目收视率的调查5.如图,AB//CD,直线l交AB于点E,交CD于点F,若∠2=80°,则∠1等于()A.120°B.110°C.100°D.80°6.若1,2==ba,则32++ba的值为()A.-1B.3C.6D.57.函数21+=xy中,x的取值范围是()A. 0≠x B. 2->x C. 2-<x D. 2≠x8.△ABC与△DEF的相似比为1:4,则△ABC与△DEF的周长比为()A. 1:2B. 1:3C. 1:4D. 1:169.如图,以AB为直径,点O为圆心的半径经过点C,若2==BCAB,则图中阴影部分的面积是()A.4πB.421π+ C.2πD.221π+10.下列图形都是有同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有4个小圆圈,第②个图形中一共有10个小圆圈,第③个图形中一共有19个小圆圈,…,按此规律排列下去,第⑦个图形中小圆圈的个数为()A.64B.77C.80D.8511.某数学兴趣小组同学进行测量大树CD高度的综合实践活动,如图在点A处测得直立于地面的大树顶端C 的仰角为36°,然后沿同一剖面的斜坡AB行走13米至坡顶B处,然后再沿水平方向行走6米至大树脚底点D处,斜面AB的坡度(或坡比)i=1:2.4,那么大树CD的高度约为()(参考数据:sin36°≈0.95,cos36°≈0.81,tan36°≈0.73)A.8.1米B.17.2米C.19.7米D.25.5米12.从3,1,21,1-,3-这五个数中,随机抽取一个数,记为a,若数a使关于x的不等式组⎪⎩⎪⎨⎧<-≥+3)72(31axx无解,且使关于x的分式方程1323-=----xaxx有整数解,那么这5个数中所有满足条件的a的值之和是()A.-3B.-2C.23- D.21二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重庆市2017年初中毕业生学业水平暨普通高中招生考试数学试题(A 卷)(全卷共五个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试题卷上直接作答.2.作答前认真阅读答题卡上的注意事项.3.考试结束,由监考人员将试题和答题卡一并收回.参考公式:抛物线)0(2≠++=a c bx ax y 的顶点坐标为24()24b ac b a a --,,对称轴为2b x a =-. 一、选择题(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.在实数-3,2,0,-4,最大的数是( B )A .-3B .2C .0D .-42.下列图形中是轴对称图形的是( C )A B C D3.计算26x x ÷正确的结果是( C )A .3B .3xC .4xD .8x 4.下列调查中,最适合采用全面调查(普查)方式的是( D )A .对重庆市初中学生每天阅读时间的调查B .对端午节期间市场上粽子质量情况的调查C .对某批次手机的防水功能的调查D .对某校九年级3班学生肺活量情况的调查5.估计110+的值应在( B )A .3和4之间B .4和5之间C .5和6之间D .6和7之间6.若13x =-,4y =,则代数式33-+y x 的值为( B )A .-6B .0C .2D .6 7.要使分式34-x 有意义,x 应满足的条件是( D ) A .3>x B .3=x C .3<x D .3≠x 8.若ABC ∆∽DEF ∆,相似比为3:2,则对应高的比为( A )A .3:2B .3:5C .9:4D .4:99.如图,矩形ABCD 的边AB=1,BE 平分∠ABC ,交AD 于点E ,若点E 是AD 的中点,以点B 为圆心,BE 为半径画弧,交BC 于点F ,则图中阴影部分的面积是( B )A .4-2πB .4-23πC .8-2π D .8-23π 10.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,……,按此规律排列下去,第⑨个图形中菱形的个数为( C )A.73B.81C.91D.109 11题图11.如图,小王在长江边某瞭望台D处,测得江面上的渔船A的俯角为400,若DE=3米,CE=2米,CE 平行于江面AB,迎水坡BC的坡度75.0:1=i,坡长BC=10米,则此时AB的长约为( A ) (参考数据:sin400≈0.64,cos400≈0.77,tan400≈0.84) A.5.1米B.6.3米C.7.1米D.9.2米12.若数a使关于x的分式方程4112=-+-xax的解为正数,且使关于y的不等式组()⎪⎩⎪⎨⎧≤->-+21232ayyy的解集为2-<y,则符合条件的所有整数a的和为( A ) A.10 B.12 C.14 D.16二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.“渝新欧”国际铁路联运大通道全长11000千米,成为服务“一带一路”的大动脉之一,将数11000用科学记数法表示为1.1×104.14.计算:|-3|+(-1)2= 4 .15.如图,BC是⊙O的直径,点A在圆上,连接AO,AC,∠AOB=640,则∠ACB= 32 度.16.某班体育委员对本班学生一周锻炼时间(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是11 小时.18题图17.A、B两地之间的路程为2380米,甲、乙两人分别从A、B两地出发,相向而行,已知甲先出发5分钟后,乙才出发,他们两人在A、B之间的C地相遇,相遇后,甲立即返回A地,乙继续向A地前行.甲到达A地时停止行走,乙到达A地时也停止行走,在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y(米)与甲出发的时间x(分钟)之间的关系如图所示,则乙到达A 地时,甲与A地相距的路程是180 米.18.如图,正方形ABCD中,AD=4,点E是对角线AC上一点,连接DE,过点E作EF⊥ED,交AB 于点F,连接DF,交AC于点G,将△EFG沿EF翻折,得到△EFM,连接DM,交EF于点N,若点F 是AB的中点,则△EMN的周长是.三、解答题(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡...中对应的位置上.19.如图,AB//CD,点E是CD上一点,∠AEC=420,EF平分∠AED交AB于点F.求∠AFE的度数.20.重庆某中学组织七、八、九年级学生参加“直辖20年,点赞新重庆”作文比赛,该校将收到的参赛作文进行分年级统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题.(1)扇形统计图中九年级参赛作文篇数对应的圆心角是 126 度,并补全条形统计图; 45(2)经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率.解:(2)假设4篇荣获特等奖的作文分别为A 、B 、C 、D ,其中A 代表七年级获奖的特等奖作文.列表法:61122P == 四、解答题(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡...中对应的位置上. 21.计算:(1)()()22y x y x x +--; (2)2122232++-÷⎪⎭⎫ ⎝⎛-++a a a a a22.如图,在平面直角坐标系中,一次函数)0(≠+=m n mx 的图像与反比例函数()0≠=k xk y 的图像交于第一、三象限内的A ,B 两点,与y 轴交于点C .过点B 作BM ⊥x 轴,垂足为M ,BM=OM ,OB=22,点A 的纵坐标为4.(1)求该反比例函数和一次函数的解析式;(2)连接MC ,求四边形MBOC 的面积. 解:(1)由题意可得,BM=OM ,OB=22,∴BM=OM=2,∴点B 的坐标为(﹣2,﹣2),∵反比例函数的解析式为(0)k y k x =≠,∴22k -=-,∴4k =,∴反比例函数的解析式为4y x=, ∵点A 的纵坐标是4,∴44x =,得1x =,∴点A 的坐标为(1,4), ∵一次函数(0)y mx n m =+≠的图象过点A(1,4)、点B(﹣2,﹣2),∴422m n m n +=⎧⎨-+=-⎩,得22m n =⎧⎨=⎩,即一次函数的解析式为22y x =+; (2)∵22y x =+与y 轴交与点C ,∴点C 的坐标为(0,2),∵点B(﹣2,﹣2),点M(﹣2,0),点O(0,0),∴OM=2,OC=2,MB=2,∴四边形MBOC 的面积为:1111222242222RtCOM Rt BOM S S OM OC OM MB +=⨯⨯+⨯⨯=⨯⨯+⨯⨯=.23.某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售.该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同;该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%,该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额比他去年樱桃和枇杷的市场销售总金额相同,求m的值.解:(1)设该果农今年收获樱桃x千克,根据题意得400-x≤7x,解得x≥50.(2)100(1-m%)×30+200×(1+2m%)×20(1-m%)=100×30+200×20,令m%=y,原方程可化为:3000(1-y)+4000(1+2y)(1-y)=7000,整理可得:8y2-y=0,解得:y1=0,y2=0.125,∴m1=0(舍去),m2=12.5,∴m=12.5.24.在△ABC中,∠ABM=450,AM⊥BM,垂足为M,点C是BM延长线上一点,连接AC.(1)如图一,若AB=32,BC=5,求AC的长;(2)如图二,点D是线段AM上一点,MD=MC,点E 是△ABC外一点,EC=AC,连接ED并延长交BC于点F,且点F是线段BC的中点.求证:∠BDF=∠CEF.五、解答题(本大题2个小题,25小题10分,26小题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡...中对应的位置上. 25.对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(243),F(617);(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y ≤9,x ,y 都是正整数),规定:()()t F s F k =,当()()18=+t F s F 时,求k 的最大值. 解:(1)F (243)=(423+342+234)÷111=9,F (617)=(176+716+671)÷111=14.26.如图,在平面直角坐标系中,抛物线3332332--=x x y 与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴与x 轴交于点D ,点E (4,n )在抛物线上.(1)求直线AE 的解析式;(2)点P 为直线CE 下方抛物线上的一点,连接PC ,PE .当△PCE 的面积最大时,连接CD ,CB ,点K 是线段CB 的中点,点M 时CP 上的一点,点N 是CD 上的一点,求KM+MN+NK 的最小值;(3)点G 是线段CE 的中点,将抛物线3332332--=x x y 沿x 轴正方向平移得到新抛物线y ′,y ′经过点D ,y ′的顶点为点F .在新抛物线y ′的对称轴上,是否存在一点Q ,使得△FGQ 为等腰三角形?若存在,直接写出点Q 的坐标,若不存在,请说明理由.解:(1)当0y =时,即232330x x --=. 解这个方程,得11x =-,23x =.∴点A (-1,0),B (3,0). 当4x =时,232353443n =⨯-⨯-=, ∴点E (4,533).……(2分) ∴直线AE 的解析式为3333y x =+.……(3分) (2)令0x =,得3y =-.∴点C (0,3-). 又∵点E (4,533), ∴直线CE 的解析式为233y x =-.过点P 作PF ∥y 轴,交CE 于点F ,如图1.设点P 的坐标为(t ,23233t t --),则F(t ,233t -), ∴PF=22233233433(3)33333t t t t t ----=-+, ∴221134323834()223333PCE E C S x x PH t t t t =-⨯=⨯⨯-+=-+△. 又∵抛物线开口向下,04t <<,∴当2t =时,PCE S △取得最大值.此时,点P 为(2,3-).……(5分)如图2所示:作点K 关于CD 和CP 的对称点G 、H ,连接G 、H 交CD 和CP 与N 、M .∵K 是CB 的中点,∴K(32,﹣32).∵点H 与点K 关于CP 对称,∴点H 的坐标为(32,﹣332). ∵点G 与点K 关于CD 对称,∴点G(0,0),∴KM+MN+NK=MH+MN+GN .当点O 、N 、M 、H 在条直线上时,KM+MN+NK 有最小值,最小值=GH ,∴GH=22333()()22+=3, ∴KM+MN+NK 的最小值为3.……(8分)(3)点Q 的坐标为(3,32213-),(3,32213-),(3,23,(3,35-). (写对一个点的坐标得1分)……(12分)如图3所示:∵y ′经过点D ,y ′的顶点为点F ,∴F(3,33-). ∵点G 为CE 的中点,∴FG=22532211()33+=, ∴①当FG=FQ 时,点Q(343221-+), Q ′(343221--②当GF=GQ 时,点F 与点Q ″关于3y =对称,∴点Q ″(3,3③当QG=QF 时,设点Q 1的坐标为(3,a ).由两点间的距离公式可知:224331()3a a =+-解得:35a =-.∴点Q 1的坐标为(3,35-).综上所述,点Q的坐标为(3),(3,(3,,(3,。