2015河北公务员考试行测排列组合问题基本原理考察分析

合集下载

2015年国家公务员考试行测真题答案解析

2015年国家公务员考试行测真题答案解析

2015年国家公务员考试行测真题答案解析为了帮助考生更好地理解和应对国家公务员考试行测科目,本文将对2015年国家公务员考试行测真题进行答案解析。

以下是2015年国家公务员考试行测真题及答案解析的详细内容。

一、判断推理题问题:某公司需要为新员工干部进行培训,会议地点只能在A、B、C三个城市之一,根据调查结果,分析认为参加培训的员工绝大多数来自D地,因此应选定的培训地点最可能在D地。

答案解析:这是一道判断推理题,要求根据给定的信息进行推理判断。

根据题目中提到的调查结果,参加培训的员工绝大多数来自D地,因此可以推断最可能的培训地点在D地。

二、信息匹配题问题:李雷、韩梅梅、张三、李四、王五五个人参加了一次会议,根据调查结果,以下哪个结论是正确的?A. 张三和李四是同一领域的专家。

B. 王五是新加入的成员。

C. 李雷是会议主持人。

D. 韩梅梅是唯一的女性成员。

答案解析:根据题目中提到的五个人参加了一次会议,根据下面的调查结果进行判断。

根据给定的信息,无法判断张三和李四是否是同一领域的专家;题目中没有提到王五是新加入的成员;题目中没有提到李雷是会议主持人;题目中没有提到韩梅梅是唯一的女性成员。

因此,以上四个选项都不是正确答案。

三、综合分析题问题:某公司在管理层中推行“员工自主管理”制度,根据调查结果,以下哪个观点是支持这一制度的?A. 管理层的权力得到增强,提高了决策效率。

B. 员工的积极性得到充分激发,提高了工作效率。

C. 员工的自由度受到限制,降低了工作动力。

D. 员工之间的合作性加强,提高了团队效能。

答案解析:这是一道综合分析题,要求根据给定的调查结果,找出支持“员工自主管理”制度的观点。

根据题目中提到的调查结果,可以得出结论:员工的积极性得到充分激发,提高了工作效率。

因此,选项B是正确答案。

总结:本文对2015年国家公务员考试行测真题进行了答案解析,涉及了判断推理题、信息匹配题和综合分析题等不同类型的题目。

2015年河北省公务员录用考试行测真题【完整+答案+解析】

2015年河北省公务员录用考试行测真题【完整+答案+解析】

2015年河北公务员考试行测真题第一部分:常识判断1.2014年11月,APEC会议在北京召开,这次会议的主题是:B.共建面向未来的亚太伙伴关系2.要把权力关进制度的笼子,这就需要:C.完善权力监督体系3.某中学附近有家黑网吧,老板经常以打折的方式引诱未成年的中学生逃学进入网吧玩游戏。

网吧老板的行为违反了:D.《中华人民共和国未成年人保护法》中有关社会保护的规定4.下列不符合我国古典建筑特点的是:A.不论是墙还是塔都是越往上越细,顶上有锋利的、直刺苍穹的小尖顶5.我国农历采用天干地支纪年法,天干是:甲、乙、丙、丁、戊、己、庚、辛、壬、癸。

地支是:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥。

以天干地支纪年,2015年是乙未年,2020年是:C.庚子年6.结核病是由结核分枝杆菌引起的慢性传染病,可侵及许多脏器,以肺部结核感染最为常见。

下列有关预防结核病的说法,错误的是:C.到人员密集场所,应该一直戴口罩7.下列城市中,2014年空气质量最好的是:D.秦皇岛8.我国人口分布有一条明显的地理分界线,该线东南部人口多,西北部人口少,这条分界线是:B.黑河—腾冲连线9.老王在微信朋友圈发了一条信息“庆祝弄璋之喜”,朋友们纷纷点赞恭贺。

老王所说的喜事是:A.喜得公子10.李强买房首付不够,向好友刘雷借了三万元,由于关系非常好,双方没有约定还款期限和利息。

依照法律规定:B.刘雷无权要求李强支付利息,但可以要求李强适时还款11.甲市新华区人民政府决定将其管理的国有电缆厂出售,该厂的承包人张某以侵犯其经营自主权为右提出行政复议。

张某可以提请行政复议的机关是:A.甲市人民政府12.2015年3月24日,以亚历山大.茹科夫为主席的国际奥委会评估团开始对北京、()联合申办2022年冬奥会进行实地考察和风险评估。

D.张家口13.财政政策是政府宏观调控的重要手段。

下列有关财政政策的论述,不正确的是:A.政府偏好对财政政策有重要影响C.紧缩性财政政策通常用来增加和刺激社会总需求14.苏州历史悠久,风景秀美。

2015年河北公务员录用考试行政职业能力测验《资料分析》试卷及详解【圣才出品】

2015年河北公务员录用考试行政职业能力测验《资料分析》试卷及详解【圣才出品】

2015年河北公务员录用考试行政职业能力测验《资料分析》试卷及详解所给出的图、表、文字或综合资料均有若干个问题要你回答,请根据材料提供的信息进行分析、比较、计算和判断处理。

请开始答题:根据下面提供的信息,回答1~5题。

表 2015年1~2月社会消费品零售总额主要数据1.2014年1~2月份社会消费品零售额是( )。

A.42858.3亿元B.43207.5亿元C.43237.9亿元D.43354.1亿元【答案】D【解析】由表格数据可知,2015年1~2月,社会消费品零售额为47993亿元,同比10.7%,故2014年1~2月份,社会消费品零售额为47993/(1+10.7%)≈43354亿元。

因此答案选D。

2.2015年1~2月份石油及制品的销售额同比减少的绝对量是( )。

A.-178.7亿元B.191.5亿元C.291.2亿元D.332.9亿元【答案】B【解析】由表格数据可知,2015年1~2月,石油及制品的销售额为2667亿元,同比增长-6.7%,则2014年1~2月的销售额为2667÷(1-6.7%)=2667÷0.933≈2858亿元,2015年1~2月的同比减少的绝对量为2858-2667=191亿元。

因此答案选B。

3.2014年1~2月份网上商品零售额占社会消费品零售额的比重是( )。

A.6.25%B.8.11%C.8.32%D.10.70%【答案】A【解析】由表格数据可知,2014年1~2月,社会消费品零售总额为47993÷(1+10.7%)≈43354亿元,网上商品零售总额为3991÷(1+47.4%)≈2708亿元,占社会消费品零售额的比重是2708÷43354×100%≈6.2%。

因此答案选A。

4.下列四类商品中,2015年1~2月份商品零售额同比增长最快的是( )。

A.文化办公用品B.家具C.日用品D.汽车【答案】C【解析】由表格数据可知,2015年1~2月,文化办公用品同比增长10.0%,家具同比增长12.4%,日用品同比增长14.6%,汽车同比增长10.8%,故商品零售额同比增长最快的是日用品。

行测技巧:排列组合问题之错位重排.doc

行测技巧:排列组合问题之错位重排.doc

行测技巧:排列组合问题之错位重排公务员行测考试主要是考量大家的数学推理能力和逻辑分析能力,下面由我为你精心准备了“行测技巧:排列组合问题之错位重排”,持续关注本站将可以持续获取更多的考试资讯!行测技巧:排列组合问题之错位重排公务员考试中虽然数量关系的题目比较难,但是有些特殊的题型是可以直接套用固定公式的。

这些题型解题的关键就在于区分题型以及记住相应结论。

错位重排就是这种题型。

接下来就给大家介绍一下什么是错位重排,以及这类题型该如何作答。

错位重排是一个排列组合问题。

是伯努利和欧拉在错装信封时发现的,因此又称伯努利-欧拉装错信封问题。

【题型表述】编号是1、2、…、n的n封信,装入编号为1、2、…、n的n个信封,要求每封信和信封的编号不同,问有多少种装法?【解析】这个问题如果数量比较少时还比较简单,比如说n=1时,0种;n=2时,1种。

但是n一旦比较大时就比较麻烦了。

其实对这类问题有个固定的递推公式,如果记n封信的错位重排数为Dn,则D1=0,D2=1,Dn=(n-1)(Dn-2+Dn-1)(n>2)。

其实在考试中n一般不会超过5,也就是说我们只需记住Dn的前几项:D1=0,D2=1,D3=2,D4=9,D5=44。

我们只需要记住结论,进行计算就可以。

我们来看一下考题是如何考察的。

【例1】四位厨师聚餐时各做了一道拿手菜。

现在要求每人去品尝一道菜,但不能尝自己做的那道菜。

问共有几种不同的尝法?A.6种B.9种C.12种D.15种【解析】答案:B。

记住结论D4=9。

直接锁定答案。

【例2】办公室工作人员一共有8个人,某次会议,已知全部到场。

问:恰好有3个人坐错位置的情况一共有多少种?A.78B.96C.112D.146【解析】答案:C。

8个人有3个坐错了,我们首先得确定哪3个坐错了。

即C(8,3)=56。

3个人坐错相当于3个人都没有坐在他原来的位置上,也就说相当于三个元素的错位重排,一共有2种。

再用分步相乘得到一共有56X2=112种。

公务员考试行政能力测试数学运算解题方法之排列组合问题

公务员考试行政能力测试数学运算解题方法之排列组合问题

公务员考试行政能力测试数学运算解题方法之排列组合问题排列组合问题是公务员考试当中必考题型,题量一般在一到两道,近年国考这部分题型的难度逐渐在加大,解题方法也越来越多样化,所以在掌握了基本方法原理的基础上,还要求我们熟悉主要解题思想。

那首先什么排列、组合呢?排列:从n个不同元素中,任取m个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。

组合:从n个不同元素种取出m个元素拼成一组,称为从n个不同元素取出m个元素的一个组合。

解答排列组合问题,首先必须认真审题,明确是属于排列问题还是组合问题,或者属于排列与组合的混合问题,其次要抓住问题的本质特征,灵活运用基本原理和公式进行分析,同时还要注意讲究一些策略和方法技巧。

下面介绍几种常用的解题方法和策略。

解决排列组合问题有几种相对比较特殊的方法。

下面通过例题逐个掌握:一、相邻问题---捆绑法不邻问题---插空法对于某几个元素不相邻的排列问题,可先将其他元素排好,再将不相邻元素在已排好的元素之间及两端空隙中插入即可。

【例题1】一张节目表上原有3个节目,如果保持这3个节目的相对顺序不变,再添进去2个新节目,有多少种安排方法?A.20B.12C.6D.4【答案】A。

【解析】首先,从题中之3个节目固定,固有四个空。

所以一、两个新节目相邻的的时候:把它们捆在一起,看成一个节目,此时注意:捆在一起的这两个节目本身也有顺序,所以有:C(4,1)×2=4×2=8种方法。

二、两个节目不相邻的时候:此时将两个节目直接插空有:A(4,2)=12种方法。

综上所述,共有12+8=20种。

二、插板法一般解决相同元素分配问题,而且对被分成的元素限制很弱(一般只要求不等于零),只对分成的份数有要求。

【例题2】把20台电脑分给18个村,要求每村至少分一台,共有多少种分配方法?A.190B.171C.153D.19【答案】B。

行测排列组合问题详解及秒杀方法

行测排列组合问题详解及秒杀方法
(5)甲乙不相邻,丙丁不相邻
分析:(1)有种方法。
(2)有种方法。
(3)有种方法。
(4)有种方法。
(5)本题不能用插空法,不能连续进行插空。
用间接解法:全排列-甲乙相邻-丙丁相邻+甲乙相邻且丙丁相邻,共--+=23040种方法。
例12. 某人Βιβλιοθήκη 击8枪,命中4枪,恰好有三枪连续命中,有多少种不同的情况?
因而共有185种。
例7.现有印着0,l,3,5,7,9的六张卡片,如果允许9可以作6用,那么从中任意抽出三张可以组成多少个不同的三位数?
分析:有同学认为只要把0,l,3,5,7,9的排法数乘以2即为所求,但实际上抽出的三个数中有9的话才可能用6替换,因而必须分类。
抽出的三数含0,含9,有种方法;
(2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解;
(3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大;
(4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。
二、两个基本计数原理及应用
例18.5男4女排成一排,要求男生必须按从高到矮的顺序,共有多少种不同的方法?
分析:首先不考虑男生的站位要求,共种;男生从左至右按从高到矮的顺序,只有一种站法,因而上述站法重复了次。因而有=9×8×7×6=3024种。
若男生从右至左按从高到矮的顺序,只有一种站法, 同理也有3024种,综上,有6048种。
(2)组合数:从n个不同元素中取出m(m≤n)个元素的所有组合的个
这里要注意排列和组合的区别和联系,从n个不同元素中,任取m(m≤n)个元素,“按照一定的顺序排成一列”与“不管怎样的顺序并成一组”这是有本质区别的.

公务员行政能力考试测验:排列组合之解题方法精要

公务员行政能力考试测验:排列组合之解题方法精要

公务员行政能力考试测验排列组合之解题方法精要在排列组合中,有三种特别常用的方法:捆绑法、插空法、插板法。

这三种方法有特定的应用环境,华图公务员录用考试研究中心行政职业能力测验研究专家沈栋老师通过本文以实例来说明三种方法之间的差异及应用方法。

一、捆绑法精要:所谓捆绑法,指在解决对于某几个元素要求相邻的问题时,先整体考虑,将相邻元素视作一个整体参与排序,然后再单独考虑这个整体内部各元素间顺序。

提醒:其首要特点是相邻,其次捆绑法一般都应用在不同物体的排序问题中。

【例题】有10本不同的书:其中数学书4本,外语书3本,语文书3本。

若将这些书排成一列放在书架上,让数学书排在一起,外语书也恰好排在一起的排法共有( )种。

解析:这是一个排序问题,书本之间是不同的,其中要求数学书和外语书都各自在一起。

为快速解决这个问题,先将4本数学书看做一个元素,将3本外语书看做一个元素,然后和剩下的3本语文书共5个元素进行统一排序,方法数为,然后排在一起的4本数学书之间顺序不同也对应最后整个排序不同,所以在4本书内部也需要排序,方法数为,同理,外语书排序方法数为。

而三者之间是分步过程,故而用乘法原理得。

【例题】5个人站成一排,要求甲乙两人站在一起,有多少种方法?解析:先将甲乙两人看成1个人,与剩下的3个人一起排列,方法数为,然后甲乙两个人也有顺序要求,方法数为,因此站队方法数为。

【练习】一台晚会上有6个演唱节目和4个舞蹈节目,4个舞蹈节目要排在一起,有多少不同的安排节目的顺序?注释:运用捆绑法时,一定要注意捆绑起来的整体内部是否存在顺序的要求,有的题目有顺序的要求,有的则没有。

如下面的例题。

【例题】6个不同的球放到5个不同的盒子中,要求每个盒子至少放一个球,一共有多少种方法?解析:按照题意,显然是2个球放到其中一个盒子,另外4个球分别放到4个盒子中,因此方法是先从6个球中挑出2个球作为一个整体放到一个盒子中,然后这个整体和剩下的4个球分别排列放到5个盒子中,故方法数是。

公务员行测考试排列组合题指导整理

公务员行测考试排列组合题指导整理

公务员行测考试排列组合题指导整理众所周知,在各类公职类考试中,许多人对于数量关系部分都是保持放弃的态度,主要是由于题目相对较难,觉得性价比相对较低,而行测的考试内容都是大同小异的,下面我给大家带来关于公务员行测考试排列组合题指导,盼望会对大家的工作与学习有所关心。

公务员行测考试排列组合题指导一、隔板模型隔板模型,首先要知道隔板模型的题型特征,也就是什么样的题目属于隔板模型,其实只要包含三个条件即可,1.元素分组;2.元素相同;3.每组至少一个。

那么,接下来我们看看究竟这种题应当怎么样做。

【例题】某单位有9台相同的电脑,要分给3个部门,每个部门至少1台,问有多少分安排的方式?A.24B.28C.30D.56【解析】依据题意,可以把9台相同电脑排成一排,产生了10个空位,现在只需要在空位中插板子就可以了,插1块板子就会自动分成2组,插2块板子就会自动分成3组,但是头和尾的空位是不能插板子的,由于插上板子后也不会分组,故本题转变成8个空位中插2块板子,共有多少种方法?28,故本题选择B项。

二、错位重排错位重排的题目,其实就是错开位置重新排列,让原本应当在某位置的元素,都不在某个位置,那么这一类题目应当怎么做呢?其实大家只需要记住几个结论就可以了,假如是1个元素错位重排,结果为0;2个元素错位重排,结果为1;3个元素错位重排,结果为2;4个元素错位重排,结果为9。

一起来看下面的例题。

【例题】某次厨艺大赛,四位厨师分别做了一道菜,现在需要他们四位每人选择一道菜进行品尝,问每位厨师都没有尝到自己做的那道菜的结果有多少种?A.1B.5C.8D.9【解析】依据题意,四位厨师本应对应自己的菜品,但是现在要求每位厨师都不选择自己的菜,实际上就是4个元素的错位重排,结果为9,故本题选择D项。

通过这两道题,信任大家对于排列组合中的特别题型也有了肯定的熟悉,假如在考试的时候遇到这样的题目,是肯定可以花时间去做一下的,盼望大家可以多多练习!拓展:公务员行测考试填空题指导精确率低最主要的问题在于做题的方式,信任许多同学有过这样的经受:拿到一道新题目,简洁扫瞄过后便开头尝试选项带入的合理性。

公务员行测考试—排列组合问题

公务员行测考试—排列组合问题

排列组合问题I一、知识点: 1分类计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法那么完成这件事共有 12n N m m m =+++L 种不同的方法2.分步计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事有12n N m m m =⨯⨯⨯L 种不同的方法3.排列的概念:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列4.排列数的定义:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出m 元素的排列数,用符号mn A 表示 5.排列数公式:(1)(2)(1)m n A n n n n m =---+L (,,m n N m n *∈≤) 6 阶乘:!n 表示正整数1到n 的连乘积,叫做n 的阶乘规定0!1=.7.排列数的另一个计算公式:m n A =!()!n n m - 8 组合的概念:一般地,从n 个不同元素中取出m ()m n ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合9.组合数的概念:从n 个不同元素中取出m ()m n ≤个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数.用符号m n C 表示.10.组合数公式:(1)(2)(1)!m m n nm m A n n n n m C A m ---+==L 或)!(!!m n m n C m n -=,,(n m N m n ≤∈*且11 组合数的性质1:m n n m n C C -=.规定:10=n C ;2:m n C 1+=m n C +1-m n C二、解题思路:解排列组合问题,首先要弄清一件事是“分类”还是“分步”完成,对于元素之间的关系,还要考虑“是有序”的还是“无序的”,也就是会正确使用分类计数原理和分步计数原理、排列定义和组合定义,其次,对一些复杂的带有附加条件的问题,需掌握以下几种常用的解题方法:特殊优先法 对于存在特殊元素或者特殊位置的排列组合问题,我们可以从这些特殊的东西入手,先解决特殊元素或特殊位置,再去解决其它元素或位置,这种解法叫做特殊优先法.例如:用0、1、2、3、4这5个数字,组成没有重复数字的三位数,其中偶数共有________个.(答案:30个)科学分类法 对于较复杂的排列组合问题,由于情况繁多,因此要对各种不同情况,进行科学分类,以便有条不紊地进行解答,避免重复或遗漏现象发生例如:从6台原装计算机和5台组装计算机中任取5台,其中至少有原装与组装计算机各两台,则不同的选取法有_______种.(答案:350)插空法 解决一些不相邻问题时,可以先排一些元素然后插入其余元素,使问题得以解决例如:7人站成一行,如果甲乙两人不相邻,则不同排法种数是______.(答案:3600)捆绑法相邻元素的排列,可以采用“整体到局部”的排法,即将相邻的元素当成“一个”元素进行排列,然后再局部排列例如:6名同学坐成一排,其中甲、乙必须坐在一起的不同坐法是________种.(答案:240)排除法从总体中排除不符合条件的方法数,这是一种间接解题的方法. b、排列组合应用题往往和代数、三角、立体几何、平面解析几何的某些知识联系,从而增加了问题的综合性,解答这类应用题时,要注意使用相关知识对答案进行取舍.例如:从集合{0,1,2,3,5,7,11}中任取3个元素分别作为直线方程Ax+By+C=0中的A、B、C,所得的经过坐标原点的直线有_________条.(答案:30)三、讲解范例:例1(1)求三个偶数必相邻的七位数的个数;(2)求三个偶数互不相邻的七位数的个数解 (1):因为三个偶数2、4、6必须相邻,所以要得到一个符合条件的七位数可以分为如下三步:第一步将1、3、5、7四个数字排好有44P种不同的排法;第二步将2、4、6三个数字“捆绑”在一起有33P种不同的“捆绑”方法;第三步将第二步“捆绑”的这个整体“插入”到第一步所排的四个不同数字的五个“间隙”(包括两端的两个位置)中的其中一个位置上,有15P种不同的“插入”方法根据乘法原理共有153344PPP••=720种不同的排法所以共有720个符合条件的七位数解(2):因为三个偶数2、4、6互不相邻,所以要得到符合条件的七位数可以分为如下两步:第一步将1、3、5、7四个数字排好,有44P种不同的排法;第二步将2、4、6分别“插入”到第一步排的四个数字的五个“间隙”(包括两端的两个位置)中的三个位置上,有35P种“插入”方法根据乘法原理共有3544PP•=1440种不同的排法所以共有1440个符合条件的七位数例2将A、B、C、D、E、F分成三组,共有多少种不同的分法?解:要将A、B、C、D、E、F分成三组,可以分为三类办法:(1-1-4)分法、(1-2-3)分法、(2-2-2)分法下面分别计算每一类的方法数:第一类(1-1-4)分法,这是一类整体不等分局部等分的问题,可以采用两种解法解法一:从六个元素中取出四个不同的元素构成一个组,余下的两个元素各作为一个组,有46 C解法二:从六个元素中先取出一个元素作为一个组有16C种选法,再从余下的五个元素中取出一个元素作为一个组有15C种选法,最后余下的四个元素自然作为一个组,由于第一步和第二步各选取出一个元素分别作为一个组有先后之分,产生了重复计算,应除以2 2 P所以共有221516PCC•=15第二类(1-2-3)分法,这是一类整体和局部均不等分的问题,首先从六个不同的元素中选取出一个元素作为一个组有16C种不同的选法,再从余下的五个不同元素中选取出两个不同的元素作为一个组有25C种不同的选法,余下的最后三个元素自然作为一个组,根据乘法原理共有2516CC•=60种不同的分组方法第三类(2-2-2)分法,这是一类整体“等分”的问题,首先从六个不同元素中选取出两个不同元素作为一个组有26C种不同的取法,再从余下的四个元素中取出两个不同的元素作为一个组有24C种不同的取法,最后余下的两个元素自然作为一个组由于三组等分存在先后选取的不同的顺序,所以应除以33P,因此共有332426PCC•=15种不同的分组方法根据加法原理,将A、B、C、D、E、F六个元素分成三组共有:15+60+15=90种不同的方法例3一排九个坐位有六个人坐,若每个空位两边都坐有人,共有多少种不同的坐法?解:九个坐位六个人坐,空了三个坐位,每个空位两边都有人,等价于三个空位互不相邻,可以看做将六个人先依次坐好有66P种不同的坐法,再将三个空坐位“插入”到坐好的六个人之间的五个“间隙”(不包括两端)之中的三个不同的位置上有35C种不同的“插入”方法根据乘法原理共有3566CP•=7200种不同的坐法排列组合问题II一、相临问题——整体捆绑法例1.7名学生站成一排,甲、乙必须站在一起有多少不同排法?解:两个元素排在一起的问题可用“捆绑”法解决,先将甲乙二人看作一个元素与其他五人进行排列,并考虑甲乙二人的顺序,所以共有种。

2015河北公务员考试《行测》真题答案及解析

2015河北公务员考试《行测》真题答案及解析

2015河北公务员考试《行测》真题答案及解析河北公务员考试《行政职业能力测验》主要测查与公务员职业密切相关的、适合通过客观化纸笔测验方式进行考查的基本素质和能力要素,包括言语理解与表达、数量关系、判断推理、资料分析和常识判断等部分。

更具体的各个部分的详细情况,我们来看看河北公务员考试课程是如何设置教学的。

点击这里可以>>>在线咨询。

还有更多内容吗?我想看看河北公务员考试课程是如何设置教学的!
中公教育公务员考试培训与辅导专家提醒您,备考有计划,才能在公考大战中拔得头筹!公务员考试题库系统邀请您一同刷题!。

行测排列组合问题

行测排列组合问题

公务员行测排列组合问题的七大解题策略排列组合问题是历年公务员考试行测的必考题型,并且随着近年公务员考试越来越热门,国考中这部分题型的难度也在逐渐的加大,解题方法也趋于多样化。

解答排列组合问题,必须认真审题,明确是属于排列问题还是组合问题,或者属于排列与组合的混合问题;同时要抓住问题的本质特征,灵活运用基本原理和公式进行分析,还要注意讲究一些策略和方法技巧。

一、排列和组合的概念排列:从n个不同元素中,任取m个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。

组合:从n个不同元素种取出m个元素拼成一组,称为从n个不同元素取出m个元素的一个组合。

二、七大解题策略1.特殊优先法特殊元素,优先处理;特殊位置,优先考虑。

对于有附加条件的排列组合问题,一般采用:先考虑满足特殊的元素和位置,再考虑其它元素和位置。

例:从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者都不能从事翻译工作,则不同的选派方案共有( )(A) 280种 (B)240种 (C)180种 (D)96种正确答案:【B】解析:由于甲、乙两名志愿者都不能从事翻译工作,所以翻译工作就是“特殊”位置,因此翻译工作从剩下的四名志愿者中任选一人有C(4,1)=4种不同的选法,再从其余的5人中任选3人从事导游、导购、保洁三项不同的工作有A(5,3)=60种不同的选法,所以不同的选派方案共有C(4,1)×A(5,3)=240种,所以选B。

2.科学分类法问题中既有元素的限制,又有排列的问题,一般是先元素(即组合)后排列。

对于较复杂的排列组合问题,由于情况繁多,因此要对各种不同情况,进行科学分类,以便有条不紊地进行解答,避免重复或遗漏现象发生。

同时明确分类后的各种情况符合加法原理,要做相加运算。

例:某单位邀请10为教师中的6为参加一个会议,其中甲,乙两位不能同时参加,则邀请的不同方法有()种。

公务员考试--行测-排列组合问题及计算公式

公务员考试--行测-排列组合问题及计算公式

排列组合公式/排列组合计算公式排列A------和顺序有关(P和A是一个意思)组合 C -------不牵涉到顺序的问题排列分顺序,组合不分例如把5本不同的书分给3个人,有几种分法. "排列"把5本书分给3个人,有几种分法"组合"1.排列及计算公式从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号A(n,m)表示.A(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)!(规定0!=1).2.组合及计算公式从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m) 表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=A(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!*n2!*...*nk!).k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m). 排列(Pnm(n为下标,m为上标))Anm=n×(n-1)....(n-m+1);Anm=n!/(n-m)!(注:!是阶乘符号);Ann(两个n分别为上标和下标)=n!;0!=1;An1(n为下标1为上标)=n组合(Cnm(n为下标,m为上标))Cnm=Anm/Amm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m2008-07-08 13:30公式P是指排列,从N个元素取R个进行排列。

行测数学运算解题方法之排列组合问题

行测数学运算解题方法之排列组合问题

行测数学运算解题方法之排列组合问题排列组合问题是公务员考试当中必考题型,题量一般在一到两道,近年国考这部分题型的难度逐渐在加大,解题方法也越来越多样化,所以在掌握了基本方法原理的基础上,还要求我们熟悉主要解题思想。

那首先什么排列、组合呢?排列:从n个不同元素中,任取m个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。

组合:从n个不同元素种取出m个元素拼成一组,称为从n个不同元素取出m个元素的一个组合。

解答排列组合问题,首先必须认真审题,明确是属于排列问题还是组合问题,或者属于排列与组合的混合问题,其次要抓住问题的本质特征,灵活运用基本原理和公式进行分析,同时还要注意讲究一些策略和方法技巧。

下面介绍几种常用的解题方法和策略。

解决排列组合问题有几种相对比较特殊的方法。

下面通过例题逐个掌握:一、相邻问题---捆绑法不邻问题---插空法对于某几个元素不相邻的排列问题,可先将其他元素排好,再将不相邻元素在已排好的元素之间及两端空隙中插入即可。

【例题1】一张节目表上原有3个节目,如果保持这3个节目的相对顺序不变,再添进去2个新节目,有多少种安排方法?A.20B.12C.6D.4【答案】A。

【解析】首先,从题中之3个节目固定,固有四个空。

所以一、两个新节目相邻的的时候:把它们捆在一起,看成一个节目,此时注意:捆在一起的这两个节目本身也有顺序,所以有:C(4,1)×2=4×2=8种方法。

二、两个节目不相邻的时候:此时将两个节目直接插空有:A(4,2)=12种方法。

综上所述,共有12+8=20种。

来源:二、插板法一般解决相同元素分配问题,而且对被分成的元素限制很弱(一般只要求不等于零),只对分成的份数有要求。

【例题2】把20台电脑分给18个村,要求每村至少分一台,共有多少种分配方法?A.190B.171C.153D.19【答案】B。

【解析】此题的想法即是插板思想:在20电脑内部所形成的19个空中任意插入17个板,这样即把其分成18份,那么共有: C(19,17)=C(19,2)=171 种。

2015永州公务员考试行测排列组合问题基本原理考察分析

2015永州公务员考试行测排列组合问题基本原理考察分析

中公教育专家认为,排列组合题目主要考察对基本原理的理解,要做一件事,完成它若是有n类办法,是分类问题,第一类的方法是独立的,要使用加法原理;做一件事,需要分
n个步骤,步骤之间是连续的,只有分成若干个互相联系的步骤,依次相继完成这件事才算完成,因此用乘法原理。

口诀加法原理:类类独立;乘法原理:步步相关。

排列与组合的区别与联系:与顺序无关的为组合问题,与顺序有关的为排列问题,其实排列可以看成两步,首先从n个元素中选出来m个,然后把选出来的m个元素按顺序排列起来,也就是不仅要从n个元素中选出m个,还要知道m个元素是什么。

2015国家公务员考试:行测数量关系技巧之排列组合

2015国家公务员考试:行测数量关系技巧之排列组合

2015国家公务员考试:行测数量关系技巧之排列组合2015国考拿下高分,你必须具备的三大能力排列组合是国考中的重点题型,也是让很多人感觉头疼的题目,大家经常会碰到这样的困惑:同一类型的题目,当表达形式有所变化后,就不知道如何求解了,从而降低了学习效率。

在此,中公教育专家总结出排列组合里常见的几种题型,希望能对大家有所帮助。

1. 相邻问题——捆绑法首先把相邻元素当做一个整体参与运算,然后考虑相邻元素间的排列顺序。

【例题1】若有A、B、C、D、E五个人排队,要求A和B两个人必须站在相邻位置,则有多少排队方法?A.20B.12C.36D.48【答案】D。

【中公解析】题目要求A和B两个人必须排在一起,首先将A和B两个人“捆绑”,视其为“一个人”,也即对“AB”、C、D、E“四个人”进行排列,有A(4,4)种排法。

又因为捆绑在一起的A、B两人也要排序,有2种排法。

根据分步乘法原理,总的排法有A(4,4)×2=48种。

故答案为D。

注意:运用捆绑法解决排列组合问题时,一定要注意“捆绑”起来的大元素内部的顺序问题。

解题过程是“先捆绑,再排列”。

2. 不相邻问题---插空法先排其他元素,将不相邻元素放在已排元素的中间或两端位置上。

【例题2】一张节目表上原有3个节目,如果保持这3个节目的相对顺序不变,再添加进去2个新节目,有多少种安排方法?A.8B.12C.16D.20【答案】D。

【中公解析】可根据插空法解题,故可先用一个节目去插4个空位(原来的3个节目排好后,中间和两端共有4个空位),有4种方法;再用另一个节目去插5个空位,有5种方法;由乘法原理得:所有不同的添加方法为 4×5=20种。

故答案为D。

注意:运用插空法解决排列组合问题时,一定要注意插空位置包括先排好元素“中间空位”和“两端空位”。

解题过程是“先排列,再插空”。

3. 错位重排错位重排记住几条结论,可以帮助我们快速解题,3个元素的错位重排方法数是2,4个元素错位重排方法数是9, 5个元素错位重排方法数是44。

公务员考试逻辑判断技巧之:排列组合题型解题技巧

公务员考试逻辑判断技巧之:排列组合题型解题技巧

公务员考试逻辑判断技巧之:排列组合题型解题技巧第一篇:公务员考试逻辑判断技巧之:排列组合题型解题技巧公务员考试逻辑判断技巧之:排列组合题型解题技巧排列组合是组合学最基本的概念。

所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。

排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。

排列组合问题是历年国家公务员考试行测的必考题型,“16字方针”是解决排列组合问题的基本规律,即:分类相加,分步相乘,有序排列,无序组合。

一、试验:题中附加条件增多,直接解决困难时,用试验逐步寻找规律。

例、将数字1,2,3,4填入标号为1,2,3,4,的方格中,每方格填1个,方格标号与所填数字均不相同的填法种数有() A6 B.9 C.11 D.23解析:第一方格内可填2或3或4,如第一填2,则第二方格可填1或3或4,若第二方格内填1,则后两方格只有一种方法;若第二方格填3或4,后两方格也只有一种填法。

一共有9种填法,故选B二、不相邻问题用“插空法”:对某几个元素不相邻的排列问题,可将其他元素排列好,然后再将不相邻接元素在已排好的元素之间及两端的空隙之间插入。

三、合理分类与准确分步:含有约束条件的排列组合问题,按元素的性质进行分类,按事情发生的连续过程分步,做到分类标准明确,分步层次清楚,不重不漏。

四、消序例、4个男生和3个女生,高矮不相等,现在将他们排成一行,要求从左到右女生从矮到高排列,有多少种排法。

解析:先在7个位置中任取4个给男生,有种排法,余下的3个位置给女生,只有一种排法,故有种排法。

五、顺序固定用“除法”:对于某几个元素按一定的顺序排列问题,可先把这几个元素与其他元素一同进行全排列,然后用总的排列数除于这几个元素的全排列数。

经验分享:虽然自己在这帖子里给大家发了很多感慨,但我更想跟大家说的是自己在整个公务员考试的过程中的经验的以及自己能够成功的考上的捷径。

首先就是自己的阅读速度比别人的快考试过程中的优势自然不必说,平时的学习效率才是关键,其实很多人不是真的不会做,90%的人都是时间不够用,要是给足够的时间,估计很多人能够做出大部分的题。

国家公务员考试排列组合问题上

国家公务员考试排列组合问题上

中公教育·给人改变未来的力量国家公务员考试排列组合问题上
行测中的排列组合问题是历年公务员考试中必考题型,并且随着近年公务员考试越来越热门,公考中这部分题型的难度也在逐渐的加大,解题方法也趋于多样化。

解答排列组合问题,必须认真审题,明确是属于排列问题还是组合问题,或者属于排列与组合的混合问题;同时要抓住问题的本质特征,灵活运用基本原理和公式进行分析,还要注意讲究一些策略和方法技巧。

一、排列和组合的概念
排列:从n个不同元素中,任取m个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。

组合:从n个不同元素种取出m个元素拼成一组,称为从n个不同元素取出m个元素的一个组合。

二、七大解题策略
1.间接法
即部分符合条件排除法,采用正难则反,等价转换的策略。

为求完成某件事的方法种数,如果我们分步考虑时,会出现某一步的方法种数不确定或计数有重复,就要考虑用分类法,分类法是解决复杂问题的有效手段,而当正面分类情况种数较多时,则就考虑用间接法计数.
例:从6名男生,5名女生中任选4人参加竞赛,要求男女至少各1名,有多少种不同的选法?
A.240
B.310
C.720
D.1080
正确答案【B】
解析:此题从正面考虑的话情况比较多,如果采用间接法,男女至少各一人的反面就是分别只选男生或者女生,这样就可以变化成C(11,4)-C(6,4)-C(5,4)=310。

2015河北省国家公务员考试行测技巧之排序解题秘诀

2015河北省国家公务员考试行测技巧之排序解题秘诀

2015河北省国家公务员考试行测技巧之排序解题秘诀国家公务员考试报名已经结束,报名已经进入到审核阶段,华图教育现在为广大考生提供行测排序题的解题技巧,希望能对考生行测拿分有一定的帮助。

行测言语理解与表达中,语句排序一直是国家公务员必考的题型,在作答这类题型的时候,应该误区一:通读所给材料,自主排序在考试中,通常会给5-6句话,个别会出现7句。

不少考生直接阅读,然后开始凭语感进行排序。

这样做不仅会重复阅读导致增加阅读量消耗时间,而且正确率根本得不到保证,因为经常会出现自己千辛万苦排好的顺序,选项当中一个也没有的窘况。

解决办法:从选项入手选项并非盲目的去通读,而是首先用观察法——注意首尾句。

直接判断什么样的句子可以做首句,什么样的句子可以做尾句,也就是说将比较困难的多个句子的排序转化成简单的两个句子的判断。

因此,对于句子本身的理解,就要有一定积累。

这里给大家两条较为常用的判断方法:(1)指示代词开头的句子不能做首句。

什么叫指示代词,就是常说的“这”“他”“它”等。

如果将他放在句首就会犯指代不明的语法错误,因此这类词语开头的句子是不能放在句首的。

(2)关联词开头的句子一般不做首句,关联词可以确定两句话之间的位置。

关联词开头的句子,如一句话的开头是“但是”,那么它表示转折,说明这句话的前面一定有一句和它趋势相反的句子。

因此它虽然不能做首句,但是可以确定另一话和它的关系。

误区二:中间排序时,从不注意内部关系有些考生虽然可以从选项入手,但有时遇上首尾句相同时的情况,往往感觉棘手,又开始通读选项的顺序。

实际上,这是对文段的逻辑顺序不敏感造成的。

在此给大家介绍一种常见的逻辑顺序在考试时的运用。

解决方法:注意利用逻辑顺序(主要介绍时间顺序)时间顺序是较为常见的写作顺序之一,在此并非是要大家去通读之后再排序,而是去瞄准一些敏感词,直接排序。

最常用——精确时间词什么是精确的时间词?这个很好理解,精确到年代。

如材料的某几句话出现2013,2009,1998,这个时候可以将这三句话直接按照时间顺序排列:1998,2009,2013。

【推荐】行测答题排列组合的基本计数原理介绍-精选word文档 (6页)

【推荐】行测答题排列组合的基本计数原理介绍-精选word文档 (6页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==行测答题排列组合的基本计数原理介绍行政职业能力测试的考题覆盖面很广,包括政治、经济、文化、人文、社会、法律、科技和管理等方面的内容,掌握好技巧考生将会得到很大帮助,以下是小编精心整理的行测答题排列组合的基本计数原理解析,希望能帮到大家!行测答题排列组合的基本计数原理解析排列组合的基本计数原理有两个,加法原理和乘法原理。

下面让我们逐一进行解释:加法原理即分类时采用的计数方法。

也就是说,当完成一件事情,分成几类情况时,把每一类的情况数计算或枚举出来,那么总的情况数,就是所有类的情况数相加。

乘法原理即分步时采用的计数方法。

也就是说,当完成一件事情,分成先后几步时,把每一步的情况数计算或枚举出来,那么总的情况数,就是所有步的情况数相加乘。

那么,何为分类,何为分步?让我们来举例说明。

如果从北京到上海,那么坐飞机可以,坐高铁可以,坐汽车可以,自驾也行,此时称为分类;如果坐飞机有3个航班合适,坐高铁有4趟高铁合适,坐汽车有2趟都行,自驾游也有1种路线,那么从北京到上海,所有的方法数就是3+4+2+1=10种方法。

如果从北京到上海,上海到广州,广州再回北京,整个的行程按顺序分成了3个步骤,此时即为分步;如果从北京到上海有3种方法,上海到广州到4条路线,广州再回北京也有2种方案,那么整个行程,所有的方法数就是3×4×2=24种方法。

我们发现分类与分步,一定是不同的、有区别的,它们的区别就在于:能否独立完成此事。

第一个例子中,想从北京到上海,飞机、高铁、汽车、自驾,这4类方案,都可以完成这个行程,即分类当中的每一类,都可以独立完成整个事情。

第二个例子中,北京到上海,上海到广州,广州再回北京,这是完成整个行程的3步,单独拿出任何一步来,比如上海到广州,这1步,并不意味着整个行程就完成了,即分步当中的任何一步,都不能独立完成此事。

2015国考行测答题技巧:排列组合解题策略

2015国考行测答题技巧:排列组合解题策略

行测答题技巧:排列组合问题是历年公务员考试行测的必考题型,并且随着近年公务员考试越来越热门,国考中这部分题型的难度也在逐渐的加大,解题方法也趋于多样化。

解答排列组合问题,必须认真审题,明确是属于排列问题还是组合问题,或者属于排列与组合的混合问题;同时要抓住问题的本质特征,灵活运用基本原理和公式进行分析,还要注意讲究一些策略和方法技巧。

一、排列和组合的概念排列:从n个不同元素中,任取m个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。

组合:从n个不同元素种取出m个元素拼成一组,称为从n个不同元素取出m个元素的一个组合。

二、七大解题策略1.特殊优先法特殊元素,优先处理;特殊位置,优先考虑。

对于有附加条件的排列组合问题,一般采用:先考虑满足特殊的元素和位置,再考虑其它元素和位置。

例:从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者都不能从事翻译工作,则不同的选派方案共有( )(A) 280种 (B)240种 (C)180种 (D)96种正确答案:【B】解析:由于甲、乙两名志愿者都不能从事翻译工作,所以翻译工作就是“特殊”位置,因此翻译工作从剩下的四名志愿者中任选一人有C(4,1)=4种不同的选法,再从其余的5人中任选3人从事导游、导购、保洁三项不同的工作有A(5,3)=10种不同的选法,所以不同的选派方案共有C(4,1)×A(5,3)=240种,所以选B。

2.科学分类法问题中既有元素的限制,又有排列的问题,一般是先元素(即组合)后排列。

对于较复杂的排列组合问题,由于情况繁多,因此要对各种不同情况,进行科学分类,以便有条不紊地进行解答,避免重复或遗漏现象发生。

同时明确分类后的各种情况符合加法原理,要做相加运算。

例:某单位邀请10为教师中的6为参加一个会议,其中甲,乙两位不能同时参加,则邀请的不同方法有()种。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

排列组合问题是每年公务员考试行测中的必考题型。

此类题目是行测数学中唯一一类涉及高中数学的题型,考生初次接触会觉得难度较大,不知如何入手。

因此考生备考时要对此类题充分重视,此类题目考查的是思维,擅长的考生能快速解出取得相应分数。

中公教育专家主要针对核心概念和方法技巧这两个方面进行深入讲解。

中公教育专家认为,排列组合题目主要考察对基本原理的理解,要做一件事,完成它若是有n类办法,是分类问题,第一类的方法是独立的,要使用加法
原理;做一件事,需要分n个步骤,步骤之间是连续的,只有分成若干个互相联系的步骤,依次相继完成这件事才算完成,因此用乘法原理。

口诀加法原理:类类独立;乘法原理:步步相关。

排列与组合的区别与联系:与顺序无关的为组合问题,与顺序有关的为排列问题,其实排列可以看成两步,首先从n个元素中选出来m个,然后把选出来的m个元素按顺序排列起来,也就是不仅要从n个元素中选出m个,还要知道m个元素是什么。

文章来源:更多信息请关注承德中公教育网/?wt.mc_id=bk4828。

相关文档
最新文档