2018年重庆市中考数学试题及答案
2018重庆中考数学试题及答案
2018重庆中考数学试题及答案2018年重庆中考数学试题及答案一、选择题1. 设直线l1过点A(-2,-3),斜率为k1,直线l2过点B(1,4),斜率为k2,且k1k2=3,则k1+k2的值为多少?A. 2/3B. 4/3C. 3/2D. 5/2【答案】A. 2/32. 已知直线l过点(3,4),斜率为3/4,点P在l上,且OP:OQ=1:3。
若点P的坐标为(x,y),则点Q的坐标为多少?A. (3,6)B. (4,7)C. (9/2,11/2)D. (5/2,9/2)【答案】C. (9/2,11/2)3. 设数列{an}满足a1=2,an+1=(an+3)/2,(n≥1),则a3的值为多少?A. 4/3B. 7/3C. 8/3D. 11/3【答案】B. 7/34. 已知函数f(x)=x^2+ax+b在点(1,1)处的函数值与导数值相等,则a与b的值分别为:A. a=-2,b=0B. a=0,b=-1C. a=1,b=-2D. a=2,b=1【答案】C. a=1,b=-25. 若x^log2(0.5)+2^log0.5(x^2)=2,则x的值为多少?A. 1B. -1/4C. 1/4D. 4【答案】C. 1/4二、填空题6. 在△ABC中,∠ABC=90°,AC=6,BC=8,则AB的长度为______。
【答案】107. 设2π/3<θ<π,且sinθ=3/5,则cos(π-θ)的值为______。
【答案】-3/58. 将125g的白醋与75g的水混合,得到质量分数为40%的溶液,白醋的浓度为______。
【答案】62.5%9. 在长方体中,一个顶点被任意选定,则与它相邻的顶点个数为______。
【答案】310. 若点P是对称点(-1,4)关于抛物线y=x^2的焦点,则点P的坐标为______。
【答案】(1,0)三、解答题11. 如图,矩形ABCD的边长分别为a和2a,直线l1经过点C,且与AB平行,直线l2经过点D,且与BC平行。
2018年重庆市中考数学试卷(A卷)答案及解析(可编辑)
D
C
A
Hale Waihona Puke E【答案】 6
B
90 22 6 - 360
【解析】 S阴 2 3 -
【点评】此题考查扇形、四边形面积的计算,及割补法的基本应用,属于基础题
..
15. 春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春 节期间 5 天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为 。
【点评】 此题主要考查二次根式的混合运算及估算无理数的大小, 属于中考当中的简单 题。
..
8.按如图所示的运算程序,能使输出的结果为 12 的是 A. x 3, y 3 B. x 4, y 2 C. x 2, y 4 D. x 4, y 2
【答案】 C 【解析】由题可知,代入 x 、 y 值前需先判断 y 的正负,再进行运算方式选择。 A 选项
【答案】B 【解析】延长 AB 交地面与点 H. 作 CM⊥DE. 易得
CM = 1.6. DM = 1.2,,
AH AH tan58 1.6 HE 1 1.2 7
AH 14.72, AB 14.72 1.6 13.1
【点评】此题考查三角函数的综合运用,解题关键是从图中提取相关信息,特别是直角 三角形的三边关系,属于中等题
三种粗粮的成本价之和。已知 A 粗粮每千克成本价为 6 元,甲种粗粮每袋售价为 58.5 元, 利润率为 30%,乙种粗粮的利润率为 20%。若这两种袋装粗粮的销售利润率达到 24%,则该 电商销售甲、乙两种袋装粗粮的数量之比是 。 ( 商品的利润率=
人数/万人
25.4 24.9
23.4
22.4 21.9 O
(完整版)2018年重庆市中考数学试卷(A卷)答案及解析(可编辑)
2018年重庆市中考数学试卷(A 卷)答案及解析一、选择题 (本大题12个小题,每小题4分,共48分。
)1.2的相反数是 A .2-B .12-C.12D .2【答案】A【解析】根据一个数的相反数就是在这个数的前面添加上“-”即可求解 【点评】本题考查了相反数的定义,属于中考中的简单题2.下列图形中一定是轴对称图形的是A.B.C.D.【答案】D【解析】A40°的直角三角形不是对称图形;B 两个角是直角的四边形不一定是轴对称图形;C 平行四边形是中心对称图形不是轴对称图形;D 矩形是轴对称图形,有两条对称轴【点评】此题主要考查基本几何图形中的轴对称图形和中心对称图形,难度系数不大,考生主要注意看清楚题目要求。
3.为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是 A.企业男员工 B.企业年满50岁及以上的员工 C.用企业人员名册,随机抽取三分之一的员工 D.企业新进员工【答案】C【解析】A 调查对象只涉及到男性员工;B 调查对象只涉及到即将退休的员工;D 调查对象只涉及到新进员工【点评】此题主要考查考生对抽样调查中科学选取样本的理解,属于中考当中的简单题。
4.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为A .12B .14C .16D .18 【答案】C 【解析】40°直角三角形四边形平行四边形矩形∵第1个图案中的三角形个数为:2+2=2×2=4;第2个图案中的三角形个数为:2+2+2=2×3=6;第3个图案中的三角形个数为:2+2+2+2=2×4=8;……∴第7个图案中的三角形个数为:2+2+2+2+2+2+2+2=2×8=16;【点评】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,从而计算出正确结果。
2018年重庆市中考数学试卷(a卷)(答案+解析)
2018年重庆市中考数学试卷(A卷)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面。
都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。
1.(4分)2的相反数是()A.﹣2 B.﹣12C.12D.22.(4分)下列图形中一定是轴对称图形的是()A.B.C.D.直角三角形四边形平行四边形矩形3.(4分)为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是()A.企业男员工B.企业年满50岁及以上的员工C.用企业人员名册,随机抽取三分之一的员工D.企业新进员工4.(4分)把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A.12 B.14 C.16 D.185.(4分)要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm,6cm和9cm,另一个三角形的最短边长为2.5cm,则它的最长边为()A.3cm B.4cm C.4.5cm D.5cm6.(4分)下列命题正确的是()A.平行四边形的对角线互相垂直平分B.矩形的对角线互相垂直平分C.菱形的对角线互相平分且相等D.正方形的对角线互相垂直平分7.(4分)估计(2√30﹣√24)•√16的值应在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间8.(4分)按如图所示的运算程序,能使输出的结果为12的是()A.x=3,y=3 B.x=﹣4,y=﹣2 C.x=2,y=4 D.x=4,y=29.(4分)如图,已知AB 是⊙O 的直径,点P 在BA 的延长线上,PD 与⊙O 相切于点D ,过点B 作PD 的垂线交PD 的延长线于点C ,若⊙O 的半径为4,BC =6,则P A 的长为( )A .4B .2√3C .3D .2.510.(4分)如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与地面垂直,在教学楼底部E 点处测得旗杆顶端的仰角∠AED =58°,升旗台底部到教学楼底部的距离DE =7米,升旗台坡面CD 的坡度i =1:0.75,坡长CD =2米,若旗杆底部到坡面CD 的水平距离BC =1米,则旗杆AB 的高度约为( )(参考数据:sin 58°≈0.85,cos 58°≈0.53,tan 58°≈1.6)A .12.6米B .13.1米C .14.7米D .16.3米11.(4分)如图,在平面直角坐标系中,菱形ABCD 的顶点A ,B 在反比例函数y =k x(k >0,x >0)的图象上,横坐标分别为1,4,对角线BD ∥x 轴.若菱形ABCD 的面积为452,则k 的值为( )A .54B .154C .4D .512.(4分)若数a 使关于x 的不等式组{x−12<1+x35x −2≥x +a有且只有四个整数解,且使关于y 的方程y+ay−1+2a1−y=2的解为非负数,则符合条件的所有整数a 的和为( )A .﹣3B .﹣2C .1D .2二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的的横线上。
【精校版】2018年重庆市中考数学试卷以及答案(a卷)(word解析版)(精品)
2018年重庆市中考数学试卷(A卷)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面。
都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。
1.(4分)2的相反数是()A.﹣2 B.﹣ C.D.22.(4分)下列图形中一定是轴对称图形的是()A.直角三角形B.四边形C.平行四边形D.矩形3.(4分)为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是()A.企业男员工B.企业年满50岁及以上的员工C.用企业人员名册,随机抽取三分之一的员工D.企业新进员工4.(4分)把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个角形第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A.12 B.14 C.16 D.185.(4分)要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm,6cm和9cm,另一个三角形的最短边长为2.5cm,则它的最长边为()A.3cm B.4cm C.4.5cm D.5cm6.(4分)下列命题正确的是()A.平行四边形的对角线互相垂直平分B.矩形的对角线互相垂直平分C.菱形的对角线互相平分且相等D.正方形的对角线互相垂直平分7.(4分)估计(2﹣)•的值应在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间8.(4分)按如图所示的运算程序,能使输出的结果为12的是()A.x=3,y=3 B.x=﹣4,y=﹣2 C.x=2,y=4 D.x=4,y=29.(4分)如图,已知AB是⊙O的直径,点P在BA的延长线上,PD与⊙O相切于点D,过点B作PD 的垂线交PD的延长线于点C,若⊙O的半径为4,BC=6,则PA的长为()A.4 B.2 C.3 D.2.510.(4分)如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与地面垂直,在教学楼底部E点处测得旗杆顶端的仰角∠AED=58°,升旗台底部到教学楼底部的距离DE=7米,升旗台坡面CD的坡度i=1:0.75,坡长CD=2米,若旗杆底部到坡面CD的水平距离BC=1米,则旗杆AB的高度约为()(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.6)A.12.6米B.13.1米C.14.7米D.16.3米11.(4分)如图,在平面直角坐标系中,菱形ABCD的顶点A,B在反比例函数y=(k>0,x>0)的图象上,横坐标分别为1,4,对角线BD∥x轴.若菱形ABCD的面积为,则k的值为()A.B.C.4 D.512.(4分)若数a使关于x的不等式组有且只有四个整数解,且使关于y的方程=2的解为非负数,则符合条件的所有整数a的和为()A.﹣3 B.﹣2 C.1 D.2二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的的横线上。
精品解析:【全国省级联考】2018年重庆市中考数学试卷(A卷)(解析版)
2018年重庆市中考数学试卷(A卷)答案及解析一、选择题(本大题12个小题,每小题4分,共48分。
)1. 的相反数是()A. B. C. D.【答案】A【解析】【分析】根据只有符号不同的两个数互为相反数进行求解即可得.【详解】2与-2只有符号不同,所以2的相反数是-2,故选A.【点评】本题考查了相反数的定义,属于中考中的简单题2. 下列图形中一定是轴对称图形的是()A. B. C. D.【答案】D【解析】【分析】根据轴对称图形的定义进行判断即可得.【详解】A、40°的直角三角形不是轴对称图形,故不符合题意;B、两个角是直角的四边形不一定是轴对称图形,故不符合题意;C平行四边形是中心对称图形不是轴对称图形,故不符合题意;D矩形是轴对称图形,有两条对称轴,故符合题意,故选D.【点睛】本题主要考查轴对称图形,熟知轴对称图形是指一个图形沿着一条直线折叠,直线两旁的部分完全重合的图形是解题的关键.3. 为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是()A. 企业男员工B. 企业年满50岁及以上的员工C. 用企业人员名册,随机抽取三分之一的员工D. 企业新进员工【答案】C【解析】【分析】样本具有代表性是指抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.根据样本的确定方法与原则,结合实际情况,依次分析选项可得答案.【详解】A、调查对象只涉及到男性员工,选取的样本不具有代表性质;B、调查对象只涉及到即将退休的员工,选取的样本不具有代表性质;C、用企业人员名册,随机抽取三分之一的员工,选取的样本具有代表性;D调查对象只涉及到新进员工,选取的样本不具有代表性,故选C.【点睛】本题考查了样本的确定方法,明确样本要具有代表性和广泛性是解题的关键.4. 把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A. 12B. 14C. 16D. 18【答案】C【解析】【分析】观察第1个、第2个、第3个图案中的三角形个数,从而可得到第n个图案中三角形的个数为2(n+1),由此即可得.【详解】∵第1个图案中的三角形个数为:2+2=4=2×(1+1);第2个图案中的三角形个数为:2+2+2=6=2×(2+1);第3个图案中的三角形个数为:2+2+2+2=8=2×(3+1);……∴第n个图案中有三角形个数为:2(n+1)∴第7个图案中的三角形个数为:2×(7+1)=16,故选C.【点睛】本题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,从而计算出正确结果是解题的关键.5. 要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为,和,另一个三角形的最短边长为2.5 cm,则它的最长边为()A. 3cmB. 4cmC. 4.5cmD. 5cm【答案】C【解析】【分析】根据相似三角形三边对应成比例进行求解即可得.【详解】设另一个三角形的最长边为xcm,由题意得5:2.5=9:x,解得:x=4.5,故选C.【点睛】本题考查了相似三角形的性质,熟知相似三角形对应边成比例是解题的关键.6. 下列命题正确的是A. 平行四边形的对角线互相垂直平分B. 矩形的对角线互相垂直平分C. 菱形的对角线互相平分且相等D. 正方形的对角线互相垂直平分【答案】D【解析】【分析】根据平行四边形、矩形、菱形、正方形的性质逐项进行判断即可得.【详解】A、平行四边形的对角线互相平分,故A选项错误;B、矩形的对角线相等且互相平分,故B选项错误;C、菱形的对角线互相垂直平分,每一条对角线平分一组对角,故C选项错误;D、正方形的对角线互相垂直平分,故D选项正确,故选D.【点睛】本题考查了平行四边形、矩形、菱形、正方形的有关对角线的性质,熟练掌握是解题的关键.7. 估计的值应在()A. 1和2之间B. 2和3之间C. 3和4之间D. 4和5之间【答案】B【解析】【分析】先利用分配律进行计算,然后再进行化简,根据化简的结果即可确定出值的范围. 【详解】=,=,而,4<<5,所以2<<3,所以估计的值应在2和3之间,故选B.【点睛】本题主要考查二次根式的混合运算及估算无理数的大小,熟练掌握运算法则以及“夹逼法”是解题的关键.8. 按如图所示的运算程序,能使输出的结果为的是()学*科*网...学*科*网...学*科*网...学*科*网...学*科*网...学*科*网...学*科*网...学*科*网...学*科*网...学*科*网...学*科*网...学*科*网...学*科*网...学*科*网...学*科*网...学*科*网...A. B. C. D.【答案】C【解析】【分析】由题可知,代入、值前需先判断的正负,再进行运算方式选择,据此逐项进行计算即可得.【详解】选项,故将、代入,输出结果为,不符合题意;选项,故将、代入,输出结果为,不符合题意;选项,故将、代入,输出结果为,符合题意;选项,故将、代入,输出结果为,不符合题意,故选C.【点睛】本题主要考查程序型代数式求值,解题的关键是根据运算程序,先进行的正负判断,选择对应运算方式,然后再进行计算.9. 如图,已知AB是的直径,点P在BA的延长线上,PD与相切于点D,过点B作PD 的垂线交PD的延长线于点C,若的半径为4,,则P A的长为()A. 4B.C. 3D. 2.5【答案】A【解析】【分析】连接OD,由已知易得△POD∽△PBC,根据相似三角形对应边成比例可求得PO 的长,由PA=PO-AO即可得.【详解】连接OD,∵PD与⊙O相切于点D,∴OD⊥PD,∴∠PDO=90°,∵∠BCP=90°,∴∠PDO=∠PCB,∵∠P=∠P,∴△POD∽△PBC,∴PO:PB=OD:BC,即PO:(PO+4)=4:6,∴PO=8,∴PA=PO-OA=8-4=4,故选A.【点睛】本题考查了切线的性质、相似三角形的判定与性质,连接OD构造相似三角形是解题的关键.10. 如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与地面垂直,在教学楼底部E 点处测得旗杆顶端的仰角,升旗台底部到教学楼底部的距离米,升旗台坡面CD 的坡度,坡长米,若旗杆底部到坡面CD的水平距离米,则旗杆AB的高度约为()(参考数据:,,)A. 12.6米B. 13.1米C. 14.7米D. 16.3米【答案】B【解析】【分析】延长AB交地面于点H,作CM⊥DE,易得CM=1.6,DM=1.2,再由tan58°=,求得AH长即可得.【详解】延长AB交地面于点H,作CM⊥DE,则四边形BHMC是矩形,∴HM=BC=1,BH=CM,∵,i=CM:DM,∴DM=0.75CM,∵DM2+CM2=CD2,,∴CM=1.6,DM=1.2,∴HE=HM+DM+DE=1+1.2+7=9.2,在Rt△AHE中,∠AEB=58°,∴tan58°=,即=1.6,∴AH=14.72,∴AB=AH-BH=14.72-1.6=13.12≈13.1(米),故选B.【点睛】本题考查了解直角三角形的应用,添加辅助线构造直角三角形,从图中提取相关信息是解题的关键.11. 如图,在平面直角坐标系中,菱形ABCD的顶点A,B在反比例函数(,)的图象上,横坐标分别为1,4,对角线轴.若菱形ABCD的面积为,则k的值为()A. B. C. 4 D. 5【答案】D【解析】【分析】设A(1,m),B(4,n),连接AC交BD于点M,BM=4-1=3,AM=m-n,由菱形的面积可推得m-n=,再根据反比例函数系数的特性可知m=4n,从而可求出n的值,即可得到k的值.【详解】设A(1,m),B(4,n),连接AC交BD于点M,则有BM=4-1=3,AM=m-n,∴S菱形ABCD=4×BM•AM,∵S菱形ABCD=,∴4××3(m-n)=,∴m-n=,又∵点A,B在反比例函数,∴k=m=4n,∴n=,∴k=4n=5,故选D.【点睛】本题考查了反比例函数k的几何意义、菱形的性质、菱形的面积等,熟记菱形的对角线互相垂直平分是解题的关键.12. 若数使关于x的不等式组有且只有四个整数解,且使关于y的方程的解为非负数,则符合条件的所有整数的和为()A. B. C. 1 D. 2【答案】C【解析】【分析】先求出不等式的解集,根据只有四个整数解确定出a的取值范围,解分式方程后根据解为非负数,可得关于a的不等式组,解不等式组求得a的取值范围,即可最终确定出a的范围,将范围内的整数相加即可得.【详解】解不等式,得,由于不等式组只有四个整数解,即只有4个整数解,∴,∴;解分式方程,得,∵分式方程的解为非负数,∴,∴a≤2且a≠1,∴且a≠1,∴符合条件的所有整数为:-1,0,2,和为:-1+0+2=1,故选C.【点睛】本题考查含有参数的不等式和含有参数的分式方程的应用,熟练掌握不等式组的解法、分式方程的解法以及解分式方程需要注意的事项是解题的关键.二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13. 计算:______________.【答案】3【解析】【分析】先分别进行绝对值化简、0次幂的计算,然后再进行加法计算即可得.【详解】=2+1=3,故答案为:3.【点睛】本题考查了实数的运算,熟知任何非0数的0次幂为1是解题的关键.14. 如图,在矩形ABCD中,,,以点A为圆心,AD长为半径画弧,交AB于点E,图中阴影部分的面积是___________(结果保留).【答案】【解析】【分析】由S阴影=S矩形ABCD-S扇形ADE,根据矩形面积公式、扇形面积公式进行计算即可得. 【详解】S阴影=S矩形ABCD-S扇形ADE=2×3-=6-π,故答案为:6-π.【点睛】本题考查扇形、四边形面积的计算,结合图形确定出阴影部分面积的求法是解题的关键.15. 春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为______.【答案】23.4【解析】【分析】将折线统计图中的数据按从小到大进行排序,然后根据中位数的定义即可确定. 【详解】从图中看出,五天的游客数量从小到大依次为21.9,22.4,23.4,24.9,25.4,则中位数应为23.4,故答案为:23.4.【点睛】本题考查了中位数的定义,熟知“中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)”是解题的关键.16. 如图,把三角形纸片折叠,使点、点都与点重合,折痕分别为,,得到,若厘米,则的边的长为____________厘米.【答案】【解析】【分析】过点E作EH⊥AG于H,由AE=EG=2,∠AGE=30°可求得AG的长,由翻折可知AE=BE、AG=CG,根据BC=BE+EG+CG,将数据代入相加即可得.【详解】过点E作EH⊥AG于H,∵AE=EG=2,∠AGE=30°,∴AG=2AH =2AE •cos30°=2×2×=6,由翻折得,∴,故答案为:6+4.【点睛】本题考查了解直角三角形的应用、折叠的性质等,解题的关键是正确添加辅助线构造直角三角形.17. 两地相距的路程为240千米,甲、乙两车沿同一线路从地出发到地,分别以一定的速度匀速行驶,甲车先出发40分钟后,乙车才出发.途中乙车发生故障,修车耗时20分钟,随后,乙车车速比发生故障前减少了10千米/小时(仍保持匀速前行),甲、乙两车同时到达地.甲、乙两车相距的路程(千米)与甲车行驶时间(小时)之间的关系如图所示,求乙车修好时,甲车距地还有____________千米.【答案】90【解析】【分析】观察图象可知甲车40分钟行驶了30千米,由此可求出甲车速度,再根据甲车行驶小时时与乙车的距离为10千米可求得乙车的速度,从而可求得乙车出故障修好后的速度,再根据甲、乙两车同时到达B地,设乙车出故障前走了t1小时,修好后走了t2小时,根据等量关系甲车用了小时行驶了全程,乙车行驶的路程为60t1+50t2=240,列方程组求出t2,再根据甲车的速度即可知乙车修好时甲车距B地的路程.【详解】甲车先行40分钟(),所行路程为30千米,因此甲车的速度为(千米/时),设乙车的初始速度为V乙,则有,解得:(千米/时),因此乙车故障后速度为:60-10=50(千米/时),设乙车出故障前走了t1小时,修好后走了t2小时,则有,解得:,45×2=90(千米),故答案为:90.【点评】本题考查了一次函数的实际应用,难度较大,求出速度后能从题中找到必要的等量关系列方程组进行求解是关键.18. 为实现营养的合理搭配,某电商推出适合不同人群的甲、乙两种袋装混合粗粮.其中,甲种粗粮每袋装有3千克粗粮,1千克粗粮,1千克粗粮;乙种粗粮每袋装有1千克粗粮,2千克粗粮,2千克粗粮.甲、乙两种袋装粗粮每袋成本价分别为袋中三种粗粮的成本价之和.已知粗粮每千克成本价为6元,甲种粗粮每袋售价为58.5元,利润率为30%,乙种粗粮的利润率为20%.若这两种袋装粗粮的销售利润率达到24%,则该电商销售甲、乙两种袋装粗粮的数量之比是____________________.()【答案】【解析】【分析】先分别根据已知条件计算出甲、乙的成本,然后设设甲销售袋,乙销售袋使总利润率为24%,根据等量关系:(甲的成本+乙的成本)×24%=a袋甲种粗粮的利润+b袋乙种粗粮的利润,列出方程进行整理即可得.【详解】用表格列出甲、乙两种粗粮的成分:由题意可得甲的成本价为:=45(元),甲中A的成本为:3×6=18(元),则甲中B、C的成本之和为:45-18=27(元),根据乙的组成则可得乙的成本价为:6+27×2=60(元),设甲销售袋,乙销售袋使总利润率为24%,则有(45a+60b)×24%=(58.5-45)a+(72-60)b,整理得:2.7a=2.4b,所以,a:b=8:9,故答案为:.【点评】本题考查了方程的应用,难度较大,根据题意求出甲、乙两种包装的成本价是解题的关键.三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上。
2018年重庆市中考数学试卷(a卷)答案及解析(word版)
2018年重庆市中考数学试卷(A 卷)(含答案解析)一、选择题 (本大题12个小题,每小题4分,共48分。
)1.2的相反数是 A .2- B .12-C.12D .2【答案】A【解析】根据一个数的相反数就是在这个数的前面添加上“-”即可求解 【点评】本题考查了相反数的定义,属于中考中的简单题2.下列图形中一定是轴对称图形的是A.40°直角三角形B.四边形C. 平行四边形D.矩形【答案】D【解析】A40°的直角三角形不是对称图形;B 两个角是直角的四边形不一定是轴对称图形;C 平行四边形是中心对称图形不是轴对称图形;D 矩形是轴对称图形,有两条对称轴【点评】此题主要考查基本几何图形中的轴对称图形和中心对称图形,难度系数不大,考生主要注意看清楚题目要求。
3.为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是 A.企业男员工 B.企业年满50岁及以上的员工 C.用企业人员名册,随机抽取三分之一的员工 D.企业新进员工【答案】C【解析】A 调查对象只涉及到男性员工;B 调查对象只涉及到即将退休的员工;D 调查对象只涉及到新进员工【点评】此题主要考查考生对抽样调查中科学选取样本的理解,属于中考当中的简单题。
4.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为A .12B .14C .16D .18【答案】C 【解析】∵第1个图案中的三角形个数为:2+2=2×2=4;第2个图案中的三角形个数为:2+2+2=2×3=6;第3个图案中的三角形个数为:2+2+2+2=2×4=8;……∴第7个图案中的三角形个数为:2+2+2+2+2+2+2+2=2×8=16;【点评】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,从而计算出正确结果。
2018年重庆市中考数学试卷(a卷)(答案+解析)
2018年重庆市中考数学试卷(a 卷)(答案+解析)2018年重庆市中考数学试卷(A 卷)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面。
都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。
1.(4分)2的相反数是( )A .﹣2B .﹣12C .12D .22.(4分)下列图形中一定是轴对称图形的是( )A .B .C .D .直角三角形四边形平行四边形矩形3.(4分)为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是( ) A .企业男员工B .企业年满50岁及以上的员工C .用企业人员名册,随机抽取三分之一的员工D .企业新进员工4.(4分)把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为( )A .12B .14C .16D .185.(4分)要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm ,6cm 和9cm ,另一个三角形的最短边长为2.5cm ,则它的最长边为( ) A .3cmB .4cmC .4.5cmD .5cm6.(4分)下列命题正确的是( ) A .平行四边形的对角线互相垂直平分 B .矩形的对角线互相垂直平分 C .菱形的对角线互相平分且相等D .正方形的对角线互相垂直平分7.(4分)估计(2√30﹣√24)•√16的值应在( ) A .1和2之间B .2和3之间C .3和4之间D .4和5之间8.(4分)按如图所示的运算程序,能使输出的结果为12的是( )A .x =3,y =3B .x =﹣4,y =﹣2C .x =2,y =4D .x =4,y =29.(4分)如图,已知AB是⊙O的直径,点P在BA的延长线上,PD与⊙O相切于点D,过点B作PD的垂线交PD的延长线于点C,若⊙O的半径为4,BC=6,则PA的长为()A.4 B.2√3C.3 D.2.510.(4分)如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与地面垂直,在教学楼底部E点处测得旗杆顶端的仰角∠AED=58°,升旗台底部到教学楼底部的距离DE=7米,升旗台坡面CD的坡度i=1:0.75,坡长CD=2米,若旗杆底部到坡面CD的水平距离BC=1米,则旗杆AB的高度约为()(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.6)A.12.6米B.13.1米C.14.7米D.16.3米11.(4分)如图,在平面直角坐标系中,菱形ABCD的顶点A,B在反比例函数y=kx(k>0,x>0)的图象上,横坐标分别为1,4,对角线BD∥x轴.若菱形ABCD的面积为452,则k的值为()A.54B.154C.4 D.512.(4分)若数a使关于x的不等式组{x−12<1+x35x−2≥x+a有且只有四个整数解,且使关于y的方程y+ay−1+2a1−y=2的解为非负数,则符合条件的所有整数a的和为()A.﹣3 B.﹣2 C.1 D.2二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的的横线上。
重庆市2018年中考数学试题(含解析)
2018年重庆市中考数学试卷(A 卷)答案及解析一、选择题 (本大题12个小题,每小题4分,共48分。
)1.2的相反数是 A .2- B .12-C .12D .2【答案】A【解析】根据一个数的相反数就是在这个数的前面添加上“-”即可求解 【点评】本题考查了相反数的定义,属于中考中的简单题2.下列图形中一定是轴对称图形的是A.B.C.D.【答案】D【解析】A40°的直角三角形不是对称图形;B 两个角是直角的四边形不一定是轴对称图形;C 平行四边形是中心对称图形不是轴对称图形;D 矩形是轴对称图形,有两条对称轴【点评】此题主要考查基本几何图形中的轴对称图形和中心对称图形,难度系数不大,考生主要注意看清楚题目要求。
3.为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是 A.企业男员工 B.企业年满50岁及以上的员工 C.用企业人员名册,随机抽取三分之一的员工 D.企业新进员工【答案】C【解析】A 调查对象只涉及到男性员工;B 调查对象只涉及到即将退休的员工;D 调查对象只涉及到新进员工【点评】此题主要考查考生对抽样调查中科学选取样本的理解,属于中考当中的简单题。
4.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为A .12B .14C .16D .18【答案】C 【解析】40°直角三角形四边形平行四边形矩形∵第1个图案中的三角形个数为:2+2=2×2=4;第2个图案中的三角形个数为:2+2+2=2×3=6;第3个图案中的三角形个数为:2+2+2+2=2×4=8;……∴第7个图案中的三角形个数为:2+2+2+2+2+2+2+2=2×8=16;【点评】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,从而计算出正确结果。
2018年重庆市中考数学试卷(a卷)(带解析)
装混合粗粮.其中,甲种粗粮每袋装有 3 千克 A 粗粮,1 千克 B 粗粮,1 千克 C
粗粮;乙种粗粮每袋装有 1 千克 A 粗粮,2 千克 B 粗粮,2 千克 C 粗粮.甲、乙
两种袋装粗粮每袋成本价分别为袋中的 A,B,C 三种粗粮的成本价之和.已知 A
粗粮每千克成本价为 6 元,甲种粗粮每袋售价为 58.5 元,利润率为 30%,乙种
∴AE=
设点 B 的坐标为(4,y),则 A 点坐标为(1,y+ )
∵点 A、B 同在 y= 图象上
∴4y=1•(y+ )
∴y=
∴B 点坐标为(4, ) ∴k=5 故选:D.
12.(4 分)若数 a 使关于 x 的不等式组
有且只有四个整数解,且使
关于 y 的方程
=2 的解为非负数,则符合条件的所有整数 a 的和为( )
4.(4 分)把三角形按如图所示的规律拼图案,其中第①个图案中有 4 个三角形, 第②个图案中有 6 个角形第③个图案中有 8 个三角形,…,按此规律排列下去, 则第⑦个图案中三角形的个数为( )
A.12 B.14 C.16 D.18 【考点】38:规律型:图形的变化类.菁优网版权所有 【解答】解:∵第①个图案中三角形个数 4=2+2×1, 第②个图案中三角形个数 6=2+2×2, 第③个图案中三角形个数 8=2+2×3, …… ∴第⑦个图案中三角形的个数为 2+2×7=16,
6.(4 分)下列命题正确的是( ) A.平行四边形的对角线互相垂直平分 B.矩形的对角线互相垂直平分 C.菱形的对角线互相平分且相等 D.正方形的对角线互相垂直平分 【考点】O1:命题与定理.菁优网版权所有 【解答】解:A、平行四边形的对角线互相垂直平分,是假命题; B、矩形的对角线互相垂直平分,是假命题; C、菱形的对角线互相平分且相等,是假命题; D、正方形的对角线互相垂直平分,是真命题; 故选:D.
2018年重庆市中考数学试卷---全面解析版 精品
2018年重庆市中考数学试卷---全面解析版一.选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卷中对应的表格内.1、在-6,0,3,8这四个数中,最小的数是(A)A、-6B、0C、3D、8考点:有理数大小比较.专题:计算题.分析:根据正数大于0,0大于负数,正数大于负数,两负数绝对值大的反而小,解答即可.解答:解:∵8>3>0>-6,∴最小的数是-6.故选A.点评:本题考查了有理数大小的比较,熟记:正数大于0,0大于负数,正数大于负数,两负数绝对值大的反而小.2、计算(a3)2的结果是(C)A、aB、a5C、a6D、a9考点:幂的乘方与积的乘方.专题:计算题.分析:根据幂的乘方法则:底数不变,指数相乘.(a m)n=a mn(m,n是正整数)计算即可.解答:解:(a3)2=a3×2=a6.故选C.点评:本题考查了幂的乘方,注意:①幂的乘方的底数指的是幂的底数;②性质中“指数相乘”指的是幂的指数与乘方的指数相乘,这里注意与同底数幂的乘法中“指数相加”的区别.3、下列图形中,是中心对称图形的是(B)A、B、C、D、考点:中心对称图形.专题:数形结合.分析:根据中心对称图形的定义来判断:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.解答:解:A、将此图形绕任一点旋转180度都不能与原来的图形重合,所以这个图形不是中心对称图形;B、将此图形绕某一点旋转180度正好与原来的图形重合,所以这个图形是中心对称图形;C、将此图形绕任一点旋转180度都不能与原来的图形重合,所以这个图形不是中心对称图形;D、将此图形绕任一点旋转180度都不能与原来的图形重合,所以这个图形不是中心对称图形.故选B.点评:本题主要考查中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.4、如图,AB∥CD,∠C=80°,∠CAD=60°,则∠BAD的度数等于(D)A、60°B、50°C、45°D、40°考点:平行线的性质.分析:根据三角形的内角和为180°,即可求出∠D的度数,再根据两直线平行,内错角相等即可知道∠BAD 的度数.解答:解:∵∠C=80°,∠CAD=60°,∴∠D=180°-80°-60°=40°,∵AB∥CD,∴∠BAD=∠D=40°.故选D.点评:本题考查了三角形的内角和为180°,以及两直线平行,内错角相等的性质,难度适中.5、下列调查中,适宜采用抽样方式的是(A)A、调查我市中学生每天体育锻炼的时间B、调查某班学生对“五个重庆”的知晓率C、调查一架“歼20”隐形战机各零部件的质量D、调查广州亚运会100米参赛运动员兴奋剂的使用情况考点:全面调查与抽样调查.专题:应用题.分析:调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析.普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式;当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.解答:解:A、调查我市中学生每天体育锻炼的时间,适合抽样调查,B、调查某班学生对“五个重庆”的知晓率,采用全面调查,C、调查一架“歼20”隐形战机各零部件的质量,采用全面调查,D、调查广州亚运会100米参赛运动员兴奋剂的使用情况,采用全面调查,故选A.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查;对于精确度要求高的调查,事关重大的调查往往选用普查,比较简单.6、如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的度数等于(B)A、60°B、50°C、40°D、30°考点:圆周角定理.分析:在等腰三角形OCB中,求得两个底角∠OBC、∠0CB的度数,然后根据三角形的内角和求得∠COB=100°;最后由圆周角定理求得∠A的度数并作出选择.解答:解:在△OCB中,OB=OC(⊙O的半径),∴∠OBC=∠0CB(等边对等角);∵∠OCB=40°,∠C0B=180°-∠OBC-∠0CB,∴∠COB=100°;又∵∠A= ∠C0B(同弧所对的圆周角是所对的圆心角的一半),∴∠A=50°,故选B.点评:本题考查了圆周角定理:同弧所对的圆周角是所对的圆心角的一半.解题时,借用了等腰三角形的两个底角相等和三角形的内角和定理.7、已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示,则下列结论中,正确的是(D)A、a>0B、b<0C、c<0D、a+b+c>0考点:二次函数图象与系数的关系.专题:数形结合.分析:根据抛物线的开口方向判断a 的正负;根据对称轴在y 轴的右侧,得到a ,b 异号,可判断b 的正负;根据抛物线与y轴的交点为(0,c),判断c 的正负;由自变量x=1得到对应的函数值为正,判断a+b+c 的正负.解答:解:∵抛物线的开口向下,∴a <0;又∵抛物线的对称轴在y 轴的右侧, ∴a ,b 异号, ∴b >0;又∵抛物线与y 轴的交点在x 轴上方, ∴c >0,又x=1,对应的函数值在x 轴上方, 即x=1,y=ax 2+bx+c=a+b+c >0; 所以A ,B ,C 选项都错,D 选项正确. 故选D .点评:本题考查了抛物线y=ax 2+bx+c (a≠0)中各系数的作用:a >0,开口向上,a <0,开口向下;对称轴为x=-,a ,b 同号,对称轴在y 轴的左侧;a ,b 异号,对称轴在y 轴的右侧;抛物线与y 轴的交点为(0,c ),c >0,与y 轴正半轴相交;c <0,与y 轴负半轴相交;c=0,过原点.8、为了建设社会主义新农村,我市积极推进“行政村通畅工程”.张村和王村之间的道路需要进行改造,施工队在工作了一段时间后,因暴雨被迫停工几天,不过施工队随后加快了施工进度,按时完成了两村之间的道路改造.下面能反映该工程尚未改造的道路里程y (公里)与时间x (天)的函数关系的大致图象是(D )A 、B 、C 、D 、考点:函数的图象.专题:数形结合.分析:根据y随x的增大而减小,即可判断选项A错误;根据施工队在工作了一段时间后,因暴雨被迫停工几天,即可判断选项B错误;根据施工队随后加快了施工进度得出y随x的增大减小得比开始的快,即可判断选项C、D的正误.解答:解:∵y随x的增大而减小,∴选项A错误;∵施工队在工作了一段时间后,因暴雨被迫停工几天,∴选项B错误;∵施工队随后加快了施工进度,∴y随x的增大减小得比开始的快,∴选项C错误;选项D正确;故选D.点评:本题主要考查对函数图象的理解和掌握,能根据实际问题所反映的内容来观察与理解图象是解答此题的关键.9、下列图形都是由同样大小的平行四边形按一定的规律组成,其中,第①个图形中一共有1个平行四边形,第②个图形中一共有5个平行四边形,第③个图形中一共有11个平行四边形,…则第⑥个图形中平行四边形的个数为(C)A、55B、42C、41D、29考点:规律型:图形的变化类.专题:规律型.分析:由于图②5个=1+2+2,图③11个=1+2+3+2+3,图④19=1+2+3+4+2+3+4,由此即可得到第⑥个图形中平行四边形的个数.解答:解:∵图②平行四边形有5个=1+2+2,图③平行四边形有11个=1+2+3+2+3,图④平行四边形有19=1+2+3+4+2+3+4,∴图⑥的平行四边形的个数为1+2+3+4+5+6+2+3+4+5+6=41.故选C.点评:本题是一道根据图形进行数字猜想的问题,关键是通过归纳与总结,得到其中的规律,然后利用规律解决一般问题.10、如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE 对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是(C)A、1B、2C、3D、4考点:翻折变换(折叠问题);全等三角形的判定与性质;勾股定理.专题:几何综合题.分析:根据翻折变换的性质和正方形的性质可证△ABG≌△AFG;在直角△ECG中,根据勾股定理可证BG=GC;通过证明∠AGB=∠AGF=∠GFC=∠GCF,由平行线的判定可得AG∥CF;由于S△FGC=S△GCE-S△FEC,求得面积比较即可.解答:解:①正确.因为AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴△ABG≌△AFG;②正确.因为:EF=DE= CD=2,设BG=FG=x,则CG=6-x.在直角△ECG中,根据勾股定理,得(6-x)2+42=(x+2)2,解得x=3.所以BG=3=6-3=GC;③正确.因为CG=BG=GF,所以△FGC是等腰三角形,∠GFC=∠GCF.又∠AGB=∠AGF,∠AGB+∠AGF=180°-∠FGC=∠GFC+∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;④错误.过F作FH⊥DC,∵BC⊥DH,∴FH∥GC,∴△EFH∽△EGC,∴= ,EF=DE=2,GF=3,∴EG=5,∴△EFH∽△EGC,∴相似比为:= = ,∴S△FGC=S△GCE-S△FEC= ×3×4- ×4×(×3)= ≠3.故选C.点评:本题综合性较强,考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算,有一定的难度.二.填空题:(本大题6个小题,每小题4分,共24分)11、据第六次全国人口普查结果显示,重庆常住人口约为2880万人.将数2880万用科学记数法表示为万.考点:科学记数法—表示较大的数.专题:数字问题.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将2880万用科学记数法表示为2.88×103.故答案是:2.88×103.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12、如图,△ABC中,DE∥BC,DE分别交边AB、AB于D、E两点,若AD:AB=1:3,则△ADE与△ABC 的面积比为.考点:相似三角形的判定与性质.分析:根据相似三角形的面积比等于相似比的平方直接得出答案.解答:解:∵△ABC中,DE∥BC,∴△ADE∽△ABC,相似比为AD:AB=1:3,∴△ADE与△ABC的面积比为:1:9.故答案为:1:9.点评:此题主要考查了相似三角形的性质,根据相似比性质得出面积比是解决问题的关键.13、在参加“森林重庆”的植树活动中,某班六个绿化小组植树的棵数分别是:10,9,9,10,11,9.则这组数据的众数是.考点:众数.专题:计算题.分析:众数是一组数据中出现次数最多的数据,有时众数可以不止一个.解答:解:在这一组数据中9是出现次数最多的,故众数是9;故答案为9.点评:本题为统计题,考查众数定义.如果众数的概念掌握得不好,就会出错.14、在半径为的圆中,45°的圆心角所对的弧长等于.考点:弧长的计算.专题:计算题.分析:根据弧长公式l= 把半径和圆心角代入进行计算即可.解答:解:45°的圆心角所对的弧长= =1.故答案为1.点评:本题考查了弧长公式:l= (n为圆心角的度数,R为半径).15、有四张正面分别标有数学-3,0,1,5的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数学记为a,则使关于x的分式方程有正整数解的概率为.考点:概率公式;解分式方程.专题:计算题.分析:易得分式方程的解,看所给4个数中,能使分式方程有整数解的情况数占总情况数的多少即可.解答:解:解分式方程得:x= ,能使该分式方程有正整数解的只有0(a=1时得到的方程的根为增根),∴使关于x的分式方程有正整数解的概率为.故答案为:.点评:考查概率的求法;用到的知识点为:概率=所求情况数与总情况数之比.得到使分式方程有整数解的情况数是解决本题的关键.16、某步行街摆放有若干盆甲、乙、丙三种造型的盆景.甲种盆景由15朵红花、24朵黄花和25朵紫花搭配而成,乙种盆景由10朵红花和12朵黄花搭配而成,丙种盆景由10朵红花、18朵黄花和25朵紫花搭配而成.这些盆景一共用了2900朵红花,3750朵紫花,则黄花一共用了朵.考点:三元一次方程组的应用.专题:应用题.分析:题中有两个等量关系:甲种盆景所用红花的朵数+乙种盆景所用红花的朵数+丙种盆景所用红花的朵数=2900朵,甲种盆景所用紫花的朵数+丙种盆景所用紫花的朵数=3750朵.据此可列出方程组,设步行街摆放有甲、乙、丙三种造型的盆景分别有x盆、y盆、z盆,用含x的代数式分别表示y、z,即可求出黄花一共用的朵数.解答:解:设步行街摆放有甲、乙、丙三种造型的盆景分别有x盆、y盆、z盆.由题意,有,由①得,3x+2y+2z=580③,由②得,x+z=150④,把④代入③,得x+2y=280,∴2y=280-x⑤,由④得z=150-x⑥.∴4x+2y+3z=4x+(280-x)+3(150-x)=730,∴黄花一共用了:24x+12y+18z=6(4x+2y+3z)=6×730=4380.故黄花一共用了4380朵.点评:本题考查了三元一次方程组在实际生活中的应用.解题的关键是发掘等量关系列出方程组,难点是将方程组中的其中一个未知数看作常数,用含有一个未知数的代数式表示另外两个未知数,然后代入所求黄花的代数式.二.解答题:(本大题4个小题,每小题6分,共24分)解答时每小题必须给出必要的演算过程或推理步骤)17、|-3|+(-1)2018×(π-3)0- + .考点:实数的运算;零指数幂;负整数指数幂.专题:计算题.分析:先算出-3的绝对值是3,-1的奇数次方仍然是-1,任何数(0除外)的0次方都等于1,然后按照常规运算计算本题.解答:解:原式=3+(-1)×1-3+4=3点评:本题考查了绝对值、零指数幂、负整数指数幂、立方根的运算.18、解不等式2x-3<,并把解集在数轴上表示出来.考点:解一元一次不等式;在数轴上表示不等式的解集.专题:计算题.分析:先去分母,再去括号、移项、合并同类项,系数化为1,求出不等式的解集,再在数轴上表示出来即可.解答:解:3(2x-3)<x+16x-9<x+15x<10x<2∴原不等式的解集为x<2,在数轴上表示为:点评:本题考查了解简单不等式的能力,解答这类题学生往往在解题时不注意移项要改变符号这一点而出错.19、如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:BC∥EF.考点:全等三角形的判定与性质;平行线的判定.专题:证明题.分析:根据已知条件得出△ACB≌△DEF,即可得出∠ACB=∠DFE,再根据内错角相等两直线平行,即可证明BC∥EF.解答:证明:∵AF=DC,∴AC=DF,又∵AB=DE,∠A=∠D,∴△ACB≌△DEF,∴∠ACB=∠DFE,∴BC∥EF.点评:本题考查了两直线平行的判定方法,内错角相等,两直线平行,难度适中.20、为进一步打造“宜居重庆”,某区拟在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M到广场的两个入口A、B的距离相等,且到广场管理处C的距离等于A和B之间距离的一半,A、B、C的位置如图所示.请在答题卷的原图上利用尺规作图作出音乐喷泉M的位置.(要求:不写已知、求作、作法和结论,保留作图痕迹,必须用铅笔作图)考点:作图—应用与设计作图.专题:作图题.分析:易得M在AB的垂直平分线上,且到C的距离等于AB的一半.解答:解:作AB的垂直平分线,以点C为圆心,以AB的一半为半径画弧交AB的垂直平分线于点M即可.点评:考查设计作图;得到点M是AB的垂直平分线与以点C为圆心,以AB的一半为半径的弧的交点是解决本题的关键.四.解答题:(本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤21、先化简,再求值:,其中x满足x2-x-1=0.考点:分式的化简求值.专题:计算题.分析:先通分,计算括号里的,再把除法转化成乘法进行约分计算.最后根据化简的结果,可由x2-x-1=0,求出x+1=x2,再把x2=x+1的值代入计算即可.解答:解:原式= ×= ×= ,∵x2-x-1=0,∴x2=x+1,∴= =1.点评:本题考查了分式的化简求值.解题的关键是注意对分式的分子、分母因式分解,除法转化成下乘法.22、如图,在平面直角坐标系x0y中,一次函数y=kx+b(k≠0)的图象与反比例函数(m≠0)的图象交于二、四象限内的A、B两点,与x轴交于C点,点B的坐标为(6,n).线段OA=5,E为x轴上一点,且sin∠AOE= .(1)求该反比例函数和一次函数的解析式;(2)求△AOC的面积.考点:反比例函数综合题.专题:综合题.分析:(1)过点A作AD⊥x轴于D点,由sin∠AOE= ,OA=5,根据正弦的定义可求出AD,再根据勾股定理得到DO,即得到A点坐标(-3,4),把A(-3,4)代入y= ,确定反比例函数的解析式为y=- ;将B(6,n)代入,确定点B点坐标,然后把A点和B点坐标代入y=kx+b(k≠0),求出k和b.(2)先令y=0,求出C点坐标,得到OC的长,然后根据三角形的面积公式计算△AOC的面积即可.解答:解:(1)过点A作AD⊥x轴于D点,如图,∵sin∠AOE= ,OA=5,∴sin∠AOE= = = ,∴AD=4,∴DO= =3,而点A在第二象限,∴点A的坐标为(-3,4),将A(-3,4)代入y= ,得m=-12,∴反比例函数的解析式为y=- ;将B(6,n)代入y=- ,得n=-2;将A(-3,4)和B(6,-2)分别代入y=kx+b(k≠0),得,解得,∴所求的一次函数的解析式为y=- x+2;(2)在y=- x+2中,令y=0,即- x+2=0,解得x=3,∴C点坐标为(0,3),即OC=3,∴S△AOC= •AD•OC= •4•3=6.点评:本题考查了点的坐标的求法和点在图象上,点的横纵坐标满足图象的解析式;也考查了正弦的定义、勾股定理以及三角形面积公式.23、为实施“农村留守儿童关爱计划”,某校结全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅不完整的统计图:(1)求该校平均每班有多少名留守儿童?并将该条形统计图补充完整;(2)某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名留守儿童来自同一个班级的概率.考点:条形统计图;扇形统计图;列表法与树状图法.专题:计算题;图表型.分析:(1)根据留守儿童有4名的占20%,可求得留守儿童的总数,再求得留守儿童是2名的班数;(2)由(1)得只有2名留守儿童的班级有2个,共4名学生.设A1,A2来自一个班,B1,B2来自一个班,列出树状图可得出来自一个班的共有4种情况,则所选两名留守儿童来自同一个班级的概率.解答:解:(1)该校班级个数为4÷20%=20(个),只有2名留守儿童的班级个数为:20-(2+3+4+5+4)=2(个),该校平均每班留守儿童的人数为:=4(名),补图如下:;(2)由(1)得只有2名留守儿童的班级有2个,共4名学生.设A1,A2来自一个班,B1,B2来自一个班,有树状图可知,共有12中等可能的情况,其中来自一个班的共有4种情况,则所选两名留守儿童来自同一个班级的概率为:= .点评:本题是一道统计题,考查了条形统计图和扇形统计图,及树状图的画法,是重点内容,要熟练掌握.24、如图,梯形ABCD中,AD∥BC,∠DCB=45°,CD=2,BD⊥CD.过点C作CE⊥AB于E,交对角线BD于F,点G为BC中点,连接EG、AF.(1)求EG的长;(2)求证:CF=AB+AF.考点:梯形;全等三角形的判定与性质;直角三角形斜边上的中线;勾股定理.专题:证明题;几何综合题.分析:(1)根据BD⊥CD,∠DCB=45°,得到∠DBC=∠DCB,求出BD=CD=2,根据勾股定理求出BC=2,根据CE⊥BE,点G为BC的中点即可求出EG;(2)在线段CF上截取CH=BA,连接DH,根据BD⊥CD,BE⊥CD,推出∠EBF=∠DCF,证出△ABD ≌△HCD,得到AD=BD,∠ADB=∠HDC,根据AD∥BC,得到∠ADB=∠DBC=45°,推出∠ADB=∠HDB,证出△ADF≌△HDF,即可得到答案.解答:(1)解:∵BD⊥CD,∠DCB=45°,∴∠DBC=45°=∠DCB,∴BD=CD=2,在Rt△BDC中BC= =2 ,∵CE⊥BE,点G为BC的中点,∴EG= BC= .答:EG的长是.(2)证明:在线段CF上截取CH=BA,连接DH,∵BD⊥CD,BE⊥CE,∴∠EBF+∠EFB=90°,∠DFC+∠DCF=90°,∵∠EFB=∠DFC,(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;(2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其它成本30元,该配件在1至9月的销售量p1(万件)与月份x满足函数关系式p1=0.1x+1.1(1≤x≤9,且x取整数)10至12月的销售量p2(万件)与月份x满足函数关系式p2=-0.1x+2.9(10≤x≤12,且x取整数).求去年哪个月销售该配件的利润最大,并求出这个最大利润;(3)今年1至5月,每件配件的原材料价格均比去年12月上涨60元,人力成本比去年增加20%,其它成本没有变化,该企业将每件配件的售价在去年的基础上提高a%,与此同时每月销售量均在去年12月的基础上减少0.1a%.这样,在保证每月上万件配件销量的前提下,完成了1至5月的总利润1700万元的任务,请你参考以下数据,估算出a的整数值.(参考数据:992=9901,982=9604,972=9409,962=9216,952=9025)考点:二次函数的应用;一元二次方程的应用;一次函数的应用.专题:应用题;分类讨论.分析:(1)把表格(1)中任意2点的坐标代入直线解析式可得y1的解析式.把(10,730)(12,750)代入直线解析式可得y2的解析式,;(2)分情况探讨得:1≤x≤9时,利润=P1×(售价-各种成本);10≤x≤12时,利润=P2×(售价-各种成本);并求得相应的最大利润即可;(3)根据1至5月的总利润1700万元得到关系式求值即可.解答:解:(1)设y1=kx+b,则,解得,∴y1=20x+540(1≤x≤9,且x取整数);设y2=ax+b,则,解得,∴y2=10x+630(10≤x≤12,且x取整数);(2)设去年第x月的利润为W万元.1≤x≤9,且x取整数时,W=P1×(1000-50-30-y1)=-2x2+16x+418=-2(x-4)2+450,∴x=4时,W最大=450万元;10≤x≤12,且x取整数时,W=P2×(1000-50-30-y2)=(x-29)2,∴x=10时,W最大=361万元;∵450万元>361万元,∴这个最大利润是450万元;(3)去年12月的销售量为-0.1×12+2.9=1.7(万件),今年原材料价格为:750+60=810(元)今年人力成本为:50×(1+20%)=60元.∴5×[1000×(1+a%)-810-60-30]×1.7(1-0.1×a%)=1700,设t=a%,整理得10t2-99t+10=0,解得t= ,∵9401更接近于9409,∴≈97,∴t1≈0.1,t2≈9.8,∴a1≈10或a2≈980,∵1.7(1-0.1×a%)≥1,∴a≈10.答:a的整数解为10.点评:本题综合考查了一次函数和二次函数的应用;根据二次函数的最值及相应的求值范围得到一定范围内的最大值是解决本题的易错点;利用估算求得相应的整数解是解决本题的难点.26、如图,矩形ABCD中,AB=6,BC=2 ,点O是AB的中点,点P在AB的延长线上,且BP=3.一动点E从O点出发,以每秒1个单位长度的速度沿OA匀速运动,到达A点后,立即以原速度沿AO返回;另一动点F从P点发发,以每秒1个单位长度的速度沿射线PA匀速运动,点E、F同时出发,当两点相遇时停止运动,在点E、F的运动过程中,以EF为边作等边△EFG,使△EFG和矩形ABCD在射线PA的同侧.设运动的时间为t秒(t≥0).(1)当等边△EFG的边FG恰好经过点C时,求运动时间t的值;(2)在整个运动过程中,设等边△EFG和矩形ABCD重叠部分的面积为S,请直接写出S与t之间的函数关系式和相应的自变量t的取值范围;(3)设EG与矩形ABCD的对角线AC的交点为H,是否存在这样的t,使△AOH是等腰三角形?若存大,求出对应的t的值;若不存在,请说明理由.考点:相似三角形的判定与性质;根据实际问题列二次函数关系式;等腰三角形的性质;等边三角形的性质;矩形的性质;解直角三角形.专题:代数几何综合题;动点型;分类讨论.分析:(1)当边FG恰好经过点C时,∠CFB=60°,BF=3-t,在Rt△CBF中,解直角三角形可求t的值;(2)按照等边△EFG和矩形ABCD重叠部分的图形特点,分为0≤t<1,1≤t<3,3≤t<4,4≤t<6四种情况,分别写出函数关系式;(3)存在.当△AOH是等腰三角形时,分为AH=AO=3,HA=HO,OH=OA三种情况,分别画出图形,根据特殊三角形的性质,列方程求t的值.解答:解:(1)当边FG恰好经过点C时,∠CFB=60°,BF=3-t,在Rt△CBF中,BC=2 ,tan∠CFB= ,即tan60= ,解得BF=2,即3-t=2,t=1,∴当边FG恰好经过点C时,t=1;(2)当0≤t<1时,S=2 t+4 ;当1≤t<3时,S=- t2+3 t+ ;当3≤t<4时,S=-4 t+20 ;当4≤t<6时,S= t2-12 t+36 ;(3)存在.理由如下:在Rt△ABC中,tan∠CAB= = ,∴∠CAB=30°,又∵∠HEO=60°,∴∠HAE=∠AHE=30°,∴AE=HE=3-t或t-3,1)当AH=AO=3时,(如图②),过点E作EM⊥AH于M,则AM= AH= ,在Rt△AME中,cos∠MAE═ ,即cos30°= ,∴AE= ,即3-t= 或t-3= ,∴t=3- 或t=3+ ,2)当HA=HO时,(如图③)则∠HOA=∠HAO=30°,又∵∠HEO=60°,∴∠EHO=90°,EO=2HE=2AE,又∵AE+EO=3,∴AE+2AE=3,AE=1,即3-t=1或t-3=1,∴t=2或t=4;3)当OH=OA时,(如图④),则∠OHA=∠OAH=30°,∴∠HOB=60°=∠HEB,∴点E和点O重合,∴AE=3,即3-t=3或t-3=3,t=6(舍去)或t=0;综上所述,存在5个这样的t值,使△AOH是等腰三角形,即t=3- 或t=3+ 或t=2或t=4或t=0.点评:本题考查了特殊三角形、矩形的性质,相似三角形的判定与性质,解直角三角形的有关知识.关键是根据特殊三角形的性质,分类讨论.。
2018年重庆市中考数学试卷-答案
2018年重庆市中考数学试卷-答案重庆市2018年初中学业⽔平暨⾼中招⽣考试(A 卷)数学答案解析第Ⅰ卷⼀、选择题 1.【答案】A【解析】根据题意,2(2)0+-=,∴2的相反数是-2,故选A. 【考点】相反数的概念. 2.【答案】D【解析】A 中的直⾓三⾓形不是轴对称图形;B 中的直⾓梯形不是轴对称图形;C 中的平⾏四边形是中⼼对称图形,不是轴对称图形;D 中的矩形是轴对称图形,故选D.【提⽰】判断⼀个图形是不是轴对称图形,要将这个图形沿某条直线对折,对折的两部分能完全重合,则这个图形是轴对称图形,常见的轴对称图形有线段、⾓、等腰三⾓形、菱形、矩形、正⽅形、圆、正多边形等。
【考点】轴对称图形的概念. 3.【答案】C【解析】根据题意,采取随机抽取的⽅法进⾏调查⽐较全⾯,结果也会⽐较真实有效,故选C. 【提⽰】选择抽取样本的恰当的⽅法是解答本题的关键. 【考点】调查中的样本选择. 4.【答案】C【解析】由题可知,每增加⼀个图案则增加2个三⾓形,∴第○n 个图案中有42(1)n +-个三⾓形,∴第⑦个图案中有16个三⾓形,故选C. 【考点】探索规律. 5.【答案】C【解析】根据题意可知两个三⾓形相似,设最长边为x cm ,则592.5x=,解得 4.5x =,即这个三⾓形的最长边为4.5 cm ,故选C .【提⽰】理解相似三⾓形的性质是解答本题的关键. 【考点】相似三⾓形的性质. 6.【答案】D【解析】平⾏四边形的对⾓线互相平分⽽不垂直,∴命题A 不正确;矩形的对⾓线相等且互相平分⽽不垂直,∴命题B 不正确;菱形的对⾓线互相垂直平分⽽不相等,∴命题C 不正确;正⽅形的对⾓线互相垂直平分且相等,∴命题D 正确,故选D.【提⽰】掌握特殊四边形的对⾓线的性质是解答本题的关键. 【考点】命题的判断. 7.【答案】B【解析】24255223==<∴<<,,,即在2和3之间,故选B .【考点】⼆次根式的运算、估算⽆理数. 8.【答案】C【解析】根据题意,当输⼊33x y ==,时,2021512y x y ∴+=≥,≠;当输⼊42x y =-=-,时,20,22012y x y ∴-=<≠;当输⼊24x y ==,时,20,212y x y ∴+=≥;当输⼊42x y ==,时,20,22012y x y ∴+=≥≠,故选C.【提⽰】根据y 的范围分情况求值是解答本题的关键。
2018年重庆市中考数学试卷及答案
2018年重庆市初中学业水平暨高中招生考试及答案数 学 试 题(全卷共五个大题,满分150分。
考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括作辅助线)请一律用黑色签字笔完成;4.考试结束,由监考人员将试题和答题卡一并收回。
参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标为24,24b ac b a a ⎛⎫- ⎪⎝⎭,对称轴为2b x a =。
一、选择题:(本大题12 个小题,每小题4分 ,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。
1.下列四个数中,是正整数的是( ) A.-1 B.0 C.21 D.1 2下列图形中,是轴对称图形的是( )3.下列图形都是由同样大小的黑色正方形纸片组成,其中第①个图中有3张黑色正方形纸片,第②个图中有5张黑色正方形纸片,第③个图中有7张黑色正方形纸片,..,按此规律排列下去,第⑥个图中黑色正方形纸片的张数为( )A.11B.13C.15D.174.下列调查中,最适合采用全面调查(普查)的是( )A.对我市中学生每周课外阅读时间情况的调查B.对我市市民知晓“礼让行人”交通新规情况的调查C.对我市中学生观看电影(厉害了,我的国》情况的调查D.对我国首艘国产航母002型各零部件质量情况的调查5.制作一块m m 23⨯长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是( )A.360元B.720元C.1080元D.2160元6.下列命题是真命题的是( )A.如果一个数的相反数等于这个数本身,那么这个数一定是0 。
B.如果一个数的倒数等于这个数本身,那么这个数一定是1 。
C.如果一个数的平方等于这个数本身,那么这个数定是0 。
2018年重庆市中考数学试卷(A卷)含答案
2018年重庆市中考数学试卷(A卷)一、选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面。
都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑。
1.(4分)2的相反数是()A.﹣2 B.﹣C.D.22.(4分)下列图形中一定是轴对称图形的是()A.直角三角形B.四边形C.平行四边形D.矩形3.(4分)为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是()A.企业男员工B.企业年满50岁及以上的员工C.用企业人员名册,随机抽取三分之一的员工D.企业新进员工4.(4分)把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个角形第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A.12 B.14 C.16 D.185.(4分)要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm,6cm和9cm,另一个三角形的最短边长为2.5cm,则它的最长边为()A.3cm B.4cm C.4.5cm D.5cm6.(4分)下列命题正确的是()A.平行四边形的对角线互相垂直平分B.矩形的对角线互相垂直平分C.菱形的对角线互相平分且相等D.正方形的对角线互相垂直平分7.(4分)估计(2﹣)•的值应在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间8.(4分)按如图所示的运算程序,能使输出的结果为12的是()A.x=3,y=3 B.x=﹣4,y=﹣2 C.x=2,y=4 D.x=4,y=2 9.(4分)如图,已知AB是⊙O的直径,点P在BA的延长线上,PD与⊙O相切于点D,过点B作PD的垂线交PD的延长线于点C,若⊙O的半径为4,BC=6,则PA的长为()A.4 B.2C.3 D.2.510.(4分)如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与地面垂直,在教学楼底部E点处测得旗杆顶端的仰角∠AED=58°,升旗台底部到教学楼底部的距离DE=7米,升旗台坡面CD的坡度i=1:0.75,坡长CD=2米,若旗杆底部到坡面CD的水平距离BC=1米,则旗杆AB的高度约为()(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.6)A.12.6米B.13.1米C.14.7米D.16.3米11.(4分)如图,在平面直角坐标系中,菱形ABCD的顶点A,B 在反比例函数y=(k>0,x>0)的图象上,横坐标分别为1,4,对角线BD∥x轴.若菱形ABCD的面积为,则k的值为()A.B.C.4 D.512.(4分)若数a使关于x的不等式组有且只有四个整数解,且使关于y的方程=2的解为非负数,则符合条件的所有整数a的和为()A.﹣3 B.﹣2 C.1 D.2二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的的横线上。
2018年重庆市中考数学试题及答案 精品
重庆市2018年初中毕业暨高中招生考试数学试题(全卷共五个大题,满分150分,考试时间120分钟) 注意事项:1.试题的答案书写在答题卡(卷)上,不得在试卷上直接作答. 2.作答前认真阅读答题卡(卷)上的注意事项.3.考试结束,由监考人员将试题和答题卡(卷)一并收回. 一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑(或将正确答案的代号填人答题卷中对应的表格内). 1.在一3,一1,0,2这四个数中,最小的数是( ) A .一3B .一1C.0D.22.下列图形中,是轴对称图形的是( )3.计算()2ab 的结果是( )A.2abB.b a 2C.22b aD.2ab 4. 4.已知:如图,OA,OB 是⊙O 的两条半径,且OA ⊥OB ,点C 在⊙O 上则∠ACB 的度数为()A.45°B.35°C.25°D.20°5.下列调查中,适宜采用全面调查(普查)方式的是()A调查市场上老酸奶的质量情况B.调查某品牌圆珠笔芯的使用寿命C.调查乘坐飞机的旅客是否携带了危禁物品D.调查我市市民对伦敦奥运会吉祥物的知晓率6.已知:如图,BD平分∠ABC,点E在BC上,EF//AB.若∠CEF=100°,则∠ABD的度数为()A.60°B.50°C.40°D.30°7.已知关于x的方程2x+a一9=0的解是x=2,则a的值为( )A.2B.3C.4D.58.2018年“国际攀岩比赛”在重庆举行.小丽从家出发开车前去观看,途中发现忘了带门票,于是打电话让妈妈马上从家里送来,同时小丽也往回开,遇到妈妈后聊了一会儿,接着继续开车前往比赛现场.设小丽从家出发后所用时间为t,小丽与比赛现场的距离为S.下面能反映S与t的函数关系的大致图象是()9下列图形都是由同样大小的五角星按一定的规律组成,其中第①个图形一共有2个五角星,第②个图形一共有8个五角星,第③个图形一共有18个五角星,…,则第⑥个图形中五角星的个数为( )10.已知二次函数)0(2≠++=a c bx ax y 的图象如图所示对称轴为21-=x 。
2018重庆中考数学试题(A卷]和答案解析(版]
2018年重庆市中考数学试卷(A 卷)答案及解析一、选择题 (本大题12个小题,每小题4分,共48分。
)1.2的相反数是 A .2- B .12-C .12D .2【答案】A【解析】根据一个数的相反数就是在这个数的前面添加上“-”即可求解 【点评】本题考查了相反数的定义,属于中考中的简单题2.下列图形中一定是轴对称图形的是A.B.C.D.【答案】D【解析】A40°的直角三角形不是对称图形;B 两个角是直角的四边形不一定是轴对称图形;C 平行四边形是中心对称图形不是轴对称图形;D 矩形是轴对称图形,有两条对称轴【点评】此题主要考查基本几何图形中的轴对称图形和中心对称图形,难度系数不大,考生主要注意看清楚题目要求。
3.为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是 A.企业男员工 B.企业年满50岁及以上的员工 C.用企业人员名册,随机抽取三分之一的员工 D.企业新进员工【答案】C【解析】A 调查对象只涉及到男性员工;B 调查对象只涉及到即将退休的员工;D 调查对象只涉及到新进员工【点评】此题主要考查考生对抽样调查中科学选取样本的理解,属于中考当中的简单题。
4.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为A .12B .14C .16D .18 【答案】C 【解析】40°直角三角形四边形平行四边形矩形∵第1个图案中的三角形个数为:2+2=2×2=4;第2个图案中的三角形个数为:2+2+2=2×3=6;第3个图案中的三角形个数为:2+2+2+2=2×4=8;……∴第7个图案中的三角形个数为:2+2+2+2+2+2+2+2=2×8=16;【点评】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,从而计算出正确结果。
精品解析:【全国省级联考】2018年重庆市中考数学试卷(A卷)(解析版)
2018年重庆市中考数学试卷(A卷)答案及解析一、选择题(本大题12个小题,每小题4分,共48分。
)1. 的相反数是()A. B. C. D.【答案】A【解析】【分析】根据只有符号不同的两个数互为相反数进行求解即可得.【详解】2与-2只有符号不同,所以2的相反数是-2,故选A.【点评】本题考查了相反数的定义,属于中考中的简单题2. 下列图形中一定是轴对称图形的是()A. B. C. D.【答案】D【解析】【分析】根据轴对称图形的定义进行判断即可得.【详解】A、40°的直角三角形不是轴对称图形,故不符合题意;B、两个角是直角的四边形不一定是轴对称图形,故不符合题意;C平行四边形是中心对称图形不是轴对称图形,故不符合题意;D矩形是轴对称图形,有两条对称轴,故符合题意,故选D.【点睛】本题主要考查轴对称图形,熟知轴对称图形是指一个图形沿着一条直线折叠,直线两旁的部分完全重合的图形是解题的关键.3. 为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是()A. 企业男员工B. 企业年满50岁及以上的员工C. 用企业人员名册,随机抽取三分之一的员工D. 企业新进员工【答案】C【解析】【分析】样本具有代表性是指抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.根据样本的确定方法与原则,结合实际情况,依次分析选项可得答案.【详解】A、调查对象只涉及到男性员工,选取的样本不具有代表性质;B、调查对象只涉及到即将退休的员工,选取的样本不具有代表性质;C、用企业人员名册,随机抽取三分之一的员工,选取的样本具有代表性;D调查对象只涉及到新进员工,选取的样本不具有代表性,故选C.【点睛】本题考查了样本的确定方法,明确样本要具有代表性和广泛性是解题的关键.4. 把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为()A. 12B. 14C. 16D. 18【答案】C【解析】【分析】观察第1个、第2个、第3个图案中的三角形个数,从而可得到第n个图案中三角形的个数为2(n+1),由此即可得.【详解】∵第1个图案中的三角形个数为:2+2=4=2×(1+1);第2个图案中的三角形个数为:2+2+2=6=2×(2+1);第3个图案中的三角形个数为:2+2+2+2=8=2×(3+1);……∴第n个图案中有三角形个数为:2(n+1)∴第7个图案中的三角形个数为:2×(7+1)=16,故选C.【点睛】本题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,从而计算出正确结果是解题的关键.5. 要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为,和,另一个三角形的最短边长为2.5 cm,则它的最长边为()A. 3cmB. 4cmC. 4.5cmD. 5cm【答案】C【解析】【分析】根据相似三角形三边对应成比例进行求解即可得.【详解】设另一个三角形的最长边为xcm,由题意得5:2.5=9:x,解得:x=4.5,故选C.【点睛】本题考查了相似三角形的性质,熟知相似三角形对应边成比例是解题的关键.6. 下列命题正确的是A. 平行四边形的对角线互相垂直平分B. 矩形的对角线互相垂直平分C. 菱形的对角线互相平分且相等D. 正方形的对角线互相垂直平分【答案】D【解析】【分析】根据平行四边形、矩形、菱形、正方形的性质逐项进行判断即可得.【详解】A、平行四边形的对角线互相平分,故A选项错误;B、矩形的对角线相等且互相平分,故B选项错误;C、菱形的对角线互相垂直平分,每一条对角线平分一组对角,故C选项错误;D、正方形的对角线互相垂直平分,故D选项正确,故选D.【点睛】本题考查了平行四边形、矩形、菱形、正方形的有关对角线的性质,熟练掌握是解题的关键.7. 估计的值应在()A. 1和2之间B. 2和3之间C. 3和4之间D. 4和5之间【答案】B【解析】【分析】先利用分配律进行计算,然后再进行化简,根据化简的结果即可确定出值的范围. 【详解】=,=,而,4<<5,所以2<<3,所以估计的值应在2和3之间,故选B.【点睛】本题主要考查二次根式的混合运算及估算无理数的大小,熟练掌握运算法则以及“夹逼法”是解题的关键.8. 按如图所示的运算程序,能使输出的结果为的是()学*科*网...学*科*网...学*科*网...学*科*网...学*科*网...学*科*网...学*科*网...学*科*网...学*科*网...学*科*网...学*科*网...学*科*网...学*科*网...学*科*网...学*科*网...学*科*网...A. B. C. D.【答案】C【解析】【分析】由题可知,代入、值前需先判断的正负,再进行运算方式选择,据此逐项进行计算即可得.【详解】选项,故将、代入,输出结果为,不符合题意;选项,故将、代入,输出结果为,不符合题意;选项,故将、代入,输出结果为,符合题意;选项,故将、代入,输出结果为,不符合题意,故选C.【点睛】本题主要考查程序型代数式求值,解题的关键是根据运算程序,先进行的正负判断,选择对应运算方式,然后再进行计算.9. 如图,已知AB是的直径,点P在BA的延长线上,PD与相切于点D,过点B作PD 的垂线交PD的延长线于点C,若的半径为4,,则P A的长为()A. 4B.C. 3D. 2.5【答案】A【解析】【分析】连接OD,由已知易得△POD∽△PBC,根据相似三角形对应边成比例可求得PO 的长,由PA=PO-AO即可得.【详解】连接OD,∵PD与⊙O相切于点D,∴OD⊥PD,∴∠PDO=90°,∵∠BCP=90°,∴∠PDO=∠PCB,∵∠P=∠P,∴△POD∽△PBC,∴PO:PB=OD:BC,即PO:(PO+4)=4:6,∴PO=8,∴PA=PO-OA=8-4=4,故选A.【点睛】本题考查了切线的性质、相似三角形的判定与性质,连接OD构造相似三角形是解题的关键.10. 如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与地面垂直,在教学楼底部E 点处测得旗杆顶端的仰角,升旗台底部到教学楼底部的距离米,升旗台坡面CD 的坡度,坡长米,若旗杆底部到坡面CD的水平距离米,则旗杆AB的高度约为()(参考数据:,,)A. 12.6米B. 13.1米C. 14.7米D. 16.3米【答案】B【解析】【分析】延长AB交地面于点H,作CM⊥DE,易得CM=1.6,DM=1.2,再由tan58°=,求得AH长即可得.【详解】延长AB交地面于点H,作CM⊥DE,则四边形BHMC是矩形,∴HM=BC=1,BH=CM,∵,i=CM:DM,∴DM=0.75CM,∵DM2+CM2=CD2,,∴CM=1.6,DM=1.2,∴HE=HM+DM+DE=1+1.2+7=9.2,在Rt△AHE中,∠AEB=58°,∴tan58°=,即=1.6,∴AH=14.72,∴AB=AH-BH=14.72-1.6=13.12≈13.1(米),故选B.【点睛】本题考查了解直角三角形的应用,添加辅助线构造直角三角形,从图中提取相关信息是解题的关键.11. 如图,在平面直角坐标系中,菱形ABCD的顶点A,B在反比例函数(,)的图象上,横坐标分别为1,4,对角线轴.若菱形ABCD的面积为,则k的值为()A. B. C. 4 D. 5【答案】D【解析】【分析】设A(1,m),B(4,n),连接AC交BD于点M,BM=4-1=3,AM=m-n,由菱形的面积可推得m-n=,再根据反比例函数系数的特性可知m=4n,从而可求出n的值,即可得到k的值.【详解】设A(1,m),B(4,n),连接AC交BD于点M,则有BM=4-1=3,AM=m-n,∴S菱形ABCD=4×BM•AM,∵S菱形ABCD=,∴4××3(m-n)=,∴m-n=,又∵点A,B在反比例函数,∴k=m=4n,∴n=,∴k=4n=5,故选D.【点睛】本题考查了反比例函数k的几何意义、菱形的性质、菱形的面积等,熟记菱形的对角线互相垂直平分是解题的关键.12. 若数使关于x的不等式组有且只有四个整数解,且使关于y的方程的解为非负数,则符合条件的所有整数的和为()A. B. C. 1 D. 2【答案】C【解析】【分析】先求出不等式的解集,根据只有四个整数解确定出a的取值范围,解分式方程后根据解为非负数,可得关于a的不等式组,解不等式组求得a的取值范围,即可最终确定出a的范围,将范围内的整数相加即可得.【详解】解不等式,得,由于不等式组只有四个整数解,即只有4个整数解,∴,∴;解分式方程,得,∵分式方程的解为非负数,∴,∴a≤2且a≠1,∴且a≠1,∴符合条件的所有整数为:-1,0,2,和为:-1+0+2=1,故选C.【点睛】本题考查含有参数的不等式和含有参数的分式方程的应用,熟练掌握不等式组的解法、分式方程的解法以及解分式方程需要注意的事项是解题的关键.二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13. 计算:______________.【答案】3【解析】【分析】先分别进行绝对值化简、0次幂的计算,然后再进行加法计算即可得.【详解】=2+1=3,故答案为:3.【点睛】本题考查了实数的运算,熟知任何非0数的0次幂为1是解题的关键.14. 如图,在矩形ABCD中,,,以点A为圆心,AD长为半径画弧,交AB于点E,图中阴影部分的面积是___________(结果保留).【答案】【解析】【分析】由S阴影=S矩形ABCD-S扇形ADE,根据矩形面积公式、扇形面积公式进行计算即可得. 【详解】S阴影=S矩形ABCD-S扇形ADE=2×3-=6-π,故答案为:6-π.【点睛】本题考查扇形、四边形面积的计算,结合图形确定出阴影部分面积的求法是解题的关键.15. 春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为______.【答案】23.4【解析】【分析】将折线统计图中的数据按从小到大进行排序,然后根据中位数的定义即可确定. 【详解】从图中看出,五天的游客数量从小到大依次为21.9,22.4,23.4,24.9,25.4,则中位数应为23.4,故答案为:23.4.【点睛】本题考查了中位数的定义,熟知“中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)”是解题的关键.16. 如图,把三角形纸片折叠,使点、点都与点重合,折痕分别为,,得到,若厘米,则的边的长为____________厘米.【答案】【解析】【分析】过点E作EH⊥AG于H,由AE=EG=2,∠AGE=30°可求得AG的长,由翻折可知AE=BE、AG=CG,根据BC=BE+EG+CG,将数据代入相加即可得.【详解】过点E作EH⊥AG于H,∵AE=EG=2,∠AGE=30°,∴AG=2AH =2AE •cos30°=2×2×=6,由翻折得,∴,故答案为:6+4.【点睛】本题考查了解直角三角形的应用、折叠的性质等,解题的关键是正确添加辅助线构造直角三角形.17. 两地相距的路程为240千米,甲、乙两车沿同一线路从地出发到地,分别以一定的速度匀速行驶,甲车先出发40分钟后,乙车才出发.途中乙车发生故障,修车耗时20分钟,随后,乙车车速比发生故障前减少了10千米/小时(仍保持匀速前行),甲、乙两车同时到达地.甲、乙两车相距的路程(千米)与甲车行驶时间(小时)之间的关系如图所示,求乙车修好时,甲车距地还有____________千米.【答案】90【解析】【分析】观察图象可知甲车40分钟行驶了30千米,由此可求出甲车速度,再根据甲车行驶小时时与乙车的距离为10千米可求得乙车的速度,从而可求得乙车出故障修好后的速度,再根据甲、乙两车同时到达B地,设乙车出故障前走了t1小时,修好后走了t2小时,根据等量关系甲车用了小时行驶了全程,乙车行驶的路程为60t1+50t2=240,列方程组求出t2,再根据甲车的速度即可知乙车修好时甲车距B地的路程.【详解】甲车先行40分钟(),所行路程为30千米,因此甲车的速度为(千米/时),设乙车的初始速度为V乙,则有,解得:(千米/时),因此乙车故障后速度为:60-10=50(千米/时),设乙车出故障前走了t1小时,修好后走了t2小时,则有,解得:,45×2=90(千米),故答案为:90.【点评】本题考查了一次函数的实际应用,难度较大,求出速度后能从题中找到必要的等量关系列方程组进行求解是关键.18. 为实现营养的合理搭配,某电商推出适合不同人群的甲、乙两种袋装混合粗粮.其中,甲种粗粮每袋装有3千克粗粮,1千克粗粮,1千克粗粮;乙种粗粮每袋装有1千克粗粮,2千克粗粮,2千克粗粮.甲、乙两种袋装粗粮每袋成本价分别为袋中三种粗粮的成本价之和.已知粗粮每千克成本价为6元,甲种粗粮每袋售价为58.5元,利润率为30%,乙种粗粮的利润率为20%.若这两种袋装粗粮的销售利润率达到24%,则该电商销售甲、乙两种袋装粗粮的数量之比是____________________.()【答案】【解析】【分析】先分别根据已知条件计算出甲、乙的成本,然后设设甲销售袋,乙销售袋使总利润率为24%,根据等量关系:(甲的成本+乙的成本)×24%=a袋甲种粗粮的利润+b袋乙种粗粮的利润,列出方程进行整理即可得.【详解】用表格列出甲、乙两种粗粮的成分:由题意可得甲的成本价为:=45(元),甲中A的成本为:3×6=18(元),则甲中B、C的成本之和为:45-18=27(元),根据乙的组成则可得乙的成本价为:6+27×2=60(元),设甲销售袋,乙销售袋使总利润率为24%,则有(45a+60b)×24%=(58.5-45)a+(72-60)b,整理得:2.7a=2.4b,所以,a:b=8:9,故答案为:.【点评】本题考查了方程的应用,难度较大,根据题意求出甲、乙两种包装的成本价是解题的关键.三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括辅助线),请将解答过程书写在答题卡中对应的位置上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年重庆市中考数学试卷(A 卷)答案及解析一、选择题 (本大题12个小题,每小题4分,共48分。
)1.2的相反数是 A .2- B .12-C .12D .2【答案】A【解析】根据一个数的相反数就是在这个数的前面添加上“-”即可求解 【点评】本题考查了相反数的定义,属于中考中的简单题2.下列图形中一定是轴对称图形的是A. B.C.D.【答案】D【解析】A40°的直角三角形不是对称图形;B 两个角是直角的四边形不一定是轴对称图形;C 平行四边形是中心对称图形不是轴对称图形;D 矩形是轴对称图形,有两条对称轴【点评】此题主要考查基本几何图形中的轴对称图形和中心对称图形,难度系数不大,考生主要注意看清楚题目要求。
3.为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是 A.企业男员工B.企业年满50岁及以上的员工C.用企业人员名册,随机抽取三分之一的员工D.企业新进员工【答案】C【解析】A 调查对象只涉及到男性员工;B 调查对象只涉及到即将退休的员工;D 调查对象只涉及到新进员工【点评】此题主要考查考生对抽样调查中科学选取样本的理解,属于中考当中的简单题。
4.把三角形按如图所示的规律拼图案,其中第①个图案中有4个三角形,第②个图案中有6个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为A.12B.14C.16D.18【答案】C【解析】∵第1个图案中的三角形个数为:2+2=2×2=4;第2个图案中的三角形个数为:2+2+2=2×3=6;第3个图案中的三角形个数为:2+2+2+2=2×4=8;……∴第7个图案中的三角形个数为:2+2+2+2+2+2+2+2=2×8=16;【点评】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,从而计算出正确结果。
比较简单。
5.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5cm,6cm和9cm,另一个三角形的最短边长为2.5cm,则它的最长边为A. 3cmB. 4cmC. 4.5cmD. 5cm【答案】C【解析】利用相似三角形三边对应成比例解出即可。
【点评】此题主要考查相似三角形的性质——相似三角形的三边对应成比例,该题属于中考当中的基础题。
6.下列命题正确的是A.平行四边形的对角线互相垂直平分B.矩形的对角线互相垂直平分C.菱形的对角线互相平分且相等D.正方形的对角线互相垂直平分【答案】D【解析】A.错误。
平行四边形的对角线互相平分。
B.错误。
矩形的对角线互相平分且相等。
C.错误。
菱形的对角线互相垂直平分,不一定相等。
D.正确。
正方形的对角线互相垂直平分。
另外,正方形的对角线也相等。
【点评】此题主要考查四边形的对角线的性质,属于中考当中的简单题。
7.估计(的值应在 A. 1和2之间 和3之间 和4之间 和5之间 【答案】B 【解析】(2,而,在4到5之间,所以2在2到3之间【点评】此题主要考查二次根式的混合运算及估算无理数的大小,属于中考当中的简单题。
8.按如图所示的运算程序,能使输出的结果为12的是 A.3,3==y x B.2,4-=-=y xC.4,2==y xD.2,4==y x【答案】C【解析】由题可知,代入x 、y 值前需先判断y 的正负,再进行运算方式选择。
A 选项0y ≥,故将x 、y 代入22x y +,输出结果为15,选项排除;B 选项0y ≤,故将x 、y 代入22x y -,输出结果为20,选项排除;C 选项0y ≥,故将x 、y 代入22x y +,输出结果为12,选项正确;D 选项0y ≥,故将x 、y 代入22x y +,输出结果为20,选项排除;最终答案为C 选项。
【点评】本题为代数计算题型,根据运算程序,先进行y 的正负判断,选择对应运算方式,进行运算即可,难度简单。
9.如图,已知AB 是O 的直径,点P 在BA 的延长线上,PD 与O 相切于点D ,过点B 作PD 的垂线交PD 的延长线于点C ,若O 的半径为4,6BC =,则PA 的长为A .4B .C .3D .【答案】A【解析】作OH ⊥PC 于点H .易证△POH ∽△PBC ,BC OH PB PO =∴,6484=++∴PA PA ,4=∴PA【点评】此题考查圆切线与相似的结合,属于基础题10.如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与地面垂直,在教学楼底部E 点处测得旗杆顶端的仰角58AED ∠=︒,升旗台底部到教学楼底部的距离7DE =米,升旗台坡面CD 的坡度1:0.75i =,坡长2CD =米,若旗杆底部到坡面CD 的水平距离1BC =米,则旗杆AB 的高度约为(参考数据:sin580.85︒≈,cos580.53︒≈,tan58 1.6︒≈) A .米B .米C .米D .米【答案】B【解析】延长AB 交地面与点H . 作CM ⊥DE . 易得CM =1.6. DM =1.2,,︒=58tan HE AH 6.172.11=++∴AH1.136.172.14,72.14≈-=∴=∴AB AH【点评】此题考查三角函数的综合运用,解题关键是从图中提取相关信息,特别是直角三角形的三边关系,属于中等题11.如图,在平面直角坐标系中,菱形ABCD 的顶点A ,B 在反比例函数ky x=(0k >,0x >)的图象上,横坐标分别为1,4,对角线BD x ∥轴.若菱形ABCD 的面积为452,则k 的值为 A .54B .154C .4D .5【答案】D【解析】设A(1,m),B(4,n),连接AC 交BD 于点O,BO=4-1=3,AO=m-n,所以, m -n =154有因为 m =4n ,所以n =54, k =54´4=5【点评】此题考查k 的几何意义与坐标,面积的综合运用,属于中挡题12.若数a 使关于x 的不等式组112352x xx x a-+⎧<⎪⎨⎪-≥+⎩有且只有四个整数解,且使关于y 的方程2211y a ay y++=--的解为非负数,则符合条件的所有整数a 的和为( )A .3-B .2-C .1D .2【答案】C【解析】 解不等式⎪⎩⎪⎨⎧+≥<⎪⎩⎪⎨⎧+≥-+<-425253121a x x a x x x x 得,由于不等式有四个整数解,根据题意 A 点为42+a ,则1420≤+<a ,解得22≤<-a 。
解分式方程2121=-+-+yay a y 得ay -=2,又需排除分式方程无解的情况,故2≤a 且1≠a .结合不等式组的结果有a 的取值范围为122≠≤<-a a 且,又a 为整数,所以a 的取值为2,0,1-,和为1.故选C【点评】此题考查含参不等式和含参分式方程的应用,需要特别注意分式方程无解情况的考虑,属于中档题二、填空题(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.13.计算:02(3)π-+-=______________.【答案】3【解析】原式=2+1=3【点评】此题考查有理数的基本运算,属于基础题14.如图,在矩形ABCD 中,3AB =,2AD =,以点A 为圆心,AD 长为半径画弧,交AB 于点E ,图中阴影部分的面积是___________(结果保留π).【答案】π-6 【解析】ππ-6236090-322=••⨯=阴S【点评】此题考查扇形、四边形面积的计算,及割补法的基本应用,属于基础题 15. 春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为。
【答案】 万【解析】 从图中看出,五天的游客数量从小到大依次为, , , , ,则中位数应为万。
【点评】 本题考查了中位数的定义,难度较低。
16. 如图,把三角形纸片折叠,使点B 、点C 都与点A 重合,折痕分别为DE ,FG ,得到30∠=︒AGE,若==AE EG ABC 的边BC 的长为厘米。
【答案】【解析】 过E 作⊥EH AG 于H 。
30.22cos302 6.2==∠=︒∴==⋅︒=⨯=AE EG AGE GA AH AE由翻折得 6.====BE AE GC GA6∴=++=+BC BE EG GC【点评】 本题考查了解直角三角形中的翻折问题,其中包括勾股定理的应用,难度中等。
17. ,A B 两地相距的路程为240千米,甲、乙两车沿同一线路从A 地出发到B 地,分别以一定的速度匀速行驶,甲车先出发40分钟后,乙车才出发。
途中乙车发生故障,修车耗时20分钟,随后,乙车车速比发生故障前减少了10千米/小时(仍保持匀速前行),甲、乙两车同时到达B 地。
甲、乙两车相距的路程y (千米)与甲车行驶时间x (小时)之间的关系如图所示,求乙车修好时,甲车距B 地还有千米。
【答案】 90【解析】 甲车先行40分钟(402603=h ),所行路程为30千米,因此甲车的速度为3045/23=km h 。
乙车的初始速度为44521060/3乙乙⨯=+⇒=V V km h ,因此乙车故障后速度为60-1050/=km h 。
121212212121336050()453274145()4524033345290⎧+=+=++⨯⎧⎪⎪⎪⇒⇒=⎨⎨+=⎪⎪⨯+++⨯=⎩⎪⎩∴⨯=t t t t t t t t t t t km【点评】 本题考查了一次函数的实际应用,难度较高。
18. 为实现营养的合理搭配,某电商推出适合不同人群的甲、乙两种袋装混合粗粮。
其中,甲种粗粮每袋装有3千克A 粗粮,1千克B 粗粮,1千克C 粗粮;乙种粗粮每袋装有1千克A 粗粮,2千克B 粗粮,2千克C 粗粮。
甲、乙两种袋装粗粮每袋成本价分别为袋中,,A B C三种粗粮的成本价之和。
已知A 粗粮每千克成本价为6元,甲种粗粮每袋售价为元,利润率为30%,乙种粗粮的利润率为20%。
若这两种袋装粗粮的销售利润率达到24%,则该电商销售甲、乙两种袋装粗粮的数量之比是。
(-=100%商品的售价商品的成本价商品的利润率商品的成本价⨯)【答案】 8:9【解析】 用表格列出甲、乙两种粗粮的成分:甲中A 总成本价为36=18⨯元,根据甲的售价、利润率列出等式58.5-0.3甲总成本价甲总成本价=,可知甲总成本为45元。
∴甲中B 与C 总成本为45-1827=元。
∴乙中B 与C 总成本为27254⨯=元。
∴乙总成本为541660+⨯=元。
设甲销售a 袋,乙销售b 袋使总利润率为24%.(72-60)(58.545)100%24%4560+-⨯=+b aa b。