最新八年级数学一次函数应用题

合集下载

八年级数学一次函数综合应用(北师版)(含答案)

八年级数学一次函数综合应用(北师版)(含答案)

学生做题前请先回答以下问题问题1:要画出一次函数y=kx+b的图象,需要_____个点的坐标,通常找______,_______;正比例函数图象经过坐标原点,因此只需要再确定____点即可,通常找_______.问题2:要求一次函数表达式y=kx+b:①如果k,b都残缺,要求一次函数表达式需要____个点坐标;②如果k,b部分残缺(k已知b残缺或b已知k残缺),要求一次函数表达式需要____个点坐标.问题3:x轴上的点____坐标等于零;y轴上的点_____坐标等于零;平行于x轴的直线上的点______坐标相同;平行于y轴上的点______坐标相同.问题4:若直线与直线平行,则,之间有什么关系?一次函数综合应用(北师版)一、单选题(共11道,每道9分)1.下列函数图象表示正确的是( )A. B.C. D.答案:A解题思路:根据函数的概念:在一个变化过程中有两个变量x和y,并且对于变量x的每一个值,变量y都有唯一的值与它对应,那么我们称y是x的函数.观察图象,故选A试题难度:三颗星知识点:函数的定义2.下列关系式,表示一次函数的是( )A. B.C. D.答案:C解题思路:根据一次函数的概念可知选项C是正确的.试题难度:三颗星知识点:一次函数的定义3.一次函数y=ax+b,若a+b=1,则它的图象必经过点( )A.(-1,-1)B.(-1,1)C.(1,-1)D.(1,1)答案:D解题思路:∵当x=1时,y=a+b=1,∴它的图象必经过点(1,1).故选D试题难度:三颗星知识点:一次函数图象上点的坐标特征4.已知一次函数y=kx+b,若图象不经过第三象限,则( )A. B.C. D.答案:B解题思路:∵一次函数y=kx+b的图象不经过第三象限,∴该图象过第二、四象限或第一、二、四象限,∴.故选B试题难度:三颗星知识点:一次函数的性质5.直线y=kx+b,其中k+b=-6,kb=8,那么该直线经过( )A.第二、四象限B.第一、二、三象限C.第一、三象限D.第二、三、四象限答案:D解题思路:∵kb=8∴k,b同号∵k+b=-6∴k,b同为负∴图象经过第二、三、四象限故选D试题难度:三颗星知识点:一次函数的性质6.下图中表示一次函数y=mx+n与正比例函数y=nx(m,n是常数,且mn≠0)图象的是( )A. B.C. D.答案:B解题思路:选项A:假设一次函数图象正确,则m<0,n>0,故正比例函数应过第一、三象限,由图象知,正比例函数不符合要求,选项A错误;选项B:假设一次函数图象正确,则m<0,n>0,故正比例函数应过第一、三象限,由图象知,正比例函数符合要求,选项B正确;选项C:假设一次函数图象正确,则m<0,n<0,故正比例函数应过第二、四象限,由图象知,正比例函数不符合要求,选项C错误;选项D:假设一次函数图象正确,则m>0,n<0,故正比例函数应过第二、四象限,由图象知,正比例函数不符合要求,选项D错误;综上,故选B试题难度:三颗星知识点:图象共存问题7.把直线y=-2x-4向上平移3个单位后,得到的图象与x轴的交点坐标是( )A.(0,-5)B.(-5,0)C. D.答案:D解题思路:根据平移口诀——纵坐标管上下平移,可知平移后的直线表达式为y=-2x-1,当y=0时,-2x-1=0,∴,∴平移后得到的图象与x轴的交点坐标是故选D试题难度:三颗星知识点:一次函数的性质8.已知函数y=-2x+4与y=kx-8的图象的交点为(3,2m),那么k的值为( )A.3B.-1C. D.2答案:D解题思路:∵(3,2m)在y=-2x+4上∴代入得2m=-2×3+4解得m=-1则交点坐标为(3,-2)∵(3,-2)在y=kx-8上,∴-2=3k-8即k=2故选D试题难度:三颗星知识点:待定系数求表达式9.已知一次函数y=kx+(k-3)与一次函数y=2x+b交于点A(1,3),则两条直线的函数图象与x 轴所围成的三角形的面积是( )A.1B.C. D.答案:D解题思路:∵一次函数y=kx+(k-3)与一次函数y=2x+b交于点A(1,3),∴把点A坐标代入两个表达式,可得:3=k+k-3,3=2+b解得k=3,b=1则可得一次函数y=3x与y=2x+1,如图所示,当y=0时,x=即B(,0)∴故选D试题难度:三颗星知识点:一次函数与坐标轴围成的图形面积10.直线过点(2,2)且与直线平行,则与坐标轴所围成的面积为( )A. B.C.12D.答案:B解题思路:∵平行∴k=-3即l1:y=-3x+b∵直线l1过点(2,2)∴2=-3×2+b,得b=8即l1:y=-3x+8如图,∴l1与坐标轴所围成的面积为故选B试题难度:三颗星知识点:待定系数求表达式11.若直线y=-kx+(k-2)经过直线y=2x-2与y=-x+4的交点A,则k的值为( )A.0B.-4C.4D.2答案:B解题思路:依题意,联立得,解得即A(2,2)∵直线y=-kx+(k-2)经过点A∴代入得2=-2k+k-2解得k=-4故选B试题难度:三颗星知识点:待定系数求表达式。

初二数学一次函数试题答案及解析

初二数学一次函数试题答案及解析

初二数学一次函数试题答案及解析1.儿童受伤,小红爸爸的公司急需用车,但又不准备买车,公司准备和一个个体车主或一家出租车公司签订月租车合同,设汽车每月行驶x千米,个体车主收费为y1元,出租车公司收费y2元,观察图象可知,当x_________时,选用个体车主较合算.【答案】>1800.【解析】根据图象可以得到当x>1800千米时,y1<y2,则选用个体车较合算.故答案是>1800.【考点】一次函数的应用.2.与直线y=2x+1关于x轴对称的直线是()A.y="-2x+1"B.y=-2x-1C.D.【答案】B.【解析】∵直线y=f(x)关于x对称的直线方程为y=-f(x),∴直线y=2x+1关于x对称的直线方程为:-y=2x+1,即y=-2x-1.故选B.【考点】一次函数图象与几何变换.3.对于函数y=﹣5x+1,下列结论:①它的图象必经过点(﹣1,5)②它的图象经过第一、二、三象限③当x>1时,y<0④y的值随x值的增大而增大,其中正确的个数是()A.0B.1C.2D.3【答案】B.【解析】∵当x=-1时,y=-5×(-1)+1=-6≠5,∴此点不在一次函数的图象上,故①错误;∵k=-5<0,b=1>0,∴此函数的图象经过一、二、四象限,故②错误;∵x=1时,y=-5×1+1=-4,又k=-5<0,∴y随x的增大而减小,∴当x>1时,y<-4,则y<0,故③正确,④错误.综上所述,正确的只有:③ 故选B .【考点】一次函数的性质.4. A 城有肥料300吨,B 城有肥料200吨,现要把这些肥料全部运往甲,乙两乡,从A 城往甲,乙两乡运肥料的费用分别为每吨20元和25元;从B 城往甲,乙两乡运肥料的费用分别为每吨25元和15元.现甲乡需要肥料260吨,乙乡需要肥料240吨.设从A 城运往甲乡的肥料为x 吨. (1)请你填空完成下表中的每一空:(3)怎样调运化肥,可使总运费最少?最少运费是多少?【答案】(1)填空见下表;(2)y==-15x+13100;(3) A 城运往甲乡的化肥为260吨,A 城运往乙乡的化肥为40吨,B 城运往甲乡的化肥为20吨,B 城运往乙乡的化肥为200吨,使总运费最少,最少为9200元【解析】(1)根据A 城运往甲乡的化肥为x 吨,则可得A 城运往乙乡的化肥为(300-x )吨,B 城运往甲乡的化肥为(260-x )吨,B 城运往乙乡的化肥为[240-(300-x )]吨; (2)根据(1)中所求以及每吨运费从而可得出y 与x 大的函数关系; (2)x 可取60至260之间的任何数,利用函数增减性求出即可. 试题解析:(1)填表如下:(2)根据题意得出:y=20x+25(300-x )+25(260-x )+15[240-(300-x )]=-15x+13100; (3)因为y=-15x+13100,y 随x 的增大而减小,根据题意可得:,解得:60≤x≤260,所以当x=260时,y最小,此时y=9200元.此时的方案为:A城运往甲乡的化肥为260吨,A城运往乙乡的化肥为40吨,B城运往甲乡的化肥为20吨,B城运往乙乡的化肥为200吨,使总运费最少,最少为9200元【考点】1.一次函数的应用;2.一元一次不等式组的应用.5.两个全等的直角三角形重叠放在直线上,如图14-1,AB=6cm,BC=8cm,∠ABC=90°,将Rt△ABC在直线上向左平移,使点C从F点向E点移动,如图14-2所示.(1)求证:四边形ABED是矩形;请说明怎样移动Rt△ABC,使得四边形ABED是正方形?(2)求证:四边形ACFD是平行四边形;说明如何移动Rt△ABC,使得四边形ACFD为菱形?(3)若Rt△ABC向左移动的速度是1cm/s,设移动时间为t秒,四边形ABFD的面积为Scm.求s随t变化的函数关系式.【答案】(1)证明见解析;(2)证明见解析;(3)S=3t2+24.【解析】(1)四边形ACFD为Rt△ABC平移形成的,推出AD∥BE,AB∥DE,∠ABE=90°,根据矩形的判定得出即可;根据正方形的判定得出即可;(2)根据平移得出AD∥CF,AC∥DF,根据平行四边形的判定得出即可;根据菱形的判定得出即可;(3)根据平行四边形的性质得出AD=CF,求出BF,根据梯形的面积公式求出即可.试题解析:(1)证明:∵Rt△ABC从Rt△DEF位置平移得出图2,∴AD∥BE,AB∥DE,∠ABE=90°,∴四边形ABED是矩形;当Rt△ABC向左平移6cm时,四边形ABED是正方形;(2)证明:∵四边形ACFD为Rt△ABC平移形成的,∴AD∥CF,AC∥DF,∴四边形ACFD为平行四边形,在Rt△ABC中,由勾股定理得:AC==10cm,即当Rt△ABC向左平移10cm时,四边形ACFD为菱形;(3)解:分为以上图形中的三种情况,∵由(2)知:四边形ACFD为平行四边形,∴AD=CF=1s×tcm/s=tcm,∴BF=(8+t)cm,∵四边形ABFD的面积为Scm2,∴三种情况的四边形ABFD的面积S=(AD+BF)×AB=•(t+8+t)•6,S=3t2+24,即三种情况S随t变化的函数关系式都是S=3t2+24.【考点】几何变换综合题.6.甲、乙两地之间有一条笔直的公路L,小明从甲地出发沿公路L步行前往乙地,同时小亮从乙地出发沿公路L骑自行车前往甲地,小亮到达甲地停留一段时间,按原路原速返回,追上小明后(米)与行走的时间为x(分两人一起步行到乙地.如图,线段OA表示小明与甲地的距离为y1(米)与行走的时间为x(分钟)钟)之间的函数关系;折线BCDEA表示小亮与甲地的距离为y2之间的函数关系.请根据图像解答下列问题:(1)小明步行的速度是米/分钟,小亮骑自行车的速度米/分钟;(2)图中点F坐标是(,)、点E坐标是(,);(3)求y1、y2与x之间的函数关系式;(4)请直接写出小亮从乙地出发再回到乙地过程中,经过几分钟与小明相距300米?【答案】(1)50,200;(2)8,400;32,1600;(3)y1=50x,y2=﹣200x+2000;(4)经过6.8分钟,9.2分钟,25.5分钟时与小明相距300米.【解析】(1)根据图象可知小明步行的速度是2000÷40=50米/分钟,小亮骑自行车的速度2000÷10=200米/分钟;(2)(3)分别设小明、小亮与甲地的距离为y1(米)、y2(米)与x(分钟)之间的函数关系式为y1=k1x,y2=k2x+b,由待定系数法根据图象就可以求出解析式;再进一步求得交点的坐标,得出点F、E的坐标即可;(4)分追击问题与相遇的过程中小亮与小明相距300米探讨得出答案即可.试题解析:(1)小明步行的速度是2000÷40=50米/分钟,小亮骑自行车的速度2000÷10=200米/分钟;(2)设小明与甲地的距离为y1(米)与x(分钟)之间的函数关系式为y1=k1x,代入点(40,2000)得:2000=40k1,解得k1=50,所以y1=50x,设小亮与甲地的距离为y2(米)与x(分钟)之间的函数关系式为y2=k2x+b,则代入点(0,2000)和(10,0)得,所以yBC=﹣200x+2000,由图可知24分钟时两人的距离为:S=24×50=1200,小亮从甲地追上小明的时间为24×50÷(200﹣50)=8分钟,也就是32分钟时为0,则y1=50x=1600,则点E坐标为(32,1600);由题意得,解得,所以图中点F坐标是(8,400);(3)由(2)可知y1=50x,yBC=﹣200x+2000(0≤x≤10),设S与x之间的函数关系式为:S=kx+b,由题意,,解得:,∴S=﹣150x+4800,即yED=﹣150x+4800(24≤x≤32);(4)当0≤x≤10时,(2000﹣300)÷(50+200)=6.8(分钟)当8≤x≤10,300÷(50+200)+8=9.2(分钟)当24≤x≤32,则50x﹣(﹣150x+4800)=300,解得x=25.5(分钟)答:小亮从乙地出发再回到乙地过程中,经过6.8分钟,9.2分钟,25.5分钟时与小明相距300米.【考点】一次函数的应用.7.如图,函数y=ax﹣1的图象过点(1,2),则不等式ax﹣1>2的解集是()A.x<1B.x>1C.x<2D.x>2【答案】B【解析】先把点(1,2)代入y=ax﹣1,求出a的值,然后解不等式ax﹣1>2即可.【考点】一次函数与一元一次不等式.8.甲、乙两人在一次百米赛跑中,路程s(米)与赛跑时间t(秒)的关系如图所示,则下列说法正确的是()A.甲、乙两人的速度相同B.甲先到达终点C.乙用的时间短D.乙比甲跑的路程多【答案】B.【解析】结合图象可知:两人同时出发,甲比乙先到达终点,甲的速度比乙的速度快,故选B.【考点】函数的图象.9.一次函数的大致图象是()【答案】A.【解析】主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b <0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.本题中因为a的取值不明确,故应分两种情况讨论,找出符合任一条件的选项即可.当a>0时,直线经过一,三,四象限,选项A正确;当a<0时,直线经过一,二,四象限,A、B、C、D均不符合此条件.故选A.【考点】一次函数的图象性质.10.某食品加工厂需要一批食品包装盒,供应这种包装盒有两种方案可供选择:方案1:从包装盒加工厂直接购买,购买所需的费用y1与包装盒数x满足如图的函数关系。

初中八年级一次函数实际常用的应用题__有答案

初中八年级一次函数实际常用的应用题__有答案

一次函数实际常用应用类问题 答案1、解:⑴由图象可知:当0≤x ≤10时,设y 关于x 的函数解析y=kx-100,∵(10,400)在y=kx-100上,∴400=10k-100,解得k=50 ∴y=50x-100,s=100x-(50x-100),∴s=50x+100⑵当10<x ≤20时,设y 关于x 的函数解析式为y=mx+b , ∵(10,350),(20,850)在y=mx+b 上, ∴ 10m+b=350 解得 m=5020m+b=850 b=-150∴y=50x-150 ∴s=100x-(50x-150)-50∴s=50x+100 ∴y= 50x-100 (0≤x ≤10)50x-150 (10<x ≤20) 令y=360 当0≤x ≤10时,50x-100=360 解得x=9.2 s=50x+100=50×9.2+100=560 当10<x ≤20时,50x-150=360解得x=10.2 s=50x+100=50×10.2+100=610。

要使这次表演会获得36000元的毛利润. 要售出920张或1020张门票,相应支付的成本费用分别为56000元或61000元。

2、解:⑴设甲、乙两同学登山过程中,路程s (千米)与时间t (时)的函数解析式分别为s 甲=k 1t ,s 乙=k 2t 。

由题意得:6=2 k 1,6=3 k 2,解得:k 1=3,k 2=2 ∴s 甲=3t ,s 乙=2t ⑵当甲到达山顶时,s 甲=12(千米),∴12=3t 解得:t=4∴s 乙=2t=8(千米) ⑶由图象可知:甲到达山顶宾并休息1小时后点D 的坐标为(5,12) 由题意得:点B 的纵坐标为12-23=221,代入s 乙=2t ,解得:t=421∴点B (421,221)。

设过B 、D 两点的直线解析式为s=kx+b ,由题意得 421t+b=221 解得: k=-65t+b=12 b=42 ∴直线BD 的解析式为s=-6t+42 ∴当乙到达山顶时,s 乙=12,得t=6,把t=6代入s=-6t+42得s=6(千米)3、解:⑴设存水量y 与放水时间x 的函数解析式为y=kx+b, 把(2,17)、(12,8)代入y=kx+b,得 17=2k+b 解得 k=-109 b =5948=12k+b∴y=-109x+594 (2≤x ≤9188) ⑵由图象可得每个同学接水量为0.25升,则前22个同学需接水0.25×22=5.5(升),存水量y=18-5.5=12.5(升)∴12.5=-109x+594解得 x=7 ∴前22个同学接水共需要7分钟。

初二 一次函数 应用题

初二 一次函数 应用题

初二一次函数应用题1.图中表示甲,乙两名选手在一次自行车越野赛中路程y(千米)随时间x(分)变化的图象,从图中可知比赛开始分钟后两人第一次相遇.2.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲、乙两车行驶的距离y(km)与时间x(h)的函数图象,有以下结论: ①m=1;②a=40;③甲车从A地到B地共用了6.5小时;④当两车相距50km时,乙车用时为ℎ..其中正确结论的个数是( )A. 1B. 2C. 3D. 43.某天中午,小明从文具店步行返回学校,与此同时,小亮从学校骑自行车去文具店购买文具(购买文具时间忽略不计),然后原路返回学校,两人均匀速行驶,结果两人同时到达学校. 小明、小亮两人离文具店的路程y₁、y₂(单位:米)与出发时间x(单位:分)之间的函数图象如图所示.(1).学校和文具店之间的路程是米,小亮的速度是小明速度的倍:(2).求a的值,并解释图中点M的横坐标、纵坐标的实际意义;(3).小明与小亮迎面相遇以后,再经过多长时间两人相距20米?4.《龟兔赛跑》是一则耐人寻味的寓言故事,故事中塑造了一只骄傲的兔子和一只坚持不懈的小乌龟. 图中的线段OD和折线OABC表示“龟兔赛跑时时间与路程”的关系,请你根据图中给出的信息,解决下列问题.(1).填空:折线OABC表示赛跑过程中 (填“兔子”或“乌龟”)的时间与路程的关系,赛跑的全过程是米.(2).乌龟用了多少分钟追上了正在睡觉的兔子?(3).兔子醒来后,以300米/分钟的速度跑向终点,结果还是比乌龟晚到了1分钟,请问兔子在中间停下睡觉用了多少分钟?5.小明家、新华书店、学校在一条笔直的公路旁,某天小明骑车上学,当他骑了一段后,想起要买某本书,于是又返回到刚经过的新华书店,买到书后继续骑车去学校,他本次骑车上学的过程中离家距离与所用的时间的关系如图所示,请根据图象提供的信息回答下列问题:(1).小明家到学校的距离是米;小明在书店停留了分钟;(2).如果骑车的速度超过了300米/分就超越了安全限度,小明买到书后继续骑车到学校的这段时间的骑车速度在安全限度内吗?请说明理由;(3).请直接写出小明出发后多长时间离家的距离为900米?6.汽车、摩托车分别从相距240千米路程的甲、乙两地同时出发,匀速行驶,先相向而行,途中摩托车因故停留0.5小时,然后以原速度继续向甲地行驶,到达甲地后停止行驶;汽车达到乙地后,立即按原路原速返回甲地(调头的时间忽略不计),如图是汽车、摩托车距乙地的路程.y(千米)与所用时间x(小时)之间的函数图象,请结合图象信息解答下列问题:(1)求摩托车的行驶速度及a的值;(2)分别求出图中线段OD、AB所表示的y与x的函数关系式;(3)求汽车与摩托车第一次相遇时,距离甲地的路程是多少千米?(4)两车出发后几小时相距的路程为80千米?请直接写出答案。

初二一次函数应用题练习

初二一次函数应用题练习

《一次函数的应用》热点考题训练例一:如图,温度计上表示了摄氏温度与华氏温度的刻度,能否用函数解析式表示摄氏温度与华氏温度的关系?如果今天的气温是摄氏32度,那么华氏是多少度?例二:遥控赛车在“争先”杯赛中,电脑记录了速度的变化过程如图所示。

能否用函数解析式表示这段记录?例三:某居民小区按照分期付款的形式福利售房,政府给予一定的贴息。

小明家购得一套现价为120000元的房子,购房时首期(第一年)付款30000元,从第二年起,以后每年应付房款为5000远与上一年剩余欠款利息的和,设剩余欠款年利率为0.4%。

⑴ 若第x (x ≥2)年小明家交付房款y 元,求年付房款y (元)与x (年)的函数关系式;⑵例四:已知雅美服装厂现有A 种布料70米,B 种布料52米,现计划用这两种布料生产M ,N 两种型号的时装共80套。

已知做一套M 型号的时装需要A 种布料0.6米,B 种布料0.9米,可获利润45员;做一套N 型号的时装需要A 种布料1.1米,B 种布料0.4米,可获利润50元。

若设生产N 型号的时装套数为x ,用这批布料生产这两种型号的时装所获总利润为y 元。

(1)求y 与x的函数关系式,并求出自变量的取值范围;(2)雅美服装厂在生产这批服装中,当N 型号的时装为多少套时,所获利润最大?最大利润是多少?例五:某市电话的月租费是20元,可打60次免费电话(每次3分钟),超过60次后,超过部分每次0.13元。

(1)写出每月电话费y (元)与通话次数x 之间的函数关系式;(2)分别求出月通话50次、100次的电话费;(3)如果某月的电话费是27.8元,求该月通话的次数。

00– –230 5122 212 100训练题一、填空题1、某校办工厂现年产值是万元,如果每增加元,投资一年可增加元产值。

那么总产值y (万元)与增加的投资额x (万元)之间的函数关系式为 。

2、如图⑴中的直线ABC ,为甲地向乙地打长途电话所需付的电话费y (元)与通话时间t (分钟)之间的函数关系式的图象。

八年级一次函数练习题及答案

八年级一次函数练习题及答案

八年级一次函数练习题及答案一次函数是初中数学中的重要内容之一,它在实际生活中的应用非常广泛。

下面,我将为大家提供一些八年级一次函数练习题及答案,希望能帮助大家更好地理解和掌握这一知识点。

1. 已知一次函数y = 2x + 3,求当x = 4时,y的值。

解答:将x = 4代入函数中,得到y = 2(4) + 3 = 11。

所以当x = 4时,y的值为11。

2. 已知一次函数y = 3x - 2,求当y = 10时,x的值。

解答:将y = 10代入函数中,得到10 = 3x - 2。

移项得到3x = 12,再除以3得到x = 4。

所以当y = 10时,x的值为4。

3. 已知一次函数y = -2x + 5,求函数的斜率和截距。

解答:斜率即为函数的系数,所以斜率为-2。

截距即为函数的常数项,所以截距为5。

4. 已知一次函数y = kx + 3,当x = 2时,y = 7。

求函数的斜率和截距。

解答:将x = 2和y = 7代入函数中,得到7 = 2k + 3。

移项得到2k = 4,再除以2得到k = 2。

所以函数的斜率为2,截距为3。

5. 已知一次函数经过点(1, 4)和(3, 10),求函数的表达式。

解答:设函数的表达式为y = mx + b。

将点(1, 4)代入函数中,得到4 = m(1) + b,即m + b = 4。

将点(3, 10)代入函数中,得到10 = m(3) + b,即3m + b = 10。

解这个方程组,可以得到m = 3,b = 1。

所以函数的表达式为y = 3x + 1。

通过以上的练习题,我们可以看到一次函数的特点和求解方法。

一次函数的表达式可以写成y = kx + b的形式,其中k为斜率,b为截距。

我们可以通过给定的点或已知条件来求解函数的表达式。

除了以上的练习题,我们还可以通过一些实际问题来应用一次函数的知识。

例如,假设小明每天骑自行车去上学,他发现骑行20分钟可以骑行5公里,那么他骑行1小时可以骑行多少公里呢?我们可以通过建立一次函数来解决这个问题。

初二数学一次函数练习题及答案

初二数学一次函数练习题及答案

初二数学一次函数练习题及答案一、选择题1.已知函数y = 2x + 3,若x = 4,则y =a) 8b) 11c) 7d) 9答案:b) 112.若函数y = kx + 5,当x = 3时,y = 17,则k的值为:a) 3b) 4c) 5d) 6答案:d) 63.已知函数y = -3x + 2,若x = -2,则y =a) 4b) 8c) -2d) -8答案:a) 44.若函数y = 4x - 5,当x = -1时,y =a) -4b) 9c) -9d) 11答案:c) -9二、填空题1.函数y = 2x + 3表示一条直线,其斜率为____,截距为____。

答案:2,32.已知一次函数y = -5x + k,当x = 2时,y = 9,则k的值为____。

答案:193.已知函数y = 3x + 4,若x = -1,则y的值为____。

答案:14.函数y = -2x - 1与y轴交于点(____,0)。

答案:-0.5三、解答题1.已知函数y = 2x + 1,求:(1)当x = 3时,y的值为多少?(2)当y = 5时,求相应的x值。

解:(1)将x = 3代入函数中,得到y = 2*3 + 1 = 7。

所以当x = 3时,y的值为7。

(2)将y = 5代入函数中,得到5 = 2x + 1,解方程得到x = 2。

所以当y = 5时,相应的x值为2。

2.已知函数y = -3x + 5,求:(1)求函数与x轴和y轴的交点坐标。

(2)求函数的斜率和截距。

解:(1)当函数与x轴交点时,y = 0,代入函数得到0 = -3x + 5,解方程得到x = 5/3。

所以与x轴的交点坐标为(5/3, 0)。

当函数与y轴交点时,x = 0,代入函数得到y = 5。

所以与y轴的交点坐标为(0, 5)。

(2)已知函数y = -3x + 5,斜率为-3,截距为5。

四、应用题1.一个移动应用程序每下载一个应用,需支付固定的5元服务费和每个应用的2元费用。

人教版八年级下册数学第十九章一次函数应用题练习

人教版八年级下册数学第十九章一次函数应用题练习

人教版八年级下册数学第十九章一次函数应用题练习1.现在的生活已离不开网上购物,某毛线帽的销售网店准备扩大经营规模,经计算销售10顶A 类毛线帽和20顶B 类毛线帽的利润为400元,销售20顶A 类毛线帽和10顶B 类毛线帽的利润为350元.(1)求每一顶A 类毛线帽和B 类毛线帽的销售利润分别是多少元?(2)若该网店一次购进两类毛线帽共200顶,其中用于销售B 类毛线帽的进货量不超过A 类毛线帽的进货量的2倍,请你帮该网店设计一种进货方案,使销售总利润最大,并求出总利润的最大值.2.植树造林不仅可以美化家园,同时也可以调节气候、促进经济发展.在植树节前夕,某单位计划购进A 、B 两种树苗共17棵,已知A 种树苗每棵80元,B 种树苗每棵60元.(1)若购进的A 、B 两种树苗刚好1220元,求A 、B 两种树苗分别购买了多少棵?(2)若购买A 种树苗a 棵,所需总费用为w 元.求w 与a 的函数关系式.(3)若购买时A 种树苗不能少于5棵,w 的最小值是多少?请说明理由.3.甲运输公司提出:每千克运费0.48元,不收取其他费用:乙运输公司提出:每千克运费0.28元,另收取其他费用600元.(1)设这批牛奶共x 千克,选择甲公司运输,所需费用为1y 元,选择乙公司运输,所需费用为2y 元,请分别写出1y ,2y 与x 之间的关系式;(2)该公司选择哪家运输公司运送这批牛奶更划算,请说明理由.4.小丽从甲地匀速步行去乙地,小华骑自行车从乙地匀速前往甲地,同时出发,两人离甲地的距离y (m )与出发时间x (min )之间的函数关系如图所示.(1)小丽步行的速度为__________m/min ;(2)当两人相遇时,求他们到甲地的距离.5.A城有肥料200吨,B城有肥料300吨,现全部运往C,D两乡,从A城往C,D两乡运送肥料的费用分别是每吨20元和25元,从B城运往C,D两乡的运输费用分别是15元和24元,C乡需240吨,D乡需260吨,设A城运往C乡的肥料量为z吨,总运费为y元.(1)求y与x的函数关系式,并写出自变量x的取值范围;(2)求出总运费最低的调运方案,最低运费是多少?6.某车间共有20名工人,每人每天可加工甲种零件6个或乙种零件4个,现安排x名工人加工甲种零件,其余的人加工乙种零件.已知加工一个甲种零件可获利15元,加工一个乙种零件可获利25元.(1)求该车间每天所获总利润y(元)与x(名)之间的函数表达式;(2)如何分工可使车间每天获利1500元?(3)该车间能否实现每天获利2200元?7.某商店计划购进一批体温枪和水银体温计共100件,体温枪进价41元/件,销售价55元/件,水银体温计进价6元/件,销售价9元/件.设该店购进体温枪x件,两种测温器全部销售完后获得利润为y元.(1)求y与x之间的函数关系式;(2)该店用不超过2000元资金一次性购进两种测温器,求x的取值范围,并说明如何进货利润最大.8.在一条笔直的公路上,依次有A、C、B三地,甲、乙两人同时出发,甲从A地骑自行车匀速去B地,途经C地时因事停留1分钟,继续按原速骑行至B地,甲到达B地后,立即按原路原速返回A地;乙步行匀速从B地至A地.甲乙两人距A地的距离y(米)与时间x(分)之间的函数关系如图所示,请结合图象回答下列问题:(1)甲的骑行速度为米/分,点M的坐标为.(2)求甲返回时距A地的距离y(米)与时间x(分)之间的函数表达式(不需要写出自变量的取值范围);(3)甲返回A地的过程中,x为多少时甲追上乙?9.为大力推动学生广泛深入开展阳光体育运动,促进学生身心健康、体魄强健、全面发展,丰富全体师生课余体育生活,某中学准备购买乒乓球拍和羽毛球拍共200副,通过市场调研发现:买1副乒乓球拍和1副羽毛球拍共需160元,买5副乒乓球拍的费用和买3副羽毛球拍的费用相同.(1)购买每副乒乓球拍和羽毛球拍分别需要多少元?(2)若学校购买的羽毛球拍不低于80副,求购买乒乓球拍和羽毛球拍共200副的总费用w元与购买的羽毛球拍的数量a之间的函数关系式,并求出总费用至少为多少元.10.某学校打算购买甲乙两种不同类型的笔记本.已知甲种类型的电脑的单价比乙种类型的要便宜10元,且用110元购买的甲种类型的数量与用120元购买的乙种类型的数量一样.(1)求甲乙两种类型笔记本的单价.(2)该学校打算购买甲乙两种类型笔记本共100件,且购买的乙的数量不超过甲的3倍,则购买的最低费用是多少?11.某商店批发一部分该食品进行销售,已知辣条每包的进价是普通辣条的2倍,用40元购买的辣条比用10元购买的普通辣条多10包.(1)求:辣条、普通辣条每包进价分别是多少元?(2)该商店每月用900元购进卫龙辣条、普通辣条,并分别按3.5元/包、2元/包的价格全部售出.若普通辣条的数量不超过卫龙辣条数量的2倍,则卫龙辣条为多少包时,每月所获总利润最大?12.小明和小红分别从甲、乙两地沿同一条路同时出发,相向而行.小明从甲地到乙地,小红从乙地到甲地,小明和小红离甲地的距离y(千米)与时间x(小时)之间的函数图象如图所示,根据图中提供的信息,解答下列问题:(1)小红出发后速度为______千米/小时.(2)求线段AB对应的函数表达式,写出自变量x的取值范围.(3)当小红到达甲地时,小明距乙地还有多远?13.小明爸爸开车从单位回家,沿途部分路段正在进行施工改造,小明爸爸回家途中距离家的路程y km与行驶时间x min之间的函数关系如图所示.结合图像,解决下列问题:(1)小明爸爸回家路上所花时间为min;(2)小明爸爸说:“回家路上,有一段路连续4分钟恰好行驶了2.4千米.”你认为该说法有无可能?若有,请求出这4分钟的起止时间;若没有,请说明理由.14.已知A,B两地相距25km.甲8:00由A地出发骑电动自行车去B地,平均速度为20km/h;乙在8:15由A地出发乘汽车也去B地,平均速度为40km/h.(1)分别写出两个人的行程关于时刻的函数解析式,在同一坐标系中画出函数的图象;(2)乙能否在途中超过甲?如果能超过,请结合图象说明,何时超过?(3)设甲、乙两人之间的距离为d,试写出关于时刻的函数解析式,并画出此函数的图象.15.2022年北京冬奥会和冬残奥会的吉祥物冰墩墩和雪容融深受国内外广大朋友的喜爱,北京奥运官方特许零售店上架了两款毛绒玩具.已知每个“冰墩墩”“雪容融”的成本分别为90元、60元,利润分别为40元、30元.北京奥运官方特许零售店用60000元全部购进这两款产品.设购进“冰墩墩”a个,“雪容融”b 个.(1)求b关于a的函数关系式;(2)厂家要求“冰墩墩”的进购数量不低于“雪容融”的进购数量,若当月购进的两款产品全部售出,零售店如何设计进货方案才能使当月销售利润最大?16.暑假期间,小林一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游,爸爸找两家公司进行对比:甲公司:按日收取固定租金80元,另外再按租车时间计费;乙公司:无固定租金,直接以租车时间计费,每小时的租费是30元.根据如图信息,解答下列问题:(1)设租车时间为x小时,租用甲公司的车所需费用为1y(元),租用乙公司的车所需费用为2y(元),分别求出1y,2y关于x的函数解析式;(2)请你帮助小林计算并选择哪个出游方案合算.17.小辉与小红沿同一条路同时从学校出发到图书馆查阅资料,学校距离图书馆4千米,小辉骑自行车,小红步行,当小辉从原路返回到学校时,小红刚好到达图书馆.图中折线O-A-B-C和线段OD分别表示小辉和小红离学校的路程s(千米)与时间t(分钟)之间的函数关系.请根据图象回答下列问题:(1)小辉在图书馆查阅资料的时间为________分钟,小辉返回学校的速度为_____千米/分;(2)请求出小红离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系式;(3)当小辉与小红迎面相遇时,他们离学校的路程是多少千米?18.一辆汽车和一辆摩托车分别从A、B两地前往同一个地方C城,它们距离A地的路程随着时间的变化的图象如图所示.(1)求摩托车整个过程中的平均速度.(2)如果两车同时出发,汽车在某处与摩托车相遇,求此时两车距离A地的距离.(3)如果摩托车到达C城后马上以原来的速度原路返回,求摩托车从B地出发5.5小时后与A地的距离.19.端午节前夕某商家计划购进A.B两种型号的粽子共300盒进行销售,A型粽子进价35元/盒,售价50元/盒,B型粽子进价40元/盒,售价60元/盒.根据以往销售经验,A型粽子的购进数量x(盒)不高于B型粽子的数量,不少于B型粽子数量的一半,设该商家售完这批粽子获利y(元).(1)求y与x的函数关系式,并写出x的取值范围;(2)实际采购时,A型粽子进价每盒降低了a元(0<a<10),B型粽子进价不变,两种粽子售价不变,进购的粽子能全部卖完,问商家如何采购两种型号的粽子才能获利最大?20.某公司准备组织20辆汽车将A、B、C三种水果共100吨运往外地销售.按计划,20辆车都要装运,每辆汽车只能装运同一种水果,且必须装满.根据下表提供的信息,解答以下问题:(1)设装运A种水果的车辆数为x,装运B种水果的车辆数为y,求y与x之间的函数关系式;(2)如果装运每种水果的车辆数都不少于4辆,那么车辆的安排方案有几种?并写出每种安排方案;(3)若要使此次销售获利最大,应采用哪种安排方案?并求出此时的最大利润.。

八年级数学:一次函数(应用题)练习(含解析)

八年级数学:一次函数(应用题)练习(含解析)
A.8000,13200B.9000,10000
C.10000,13200D.13200,15400
二.填空题
7.利民商店中有3种糖果,单价及重量如下表,若商店将以上糖果配成什锦糖,则这种什锦糖果的单价是每千克________元.
品种
水果糖
花生糖
软 糖
单价(元/千克)
10
12
16
重量(千克)
3
3
4
8.某公园门票价格如下表,有27名中学生游公园,则最少应付费______元.(游客只能在公园售票处购票)
购票张数
1~29张
30~60张
60张以上
每张票的价格
10元
8元
6元
9.有一个附有进水管和出水管的容器,在单位时间内的进水量和出水量分别一定.设从某时刻开始的5分钟内只进水不出水,在随后的15分钟内既进水又出水,得到容器内水量y(升)与时间 (分)之间的函数图象如图.若20分钟后只放水不进水,这时( ≥20时) 与 之间的函数关系式是_________.
八年级数学:一次函数(应用题)练习(含解析)
一.选择题
1.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是( )
A.300m2B.150m2C.330m2D.450m2
12.【答案】2050;
【解析】解:设小明、小刚新的速得,y=x+1.5③,
由②得,4y﹣3=6x④,
③代入④得,4x+6﹣3=6x,
解得x=1.5,
故这次越野赛的赛跑全程=1600+300×1.5=1600+450=2050m.

八年级数学一次函数应用题(真题及答案)

八年级数学一次函数应用题(真题及答案)

一次函数应用题提高专题训练1.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为x(时),两车之间的距离为y (千米),图中的折线表示从两车出发至快车到达乙地过程中y 与x 之间的函数关系.(1)根据图中信息,求线段AB 所在直线的函数解析式和甲乙两地之间的距离;(2)已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t 时,求t 的值;(3)若快车到达乙地后立刻返回甲地,慢车到达甲地后停止行驶,请你在图中画出快车从乙地返回到甲地过程中y 关于x 的函数的大致图像. (温馨提示:请画在答题卷相对应的图上)2.春节期间,某客运站旅客流量不断增大,旅客往往需要长时间排队等候购票.经调查发现,每天开始售票时,约有400人排队购票,同时又有新的旅客不断进入售票厅排队等候购票.售票时售票厅每分钟新增购票人数4人,每分钟每个售票窗口出售的票数3张.某一天售票厅排队等候购票的人数y (人)与售票时间x (分钟)的关系如图所示,已知售票的前a 分钟只开放了两个售票窗口(规定每人只购一张票).(1)求a 的值.(2)求售票到第60分钟时,售票听排队等候购票的旅客人数.(3)若要在开始售票后半小时内让所有的排队的旅客都能购到票,以便后来到站的旅客随到随购,至少需要同时开放几个售票窗口?3.在一条直线上依次有A 、B 、C 三个港口,甲、乙两船同时分别从A 、B 港口出发,沿直线匀速驶向C 港,最终达到C 港.设甲、乙两船行驶x (h )后,与.B .港的距离....分别为1y 、2y (km ),1y 、2y 与x 的函数关系如图所示.(1)填空:A 、C 两港口间的距离为 km , a ;(2)求图中点P 的坐标,并解释该点坐标所表示的实际意义;(3)若两船的距离不超过10 km 时能够相互望见,求甲、乙两船可以相互望见时x 的取值范围.O y/km90 30a 3 P甲乙x/h4.一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.⑴如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?⑵如果先进行精加工,然后进行粗加工.①试求出销售利润W元与精加工的蔬菜吨数m之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多可获得多少利润?此时如何分配加工时间?5.某物流公司的甲、乙两辆货车分别从A、B两地同时相向而行,并以各自的速度匀速行驶,途径配货站C,甲车先到达C地,并在C地用1小时配货,然后按原速度开往B地,乙车从B地直达A地,图16是甲、乙两车间的距离y(千米)与乙车出发x(时)的函数的部分图像(1)A、B两地的距离是千米,甲车出发小时到达C地;(2)求乙车出发2小时后直至到达A地的过程中,y与x的函数关系式及x的取值范围,并在图16中补全函数图像;(3)乙车出发多长时间,两车相距150千米小时)6.张师傅驾车运送荔枝到某地出售,汽车出发前油箱有油50升,行驶若干小时后,途中在加油站加油若干升,油箱中剩余油量y (升)与行驶时间t (小时)之间的关系如图所示.请根据图象回答下列问题:(1)汽车行驶 小时后加油,中途加油 升;(2)求加油前油箱剩余油量y 与行驶时间t 的函数关系式;(3)已知加油前、后汽车都以70千米/小时匀速行驶,如果加油站距目的地210千米,要到达目的地,问油箱中的油是否够用?请说明理由.7.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?8.自2010年6月1日起我省开始实施家电以旧换新政策,消费者在购买政策限定的新家电时,每台新家电用一台同类的旧家电换取一定数额的补贴.为确保商家利润不受损失,补贴部分由政府提供,其中三种家电的补贴方式如下表:设购进的电视机和洗衣机数量均为x 台,这100台家电政府需要补贴y 元,商场所获利润w 元(利润=售价-进价)(1)请分别求出y 与x 和w 与x 的函数表达式;(2)若商场决定购进每种家电不少于30台,则有几种进货方案?若商场想获得最大利润,应该怎样安排进货?若这100台家电全部售出,政府需要补贴多少元钱?一次函数应用题提高专题训练1.(2010浙江湖州)【答案】(1)线段AB 所在直线的函数解析式为:y =kx +b ,将(1.5,70)、(2,0)代入得: 1.57020k b k b +=⎧⎨+=⎩,解得:140280k b =-⎧⎨=⎩, 所以线段AB 所在直线的函数解析式为:y =-140x +280,当x =0时,y =280,所以甲乙两地之间的距离280千米.(2)设快车的速度为m 千米/时,慢车的速度为n 千米/时,由题意得:222802240m n m n +=⎧⎨-=⎩,解得:8060m n =⎧⎨=⎩,所以快车的速度为80千米/时, 所以2807802t ==. (3)如图所示. 2.(1)由图象知,400423320a a +-⨯=,所以40a =;(2)设BC 的解析式为y kx b =+,则把(40,320)和(104,0)代入,得403201040k b k b +=⎧⎨+=⎩,解得5520k b =-⎧⎨=⎩,因此5520y x =-+,当60x =时,220y =,即售票到第60分钟时,售票厅排队等候购票的旅客有220人;(3)设同时开放m 个窗口,则由题知330400430m ⨯+⨯≥,解得529m ≥,因为m 为整数,所以6m =,即至少需要同时开放6个售票窗口。

八年级数学下册一次函数的实际应用选择题专项练习 含答案

八年级数学下册一次函数的实际应用选择题专项练习 含答案

八年级数学下册一次函数的实际应用选择题专项练习1.甲、乙两人在笔直的人行道上同起点、同终点、同方向匀速步行1800米,先到终点的人原地休息.已知甲先出发3分钟,在整个步行过程中,甲、乙两人间的距离y(米)与甲出发后步行的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了22.5分钟;③乙用9分钟追上甲;④乙到达终点时,甲离终点还有270米.其中正确的结论有()A.1个B.2个C.3个D.4个2.已知弹簧的长度y(cm)与所挂物体的质量x(kg)之间的函数关系如图所示,则弹簧不挂物体时的长度为()A.12cm B.11cm C.10cm D.9cm3.2021年环青龙湖半程马拉松的赛程是21.0975公里,甲乙两选手的行程y(千米)随时间x(时)变化的图象(全程)如图所示.有下列说法:①第1小时两人都跑了10千米;②起跑1小时过后,甲在乙的后面;③在起跑后的0.5至1.5小时,甲比乙跑得更慢;④乙比甲先到达终点.其中正确的说法有()A.1个B.2个C.3个D.4个4.A、B两地相距80km,甲、乙两人沿同一条路从A地到B地.l1,l2分别表示甲、乙两人离开A地的距离s(km)与时间t(h)之间的关系.对于以下说法:①乙车出发1.5小时后甲才出发;②两人相遇时,他们离开A地20km;③甲的速度是40km/h,乙的速度是km/h;④当乙车出发2小时时,两车相距km.其中正确的结论是()A.①③B.①④C.②③D.②③④5.在我国川西高原某山脉间有一河流,当河流中的水位上升到一定高度时因河堤承压有溃堤的危险.于是水利工程师在此河段的某处河堤上修了一个排水的预警水库联通另一支流.当河流的水位超过警戒位时就有河水流入预警的水库中,当水库有一定量的积水后,就会自动打开水库的排水系统流入另一支流.当河流的水位低于警戒位时水库的排水系统的排水速度则变慢.假设预警水库的积水时间为x分钟,水库中积水量为y吨,图中的折线表示某天y与x的函数关系,下列说法中:①这天预警水库排水时间持续了80分钟;②河流的水位超过警戒位时预警水库的排水速度比进水速度少25吨/分;③预警水库最高积水量为1500吨;④河流的水位低于警戒位时预警水库的排水速度为30吨/分.其中正确的信息判断是()A.①④B.①③C.②③D.②④6.杆秤是我国传统的计重工具.如图,可以用秤砣到秤纽的水平距离,来得出秤钩上所挂物体的质量.称重时,若秤砣到秤纽的水平距离为x(单位:cm)时,秤钩所挂物重为y (单位:kg),则y是x的一次函数.下表记录了四次称重的数据,其中只有一组数据记录错误,它是()组数 1 2 3 4x/cm 1 2 4 7y/kg0.80 1.05 1.65 2.30A.第1组B.第2组C.第3组D.第4组7.设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回,设x秒后两车间的距离为y米,y关于x的函数关系如图所示,则甲车的速度为()A.10米/秒B.11米/秒C.12米/秒D.13米/秒8.在一条公路上每隔100千米有一个仓库(如图),共有五个仓库.1号仓库存有10吨货物,2号仓库存有20吨货物,5号仓库存有40吨货物,其余两个仓库是空的.现在想把所有的货物集中存放在一个仓库里,如果每吨货物运输1千米需要0.5元的运费,那么最少要花()元运费才行.A.5000 B.5500 C.6000 D.65009.甲、乙两人在笔直的公路上同起点、同终点、同方向匀速步行1200米,先到终点的人原地休息.已知甲先出发3分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为40米/分;②乙用9分钟追上甲;③整个过程中,有4个时刻甲乙两人的距离为90米;④乙到达终点时,甲离终点还有280米.其中正确的结论有()A.①③B.①②④C.①③④D.①②③④10.一辆轿车和一辆货车分别从甲、乙两地同时出发,匀速相向而行,相遇后继续前行,已知两车相遇时轿车比货车多行驶了90千米,设行驶的时间为x(小时),两车之间的距离为y(千米),图中的折线表示从两车出发至轿车到达乙地这一过程中y与x之间的函数关系,根据图象提供的信息,以下选项中正确的个数是()①甲乙两地的距离为450千米;②轿车的速度为70千米/小时;③货车的速度为45千米/小时;④点C的实际意义是轿车出发5小时后到达乙地,此时两车间的距离为300千米.A.1 B.2 C.3 D.411.在A、B两地之间有汽车站C(C在直线AB上),甲车由A地驶往C站,乙车由B地驶往A地,两车同时出发,匀速行驶甲、乙两车离C站的距离y1,y2(千米)与行驶时间x(小时)之间的函数图象如图所示,则下列结论:①A、B两地相距360千米;②甲车速度比乙车速度快15千米/时;③乙车行驶11小时后到达A地;④两车行驶4.4小时后相遇.其中正确的结论有()A.1 B.2个C.3个D.4个12.甲、乙两地之间是一条直路,在全民健身活动中,赵明阳跑步从甲地往乙地,王浩月骑自行车从乙地往甲地,两人同时出发,王浩月先到达目的地,两人之间的距离s(km)与运动时间t(h)的函数关系大致如图所示,下列说法中错误的是()A.两人出发1小时后相遇B.赵明阳跑步的速度为8km/hC.王浩月到达目的地时两人相距10kmD.王浩月比赵明阳提前1.5h到目的地13.甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地.设甲、乙两车距A地的路程为y千米,甲车行驶的时间为x小时,y与x之间的关系如图所示,对于以下说法:①甲车从A地到达B地的行驶时间为2小时;②甲车返回时,y与x之间的关系式是y=﹣100x+550;③甲车返回时用了3个小时;④乙车到达A地时,甲车距A地的路程是170千米.其中正确的结论是()A.①②B.②③C.③④D.②③④14.甲、乙两船沿直线航道AC匀速航行.甲船从起点A出发,同时乙船从航道AC中途的点B出发,向终点C航行.设t小时后甲、乙两船与B处的距离分别为d1,d2,则d1,d2与t的函数关系如图.下列说法:①乙船的速度是40千米/时;②甲船航行1小时到达B处;③甲、乙两船航行0.6小时相遇;④甲、乙两船的距离不小于10千米的时间段是0≤t≤2.5.其中正确的说法的是()A.①②B.①②③C.①②④D.①②③④15.甲、乙两辆摩托车同时从相距40km的A、B两地出发,相向而行、图中l1,l2、分别表示甲、乙两辆摩托车到A地的距离s(km)与行驶时间t(h)的函数关系.则下列说法错误的是()A.乙摩托车的速度较快B.经过0.6小时甲摩托车行驶到A、B两地的中点C.经过小时两摩托车相遇D.当乙摩托车到达A地时,甲摩托车距离B地km16.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲、乙两车行驶的距离y(km)与时间x(h)的函数图象,有以下结论:①m=1;②a=40;③甲车从A地到B地共用了7小时;④当两车相距50km时,乙车用时为h.其中正确结论的个数是().A.4 B.3 C.2 D.117.一个装有进水管和出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min 内既进水又出水,接着关闭进水管直到容器内的水放完,每分钟的进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示,则下列说法中错误的是()A.每分钟进水5LB.每分钟出水3.75LC.容器中水为25L的时间是8min或14minD.第2或min时容器内的水恰为10升18.有甲、乙两车从A地出发去B地,甲比乙车早出发,如图中m1、m2分别表示两车离开A地的距离y(km)与行驶时间t(h)之间的函数关系.现有以下四个结论:①m1表示甲车,m2表示乙车;②乙车出发4小时后追上甲车;③两车相距100km的时间只有甲车出发11小时的时候;④若两地相距260km,则乙车先到达B地,其中正确的是()A.①②③④B.②③④C.①②③D.①②④19.有一个进水管和一个出水管的容器,从某时刻开始5分钟内只进水不出水,在随后的20分钟内既进水又出水,在第25分钟开始只出水不进水,每分钟的进水量和出水量是两个常数,容器内水量(L)与时间(min)之间的函数关系如图所示,求在第33分钟时,容器内剩余水量为()A.8 B.10 C.12 D.1420.小明从家步行到学校需走的路程为1800米.图中的折线OAB反映了小明从家步行到学校所走的路程s(米)与时间t(分钟)的函数关系,根据图象提供的信息,判断下列说法中错误的是()A.小明从家步行到学校共用了20分钟B.小明从家步行到学校的平均速度是90米/分C.当t<8时,s与t的函数解析式是s=120tD.小明从家出发去学校步行15分钟时,到学校还需步行360米参考答案1.解:由图可得,甲步行的速度为:180÷3=60米/分,故①正确,乙走完全程用的时间为:1800÷(12×60÷9)=22.5(分钟),故②正确,乙追上甲用的时间为:12﹣3=9(分钟),故③正确,乙到达终点时,甲离终点距离是:1800﹣(3+22.5)×60=270米,故④正确,故选:D.2.解:设弹簧的长度y(cm)与所挂物体的质量x(kg)之间的函数关系式为y=kx+b,∵该函数经过点(6,15),(20,22),∴,解得,即弹簧的长度y(cm)与所挂物体的质量x(kg)之间的函数关系式为y=0.5x+12,当x=0时,y=12,即弹簧不挂物体时的长度为12cm,故选:A.3.解:由图象可得,第1小时两人相遇,都跑了10千米,故①正确;由纵坐标看出,起跑后1小时后,甲在乙的后面,故②正确;由纵坐标看出,起跑后0.5小时,甲在乙的前面,起跑后1小时,乙追上甲,起跑后1.5小时,乙在甲的前面,所以在起跑后的0.5至1.5小时,甲比乙跑得更慢,故③正确;④起跑后2小时,乙到达终点,2小时后,甲才到达终点,所以乙比甲先到达终点,故④正确;故选:D.4.解:由图可得,乙车出发1.5小时后甲已经出发一段时间,故①错误;两人相遇时,他们离开A地20km,故②正确;甲的速度是(80﹣20)÷(3﹣1.5)=40(km/h),乙的速度是40÷3=(km/h),故③正确;当乙车出发2小时时,两车相距:[20+40×(2﹣1.5)]﹣×2=(km),故④正确;故选:D.5.解:由图象得:0~10分,水库开始积水,10~30分,水库有一定量的积水,水库的排水系统打开,30~80分时,水库停止进水,只排水,这天预警水库排水时间持续了80﹣10=70分钟,故①错误;=25(吨/分),也就是水位超过警戒位时预警水库的排水速度比进水速度少25吨/分,②正确;从图象看出预警水库积水量为1500吨时停止进水,并不能反映出预警水库的最高积水量,③错误;从图象看出河流的水位低于警戒位时预警水库的排水速度为1500÷(80﹣30)=30(吨/分),④正确.故选:D.6.解:设y=kx+b,把x=1,y=0.80,x=2,y=1.05代入可得:,解得,∴y=0.25x+0.55,当x=4时,y=0.25×4+0.55=1.55,∴第3组数据不在这条直线上,当x=7时,y=0.25×7+0.55=2.30,∴第4组数据在这条直线上,故选:C.7.解:设甲车的速度为v1m/s,乙车的速度为v2m/s,由图象可知:开始时,乙车与甲车相距300米,乙车用100秒追上了甲车,∴100v1+300=100v2,装完货物后,甲乙两车行驶了20秒后,两车相距500米,∴20v1+20v2=500,∴,解得:,故选:B.8.解:设把所有的货物集中存放在x号仓库里,需要的总运费为w元,当x≤2时,w=10×(x﹣1)×100×0.5+20×(2﹣x)×100×0.5+40×(5﹣x)×100×0.5=﹣2500x+11500,∵﹣2500<0,∴w随x的增大而减小,∴当x=2时,w取得最小值,最小值=﹣2500×2+11500=6500;当2<x≤5时,w=10×(x﹣1)×100×0.5+20×(x﹣2)×100×0.5+40×(5﹣x)×100×0.5=﹣500x+7500,∵﹣500<0,∴w随x的增大而减小,∴当x=5时,w取得最小值,最小值=﹣500×5+7500=5000.∵6500>5000,∴最少要花5000元运费才行.故选:A.9.解:由题意可得:甲步行的速度为=40(米/分);故①结论正确;由图可得,甲出发9分分钟时,乙追上甲,故乙用6分钟追上甲,故②结论错误;由函数图象可得:当y=90时,有4个时刻甲乙两人的距离为90米,故③结论正确;设乙的速度为x米/分,由题意可得:9×40=(9﹣3)x,解得x=60,∴乙的速度为60米/分;∴乙走完全程的时间==20(分),乙到达终点时,甲离终点距离是:1200﹣(3+20)×40=280(米),故④结论错误;故正确的结论有①③④共3个.故选:C.10.解:由图可得,甲乙两地的距离为150×3=450(千米),故①正确;∵两车相遇时轿车比货车多行驶了90千米,两车相遇时正好是3小时,∴轿车每小时比货车多行驶30千米,∴轿车的速度为:[450÷3﹣30]÷2+30=90(千米/小时),故②错误;货车的速度为:[450÷3﹣30]÷2=60(千米/小时),故③错误;轿车到达乙地用的时间为:450÷90=5(小时),此时两车间的距离为:60×5=300(千米),故④正确;由上可得,正确的是①④,故选:B.11.解:①A、B两地相距=360+80=440(千米),故①错误,②甲车的平均速度==60(千米/小时),乙车的平均速度==40(千米/小时),∴甲车速度比乙车速度快60﹣40=20(千米/小时),故②错误•,③440÷40=11(小时),∴乙车行驶11小时后到达A地,故③正确,④设t小时相遇,则有:(60+40)t=440,∴t=4.4(小时),∴两车行驶4.4小时后相遇,故④正确,故选:B.12.解:由图象可知,两人出发1小时后相遇,故选项A正确;赵明阳跑步的速度为24÷3=8(km/h),故选项B正确;王浩月的速度为:24÷1﹣8=16(km/h),王浩月从开始到到达目的地用的时间为:24÷16=1.5(h),故王浩月到达目的地时两人相距8×1.5=12(km),故选项C错误;王浩月比赵明阳提前3﹣1.5=1.5h到目的地,故选项D正确;故选:C.13.解:①300÷(180÷1.5)=2.5(小时),所以甲车从A地到达B地的行驶时间是2.5小时,故①错误;②设甲车返回时y与x之间的函数关系式为y=kx+b,∴,解得:,∴y与x之间的函数关系式是y=﹣100x+550,故②正确;③5.5﹣2.5=3,∴甲车返回时用了3个小时,故③正确;④乙车的速度为(300﹣180)÷1.5=80(千米/小时),300÷80=3.75,x=3.75时,y=﹣100×3.75+550=175千米,所以乙车到达A地时甲车距A地的路程是175千米,故④错误,所以②③正确,故选:B.14.解:乙船从B到C共用时3小时,走过路程为120千米,因此乙船的速度是40千米/时,①正确;乙船经过0.6小时走过0.6×40=24千米,甲船0.6小时走过60﹣24=36千米,所以甲船的速度是36÷0.6=60千米/时,开始甲船距B点60千米,因此经过1小时到达B点,②正确;航行0.6小时后,甲乙距B点都为24千米,但是乙船在B点前,甲船在B点后,二者相距48千米,因此③错误;开始后,甲乙两船之间的距离越来越小,甲船经过1小时到达B点,此时乙离B地40千米,航行2.5小时后,甲离B地:60×1.5=90千米,乙离B地:40×2.5=100千米,此时两船相距10千米,当2.5<t≤3时,甲乙的距离小于10,因此④正确;综上所述,正确的说法有①②④.故选:C.15.解:由图象可得,乙摩托车的速度较快,故选项A正确;经过0.6小时甲摩托车行驶到A、B两地的中点,故选项B正确;甲车的速度为40÷1.2=(km/h),乙车的速度为:40÷1=40(km/h),故甲乙两车相遇的时间为:=(小时),故选项C错误;当乙摩托车到达A地时,甲摩托车距离B地×(1.2﹣1)=km,故选项D正确;故选:C.16.解:由题意,得m=1.5﹣0.5=1,故①结论正确;120÷(3.5﹣0.5)=40(km/h),则a=40,故②结论正确;设甲车休息之后行驶路程y(km)与时间x(h)的函数关系式为y=kx+b,由题意,得:,解得,当y=260时,260=40x﹣20,解得:x=7,∴甲车从A地到B地共用了7小时,故③结论正确;当1.5<x≤7时,y=40x﹣20.设乙车行驶的路程y与时间x之间的解析式为y=k'x+b',由题意得:,解得,∴y=80x﹣160.当40x﹣20﹣50=80x﹣160时,解得:x=,当40x﹣20+50=80x﹣160时,解得:x=,∴,,所以乙车行驶小时或小时,两车恰好相距50km,故④结论错误.∴正确结论的个数是3个.故选:B.17.解:A.每分进水的速度为:20÷4=5(L/min);B.出水管的出水速度是每分钟5﹣==3.75(L/min);C.设当4≤x≤12时,求y与x的函数解析式为y=kx+b,根据题意得,解得,∴y=x+15(4≤x≤12);设tmin时该容器内的水恰好为25升,根据题意得,t+15=25或30﹣3.75×(t﹣12)=25,解得t=8或.即容器中水为25L的时间是8min或min;D.设m分钟时该容器内的水恰好为10升,根据题意得,5m=10或30﹣3.75×(m﹣12)=10,解得m=2或,即第2或min时容器内的水恰为10升.故说法中错误的是C.故选:C.18.解:由题意可得,m1表示甲车,m2表示乙车,故①正确;甲的速度为160÷4=40(km/h),乙车的速度为120÷(4﹣2)=60(km/h),设乙车出发a小时后追上甲车,60a=40(a+2),解得,a=4,即乙车出发4小时后追上甲车,故②正确;当t=2时,甲乙两车相距40×2=80(km),故两车相距100km的时间只有在两车相遇之后,设甲车出发b小时时,两车相距100km,60(b﹣2)﹣40b=100,解得,b=11,即两车相距100km的时间只有甲车出发11小时的时候,而如果甲车出发不到11小时乙就到达B地,则此小题的说法错误,故③错误;260÷40=6.5(小时),260÷60=4(小时),∵6.5>4+2,∴若两地相距260km,则乙车先到达B地,故④正确;故选:D.19.解:当5≤x<25时,设y=kx+b,将(5,30),(15,40)代入得,解得:,故y=x+25,当x=25时,设y=25+25=50,当25≤x<35时,设y=k1x+b1,将(25,50),(35,0)代入,解得:,故y=﹣5x+175,当x=33时,设y=﹣5×33+175=10,故选:B.20.解:由图象可知,小明从家步行到学校共用了20分钟,故A正确;根据图象,小明从家步行到学校共用了20分钟,所以小明的平均速度为1800÷20=90(米/分),故B正确;当1<8时,小明走的路程为960米,速度为960÷8=120(米/分),s与t的函数解析式是s=120t,故C正确;当8≤t≤20时,设s=kt+b,将(8,960)、(20,1800)代入,得:,解得:,∴s=70t+400;当t=15时,s=1450,1800﹣1450=350(米),∴当小明从家出发去学校步行15分钟时,到学校还需步行350米,故D错误.故选:D.。

可直接打印初中八年级一次函数实际常用的应用题__有答案

可直接打印初中八年级一次函数实际常用的应用题__有答案

一次函数实际常用应用类问题1、一次时装表演会预算中票价定位每张100元,容纳观众人数不超过2000人,毛利润y (百元)关于观众人数x (百人)之间的函数图象如图所示,当观众人数超过1000人时,表演会组织者需向保险公司交纳定额平安保险费5000元(不列入成本费用)请解答下列问题:⑴求当观众人数不超过1000人时,毛利润y (百元)关于观众人数x (百人)的函数解析式和成本费用s (百元)关于观众人数x (百人)的函数解析式;⑵若要使这次表演会获得36000元的毛利润,那么要售出多少张门票?需支付成本费用多少元?(注:当观众人数不超过1000人时,表演会的毛利润=门票收入—成本费用;当观众人数超过1000人时,表演会的毛利润=门票收入—成本费用—平安保险费)2、甲乙两名同学进行登山比赛,图中表示甲乙沿相同的路线同时从山脚出发到达山顶过程中,个自行进的路程随时间变化的图象,根据图象中的有关数据回答下列问题:⑴分别求出表示甲、乙两同学登山过程中路程s (千米)与时间t (时)的函数解析式;(不要求写出自变量的取值范围) ⑵当甲到达山顶时,乙行进到山路上的某点A 处,求A 点距山顶的距离;⑶在⑵的条件下,设乙同学从A 点继续登山,甲同学到达山顶后休息1小时,沿原路下山,在点B 处与乙同学相遇,此时点B 与山顶距离为1.5千米,相遇后甲、乙各自沿原路下山和上山,求乙到大山顶时,甲离山脚的距离是多少千米?12623S(千米)t(小时)CD EF B甲乙3、教室里放有一台饮水机,饮水机上有两个放水管。

课间同学们到饮水机前用茶杯接水。

假设接水过程中水不发生泼洒,每个学声所接的水量是相等的。

两个放水管同时打开时,它们的流量相同。

放水时先打开一个水管,过一会再打开第二个水管,放水过程中阀门一直开着。

饮水机的存水量y (升)与放水时间x(分钟)的函数关系如下图所示:O 21281718y(升)x(分钟)⑴求出饮水机的存水量y (升)与放水时间x(分钟)(x ≥2)的函数关系式;⑵如果打开第一个水管后,2分钟时恰好有4个同学接水接束,则前22个同学接水结束共需要几分钟? ⑶按⑵的放法,求出在课间10分钟内最多有多少个同学能及时接完水?据图象所提供的信息解答下列问题:⑴乙队开挖到30m 时,用了 h .开挖6h 时甲队比乙队多挖了 m ; ⑵请你求出:①甲队在06x ≤≤的时段内,y 与x 之间的函数关系式;②乙队在26x ≤≤的时段内,y 与x 之间的函数关系式;⑶当x 为何值时,甲、乙两队在施工过程中所挖河渠的长度相等?5、小明受《乌鸦喝水》故事的启发,利用量桶和体积相同的小球进行了如下操作:请根据图2中给出的信息,解答下列问题:(1)放入一个小球量桶中水面升高___________cm ;(2)求放入小球后量桶中水面的高度y (cm )与小球个数x(个)之间的一次函数关系式(不要求写出自变量的取值范围);(3)量桶中至少放入几个小球时有水溢出?6、日照市是中国北方最大的对虾养殖产区,被国家农业部列为对虾养殖重点区域;贝类产品西施舌是日照特产.沿海某养殖场计划今年养殖无公害标准化对虾和西施舌,由于受养殖水面的制约,这两个品种的苗种的总投放量只有50 (单位:千元/吨)养殖场受经济条件的影响,先期投资不超过360千元,养殖期间的投资不超过290千元.设西施舌种苗的投放量为x 吨(1)求x 的取值范围;(2)设这两个品种产出后的总产值为y (千元),试写出y 与x 之间的函数关系式,并求出当x 等于多少时,y 有最大值?最大值是多少?8、某软件公司开发出一种图书管理软件,前期投入的开发广告宣传费用共50000元,且每售出一套软件,软件公司还49cm 30cm36cm 3个球有水溢出(第23题) 图2 图29、如图,l1表示神风摩托厂一天的销售收入与摩托车销售量之间的关系;l2表示摩托厂一天的销售成本与销售量之间的关系。

八年级数学:一次函数应用题最大利润问题20道(含答案及解析)

八年级数学:一次函数应用题最大利润问题20道(含答案及解析)

八年级数学:一次函数应用题最大利润问题20道(含答案及解析)1.如图,1l 表示某公司一种产品一天的销售收入与销售量的关系,2l 表示该公司这种产品一天的销售成本与销售量的关系.(1)1x 时,销售收入=______万元,销售成本=______万元,盈利(收入-成本)=______万元; (2)一天销售______件时,销售收入等于销售成本; (3)1l 对应的函数表达式是______;(4)你能写出利润与销售量间的函数表达式吗?2.消费也扶贫,万源市某村需要销售当地的优质土特产:香米和土豆,这两种商品的相关信息如下表: (1)达州市第一中学工会第一季度采购了香米和土豆共计1000袋,为该村创造利润17000元,求达州市第一中学工会采购了香米多少袋?(2)为了加大扶贫力度,达州市第一中学工会在第二季度想为该村创造20000元以上利润的目标.该工会计划购进香米和土豆共计1200袋,且香米不低于800袋,不超过1000袋.设购进香米m 袋,香米和土豆共创造利润w 元,求出w 与m 之间的函数关系式,并通过计算说明达州市第一中学工会能否实现扶贫目标?3.某水产品商店销售1千克A 种水产品的利润为10元,销售1千克B 种水产品的利润为15元,该经销商决定一次购进A 、B 两种水产品共200千克用于销售,设购进A 种水产品x 千克,销售总利润为y 元. (1)求y 与x 之间的函数关系式;(2)若其中B 种水产品的进货量不超过A 种水产品的3倍,请你帮该经销商设计一种进货方案使销售总利润最大,并求出总利润的最大值.4.某乡镇农贸公司新开设了一家网店,销售当地农产品,其中一种当地特产在网上试销售,其成本为每千克2元.公司在试销售期间,调查发现,每天销售量y (kg )与销售单价x (元)满足如图所示的函数关系(其中210x <≤). (1)求y 与x 之间的函数关系式;(2)销售单价x 为多少元时,每天的销售利润最大?最大利润是多少元?5.面临毕业季,某电脑营销商瞄准时机,在五月底筹集到资金12.12万元,用于一次性购进A 、B 两种型号的电脑共30台.根据市场需求,这些电脑可以全部销售,全部销售后利润不少于1.6万元,其中电脑的进价和售价见下表:A 型电脑B 型电脑 进价(元/台) 4200 3600 售价(元/台)48004000设营销商计划购进A 型电脑x 台,电脑全部销售后获得的利润为y 万元. (1)试写出y 与x 的函数关系式;(2)该营销商有几种购进电脑的方案可供选择?(3)该营销商选择哪种购进电脑的方案获利最大?最大利润是多少?6.某运动鞋专卖店通过市场调研,准备销售A 、B 两种运动鞋,其中A 种运动鞋的进价比B 种运动鞋的进价高20元,已知鞋店用3200元购进A 种运动鞋的数量与用2560元购进B 种运动鞋的数量相同. (1)求两种运动鞋的进价.(2)设A 运动鞋的售价为250元/双,B 运动鞋的售价是180元/双,鞋店共进货两种运动鞋200双,设总利润为W 元,A 运动鞋进货m 双,且90≤m ≤105. ①写出总利润W 元关于m 的函数关系式. ②要使该专卖店获得最大利润,应如何进货7.某水果经销商需购进甲,乙两种水果进行销售.甲种水果每千克的价格为a元,如果一次购买超过40千克,超过部分的价格打八折,乙种水果的价格为25元/千克.设经销商购进甲种水果x千克,付款y元,y与x之间的函数关系如图所示.(1)求a的值,并写出当x>40时,y与x之间的函数关系式;(2)若经销商计划一次性购进甲,乙两种水果共80千克,且甲种水果不少于30千克,但又不超过50千克.如何分配甲,乙两种水果的购进量,才能使经销商付款总金额w(元)最少?8.为落实国家精准扶贫政策,某地扶贫办决定帮助扶贫对象推销当地特色农产品,该农产品成本价为18元每千克,销售单价y(元)与每天销售量x(千克)(x为正整数)之间满足如图所示的函数关系,其中销售单价不得低于成本价.(1)求出y与x之间所满足的函数关系式,并写出自变量x的取值范围;(2)当销售量为多少时,获利最大?最大利润是多少?9.某超市经销甲、乙两种品牌的洗衣液,进货时发现,甲品牌洗衣液每瓶的进价比乙品牌高6元,用1800元购进甲品牌洗衣液的数量是用100元购进乙品牌洗衣液数量的45.销售时,甲品牌洗衣液的售价为36元/瓶,乙品牌洗衣液的售价为28元/瓶.(1)求两种品牌洗衣液的进价;(2)若超市需要购进甲、乙两种品牌的洗衣液共120瓶,且购进两种洗衣液的总成本不超过3120元,超市应购进甲、乙两种品牌洗衣液各多少瓶,才能在两种洗衣液完全售出后所获利润最大?最大利润是多少元?10.昆明斗南花卉市场是全国鲜花市场的心脏,也是亚洲最大的鲜花交易市场之一.斗南某兰花专卖店专门销售某种品牌的兰花,已知这种兰花的成本价为60元/盆.市场管理部门规定:每盆兰花的销售价格不低于成本价,又不高于成本价的2倍.经过市场调查发现,该店某天的销售数量y(盆)与销售单价x(元/盆)之间的函数关系如图所示:(1)求y与x之间的函数关系式,并写出自变量x的取值范围:(2)在销售过程中,该店每天还要支付其他费用200元,求这一天销售兰花获得的利润w(元)的最大值.11.九年级数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤70且x为整数)天的售价与销量的相关信息如下表:已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有几天每天销售利润不低于3250元?请直接写出结果.12.2021年3月20日,三星堆遗址考古新发现揭晓,出土文物500余件,三星堆考古发掘成果再次成为炙手可热的话题.某商家看准商机后,计划购进一批“考古盲盒”(三星堆文物模型盲盒)进行销售.已知该商家用1570元购进了10个甲种盲盒和15个乙种盲盒,甲种盲盒的进货单价比乙种盲盒的进货单价多2元. (1)甲种盲盒和乙种盲盒的进货单价分别是多少元;(2)由于“考古盲盒”畅销,商家决定再购进这两种盲盒共50个,其中甲种盲盒数量不多于乙种盲盒数量的2倍,且每种盲盒的进货单价保持不变.若甲种盲盒的销售单价为83元,乙种盲盒的销售单价为78元.①假设此次购进甲种盲盒的个数为a (个),售完这两批盲盒所获总利润为w (元),请写出w 与a 之间的函数关系式;①商家如何安排第二批进货方案,才能使售完这两批盲盒获得总利润最大?最大利润是多少元?13.为迎接“五一”小长假购物高潮,某品牌专卖店准备购进甲、乙两种衬衫,其中甲、乙两种衬衫的进价和售价如下表:若用3000元购进甲种衬衫的数量与用2700元购进乙种衬衫的数量相同. (1)求甲、乙两种衬衫每件的进价;(2)要使购进的甲、乙两种衬衫共300件的总利润不少于34000元,且不超过34700元,问该专卖店有几种进货方案;(3)在(2)的条件下,专卖店准备对甲种衬衫进行优惠促销活动,决定对甲种衬衫每件优惠a 元(6080)a <<出售,乙种衬衫售价不变,那么该专卖店要获得最大利润应如何进货?14.某大型水果超市销售水蜜桃,根据前段时间的销售经验,每天的售价x(元/箱)与销售量y(箱)有如下表关系:已知y与x之间的函数关系是一次函数.(1)求y与x的函数解析式;(2)水蜜桃的进价是40元/箱,若该超市每天销售水蜜桃盈利1600元,要使顾客获得实惠,每箱售价是多少元?15.迎接大运,美化深圳,园林部门决定利用现有的3490盆甲种花卉和2590盆乙种花卉搭配A、B两种园艺造型共50个摆放在迎宾大道两侧,已知搭配一个A种造型需甲种花卉80盆,乙种花卉40盆,搭配一个B种造型需甲种花卉50盆,乙种花卉90盆.(1)某校九年级(1)班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来.(2)若搭配一个A种造型的成本是800元,搭配一个B种造型的成本是960元,试说明(1)中哪种方案成本最低?最低成本是多少元?16.九(4)班数学兴趣小组经过市场调查,整理出童威的某种高端商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在前49天销售中,每销售一件商品就捐赠m元(0<m<10)给希望工程.若前49天销售获得的最17.玩具批发市场A、B玩具的批发价分别为每件30元和50元,张阿姨花1200元购进A、B两种玩具若干件,并分别以每件35元与60元价格出售.设购入A玩具为x件,B玩具为y件.(1)若张阿姨将玩具全部出售赚了220元,则张阿姨购进A、B型玩具各多少件?(2)若要求购进A玩具的数量不得少于B玩具的数量,问如何购进玩具A、B的数量并全部出售才能获得最大利润,此时最大利润为多少元?18.某桶装水经营部每天的房租、人员工资等固定成本为250元,每桶水的进价是5元,规定销售单价不得高于12元,也不得低于7元,调查发现日均销售量p(桶)与销售单价x(元)的函数图象如图所示.(1)求日均销售量p(桶)与销售单价x(元)的函数关系式;(2)若该经营部希望日均获利1350元,那么日均销售多少桶水?19.某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于40%.经试销发现,销售量y(件)与销售单价x(元)符合一次函数y=kx+b,且当x=80时,y=40,当x=70时,y=50.(1)求一次函数y=kx+b的表达式;(2)若该商场获得的利润为W元,试写出利润W与销售单价x之间的关系式;销售单价定为多少元时,商场可获得最大利润?最大利润是多少元?20.某销售商准备采购一批儿童玩具,有A,B两种品牌可供选择,其进价和售价如下:销售商购进A,B两种品牌的儿童玩具共30件.(1)若销售商购进A品牌的儿童玩具为x (件), 求销售商售完这30件儿童玩具获得的总利润y(元)与x之间的函数关系式;(2)若想使得销售完这30件儿童玩具获得的总利润为1300元,求应购进A品牌的儿童玩具多少件?(3)若购进A品牌的儿童玩具不能少于20件,求所获总利润最多为多少元?参考答案1.(1)1,1.5,-0.5;(2)2;(3)y x =;(4)112p x =- 【分析】(1)由题意根据线段中点的求法列式计算即可求出x =1时的销售收入和销售成本,根据盈利的求法计算即可得解;(2)由题意直接根据图象找出两直线的交点的横坐标即可;(3)根据题意设l 1对应的函数表达式为y =kx (k ≠0),然后利用待定系数法求一次函数解析式即可;(4)由题意结合l 1和l 2的解析式,设利润为p 然后根据利润=销售收入-销售成本列式表示即可. 【详解】解:(1)x =1时,销售收入= 212=(万元), 销售成本=121.52+=(万元), 盈利(收入-成本)= 310.52-=-(万元); 故答案为:1,1.5,-0.5;(2)由图像可知一天销售2件时,销售收入等于销售成本; 故答案为:2;(3)设l 1对应的函数表达式为:y =kx ,则2=2k ,解得:k =1, 故l 1对应的函数表达式为:y =x , 故答案为:y =x ;(4)∵l 1的表达式为y =x ,设l 2的表达式为y =kx +b (k ≠0),代入(0①1),(2①2)可得1,12k b ==, ∴l 2的表达式为112y x =+, 设利润为p ,∴利润p =11(1)122x x x -+=-,所以利润与销售量间的函数表达式为:112p x =-. 【点睛】本题考查一次函数的应用,考查了识别函数图象的能力以及利用待定系数法求一次函数解析式,准确观察图象提供的信息是解题的关键.2.(1)达州市第一中学工会采购香米400袋.(2)w 518000m =+(800≤m <1000),达州市第一中学工会能实现扶贫目标. 【分析】(1)设达州市第一中学工会采购香米x 袋,利用总利润为等量关系构建方程即可; (2)根据香米每袋利润×袋数+土豆每袋利润×袋数构建一次函数,利用一次函数的性质即可解决问题; 【详解】解:(1)设达州市第一中学工会采购香米x 袋. 由题意列方程得()()()80606045100017000x x -+--=,解得400x =,答:达州市第一中学工会采购香米400袋. (2)由题意得:()20151200w m m =+-,518000m =+(800≤m ①1000),∵800m ≥,且w 随m 的增大而增大,∴800m =时,5800180002200020000w =⨯+=>, 当m =1000时,510001800023000w =⨯+=, 2200023000w ≤<,∴达州市第一中学工会能实现扶贫目标. 【点睛】本题考查一次函数的应用、一元一次方程的应用等知识,解题的关键是理解题意,正确寻找等量关系解决问题.3.(1)y =-5x +3000;(2)购进A 水产品50kg 、B 种150kg 时,利润最大是2750元 【分析】(1)设购进A 种水产品x 千克,则购进B 种水产品(200-x )千克,根据等量关系表示出函数解析式即可;(2)由题意得:2003x x -≤,解得:50x ≥,即50200x ≤<,根据53000y x =-+的性质得y 随x 的增大而减小,则当50x =时,销售利润最大,把50x =代入53000y x =-+即可得.【详解】解:(1)设购进A 种水产品x 千克,则购进B 种水产品(200-x )千克,1015(200)y x x =+-10300015y x x =+-即53000y x =-+,则y 与x 之间的函数关系式为:53000y x =-+;(2)由题意得:2003x x -≤,4200x ≥解得:50x ≥,∴50200x ≤<,∵53000y x =-+,50-<,∴y 随x 的增大而减小,∴当50x =时,销售利润最大,55030002750y =-⨯+=,200-50=150(千克),故购进A 种水产品50千克,购进B 种水产品150千克,销售总利润最大,总利润的最大值为2750元.【点睛】本题考查了一次函数的应用,解题的关键是根据题意找出等量关系表示出函数解析式.4.(1)600(25)40800(510)x y x x <≤⎧=⎨-+<≤⎩;(2)当销售单价x 为10元时,每天的销售利润最大,最大利润是3200元.【分析】1)运用待定系数法计算即可;(2)列出二次函数解析式,计算最值即可.【详解】(1)当25x <≤时,600y =;当510x <≤时,设(0)y kx b k =+≠,把(5,600),(10,400)代入得:560010400k b k b +=⎧⎨+=⎩,解得40800k b =-⎧⎨=⎩,40800y x ∴=-+,综上,y 与x 之间的函数关系式为:600(25)40800(510)x y x x <≤⎧=⎨-+<≤⎩(2)设每天的销售利润为w 元,当25x <≤时,600(2)6001200w x x =-=-,6000> w 随x 的增大而增大∴当5x =时,600512001800w =⨯-=最大(元)当510x <≤时,(40800)(2)w x x =-+-2240880160040(11)3240x x x =-+-=--+400-<抛物线开口向下对称轴为直线11x =,∴当11x <时,w 随x 的增大而增大510x <≤ ∴当10x =时,40132403200w =-⨯+=最大(元)32001800> 10x ∴=时,w 最大答:当销售单价x 为10元时,每天的销售利润最大,最大利润是3200元.【点睛】本题考查了二次函数的最值,一次函数的解析式,熟练掌握待定系数法,灵活运用二次函数的最值是解题的关键.5.(1)y =200x +12000;(2)该经销商有三种购进电脑的方案可供选择;(3)当进A 型电脑22台,B 型电脑8台时获利最大,利润为16400元【分析】(1)根据利润的计算公式,先求出A 型电脑每台的利润为:(4800-4200)元,B 型电脑每台的利润为(4000-3600)元,购进A 型电脑x 台,则购进B 型电脑为()30x -台,即可得出y 与x 的函数关系;(2)根据题意列出相应不等式组,求解,然后依据电脑台数为整数即可确定有几种方案;(3)根据(1)中一次函数性质,可得当x 取最大值22时,获利最大,代入即可求出最大利润.【详解】解(1)根据题意:购进A 型电脑x 台,则购进B 型电脑为()30x -台,A 型电脑每台的利润为:(4800-4200)元,B 型电脑每台的利润为(4000-3600)元,依据题意可得:y 与x 的函数关系式为:()()()480042004000360030?20012000y x x x =-+--=+, 即为:20012000y x =+;(2)由题意得:200120001600042003600(30)121200x x x +≥⎧⎨+-≤⎩解得2022x ≤≤,∵x 为整数 ,∴x 取20、21或22,即该经销商有三种购进电脑的方案可供选择;(3)由(1)知:20012000y x =+,∵2000>,∴y 随x 的增大而增大,即当x 取最大值22, 308x -=时,y 有最大值,y 最大=200×22+12000=16400(元)∴当进A 型电脑22台,B 型电脑8台时获利最大,利润为16400元.【点睛】题目主要考查一次函数的应用、不等式的应用,理解题意列出相应方程时解题关键. 6.(1)A 种运动鞋的进价为100元/双,B 种运动鞋的进价是80元/双;(2)①W =50m +20000;②要使该专卖店获得最大利润,此时应购进A 种运动鞋105双,购进B 种运动鞋95双【分析】(1)设B 种运动鞋的进价x 元,根据等量关系:用3200元购进A 种运动鞋的数量=用2560元购进B 种运动鞋的数量,列出分式方程并解分式方程即可;(2)①根据总利润=A 种运动鞋的利润+B 种运动鞋的利润,即可列出W 关于m 的函数关系式;②根据W 与m 的函数关系式及m 的取值范围,可确定W 的最大值.【详解】(1)设B 种运动鞋的进价x 元,则A 种运动鞋的进价(20)x +元,则3200256020x x=+ 解得:80x = 经检验80x =是原分式方程的解,且符合题意.①208020100x+=+=故A种运动鞋的进价为100元/双,B种运动鞋的进价是80元/双.(2)①W=(250-100)m+(180-80)(200-m)=50m+20000即总利润W元关于m的函数关系式为W=50m+20000②∵W=50m+20000①50>0,W随m的增大而增大又①90≤m≤105①当m=105时,W取得最大值,200-m=95故要使该专卖店获得最大利润,此时应购进A种运动鞋105双,购进B种运动鞋95双.【点睛】本题考查了分式方程与一次函数的实际应用,对于分式方程的应用,关键是理解题意,找到相等关系并列出方程;对于一次函数的应用,关键是掌握它的性质.注意解分式方程要检验.7.(1)a=30,y=24x+240;(2)甲水果应购进30克,乙水果购进50克时,才能使经销商付款总金额w最少.【分析】(1)先根据图象求出a的值,再根据一次购买超过40千克,超过部分的价格打八折写出函数关系式;(2)先根据甲种水果不少于30千克,但又不超过50千克求出x的取值范围,在分30≤x≤40和40<x≤50两种情况写出函数解析式,再根据函数的性质求最值.【详解】解:(1)由图象知:a=1200÷40=30(元),当x>40时,y=30×40+(x-40)×30×80%=24x+240,∴当x>40时,y与x之间的函数关系式为y=24x+240,a的值为30;(2)由题意,得:30≤x≤50,①当30≤x≤40时,w=30x+25(80-x)=5x+2000,∵5>0,∴w随x的增大而增大,∴当x=30时,w最小,最小值=5×30+2000=2150(元);②当40<x≤50时,w=24x+240+25(80-x)=-x+2240,∵-1<0,∴w 随x 的增大而减小,∴当x =50时,w 最小,最小值=-50+2240=2190(元),∵2150<2190,∴x =30,∴甲水果应购进30克,乙水果购进50克时,才能使经销商付款总金额w 最少.【点睛】本题考查了一次函数的应用,关键是根据x 的取值确定函数解析式.8.(1)40(020)150(2064)2x x y x x x <≤⎧⎪=⎨-+<≤⎪⎩且为正整数且为正整数;(2)当32x =时,获利最大,最大利润是512元.【分析】(1)当0<x ≤20且x 为整数时,y =40;当x >20时,设y =kx +b ,由待定系数法求得函数解析式;(2)设所获利润为w (元),分两种情况:①当0<x ≤20且x 为整数时,②当20<x ≤64且x 为整数时,分别得出w 的表达式,并分别得出w 的最大值,然后两者比较即可得出答案.【详解】解:(1)当020x <≤且x 为整数时,40y =;当20x >时,设y kx b +=,代入(20,40)和(50,25)得:20405025k b k b +=⎧⎨+=⎩,解得1250k b ⎧=-⎪⎨⎪=⎩. ∴1502y x =-+. 当18y =时,代入1502y x =-+,得64x =. ∴2064x <≤且x 为整数,综上所述,y 与x 之间所满足的函数关系式为40(020)150(2064)2x x y x x x <≤⎧⎪=⎨-+<≤⎪⎩且为正整数且为正整数. (2)设所获利润为w (元),当020x <≤且x 为整数时,y =40,∴(4018)22w x x ==﹣.∵22>0,∴w 随着x 的增大而增大,则当x =20时,w 有最大值,最大值为440;当2064x <≤且x 为整数时,1502y x =-+, ∴22111(5018)32(32)512222w x x x x x =-+-=-+=--+, ∵102-<, ∴当x =32时,w 最大,最大值为512元.∵512440>,∴当x =32时,获利最大,最大利润是512元.【点睛】本题主要考查了一次函数与二次函数实际应用问题中的销售问题,利用二次函数的性质求得最值以及数形结合思想是解题的关键.9.(1)甲品牌洗衣液进价为30元/瓶,乙品牌洗衣液进价为24元/瓶;(2)购进甲品牌洗衣液40瓶,乙品牌洗衣液80瓶时所获利润最大,最大利润是560元【分析】(1)设甲品牌洗衣液每瓶的进价是x 元,则乙品牌洗衣液每瓶的进价是(x -6)元,根据数量=总价÷单价,结合用1800元购进乙品牌洗衣液数量的45,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设可以购买m 瓶乙品牌洗手液,则可以购买(100-m )瓶甲品牌洗手液,根据总价=单价×数量,结合总费用不超过1645元,即可得出关于m 的一元一次不等式,解之即可得出m 的取值范围,再取其中的最大整数值即可得出结论.【详解】解:(1)设甲品牌洗衣液进价为x 元/瓶,则乙品牌洗衣液进价为()6x -元/瓶, 由题意可得,180********x x =⋅-, 解得30x =,经检验30x =是原方程的解.答:甲品牌洗衣液进价为30元/瓶,乙品牌洗衣液进价为24元/瓶.(2)设利润为y 元,购进甲品牌洗衣液m 瓶,则购进乙品牌洗衣液()120m -瓶,由题意可得,()30241203120m m +-≤,解得40m ≤,由题意可得,()()()363028*********y m m m =-+--=+,∵20k =>,∴y 随m 的增大而增大,∴当40m =时,y 取最大值,240480560y =⨯+=最大值.答:购进甲品牌洗衣液40瓶,乙品牌洗衣液80瓶时所获利润最大,最大利润是560元①【点睛】本题考查分式方程的应用,一次函数的应用,一元一次不等式的应用,解题的关键是灵活运用所学知识解决问题.10.(1)140y x =-+,自变量x 的取值范围是60120x ≤≤;(2)这一天销售兰花获得的利润的最大值为1400元.【分析】(1)根据函数图象和图象中的数据,可知该函数为一次函数,过点(80,60),(110,30),然后代入函数解析式,即可得到y 与x 之间的函数关系式,再根据每盆兰花的销售价格不低于成本价,又不高于成本价的2倍.即可得到x 的取值范围;(2)根据题意,可以得到w 与x 的函数关系式,将函数关系式化为顶点式,即可得到这一天销售兰花获得的利润w (元)的最大值.【详解】解:(1)设y 与x 之间的函数关系式为(0)y kx b k =+≠,把(80,60)和(110,30)代入,得806011030k b k b +=⎧⎨+=⎩, 解得1140k b =-⎧⎨=⎩; ∴y 与x 之间的函数关系式为140y x =-+,①每盆兰花的销售价格不低于成本价,又不高于成本价的2倍.①60≤x ≤120,由上可得,y 与x 之间的函数关系式为140y x =-+(60120)x ≤≤;(2)根据题意,得6010()(0)402w x x =--+-22008600x x =-+-21001400()x =--+;∵10-<∴当100x =时,w 有最大值,为1400.答:这一天销售兰花获得的利润的最大值为1400元.【点睛】本题考查二次函数的应用、待定系数法求一次函数解析式,解答本题的关键是明确题意,求出一次函数解析式,利用二次函数的性质求出w 的最大值.11.(1)221202250(140)1108250(4070)x x x y x x ⎧-++≤<=⎨-+≤≤⎩;(2)第30天时,当天销售利润最大,最大利润是4050元;(3)共有36天每天销售利润不低于3250元【分析】(1)根据总利润=(售价-进价)×数量,列式整理即可;(2)结合二次函数和一次函数的性质,分别求解在各自变量范围内的最值,从而对比即可得出结论;(3)分别利用两个范围内的函数解析式建立方程或不等式,并结合自变量的取值范围求解即可.【详解】解:(1)当140x ≤<时,()()45301502y x x =+--⎡⎤⎣⎦,整理得:221202250y x x =-++;当4070x ≤≤时,()()85301502y x =--,整理得:1108250y x =-+;∴221202250(140)1108250(4070)x x x y x x ⎧-++≤<=⎨-+≤≤⎩; (2)对于函数221202250y x x =-++,整理可得:()22304050y x =--+,∵20-<,∴当30x =时,y 取得最大值,最大值为4050;对于函数1108250y x =-+,∵1100-<,∴y 随x 的增大而减小,∵4070x ≤≤,∴当40x =时,y 取得最大值,最大值为3850,∵4050>3850,∴第30天时,当天销售利润最大,最大利润是4050元;(3)当140x ≤<时,由题意,2212022503250x x -++=,解得:10x =或50x =,由(2)中,二次函数的性质可得:当1040x ≤<时,每天销售利润不低于3250元,共有30天;当4070x ≤≤时,由题意,11082503250x -+≥, 解得:54511x ≤, ∴当4045x ≤≤时,每天销售利润不低于3250元,共有6天;∴30+6=36(天),∴共有36天每天销售利润不低于3250元.【点睛】本题考查二次函数与一次函数的综合实际应用,理解二次函数和一次函数的基本性质,准确建立不等式并分类讨论是解题关键.12.(1)甲种盲盒的进货单价为64元,则乙种盲盒的进货单价为62元;(2)①w =1230+3a ;①购进甲种盲盒33个,则购进乙种盲盒17个,最大利润是1329元.【分析】(1)设甲种盲盒的进货单价为x 元,则乙种盲盒的进货单价为(x -2)元,根据题意即可列出一元一次方程,即可求解;(2)①设购进甲种盲盒a 个,则购进乙种盲盒(50- a )个,根据题意得到a 的取值,再列出w 关于a 的一次函数;①根据一次函数的性质即可求解.【详解】解:(1)设甲种盲盒的进货单价为x 元,则乙种盲盒的进货单价为(x -2)元,根据题意得10x +15(x -2)=1570解得x =64,∴甲种盲盒的进货单价为64元,则乙种盲盒的进货单价为62元.(2)①设购进甲种盲盒a 个,则购进乙种盲盒(50-a )个,依题意可得()2500a a a ⎧≤-⎨≥⎩解得10003a ≤≤ ∴w =(83-64)(10+a )+(78-62)(50-a +15)=1230+3a①①w =1230+3a ,故w 随a 的增大而增大故当a =33时,50-a =17.w 最大=1230+3×33=1329(元).∴第二批进货方案为:购进甲种盲盒33个,购进乙种盲盒17个.售完第二批盲盒最多获得总利润1329元.【点睛】此题主要考查一元一次方程、一次函数以及不等式组的应用,解题的关键是根据题意找到数量关系列方程或函数进行求解.13.(1)甲种衬衫每件进价100元,乙种衬衫每件进价90元;(2)共有11种进货方案;(3)当6070a <<时,应购进甲种衬衫110件,乙种衬衫190件;当70a =时,所有方案获利都一样;当7080a <<时,购进甲种衬衫100件,乙种衬衫200件.【分析】(1)依据用3000元购进甲种衬衫的数量与用2700元购进乙种衬衫的数量相同列方程解答; (2)根据题意列不等式组解答;(3)设总利润为w ,表示出w 与x 的函数解析式,再分三种情况:①当6070a <<时,②当70a =时,③当7080a <<时,分别求出利润的最大值即可得到答案.【详解】解:(1)依题意得:3000270010m m =-,整理,得:3000(10)2700m m -=,解得:100m =,经检验,100m =是原方程的根,答:甲种衬衫每件进价100元,乙种衬衫每件进价90元;(2)设购进甲种衬衫x 件,乙种衬衫(300)x -件,根据题意得:(260100)(18090)(300)34000(260100)(18090)(300)34700x x x x -+--⎧⎨-+--⎩, 解得:100110x , x 为整数,110100111-+=,答:共有11种进货方案;(3)设总利润为w ,则(260100)(18090)(300)(70)27000(100110)w a x x a x x =--+--=-+,①当6070a <<时,700a ->,w 随x 的增大而增大,∴当110x =时,w 最大,此时应购进甲种衬衫110件,乙种衬衫190件;②当70a =时,700a -=,27000w =,(2)中所有方案获利都一样;③当7080a <<时,700a -<,w 随x 的增大而减小,∴当100x =时,w 最大,此时应购进甲种衬衫100件,乙种衬衫200件.综上:当6070a <<时,应购进甲种衬衫110件,乙种衬衫190件;当70a =时,(2)中所有方案获利都一样;当7080a <<时,购进甲种衬衫100件,乙种衬衫200件.【点睛】此题考查分式方程的实际应用,不等式组的实际应用,一次函数的性质,正确理解题意熟练应用各知识点解决问题是解题的关键.14.(1)y =﹣5x +380;(2)56元.【分析】(1)设y 与x 的函数解析式为y =kx +b (k ≠0),根据表格中的数据,利用待定系数法即可求出y 与x 的函数解析式;(2)利用该超市每天销售水蜜桃获得的利润=每箱的利润×每天的销售量,即可得出关于。

一次函数应用题(习题及答案)

一次函数应用题(习题及答案)

一次函数应用题(习题及答案)一次函数应用题(习题及答案)题一:某手机品牌每月销售量与售价之间存在一次函数关系,已知售价为3000元时销售量为4000台,售价为5000元时销售量为3000台,请问每增加一台售价,销售量减少多少台?解析:这是一个典型的一次函数应用题。

首先,我们可以设定售价为x元,销售量为y台。

根据题目已知条件,可以列出两个点的坐标:(3000, 4000)和(5000, 3000)。

根据一次函数的一般式y = kx + b,可以得到方程组:4000 = 3000k + b -------(1)3000 = 5000k + b -------(2)通过解方程组,可以求解出k和b的值,从而确定函数关系。

首先,我们用(1)式减去(2)式,消去b的项,得到:1000 = -2000k解得k = -1/2。

将k的值代入(1)式或(2)式,可解得b = 7000/2 = 3500。

因此,该函数的函数关系为:y = -1/2x + 3500。

根据函数关系,我们可以计算每增加一台售价,销售量减少的台数。

由于每增加一台售价,x的变化量为1,代入函数关系,得到y的变化量为-1/2。

因此,每增加一台售价,销售量减少的台数为1/2台。

答案:每增加一台售价,销售量减少0.5台。

题二:一家电商公司将某商品的售价从每件100元提高到120元后,销售量下降了25%。

求原来的每件商品的销售量。

解析:这同样是一个一次函数的应用题。

我们可以设定原售价为x 元,销售量为y件。

根据题目已知条件,可以得到两个点的坐标:(100, y)和(120, 0.75y)(销售量下降25%相当于销售量的0.75倍)。

根据一次函数的一般式y = kx + b,可以得到方程组:y = 100k + b -------(1)0.75y = 120k + b -------(2)通过解方程组,我们可以求解出k和b的值,从而确定函数关系。

将(1)式代入(2)式,得到:0.75(100k + b) = 120k + b化简可得:75k + 0.75b = 120k + b整理得:0.25b = 45k解得:k = 0.25b/45将k的值代入(1)式,解得b = 11y/12因此,该函数的函数关系为:y = (0.25b/45)x + (11y/12)由于题目求解的是原来的每件商品的销售量,即求解y的值。

人教版八年级下册数学一次函数应用题(分配方案)

人教版八年级下册数学一次函数应用题(分配方案)

人教版八年级下册数学一次函数应用题(分配方案)1.为降低空气污染,某公交公司决定全部更换节能环保的燃气公交车.计划购买A 型和B型两种公交车共10辆,其中每台的价格,年均载客量如表所示:若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B 型公交车1辆,共需350万元.(1)求a、b的值;(2)如果该公司要确保这10辆公交车的年均载客总和不少于680万人次.请你设计一个方案,使得总费用最少.2.新学期开学前夕,为保障教学硬件设施的完善,某校后勤部决定对松动、损坏的课桌椅进行检修和置换.已知在供应商处购买,一张课桌与两把座椅需要180元;2张课桌与3把座椅需要330元.(1)求在该供应商处,课桌和座椅的单价分别是多少元?(2)若该校准备购买课桌和座椅共216件,设购买座椅a把.①因学校购买数量多,且可以长期合作,供应商给出了如下优惠:课桌打七五折,座椅打八折,求该校按此优惠购买这些课桌椅的总费用W与a之间的函数关系式;①若该校购买的课桌不少于70张,且座椅的数量不少于课桌的2倍,则本次购买课桌椅有哪些购买方案?求出花费最少的方案及其对应的总费用.3.为加强学生的劳动教育,某校准备开展以“种下希望,共建美好家园”为主题的义务植树活动.经了解,购买2棵枣树和3棵石榴树共需44元;购买5棵枣树和6棵石榴树共需98元.该校决定购买()0m m >棵枣树和50棵石榴树.(1)求枣树和石榴树的单价;(2)实际购买时,商家给出了如下优惠方案:方案一:均按原价的九折销售;方案二:如果购买的枣树不超过50棵,按原价销售.如果购买的枣树超过50棵,则超出的部分按原价的八折销售,石榴树始终按原价销售.①分别求出两种方案的费用1W ,2W 关于m 的函数表达式;①请你帮助该校选择出最省钱的购买方案.4.某学校对电教室进行升级改造,台式机都安装无线网卡实现无线联网.已知购买2个A 型无线网卡和3个B 型无线网卡共需170元;购买4个A 型无线网卡和1个B 型无线网卡共需140元.(1)求A 型无线网卡和B 型无线网卡的单价各是多少元;(2)该学校准备购买A 型无线网卡和B 型无线网卡共90个,且A 型无线网卡的数量不超过B 型无线网卡数量的15.请设计出最省钱的购买方案,并说明理由.5.陕西省某游乐园推出了两种收费方式.方式一:顾客先购买月卡,每张月卡120元,仅限两名家长和一名儿童当月使用,凭卡游玩,不限游玩次数,每人每次只需付5元.方式二:顾客不购买月卡,每次游玩,每个成年人付费20元,每个儿童付费15元. 设一名顾客带着他的妻子和6岁孩子,在一个月内来此游乐园的次数为x 次,设选择方式一的总费用为1y (元),选择方式二的总费用为2y (元).(1)请分别写出1y ,2y 与x 之间的函数表达式.(2)该顾客一个月内在此游乐园游玩的次数x 在什么范围时,选择方式一比方式二省钱.6.某学校为改善办学条件,计划采购A 、B 两种型号的空调,已知采购3台A 型空调和2台B 型空调,需费用39000元;4台A 型空调比5台B 型空调的费用多6000元.(1)求A 型空调和B 型空调每台各需多少元;(2)若学校计划采购A 、B 两种型号空调共30台,且A 型空调的台数不少于B 型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?7.某企业准备购进甲、乙两种防护服捐给一线抗疫人员,经了解,购进4件甲种防护服和5件乙种防护服需要2万元,购进3件甲种防护服和10件乙种防护服需要3万元.(1)甲种防护服和乙种防护服每件各多少元?(2)实际购买时,发现厂家有两种优惠方案:方案一:购买甲种防护服按原价的8折付款,乙种防护服没有优惠;方案二:两种防护服都按原价的9折付款,该社会团体决定购买x 件甲种防护服和30件乙种防护服.则两种方案的费用w (元)与件数x (件)之间的函数关系式分别为:1w =____________,2w =____________;当x 的取值范围为______时,选择方案一更合算.8.某水果超市欲购进甲,乙两种水果进行销售.甲种水果每千克的价格为a 元,如果一次购买超过40千克,超过部分的价格打八折,乙种水果的价格为26元/千克.设水果超市购进甲种水果x 千克,付款y 元,y 与x 之间的函数关系如图所示.(1)a=____(2)求y与x之间的函数关系式;(3)若经销商计划一次性购进甲,乙两种水果共80千克,且甲种水果不少于30千克,但又不超过50千克.如何分配甲,乙两种水果的购进量,才能使经销商付款总金额W (元)最少?9.为了净化空气,美化校园环境,某学校计划种植A,B两种树木.已知购买20棵A 种树木和15棵B种树木共花费2680元;购买10棵A种树木和20棵B种树木共花费2240元.(1)求A,B两种树木的单价分别为多少元.(2)如果购买A种树木有优惠,优惠方案是:购买A种树木超过20棵时,超出部分可以享受八折优惠.若该学校购买m(m>0,且m为整数)棵A种树木花费w元,求w与m之间的函数关系式.(3)在(2)的条件下,该学校决定在A,B两种树木中购买其中一种,且数量超过20棵,请你帮助该学校判断选择购买哪种树木更省钱.10.某班为了丰富学生的课外活动,计划购买一批“名著经典”,河南省某市A、B两家书店分别推出了自己的优惠方案:A书店:每套“名著经典”标价120元,若购买超过20套,超过部分按每套标价的八折出售;B书店:每套“名著经典”标价120元,若购买超过15套,超过部分按每套标价的九折出售,然后每套再优惠10元.若用字母x表示购买“名著经典”的数量,字母y表示购买的价格,其函数图象如图所示.(1)分别写出选择购买A、B书店“名著经典”的总价y与数量x之间的函数关系式;(2)请求出图中点M的坐标,并简要说明点M表示的实际意义;(3)根据图象直接写出选择哪家书店购买“名著经典”更合算?11.某花店计划在母亲节来临之前购进一批康乃馨和百合花,已知购买2枝康乃馨和3枝百合共需40元:购买3枝康乃馨和1枝百合共需25元.(1)求每枝康乃馨和百合花的价格分别是多少元?(2)若该花店准备同时购进这两种花共300枝,并且康乃馨的数量不多于百合花数量的2倍,请设计出最省钱的购买方案,并说明理由.12.“快乐体验创业,财商助力未来”,为了让学生亲身体验市场经济,了解市场规律,某校举办了“快乐易物”实践活动。

初二数学一次函数试题答案及解析

初二数学一次函数试题答案及解析

初二数学一次函数试题答案及解析1.儿童受伤,小红爸爸的公司急需用车,但又不准备买车,公司准备和一个个体车主或一家出租车公司签订月租车合同,设汽车每月行驶x千米,个体车主收费为y1元,出租车公司收费y2元,观察图象可知,当x_________时,选用个体车主较合算.【答案】>1800.【解析】根据图象可以得到当x>1800千米时,y1<y2,则选用个体车较合算.故答案是>1800.【考点】一次函数的应用.2.从A地向B地打长途电话,通话3分钟以内(含3分钟)收费2.4元,3分钟后每增加通话时间1分钟加收1元(不足1分钟的通话时间按1分钟计费),某人如果有12元话费打一次电话最多可以通话分钟.【答案】12.【解析】设最多可以打x分钟的电话,则可得不等式:2.4+1×(x-3)≤12,解出即可.试题解析:设最多可以打x分钟的电话,由题意,得:2.4+1×(x-3)≤12,解得:x≤12.6.故如果有12元话费打一次电话最多可以通话12分钟.【考点】一元一次不等式的应用.3.如图,矩形ABCD中,AB=1,AD=2,M是AD的中点,点P在矩形的边上,从点A出发,沿A→B→C→D运动,到达点D运动终止.设△APM的面积为y,点P经过的路程为x,那么能正确表示y与x之间函数关系的图象是()【答案】A【解析】根据三角形的面积公式,分类讨论:P在AB上运动时,三角形的面积在增大,P在BC上运动时,三角形的面积不变;P在CD上运动时,三角形的面积在减小,可得答案.【考点】动点问题的函数图象.4.如图,一次函数y=kx+1(k≠0)与反比例函数y=(m≠0)的图象在第一象限有公共点A(1,2).直线l⊥y轴.于点D(0,3),与反比例函数和一次函数的图象分别交于点B,C.(1)求一次函数与反比例函数的解析式;(2)求△ABC的面积;(3)根据图象写出当x取何值时,一次函数的值小于反比例函数的值?【答案】(1)一次函数解析式为y=x+1;反比例解析式为=(2)S△ABC(3)根据图象当x<-2或0<x<1时,一次函数的值小于反比例函数的值【解析】(1)将点A分别代入解析式即可求出只需求得BC的长即可求出面积,由已知可知B、C的纵坐标,代入两个解析式即可得到B、C 的坐标,从而可得BC的长只要求出两函数图象的交点坐标即可解决试题解析:(1)将A(1,2)代入一次函数解析式得:k+1=2,即k=1,∴一次函数解析式为y=x+1;将A(1,2)代入反比例解析式得:m=2,∴反比例解析式为∵D(0,3)∴点B、C的纵坐标为3,将y=3代入一次函数得:x=2,将y=3代入反比例解析式得:,即DC=2,DB=,BC=2-=,又A到BC的距离为1,则S==△ABC解方程组,得∴一次函数与反比例函数的图象的交战为A(1,2)和(-2,-1)根据图象当x<-2或0<x<1时,一次函数的值小于反比例函数的值【考点】1、待定系数法;2、函数图象上点的坐标;3、解二元二次方程组5.直线y=kx-2与x轴的交点是(1,0),则k的值是()A.3B.2C.-2D.-3【答案】B.【解析】∵直线y=kx-2与x轴的交点是(1,0),∴k-2=0,解得k=2.故选B.【考点】一次函数图象上点的坐标特征.6.如图,过点Q(0,3.5)的一次函数与正比例函数y=2x的图象相交于点P,能表示这个一次函数图象的解析式是()A.y=B.y=C.y=D.y=﹣【答案】D.【解析】设一次函数的解析式为y=kx+b,把Q(0,3.5)、P(1,2)代入得,解得,所以一次函数解析式为.故选D.【考点】两条直线相交或平行问题.7.将直线y=﹣2x向右平移2个单位所得直线的解析式为()A.y=﹣2x+2B.y=﹣2x﹣4C.y=﹣2x﹣2D.y=﹣2x+4【答案】D.【解析】根据“左加右减”的平移规律可由已知的解析式写出新的解析式:将直线y=﹣2x向右平移2个单位所得直线的解析式为y=﹣2(x﹣2),即y=﹣2x+4.故选D.【考点】一次函数图象与平移变换.8.一次函数的图象如图所示,当-3<<3时,的取值范围是()A.>4B.0<<2C.0<<4D.2<<4【答案】C.【解析】由函数的图象可知,当y=3时,x=0;当y=-3时,y=4,故当-3<y<3时,x的取值范围是0<x<4.故选C.【考点】一次函数的性质.9.甲、乙两人骑车前往A地,他们距A地的路程S(km)与行驶时间t(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)、甲、乙两人的速度各是多少?(2)、求甲距A地的路程S与行驶时间t的函数关系式。

初二数学一次函数与综合应用(含答案)

初二数学一次函数与综合应用(含答案)

一次函数与综合应用例题精讲一、一次函数的应用【例1】小高从家门口骑车去单位上班,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是()B.15分钟C.25分钟D.27分钟【答案】B【例2】有一个装有进、出水管的容器,单位时间内进、出的水量都是一定的,已知容器的容积为600升,又知单开进水管10分钟可把空容器注满,若同时打开进、出水管,20分钟可把满容器的水放完。

现已知水池内有水200升,先打开进水管5分钟,再打开出水管,两管同时开放直至把容器的水放完。

则能正确反映这一过程中容器的水量Q(升)随时间t(分钟)变化的图象是()【答案】B【例3】甲、乙两同学从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离s(千米)和行驶时间t(小时)之间的函数关系的图象如图所示,根据图中提供的信息,有下列说法:①他们都行驶了18千米;②甲在途中停留了0.5小时;③乙比甲晚出发0.5小时;④相遇后,甲的速度小于乙的速度;⑤甲、乙两人同时到达目的地。

其中符合图象描述的说法有()A.2个B.3个C.4个 D.5个Array(小时)【答案】C【例4】 某工厂用一种自动控制加工机制作一批工件,该机器运行过程分为加油过程和加工过程:加工过程中,当油箱中油量为10升时,机器自动停止加工进入加油过程,将油箱加满后继续加工,如此往复。

已知机器运行需运行185分钟才能将这批工件加工完。

如图是油箱中油量y (升)与机器运行时间x (分)之间的函数图象。

根据图象回答下列问题:⑴求在第一个加工过程中,油箱中油量y (升)与机器运行时间x (分)之间的函数关系式(不必写出自变量的取值范围)⑵机器运行多少分钟时,第一个加工过程停止? ⑶加工完这批工件,机器耗油多少升?【答案】⑴110y x =-+⑵100分钟 ⑶175升【例5】 东风商场文具部的某种毛笔每枝售价25元,书法练习本每本售价5元,该商场为促销制定了两种优惠办法.甲:买一枝毛笔就赠送一本书法练习本. 乙:按购买金额打九折付款.某校欲为校书法兴趣小组购买这种毛笔10枝,书法练习本(10)x x ≥本.⑴写出每种优惠办法实际的金额y 甲(元),y 乙(元)与x (本)之间的函数关系式; ⑵比较购买同样多的书法练习本时,按哪种优惠办法付款更省钱;⑶如果商场允许可以任意选择一种优惠办法购买,也可以同时选两种优惠办法购买,请你就购买这种毛笔10枝和书法练习本60本设计一种最省钱的购买方案.【答案】⑴25105(10)5200(10)y x x x =⨯+-=+≥甲,(25105)90% 4.5225(0)y x x x =⨯+⨯=+≥乙;⑵当购买50本书法练习本时,两种优惠办法的实际付款一样,即可任选一种办法付款;当购买本数在10~50本之间,选择的优惠办法甲付款更省钱;当购买本数大于50本时,选择优惠办法乙付款更省钱.⑶选用优惠办法甲购买10枝毛笔和10本书法练习本,再用优惠办法乙购买50本书法练习本的方案最省钱.【例6】 一次时装表演会预算中票价定位每张100元,容纳观众人数不超过2000人,毛利润y (百元)关于观众人数x (百人)之间的函数图象如图所示,当观众人数超过1000人时,表演会组织者需向保险公司交纳定额平安保险费5000元(不列入成本费用)请解答下列问题:⑴求当观众人数不超过1000人时,毛利润y (百元)关于观众人数x (百人)的函数解析式和成本费用s (百元)关于观众人数x (百人)的函数解析式;⑵若要使这次表演会获得36000元的毛利润,那么要售出多少张门票?需支付成本费用多少元?(注:当观众人数不超过1000人时,表演会的毛利润=门票收入—成本费用;当观众人数超过1000人时,表演会的毛利润=门票收入—成本费用—平安保险费)【答案】⑴由图象可知:当010x ≤≤时,设y 关于x 的函数解析100y kx =-,∵(10,400)在100y kx =-上,∴40010100k =-,解得50k = ∴50100y x =-,100(50100)s x x =--),∴50100s x =+ ⑵当1020x <≤时,设y 关于x 的函数解析式为y mx b =+, ∵(10,350),(20,850)在y mx b =+上, 1035020580m b m b +=⎧⎨+=⎩,解得50150m b =⎧⎨=-⎩∴50150y x =-,∴()100501505050100s x x s x ∴=---∴=+ ∴()()50100010501501020x x y x x ⎧-⎪=⎨-<⎪⎩≤≤≤令360y =当010x ≤≤时,50100360x -= 解得9.2x = 50100509.2100560s x =+=⨯+=当1020x <≤时,50150360x -=解得10.2x = 501005010.2100610s x =+=⨯+=.要使这次表演会获得36000元的毛利润. 要售出920张或1020张门票,相应支付的成本费用分别为56000元或61000元.二、一次函数与几何综合【例7】 如图所示,已知正比例函数y x =和3y x =,过点()20A ,作x 轴的垂线,与这两个正比例函数的图象分别交与B C ,两点,求三角形OBC 的面积(其中O 【答案】由题意,∵20A (,),AC x ⊥轴 ∴将2x =分别代入3y x y x ==、得,()()2226B C ,,,∴624BC =-=∴1142422OBC S BC OA ∆=⋅⋅=⨯⨯=【例8】 如图,直线6y kx =+与x 轴y 轴分别相交于点E F 、. 点E 的坐标为 8, 0-(), 点A 的坐标为()60-,. 点,P x y ()是第二象限内的直线上的一个动点。

初二的一次函数练习题和答案

初二的一次函数练习题和答案

初二的一次函数练习题和答案1. 已知函数y = 2x + 1,求当x为2时的y的值。

解析:将x代入函数表达式中,得到y = 2 * 2 + 1 = 5。

所以当x为2时,y的值为5。

2. 某手机品牌每年销售量增长2000台,现已知2018年销售量为8000台,求2019年的销售量。

解析:设2019年销售量为x。

根据题意可得2000 = x - 8000,求解x可得x = 10000。

所以2019年的销售量为10000台。

3. 一次函数过点(1, 3),且函数图像与y轴相交于点(0, 1),求该一次函数表达式。

解析:设函数表达式为y = kx + b。

由已知条件可得:1 = 0 + b,因此b = 1;3 = k + 1,因此k = 2。

所以该一次函数表达式为y = 2x + 1。

4. 已知函数y = 3x - 2,求使得y大于等于7的x的取值范围。

解析:将y替换为7,得到7 = 3x - 2,求解x可得x = 3。

所以使得y大于等于7的x的取值范围是x ≥ 3。

5. 如果一次函数的斜率为负数,绘制其函数图像时,直线的斜率与x轴的夹角是多少?解析:一次函数的斜率为k,直线与x轴夹角θ满足tanθ = k。

由于斜率为负数,所以斜率与x轴的夹角小于180°,即θ < 180°。

具体的角度需要根据具体的斜率值计算。

6. 一条直线通过点(3, 5),并且与x轴成45°的角,求该直线的表达式。

解析:设直线的表达式为y = mx + b。

已知该直线通过点(3, 5),所以可得5 = 3m + b。

由于直线与x轴成45°的角,所以斜率m = tan45° = 1。

代入方程组可得5 = 3 + b,求解b可得b = 2。

所以该直线的表达式为y = x + 2。

7. 已知函数y = -4x + 3,求使得y小于等于0的x的取值范围。

解析:将y替换为0,得到0 = -4x + 3,求解x可得x = 3/4。

一次函数行程应用题

一次函数行程应用题

一次函数行程应用题1、A市和B市分别有库存某种机器12台和6台,现决定支援C市10台、D市8台,已知从A市调动一台机器到C市、D市的运费分别为400元和800元,从B市调动一台机器到C市、D市的运费分别为300元和500元.(1)设B市调往C市机器为$x$台,求总运费$y$元关于$x$的表达式;(2)若要求总运费不超过9000元,共有几种调动方案?(3)求出总运费最低的方案,最低运费是多少元?分析:(1)根据题意:B市调往C市机器为$x$台,则B市调往D市机器为$(6 -x)$台,A市调往C市机器为$(10 - x)$台,A市调往D市机器为$(12 - 10 + x) = (x + 2)$台,再利用已知数据列出代数式即可;(2)当总运费不超过9000元时,列出不等式求解即可;(3)当$x = 6$时,总运费最低.【分析】(1)根据题意:B市调往C市机器为$x$台,则B市调往D市机器为$(6 -x)$台,A市调往C市机器为$(10 - x)$台,A市调往D市机器为$(12 - 10 + x) = (x + 2)$台,再利用已知数据列出代数式即可;(2)当总运费不超过9000元时,列出不等式求解即可;(3)当$x = 6$时,总运费最低.【解答】(1)解:设B市调往C市机器为$x$台,则B市调往D市机器为$(6 - x)$台,A市调往C市机器为$(10 - x)$台,A市调往D市机器为$(12 - 10 + x) = (x + 2)$台.根据总运费=各部分运费之和得:$y = 300x + 500(6 - x) + 400(10 - x) + 800(x + 2)$$= 200x + 8600$.(2)解:当$y \leqslant 9000$时,即$200x + 8600 \leqslant 9000$,得$x \leqslant 2$.由于$x \leqslant 6$且其取值为非负整数,所以$x =0,1,2$.故有三种调动方案.(3)解:由于一次函数的斜率是正数,故$y$随$x$的增大而增大.所以当$x = 0$时,$y$最小 .调动方案是:A市运往C市机器10台,运往D市2台;B 市运往C市机器0台,运往D市6台.最低运费是:$8600$元.。

八年级一次函数大题典型题

八年级一次函数大题典型题

八年级一次函数大题典型题一、与坐标有关的一次函数问题。

题1:已知一次函数y = kx + b的图象经过点A( - 2, - 3)及点B(1,6)。

(1)求此一次函数的解析式;(2)判断点C(-(1)/(3),2)是否在此函数的图象上。

解析:(1)因为一次函数y = kx + b的图象经过点A(-2,-3)和B(1,6),将这两点代入函数可得方程组-3=-2k + b 6=k + b用第二个方程6 = k + b减去第一个方程-3=-2k + b,可得:6-(-3)=(k + b)-(-2k + b) 9=k + b + 2k - b 9=3k k = 3把k = 3代入6=k + b,得6=3 + b,解得b=3。

所以一次函数的解析式为y = 3x+3。

(2)把x =-(1)/(3)代入y = 3x + 3,得y=3×(-(1)/(3))+3=- 1 + 3=2所以点C(-(1)/(3),2)在此函数的图象上。

题2:一次函数y=kx + b的图象与x轴、y轴分别交于点A(-2,0)、B(0,4)。

求该一次函数的解析式,并求出AOB的面积。

解析:(1)因为一次函数y = kx + b的图象经过点A(-2,0)和B(0,4)把A(-2,0),B(0,4)代入y=kx + b得0=-2k + b 4=b把b = 4代入0=-2k + b得0=-2k+4,解得k = 2所以一次函数的解析式为y = 2x+4。

(2)因为A(-2,0),B(0,4),所以OA = 2,OB=4S_ AOB=(1)/(2)× OA× OB=(1)/(2)×2×4 = 4二、一次函数与方程(组)、不等式的关系。

题3:已知一次函数y = 2x - 4。

(1)求当y = 0时,x的值;(2)求当x = 3时,y的值;(3)当x为何值时,y>0;(4)求直线y = 2x - 4与坐标轴围成的三角形的面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学一次函数应用题一.解答题(共22小题)1.(2015•蓬安县校级自主招生)在一条笔直的公路上有A、B两地,甲骑自行车从A地到B 地,乙骑摩托车从B地到A地,到达A地后立即按原路返回,是甲、乙两人离B地的距离y(km)与行驶时间x(h)之间的函数图象,根据图象解答以下问题:(1)A、B两地之间的距离为km;(2)直接写出y甲,y乙与x之间的函数关系式(不写过程),求出点M的坐标,并解释该点坐标所表示的实际意义;(3)若两人之间的距离不超过3km时,能够用无线对讲机保持联系,求甲、乙两人能够用无线对讲机保持联系时x的取值范围.2.(2015•吉林模拟)某电信公司提供了A,B两种通讯方案,其通讯费用y(元)与通话时间x(分)之间的关系如图所示,观察图象,回答下列问题:(1)某人若按A方案通话时间为150分钟时通讯费用为元;若通讯费用为60元,则B方案比A方案的通话时间多分钟;(2)求B方案的通讯费用y(元)与通话时间x(分)之间的函数关系式;(3)当B方案的通讯费用为50元,通话时间为170分钟时,若两种方案的通讯费用相差10元,求通话时间相差多少分钟.3.(2014•河南)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.4.(2014•泉州)某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B两处出发,沿轨道到达C 处,B在AC上,甲的速度是乙的速度的1.5倍,设t(分)后甲、乙两遥控车与B处的距离分别为d1,d2,则d1,d2与t的函数关系如图,试根据图象解决下列问题:(1)填空:乙的速度v2=米/分;(2)写出d1与t的函数关系式:(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探求什么时间两遥控车的信号不会产生相互干扰?5.(2014•遵义)为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行”活动.自行车队从甲地出发,途径乙地短暂休息完成补给后,继续骑行至目的地丙地,自行车队出发1小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成2小时装卸工作后按原路返回甲地,自行车队与邮政车行驶速度均保持不变,并且邮政车行驶速度是自行车队行驶速度的2.5倍,如图表示自行车队、邮政车离甲地的路程y(km)与自行车队离开甲地时间x(h)的函数关系图象,请根据图象提供的信息解答下列各题:(1)自行车队行驶的速度是km/h;(2)邮政车出发多少小时与自行车队首次相遇?(3)邮政车在返程途中与自行车队再次相遇时的地点距离甲地多远?6.(2014•珠海)为庆祝商都正式营业,商都推出了两种购物方案.方案一:非会员购物所有商品价格可获九五折优惠,方案二:如交纳300元会费成为该商都会员,则所有商品价格可获九折优惠.(1)以x(元)表示商品价格,y(元)表示支出金额,分别写出两种购物方案中y关于x的函数解析式;(2)若某人计划在商都购买价格为5880元的电视机一台,请分析选择哪种方案更省钱?7.(2014•烟台)山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A型车每辆售价多少元?(用列方程的方法解答)(2)该车行计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?8.(2014•昆明)某校运动会需购买A,B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品的单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.求出自变量m的取值范围,并确定最少费用W的值.9.(2014•黄冈)某地实行医疗保险(以下简称“医保”)制度.医保机构规定:一:每位居民年初缴纳医保基金70元;二:居民每个人当年治病所花的医疗费(以定点医院的治疗发票为准),年底按下列方式(见表一)报销所治病的医疗费用:承担部分和年初缴纳的医保基金)记为y元.(1)当0≤x≤n时,y=70;当n<x≤6000时,y=(用含n、k、x的式子表示).(2)表二是该地A、B、C三位居民2013年治病所花费的医疗费和个人实际承担的医疗费用,根据表中的数据,求出n、k的值.(3)该地居民周大爷2013年治病所花费的医疗费共32000元,那么这一年他个人实际承担的医疗费用是多少元?10.(2014•南京)从甲地到乙地,先是一段平路,然后是一段上坡路,小明骑车从甲地出发,到达乙地后立即原路返回甲地,途中休息了一段时间,假设小明骑车在平路、上坡、下坡时分别保持匀速前进.已知小明骑车上坡的速度比在平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km.设小明出发x h后,到达离甲地y km的地方,图中的折线OABCDE表示y与x之间的函数关系.(1)小明骑车在平路上的速度为km/h;他途中休息了h;(2)求线段AB、BC所表示的y与x之间的函数关系式;(3)如果小明两次经过途中某一地点的时间间隔为0.15h,那么该地点离甲地多远?11.(2014•聊城)甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.(1)求出图中m,a的值;(2)求出甲车行驶路程y(km)与时间x(h)的函数解析式,并写出相应的x的取值范围;(3)当乙车行驶多长时间时,两车恰好相距50km.12.(2014•黔东南州)黔东南州某超市计划购进一批甲、乙两种玩具,已知5件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过20件,超出部分可以享受7折优惠,若购进x(x>0)件甲种玩具需要花费y元,请你求出y与x的函数关系式;(3)在(2)的条件下,超市决定在甲、乙两种玩具中选购其中一种,且数量超过20件,请你帮助超市判断购进哪种玩具省钱.13.(2014•盐城)一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后都停留一段时间,然后分别按原速一同驶往甲地后停车.设慢车行驶的时间为x小时,两车之间的距离为y千米,图中折线表示y与x之间的函数图象,请根据图象解决下列问题:(1)甲乙两地之间的距离为千米;(2)求快车和慢车的速度;(3)求线段DE所表示的y与x之间的函数关系式,并写出自变量x的取值范围.14.(2014•齐齐哈尔)已知,A、B两市相距260千米,甲车从A市前往B市运送物资,行驶2小时在M地汽车出现故障,立即通知技术人员乘乙车从A市赶来维修(通知时间忽略不计),乙车到达M地后又经过20分钟修好甲车后以原速原路返回,同时甲车以原速1.5倍的速度前往B市,如图是两车距A市的路程y(千米)与甲车行驶时间x(小时)之间的函数图象,结合图象回答下列问题:(1)甲车提速后的速度是千米/时,乙车的速度是千米/时,点C的坐标为;(2)求乙车返回时y与x的函数关系式并写出自变量x的取值范围;(3)求甲车到达B市时乙车已返回A市多长时间?15.(2014•黑龙江)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,两车同时出发.不久,第二列快车也从甲地发往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分后,第二列快车与慢车相遇.设慢车行驶的时间为x(单位:时),慢车与第一、第二列快车之间的距离y(单位:千米)与x(单位:时)之间的函数关系如图1、图2,根据图象信息解答下列问题:(1)甲、乙两地之间的距离为千米.(2)求图1中线段CD所表示的y与x之间的函数关系式,并写出自变量x的取值范围.(3)请直接在图2中的()内填上正确的数.16.(2014•十堰)某市政府为了增强城镇居民抵御大病风险的能力,积极完善城镇居民医疗保险制度,纳入医疗保险的居民的大病住院医疗费用的报销比例标准如下表:设享受医保的某居民一年的大病住院医疗费用为x元,按上述标准报销的金额为y元.(1)直接写出x≤50000时,y关于x的函数关系式,并注明自变量x的取值范围;(2)若某居民大病住院医疗费用按标准报销了20000元,问他住院医疗费用是多少元?17.(2014•吉林)甲,乙两辆汽车分别从A,B两地同时出发,沿同一条公路相向而行,乙车出发2h后休息,与甲车相遇后,继续行驶.设甲、乙两车与B地的路程分别为y甲(km),y乙(km),甲车行驶的时间为x(h),y甲,y乙与x之间的函数图象如图所示,结合图象解答下列问题:(1)乙车休息了h;(2)求乙车与甲车相遇后y乙与x的函数解析式,并写出自变量x的取值范围;(3)当两车相距40km时,直接写出x的值.18.(2014•牡丹江)快、慢两车分别从相距480千米路程的甲、乙两地同时出发,匀速行驶,先相向而行,途中慢车因故停留1小时,然后以原速继续向甲地行驶,到达甲地后停止行驶;快车到达乙地后,立即按原路原速返回甲地(快车掉头的时间忽略不计),快、慢两车距乙地的路程y(千米)与所用时间x(小时)之间的函数图象如图,请结合图象信息解答下列问题:(1)直接写出慢车的行驶速度和a的值;(2)快车与慢车第一次相遇时,距离甲地的路程是多少千米?(3)两车出发后几小时相距的路程为200千米?请直接写出答案.19.(2014•天津)在平面直角坐标系中,O为原点,直线l:x=1,点A(2,0),点E,点F,点M都在直线l上,且点E和点F关于点M对称,直线EA与直线OF交于点P.(Ⅰ)若点M的坐标为(1,﹣1),①当点F的坐标为(1,1)时,如图,求点P的坐标;②当点F为直线l上的动点时,记点P(x,y),求y关于x的函数解析式.(Ⅱ)若点M(1,m),点F(1,t),其中t≠0,过点P作PQ⊥l于点Q,当OQ=PQ时,试用含t的式子表示m.20.(2015•峄城区校级模拟)甲船从A港出发顺流匀速驶向B港,行至某处,发现船上一救生圈不知何时落入水中,立刻原路返回,找到救生圈后,继续顺流驶向B港.乙船从B港出发逆流匀速驶向A港.已知救生圈漂流的速度和水流速度相同;甲、乙两船在静水中的速度相同.甲、乙两船到A港的距离y1、y2(km)与行驶时间x(h)之间的函数图象如图所示.(1)写出乙船在逆流中行驶的速度;(2)求甲船在逆流中行驶的路程;(3)求甲船到A港的距离y1与行驶时间x之间的函数关系式;(4)求救生圈落入水中时,甲船到A港的距离.21.(2015•日照模拟)自来水公司有甲、乙两个蓄水池,现将甲池的中水匀速注入乙池,甲、乙两个蓄水池中水的深度y(米)与注水时间x(时)之间的函数图象如下所示,结合图象回答下列问题.(1)分别求出甲、乙两个蓄水池中水的深度y与注水时间x之间的函数表达式;(2)求注入多长时间甲、乙两个蓄水池水的深度相同;(3)求注入多长时间甲、乙两个蓄水的池蓄水量相同;(4)3小时后,若将乙蓄水池中的水按原速全部注入甲蓄水池,又需多长时间?22.(2014•绍兴)已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题.(1)A比B后出发几个小时?B的速度是多少?(2)在B出发后几小时,两人相遇?2015年03月30日liujun的初中数学组卷参考答案一.解答题(共22小题)1.30 2.4230 3.4.40 5.24 6.7.8.9.0.01k(x-n)+70(n<x≤6000)10.150.1 11.12.13.56014.6096(,80)15.900 16.17.0.5 18.19.20.21.22.。

相关文档
最新文档