我国露天煤矿开采环境问题及防治对策研究论文__外文翻译中英文(可编辑)

合集下载

浅析露天采矿存在的环境问题及解决对策

浅析露天采矿存在的环境问题及解决对策

浅析露天采矿存在的环境问题及解决对策露天采矿是指通过露天开挖方式进行矿石开采的一种方法。

它是一种高效的开采方式,但也带来了很多环境问题。

本文将就露天采矿存在的环境问题进行分析,并提出相应的解决对策。

露天采矿导致了土地破坏问题。

露天开挖需要占用大片的土地,导致原有的土地生态系统被破坏,土地失去了生产功能,无法再进行农业或其他产业的利用。

解决这个问题的对策是在采矿结束后进行土地的复垦和生态恢复,使其重新具备生产利用的功能。

露天采矿产生的废石和废渣会大量堆放在采矿现场,导致土地污染。

这些固体废物中含有大量有毒有害物质,对土壤和水源造成严重的污染。

解决这个问题的对策是合理处理固体废物,采用科学的处理方法对废渣进行处理或回收利用,以减少对环境的影响。

露天采矿中使用的大量水资源也导致了水资源的枯竭和污染。

露天开挖需要大量的水进行冲洗和冷却等工作,而且采矿过程中产生的废水也会对周边水源造成污染。

解决这个问题的对策是优化水资源的利用,采用水的循环利用和节水技术,减少对水资源的需求,并通过处理污水减少对水质的破坏。

露天采矿对生物多样性造成了破坏。

露天开挖破坏了原有的生态系统,导致植物和动物的生境被破坏,生物多样性减少。

解决这个问题的对策是在采矿前进行生物多样性调查,采取保护措施,在采矿结束后进行生物恢复和保护,使受影响的生态系统能够尽快恢复。

露天采矿存在土地破坏、固体废物、水资源和能源消耗、生物多样性等环境问题。

为了解决这些问题,应采取相应的对策,包括土地复垦和生态恢复、固体废物的处理和回收利用、水资源的循环利用和节水技术、节能减排和使用清洁能源、生物多样性调查和保护等措施。

只有综合利用各种手段,使露天采矿过程更加环保可持续,才能最大限度地减少对环境的破坏。

浅析露天采矿存在的环境问题及解决对策

浅析露天采矿存在的环境问题及解决对策

浅析露天采矿存在的环境问题及解决对策露天采矿是指在地表开采矿石或矿砂的一种采矿方式。

尽管它具有高产量、低成本的优势,但也带来了一系列的环境问题。

本文将对露天采矿存在的环境问题进行浅析,并提出一些解决对策。

露天采矿会破坏地表植被覆盖,破坏生态系统平衡。

采矿过程中需要清除大量的植被,导致土壤暴露于阳光照射和雨水冲刷,进而引发土壤侵蚀和水土流失。

为了恢复生态平衡,可以在露天采矿结束后进行植树造林、草皮覆盖等生态修复工作,减少土壤侵蚀和水土流失的程度。

露天采矿会导致土地退化和景观破坏。

采矿后的矿区通常呈现出地表坑坑洼洼的现象,严重影响了地表的美观景观。

解决土地退化和景观破坏问题的方法是进行土壤修复和景观设计。

通过在矿区进行土地整治和植被恢复,重新塑造自然景观,提升生态环境的美观度。

露天采矿对水资源的消耗和污染也是一个严重的问题。

采矿过程中需要大量的水资源用于清洗矿石和冷却设备。

采矿过程中会产生大量的废水,含有高浓度的重金属和有害化学物质。

解决水资源的消耗和污染问题可以采取节水措施,例如开展循环水利用和水资源回收利用。

应加强废水处理工艺,确保废水符合排放标准。

露天采矿还会带来空气污染和噪音污染。

采矿过程中会产生大量的粉尘和矿石碎片,进入大气中造成空气污染。

采矿设备的运转会产生噪音污染,扰乱周边居民的生活。

为了解决空气污染问题,可以在采矿现场采取粉尘防治措施,如喷水降尘和灰尘收集装置。

减少噪音污染的方法包括合理选择设备、减少机械运转时间,以及加装吸音装置。

露天采矿也会对生物多样性造成影响。

许多矿区是生物多样性丰富的地区,采矿活动会导致许多物种的损失和栖息地破坏。

为了保护生物多样性,可以在采矿前进行生态调查和物种保护规划。

在采矿过程中,应设立生态保护区,限制破坏生物栖息地的范围,并对濒危物种进行保护和繁殖。

露天采矿存在着诸多环境问题,但通过良好的环境管理和监测,可以减少其对环境的不利影响。

需要政府、企业和社会各界的共同努力,制定更加严格的环境保护法规,并加强执法力度,以确保采矿活动与环境可持续发展相协调。

露天煤矿开采环境污染及防治研究

露天煤矿开采环境污染及防治研究

试点论坛shi dian lun tan351露天煤矿开采环境污染及防治研究◎闫亮军摘要:随着当前我国对能源的需求量逐渐增加,我国的露天煤矿开采规模和开采数量日益上升,这便对当地的生态环境造成了一定的影响。

本文作者主要在对露天煤矿开采过程中引发的问题进行探讨,进而分析了造成环境污染的具体原因,并根据实际情况提出了改善露天煤矿开采区域周边环境的具体措施,进而为露天煤矿开采环境污染治理提供些许参考意见。

关键词:露天煤矿;开采;环境污染;防治研究一、露天煤矿在开采过程中引发的环境问题(一)露天煤矿在开采中会对生态环境造成破坏露天煤矿在开采过程中对生态环境造成最直接的影响,主要表现在在开采中直接进行挖掘作业,并在开采区域设置外排土场、工业场地,同时开采中输水管路取水工程、运输管路、污水处理工程等都会对附近的土地进行占用,而这些挖掘工程在施工中必然会对煤矿开采区域的表层土壤植被造成破坏,使得煤矿开采区原先较为稳定的生态系统受到干扰,导致附近区域土地利用率、植被覆盖率大幅度下降,同时也会使地貌、保水力等生态因子受到巨大的变化。

根据有关调查研究显示,我国露天煤矿在开采过程中平均每开采1万吨煤矿需要破坏0.24亩土地,其中煤矿挖掘会破坏0.08亩土地,露天煤矿开采中外排土场占用土地达0.16亩,植被覆盖破坏率会在露天煤矿开采中达到90%以上。

并且随着露天煤矿的开采规模扩大,露天煤矿开采区域所占用土地面积也会随之增大,这便会给开采区域的生态环境造成严重的影响[1]。

(二)露天煤矿在开采中会对大气产生污染露天煤矿在开采过程中还会对周边的大气环境造成一定的污染,这主要源于露天煤矿在开采中会对表层土壤进行剥离、对地层实施爆破、铲装、运输、装卸、排土等作业,这样便会在施工中产生大量的粉尘。

同时露天煤矿在开采中所使用的储煤场在日常的生产中也会产生大量粉尘;矸石、煤块以及露天煤矿灭火区自行燃烧也会产生例如一氧化碳、二氧化硫、二氧化氮等对大气造成污染的有害气体。

露天采矿矿山地质环境问题与恢复治理措施

露天采矿矿山地质环境问题与恢复治理措施

露天采矿矿山地质环境问题与恢复治理措施摘要:目前,在我国经济发展过程中矿产资源在我国发展中占有较为重要的地位,但现阶段对矿产的资源的大量开采以及不正确的挖掘方式,对人们的生存环境造成了严重的破坏。

户外的矿资源挖掘虽然在操作上比较便捷,但是户外矿资源的开采给周边环境资源造成的破坏却十分严重。

户外矿资源的开采对于周边的植物、水资源等等造成了巨大的伤害,同时一定程度会限制我国经济的发展进程。

为了使我国的经济得以长远发展,并实现矿产资源开采的可持续发展,需要依据矿产资源对我国的发展的重要地位来对露天采矿矿山的周边环境做具体、合理的分析,并建立健全相关治理措施,推动我国对矿产资源的合理使用。

关键词:露天采矿;地质环境;治理措施引言:随着社会的不断进步,社会对矿产资源的需求量已经越来越大,对于矿产企业而言是一种强大的推动力。

对于中国这样的产煤大国来说,有效、科学的防止采矿过程中的塌陷等问题是首要任务。

对此,应当树立可持续发展的战略目标,使煤矿开采既能够获得一定的经济效益,又能够保护好人们赖以生存的自然资源以及自然环境。

一、露天采矿矿山地质问题(一)地表塌陷问题在对矿产资源进行开采的过程中,对地底的挖掘工作会使挖掘区域的应力场遭到一定的破坏,导致开采区域内的矿石也受到了一定的损害严重的还有可能使得地球表面发生一定的位移。

不仅如此,随着开采区域的不断扩大,为了方便对开采区域预计煤矿区域内的地下水进行的重新合理布局,工作人员将对地下水资源做抽干处理。

这样一来就会使得地表出现大范围的下降漏斗,从而导致地表塌陷的问题[1]。

(二)大量侵占和破坏土地、植被问题露天矿山的矿采工作开展,会使地球表面土地以及各种植物遭到破坏,尤其是土资源的破坏最为严重。

不仅如此,煤矸石作是整个矿采过程中所产生的废品被大量的堆积在地面上,从而导致大面积的土地资源遭到占用,同时煤矸石的存放还会周边的生态环境、生态系统造成破坏。

其次,煤矸石在存放过程中一旦遇到雨水天气,还会跟随着雨水侵入土壤内部,造成对土体以及水体的污染。

露天煤矿开采环境治理对策探讨-环境治理论文-农业论文

露天煤矿开采环境治理对策探讨-环境治理论文-农业论文

露天煤矿开采环境治理对策探讨-环境治理论文-农业论文——文章均为WORD文档,下载后可直接编辑使用亦可打印——摘要:随着国家对环境保护工作管理越来越严格,露天开采所暴露的环境问题也越来越严重,本文主要阐述露天开采产生环境问题的原因及危害,同时提出可行的环境治理对策。

关键词:露天煤矿;环境治理;对策引言露天煤矿开采比井工煤矿开采具有很多优势,比如劳动生产率高,成本低,安全程度好,劳动条件好,建设速度快,同时也具有一定的缺点,比如受气候条件影响大,对地表破坏大,对环境影响大,由此带来的环境问题也非常突出,严重制约了煤矿的可持续发展。

1我国露天煤矿现状近几年来,随着国民经济快速发展,露天煤矿也迎来了发展的机遇,露天煤矿产量快速增长,占总采煤量的比例逐年上升,与此同时,面对日益严峻的环境形势,纷纷探索以节能环保为核心的绿色开采技术,当前正在向绿色、安全、高效及智能化方向发展。

开采方式也由最初的间断开采工艺逐渐转变为半连续、连续开采工艺,成本进一步降低,效益进一步提高。

2露天开采所引起的环境问题2.1对原始地表破坏大由于露天开采原始地表大多为林地或草地,露天开采势必引起地表的破坏,矿基建工程同样会占用并破坏一部分土地,比如外排土场、储煤场、工业广场、运输道路等,同时随着原岩应力的释放,会破坏原有边坡的稳定,造成坍塌、滑坡、泥石流等自然灾害,使矿区的生态系统出现不平衡,动物迁移,水土流失。

2.2对生活环境影响大露天开采爆破、采装、运输、排土等各环节都可能产生粉尘与煤尘,并随风漂浮,危害周边环境,危害矿职工身体健康,可能引发尘肺病,影响周围居民生活环境,可能引发村民纠纷等社会问题,由此造成的损失无法估量。

3环境问题原因分析3.1责任心不强我国露天煤矿虽然发展较快,但是环境治理工作存在滞后现象,认识不足,责任心不强,没有牢固树立“绿水青山就是金山银山”的理念,大多数人对于环境问题的客观状况缺乏一个清醒的认识,人们只关注于经济增长的数字,却往往忽略了其背后所付出的沉重代价,对资源的掠夺式开发造成环境的极大破坏。

露天开采矿山环保问题和生态治理措施

露天开采矿山环保问题和生态治理措施

露天开采矿山环保问题和生态治理措施摘要:矿产资源是我国非常宝贵的自然资源。

随着矿产资源的不断勘探开发,人民收入显著提高,为我国经济水平的提高做出了重要贡献。

然而,在采矿的同时,也对中国的生态环境造成了严重破坏。

其中,露天开采的不利影响更为严重。

它不仅会破坏地面的土壤和岩层,还会破坏地下数百米深的地质结构。

这种破坏将严重影响地层层序,带来大量污染,并且污染区周围没有草。

因此,我们必须深入探讨露天开采造成的环境污染,并在此基础上制定一套完善的生态治理措施,实现生态保护与露天开采的双赢。

关键词:露天开采;矿山环保问题;生态治理;措施1露天采矿造成的环保问题1.1破坏了当地的原生态系统众所周知,露天采矿本身就是一件极具破坏性的事情。

在挖掘过程中,会有很多损坏。

同时,开采规模基本较大,覆盖范围广。

露天开采将直接破坏土壤、植物、构筑物等。

在矿区外的排土场和尾矿区,会对当地原有生态系统造成严重破坏。

据调查研究,在我国露天开采过程中,每1万吨煤炭将破坏22平方米的土地。

一旦这些土地被破坏,其原有的生态结构也将受到破坏。

生态系统被破坏后,无法在短时间内有效修复,最终导致生态平衡的破坏。

1.2降低当地的生态环境性能在开采过程中,将挖掘出大量的废渣和废石,这些废渣和废石属于松散材料,可能会给矿区带来严重的水土流失问题。

众所周知,在运输、挖掘或燃烧煤炭的过程中,经常会产生各种有害物质,从而降低周围的空气质量。

同时,在使用各种机械时,会释放出大量的噪声,带来大量的噪声污染。

露天开采方式将严重破坏当地的水源涵养、水土保持等生态功能,最终破坏整个生态平衡。

1.3破坏水环境生态露天开采期间,必须将所有地下水泵送干净。

这一行动将严重影响周围地区的水循环系统,进而造成地下水枯竭的问题。

一旦地下水耗尽,可能会发生岩体坍塌。

例如,在某个地区,在露天开采过程中,由于需要提取所有地下水,周围的水文系统受到了严重破坏。

同时,对于矿区来说,水污染是最常见的问题之一。

露天采矿矿山地质环境治理探析论文

露天采矿矿山地质环境治理探析论文

露天采矿矿山地质环境治理探析论文露天采矿矿山地质环境治理探析论文矿山资源是通过地质成矿的作用下而逐渐形成的具有实用价值的矿物,呈现出一些固态、液态或者是气态存储于地壳内部的一种有用的资源。

慢慢随着人类社会的不断进步发展,这就导致了对于矿产资源的需求量也在逐渐增多,进而导致了对于矿产资源的开发力度也在加大,但是由于矿产资源本身的属性即属于不可再生资源。

所以不合理的开发会对自然环境产生很严重的破坏,从另一方面来说也会限制当地的社会经济的发展速度。

所以,对于矿山地址的环境整改迫在眉睫,不仅仅要从思想上进行观念的转变,还要结合实际进行行之有效的措施治理。

1对环境产生的不利影响第一点,造成地质灾害。

比如在矿山附近经常容易发生山体滑坡和崩塌以及泥石流等灾害,露天矿山首先的工作就是要把覆盖在矿体上面的土石进行分离,然后按照从上到下的顺序对矿体进行分割,这就是直接在露天情况下进行采矿的过程。

地质灾害的主要表现形式是首先由于挖掘的不科学不合理导致受力不均匀容易导致山体出现形变进而发生山体滑坡[1]。

其次就是由于对矿山的废弃物进行随意堆放导致了超出了承受能力进而引起山体滑坡。

最后就是对于一些矿山的矿渣直接借助沟渠进行了随意的堆积放置,当天气发生恶变出现大暴雨等情况的时候就更加容易造成泥石流。

第二点,容易导致石漠化。

在一些生态环境特别脆弱的地方,由于人们的不合理的开采活动造成了土地的石质荒漠化,地表的植被遭到了严重的破坏,水土流失情况严重,土地的养分流失严重导致土地的生产能力衰败甚至是丧失。

由于露天开采的现场会留下很多的石柱,而且在采石坑里矿柱子、废石料相互错乱的堆放在一起,远远望去就像是一片石头沙漠,很大程度上对生态环境造成了破坏。

第三点,容易导致植被出现荒漠化。

由于矿山附近的石漠化情况比较严重,这就导致了矿场内部并没有有利于植被生长的土地。

导致矿场周围的很多植被都遭到了不同程度的损坏,造成了碎石、废渣随处覆盖的情况,最终导致了植被出现荒漠化。

2021年露天煤矿的矿区环境污染的问题和策略论文

2021年露天煤矿的矿区环境污染的问题和策略论文

露天煤矿的矿区环境污染的问题和策略论文我国煤炭资源量占一次能源资源总量的90%以上,每年消耗的一次能源中煤炭占70%以上,而且今后相当长的一段时期内这种状况都不会有大的变化。

我国适于露天开采的煤炭资源储量大约为490亿吨。

目前,我国露天矿煤炭产量占总产量的5%左右,预计到2020年将达到12-14%。

据统计,我国露天开采每万吨煤炭约破坏土地0.22公顷,其中挖掘破坏0.12公顷,外排土场占压0.1公顷。

露天开采时破坏土地 ___为露天矿采场本身 ___的2-11倍。

下面谈一谈露天煤矿开采过程中的环境保护问题。

露天矿开采对土地的破坏主要表现为挖损、占压、塌陷,造成土壤的酸化、盐碱化和盐渍化,从而使得土地沙化和土壤贫瘠化。

一般来说,裸沙1亩,风力和水力侵蚀将影响邻近3亩土地;沙化土壤有机含量将减少79.2%,全氮量减少77.7%,全磷量减少15.5%,物理性粘粒减少50%,造成原始土壤的严重贫化。

所有挖损、占压、塌陷和其它一切对地表的人为扰动,都会破坏原有的自然景观和生态植被,有些破坏是毁灭性的、不可逆的,在风力和水力侵蚀的作用下使得水土流失情况加剧。

矿区内各类锅炉、燃煤电厂等排放的烟尘。

采场工作面、采场煤帮暴露时间过长、煤层氧化燃烧;煤层中作为剥离物进入排土场的损失煤引起自燃;选煤厂煤矸石的自燃;露天储煤厂和储煤堆的自燃等产生的烟尘。

烟尘中含有SO2、NOX、CO、H2S等有害气体,对生态系统构成影响。

遇到雨水和潮湿的空气生成酸性硫化物,其腐蚀性非常强,从钢铁、水泥构件到人体均会受到腐蚀和侵害。

矿区尘源主要大型剥离设备的采掘、运输及排土作业粉尘;煤的采掘、运输、储煤、粉碎及作业过程粉尘;辅助设备作业粉尘;穿孔爆破粉尘;选煤厂;道路运输粉尘等。

粉尘附着在植物叶片,影响植物的光合作用,太阳爆晒温度升高会灼伤植物。

煤层气的主要成分是甲烷,通过直接排放、燃烧排放、通风系统排放。

甲烷是一种重要的温室效应气体,能使对流层中的臭氧增加,使平流层中的臭氧减少。

试论露天煤矿开采环境问题及防治对策

试论露天煤矿开采环境问题及防治对策

试论露天煤矿开采环境问题及防治对策【摘要】当前,随着露天煤矿数量的增加和生产规模的扩大,对环境特别是对土地资源的占用和污染将日趋严重。

这就需要决策者、管理者、生产者有战略眼光和战略胸怀,主动地、积极地改善、美化周边环境,实现资源开发和环境保护的协调发展。

本文阐述了露天煤矿在开采过程中对环境的影响问题,同时针对这些问题提出了若干的防治对策,以供大家参考。

【关键词】环境;露天煤矿;开采;防治一、露天煤矿开采引发的环境问题(一)对土地的破坏露天煤矿区对土地资源的破坏主要表现在露天采场的直接挖损、外排土场压占土地和工业广场的占用等。

挖损是对原地表形态、浅部地层、生物种群的直接摧毁,致使原土地不复存在,压占是挖损过程中产生的废弃岩土堆置于外排土场上造成原地貌功能的丧失。

挖损和压占等工程活动直接破坏了表层的植被,导致这一区域原先处于相对稳定的系统受到干扰,使区域内的土地利用、植被覆盖、地貌、保水力等生态因子发生巨大的变化。

(二)水污染问题露天煤矿开采对地表水和地下水污染最严重的是煤矿排土场淋溶水。

排土场的煤矸石中富含碱金属、碱土金属和硫等,大气降水淋溶了煤矸石中的无机盐类,含无机盐类的淋溶水流入地表水体会对地表永体造成污染,渗入地下含水层,也会污染地下水体。

此外,采场周围水体和大气降水汇入采场矿坑,也会由于矿坑积水浸润采场的残煤露头,而使煤层中的硫和重金属等污染物质溶入水体而使地下水受到污染。

(三)空气染污问题露天煤矿排土场污染最严重的因子为剥采区、排土区和运输道路两侧一定范围内的粉尘。

此外,露天煤矿排土场大多没有土地复垦和再植被,每个露天煤矿的外排土场都会形成一个几百到几千公顷的人为荒漠化土地,春秋时节,荒漠化的排土场所产生的扬尘等亦会使周围大气造成严重的污染。

(四)环境地质问题露天采矿形成的矿坑边坡及排土场边坡,由于地质构造、边坡岩体、地表水及地下水作用、采矿工程活动等原因诱发一系列诸如滑坡、塌陷、泥石流等突发*或缓变*地质灾害,危及该地区周边工业企业与民居建筑的安全,造*员伤亡及巨大的经济损失。

露天采矿矿山地质环境问题与恢复治理措施

露天采矿矿山地质环境问题与恢复治理措施

露天采矿矿山地质环境问题与恢复治理措施摘要:矿产资源是十分宝贵且无法再生的自然资源,合理地开采和发掘矿产资源能够带动社会经济的快速发展,给人民群众带来显著的经济收益,不断提高我国的经济水平。

然而,在矿山开采的同时,如果开采企业没有制定科学合理的环境治理措施,会给开采区域的生态环境造成严重的破坏。

在矿山开采时,选用露天开采的方式,会破坏开采区地质、岩石和土壤,甚至会给生存的地质结构造成严重的破坏,从而对周围的生态造成不可逆的破坏,产生的环境污染可能给周围的住户身体健康造成严重的威胁。

因此,开矿企业必须高度重视露天采矿的环境污染问题,制定并严格落实科学合理的环境污染治理措施,在不断开矿的同时优化生态环境治理措施,既可以保护生态,还能够给企业带来良好的经济利益。

关键词:露天开采;地质环境随着矿山资源开采工作的不断深入,矿山地质灾害和生态环境等问题严重困绕着矿区周边人们的身体健康和生命财产安全,并对我国社会经济发展造成较大的阻碍。

尽管当前国家对矿山开采实施了规范化治理,使矿山生态环境得到了较大的改善,但是仍然严重威胁着矿山的整体生态环境,甚至威胁到矿山周边居民的生命和财产安全。

1 露天采矿造成的环保问题(1)破坏了当地的原生态系统。

一般而言,露天开采会给周围的生态环境带来毁灭性的打击,也会给区域的地质结构造成严重的破坏。

矿山露天开采会占据大量的土地面积,在矿山开挖区域还会设置排土场和尾矿区,会对区域内的生物、植物以及地质结构等造成严重的破坏,以露天采煤矿为例,每挖出一万吨煤矿资源会破坏800 m2的原生态土地。

而且即使在后期采用相关的措施进行生态修复,短时间内也很难使得生态修复达到预期的效果,从而造成了采矿区域内生态失衡。

(2)破坏水环境生态。

露天开采矿山会破坏周围区域的水文系统平衡。

在进行露天开采之前,首先要将矿山区内所有的地下水全部抽取干净。

但会给周围区域的水质系统造成不可逆的严重破坏。

一旦矿山区域的地下水位下降或地下水直接枯竭,会增加地下水枯竭部位岩石和山体坍塌的风险,也不利于开采工作的进行,严重的还会威胁开采人员的生命安全。

浅析露天采矿存在的环境问题及解决对策

浅析露天采矿存在的环境问题及解决对策

浅析露天采矿存在的环境问题及解决对策【摘要】露天采矿是一种常见的矿业开采方式,但其存在着诸多环境问题,如土壤和水资源污染、生态破坏等。

本文旨在通过分析露天采矿存在的环境问题,探讨有效的解决对策,包括加强环境监测与治理、推动技术创新、提高企业环境责任意识等。

在解决对策中,需要政府、企业和社会共同努力,落实环境保护法规,推动可持续发展。

最终的目标是保护自然环境,实现经济发展与环境保护的良性循环。

露天采矿所带来的环境问题需要引起我们的重视,只有通过合理规划和有效管理,才能实现资源利用与环境保护的双赢局面。

【关键词】环境问题、露天采矿、解决对策、引言、环境问题分析、结论1. 引言1.1 引言露天采矿是一种常见的矿产开采方式,但其存在着一系列严重的环境问题。

随着矿产资源的日益枯竭和人们对环境保护意识的提高,对露天采矿的环境影响也越来越受到关注。

本文将从环境问题分析和解决对策探讨两个方面对露天采矿存在的环境问题进行深入剖析和探讨,旨在寻求有效的解决途径,以实现矿产资源开发与环境保护的双赢。

在这个全球化、高度信息化的时代,我们足以感受到身处其中的巨大冲击。

在这种情况下,努力学习是当务之急。

我们应该认真对待学习,认真对待每一门课程,不断提升自己的综合素质。

我们还应该注重实践,通过实践锻炼自己,增长见识。

学习是一个渐进的过程,需要我们付出大量的汗水和努力。

希望大家能够珍惜现在的学习机会,努力提升自我,成为有用的人才。

2. 正文2.1 环境问题分析露天采矿是一种常见的矿石开采方式,但也不可避免地会导致环境问题。

露天采矿会破坏原有的地表地貌,改变自然生态体系,导致生物多样性丧失。

大片的土地被开采后往往无法恢复成原来的样子,给生态系统带来长期影响。

采矿过程中会产生大量的废渣和尾矿,含有有毒有害物质的废水会对周边土壤和水体造成污染,影响人类和动植物的健康。

露天采矿也会产生大量的粉尘和噪音,对周边居民的生活造成干扰。

露天采矿使用大量水资源,会造成当地水资源枯竭或污染的问题。

露天开采矿山地质环境问题与治理措施

露天开采矿山地质环境问题与治理措施

管理及其他M anagement and other露天开采矿山地质环境问题与治理措施赵书伶摘要:矿产资源是经济社会发展所必需的资源之一。

露天矿产资源作为重要的矿山之一,对其地质环境的治理和修复工作至关重要,可以实现矿产资源事业的可持续发展和推动生态文明建设。

当然,要全面完成露天开采矿山地质环境治理和修复工作,也需要长时间大量投入。

需要矿山企业从多个方面努力,明确在矿产资源生产工作中存在哪些问题和不足,及时采取措施解决问题,以此达到事半功倍的效果。

目前,解决矿山企业在地质环境治理和修复过程中存在的问题仍是社会各界关注的焦点,也是这篇文章所探究的主要内容。

关键词:露天开采;矿山;地质环境;问题;危害;治理恢复我国人口众多,消耗的资源也比较多。

以往,矿山开采环保意识较为薄弱,对生态平衡造成了破坏,污染了环境,使得矿山的地质环境问题较为突出。

随着人们环保意识的不断提高,各级部门积极采取措施改善生态环境。

基于此,文章将通过对相关文献的查阅以及结合作者多年的工作经验,首先分析了露天开采矿山地质环境问题治理必要性及其危害,随后探讨了治理措施,希望能够为行业同行提供参考。

1 露天矿山地质环境问题治理恢复的必要性矿山开发为经济发展和人们日常生活提供了重要的资源,同时对生态环境造成了一定破坏,地质环境问题将引发不同的社会事件。

因此,做好矿山地质环境治理和修复工作是维持当地经济发展和生态平衡的重要条件。

首先,进行环境治理和修复,可以有效解决因开采作业而污染的空气和土地资源,从而改善了矿区人民群众的健康和生活环境,提高矿区人民群众的生活质量。

其次,在治理过程中,可以进行填埋覆土,将矿区的坑洞恢复为耕地,增加了耕地面积,也可以为部分矿工或人民群众提供其他获取经济效益的途径,进而减少了矿山企业和人民群众之间的矛盾,有助于实现和谐共处。

第三,建设护坡或挡土墙,也可以有效避免由矿山开发引起的地质灾害,如崩塌、滑坡等的发生。

最后,矿山地质环境问题的治理和修复有助于矿区植物的恢复和生态环境的修复,减少了水土流失并重构了生态环境和地貌景观,有助于促进生态环境的不断发展。

煤矿的环境问题及其解决方案外文文献翻译

煤矿的环境问题及其解决方案外文文献翻译

英文原文Environmental issues from coal mining and their solutionsBIAN Zhengfu, Inyang Hilary I, DANIELS John L, OTTO Frank, STRUTHERS SueInstitute of Land Resources, China University of Mining & Technology, Xuzhou 221008, ChinaAbstract: The environmental challenges from coal mining include coal mine accidents, land subsidence, damage to the water environment, mining waste disposal and air pollution. These are either environmental pollution or landscape change. A conceptual framework for solving mine environmental issues is proposed. Clean processes, or remediation measures, are designed to address environmental pollution. Restoration measures are proposed to handle landscape change. The total methane drainage from 56 Chinese high methane concentration coal mines is about 101.94 million cubic meters. Of this methane, 19.32 million, 35.58 million and 6.97 million cubic meters are utilized for electricity generation, civil fuel supplies and other industrial purposes, respectively. About 39% of the methane is emitted into the atmosphere. The production of coal mining wastes can be decreased 10% by reuse of mining wastes as underground fills, or by using the waste as fuel for power plants or for raw material to make bricks or other infrastructure materials. The proper use of mined land must be decided in terms of local physical and socio-economical conditions. In European countries more than 50% of previously mined lands are reclaimed as forest or grass lands. However, in China more than 70% of the mined lands are reclaimed for agricultural purposes because the large population and a shortage of farmlands make this necessary. Reconstruction of rural communities or native residential improvement is one environmental problem arising from mining. We suggest two ways to reconstruct a farmer’s house in China.Keywords:mine environment; management of mining wastes; reuse of mine gas; mined land reclamation; clean coal mining1 IntroductionWhile coal makes an important contribution to worldwide energy generation, its environmental impact has been a challenge. In essence, the coal energy production system consists of coal mining, preparation or processing and energy generation. Fig.1 shows the complete process of the coal energy system. Environmental issues arise at every stage of the process.This paper will discuss environmental issues due to coal mining. In fact, environmental problems from coal mining have been studied since coal mining became industrialized. Nevertheless, environmental issues from coalmining have become important concerns only since the 1970’s. The majority of the available literature related to mining and the environment date from the end of the 1970’s to the end of the 1980’s. However, coal production has changed significantly since the beginning of th e 1990’s and, as a result, the way and the extent that mining operations impact the environment are also different now. Fig. 2 shows the change in worldwide coal production over time, which illustrates that coal production increased strikingly after 2000. Six countries, the USA, Russia,India, China, Australia and South Africa, produced 81.9% of the total coal extracted throughout the world in 2006. These same countries have about 90% of the World’s coal reserves. Coal production in China accounted for 38.4% of the worldwide total and has increased about 66% over the past five years from 1.38 billion tons in 2001 to 2.3 billion tons in 2006. During the same time period the number of coal mines was reduced by 50%. The annual production of the Daliuta Coal Mine, one of the underground mines operated by the Shendong Coal Mining Company, reached 20 million tons from only two longwall work faces in 2007. In the U.S. the situation is similar to China. There were 2475 coal mines with a total production of 945424 thousand short tons in 1993 but 1438 coal mines producing 1162750 thousand short tons in 2006.China consumes more coal than Europe, Japan and the United States combined; 40% of the world’s total.China’s coal use continues to grow every year and it is estimated that 90% of the rise in world coal consumption is from increased activity in China. As a result, mining intensity in some coalfields is ten times greater than it was in the past. Therefore, the impact of mining on the environment today is significantly different from that in the 1980’s. Thus, this paper focuses on environmental issues due to coal mining in the context of current mining operations.2 Importance of coal mining to energy systems worldwide and challenges to the environmentThe main use of coal in the United States is to generate electricity. Coal generates half of the electricity used in the United States[3]. Today, 91.9% of all the coal in the United States is used for electricity production. In contrast, less than 50% of all the coal mined in China was used for electricity generation in 2005 when 82% of the electricity used in China came from coal fired plants. Coal accounts for approximately 74% of China’s primary energy consumption. Coal is recognized as a dirty source of energy and has been rendered obsolete in many European countries. For example, France closed all coal mines in 2004 and, in early 2007, the German government announced that subsidies for coal production would be completely phased out by 2018. Whether this will mark the end of deep mining in Germany remains to be seen. Some experts and institutions forecast that coal will continue to underpin the economic and social development of the world’s biggest economies in both the developed and developing world[4]. The World Bank Group estimated that coal is one of the World’s most plentiful energy resources and that its use is likely to quadruple by 2020[5]. Global recoverable coal deposits exceed 1 trillion tons with enough deposits to last for the next 270 years at current consumption rates. Hence, it is reasonable to conclude that coal will continue to be an important energy source andthat coal mining is not a sunset industry. This will be especially true in those countries with abundant coal reserves and increased energy demands for their development. Using coal as an energy source requires addressing environmental challenges from mining. This includes coal mine accidents, land subsidence, water pollution, air pollution, spoil heaps, acid mine drainage, disturbance of hydro-geology and so on. The impact of coal mining on the environment varies in severity depending on whether the mine is active or abandoned, the mining methods used and the geological conditions.2.1 Coal mine accidentsEvery year nearly 80% of the World’s total deaths due to coal mine accidents occur in China[7]. The main causes of coal mine accidents are gas leaks, roof cave-ins, fires, blasts and floods/water bursting. Table 1 shows accident statistics for Chinese coal mines for the years 2006 and 2007. This data was compiled by the corresponding author from the State Administration for Coal Mine Safety safety bulletins. It is easy to see that coal dust and methane blasts are in the absolute majority. In addition, 117 of the 374 deaths in 2006, and 92 of the 399 deaths in 2007, occurred in coal mines with a production of less than 200 thousand tons. It was reported that coal mines with small scale production account for one third of total production, two third of the total coal mine accidents and 75% of the deaths.2.2 Land subsidenceApproximately 60% of the world’s coal production comes from underground mines. Since 95% of the coal production in China is from underground mines and, in 2007, Chinese production was 2523 million tons, which accounts for more than one-third of the world’s production, China accounts for much of the underground operation, see Table 2.Land subsidence over underground mines is one important adverse impact of mining on the environment. About 1 million hectares of subsided land exists today. Mining ten thousand tons of raw coal will result in 0.2 hectares of subsiding land in China. Land subsidence not only reduces crop production but also causes other environmental problems, such as utility failures, plant death, surface fracture and soil loss, drainage system failure, building damage and so on.Subsidence falls into two forms of deformation: continuous and discontinuous. Continuous, or trough, subsidence involves the formation of a smooth surface profile free of steps. Discontinuous subsidence is characterized by large surface displacements over a limited surface area and by the formation of steps or discontinuities in the surface profile. Mining subsidence will affect land use or the environment differently depending upon the context of the terrain, groundwater level and the original type of land use.For example, in eastern China, which has plain land-form, shallow groundwater levels and was prime farmland before mining, mining subsidence has resulted in large area flooding. After this the land use was changed as buildings, roads and croplands were seriously damaged by major incidents of land subsidence. Mining subsidence in mountain areas will induce slope failurecausing the loss of water and soil from the formation of surface cracks and overburden fracture from mining.3 A conceptual framework and potential solutions to the mine environment3.1 A conceptual framework for solving mine environmental issuesThe key words green mining, ecological mines, recycling economy, industrial ecology, site characterization for remediation of abandoned mine lands and life cycle assessment were proposed by environmentalists, economists and scholars working in the field of mining science. The core ways to solve mine environmental problems may fall into two types. One is the taking of measures to lessen the impact of mining on the environment during mining. The other is the taking of measures to clean or remediate or restore or reclaim the environment post mining.3.2 Use of mine gasThe Ministry of Environmental Protection and the General Administration of Quality Supervision,Inspection and Quarantine of China have jointly issued the Emission Standard of Coalbed Methane/Coal Mine Gas (on trial). The Standard requires that measures to drain and utilize the mine gas must be taken before mining. Coal mining operations may only be implemented after the methane content in the coal seam is reduced to less than eight cubic meters per ton of coal. If the concentration of methane is higher than 30% atmospheric release is prohibited. There are currently two ways to drain mine gas in China. One is by drilling wells through the coal seam at the coalfield before mining operations begin. The concentration of methane obtained this way is higher than 90% the other method is to drill boreholes through the goaf after coal has been mined. Methane concentrations obtained in this way are higher than 30%.3.3 Conservation and restoration of the mine water environmentWe developed some mining techniques that make full use of water leaking from fractured aquifers that preserve the aquifer. For coal mines in western China constructing a concrete wall along mined lanes and cavities and channeling water resulting from mining into an underground reservoir has proved useful. The Bulianta coal mine operated by the Shendong Branch Company of the Shenhua Group, which has an annual coal production of about 20 million tons and is located in Inner Mongolia, collects 4000 tons of water per day from underground mining operations after constructing such an underground reservoir. For coal mines in eastern China we proposed that key strata should be controlled to prevent fracture, or be restored by grouting after fracture, to prevent water burst into the mined space.3.4 Management of mining wastesCoal mining generates huge amounts of waste, indeed this is the largest source of solid waste accounting for 40% of all solid wastes in China. The waste consists of materials that must be removed to gain access to the coal resource such as topsoil, overburden or waste rock as well as wastes from coal preparation and gangue from underground mining. A series of accidents in recent years has highlighted the significance of reuse of these mining wastes and the urgent need for better waste management procedures. Management of mining wastes involves their reduction, recycle and reuse. This method goes by many other names such as cleaner production, clean technology, waste minimization, pollution prevention, waste recycling, resource utilization, residue utilization, TRU (Total Resource Utilisation) and TPD (Total Project Development). Innovative mining techniques are the main way to reduce the production of mining wastes.4 Strengthening cooperation between parties to solve environmental problems from coal miningCoal is a dirty energy source because of land disturbance; subsidence; AMD and water pollution that occur during mining. There is also the emission of CO2 during coal utilization to consider. But coal is also cheap, affordable, abundant and available. It is easy to transport and secure and will be with us for the long term. It must be considered that the present energy structure in some countries can not be changed over the short term because of the natural deposits of energy resources. For example, China predominantly relies on coal resources for energy not because China does not want to use more clean energy, such as natural gas or oil, but because these are not abundant enough to meet the needs of rapid social and economic development. Demand for coal continues to grow and coal reserves are adequate to ensure that demand can be met far into the future. Therefore, it is necessary to strengthen cooperation between multiple parties to solve the environmental problems due to coal mining.5 Conclusionscoal is one of the World’s most plentiful energy resources. It is today and will be in the future the most important global source of electricity. This is likely to be true for the next 50 years in light of available natural resources and technological advances. Coal mining and utilization will inevitably cause negative environmental effects including coal mine accidents, land subsidence, pollution of water environments, disposal of mine waste and air pollution. Current Chinese coal production and its environmental impacts were analyzed under the context of worldwide coal mining.中文译文煤矿的环境问题及其解决方案卞正富,希拉里·殷阳,约翰·丹尼尔斯,奥托·富兰克,STRUTHERS Sue 土地资源研究所,中国矿业大学,徐州,中国摘要:煤炭开采的环境挑战包括煤矿事故,地面沉降,水环境的损害,采矿废物处置和空气污染。

我国煤矿安全生产现状及对策外文翻译文献

我国煤矿安全生产现状及对策外文翻译文献

我国煤矿安全生产现状及对策外文翻译文献(文档含英文原文和中文翻译)我国煤矿安全生产现状及对策浅析摘要:我国安全生产状况不容乐观,安全生产体系并不完善,特别是煤矿生产更是矿难频发,形势严峻,煤矿安全问题成为构建社会主义和谐社会的极大障碍,是政府在新的行政过程中亟待解决的问题。

笔者从我国煤矿生产现状出发,对煤矿安全事故频发的原因进行了简单的分析和论述,基于此,对我国煤矿安全生产体系建立健全的过程中所应采取的对策措施作了初步的思考和探寻。

关键词:和谐社会安全生产经济体制改革一、我国煤矿行业存在的基本问题我国煤矿生产面临着诸多困难,比如机械化程度低、安全设施不完善、技术水平低、从业人员素质低,这是长期困扰我国煤矿生产的主要难题,是制约我国煤矿安全生产的主要障碍,也是我国煤矿行业存在的基本现状。

总体上来看,我国煤矿生产正走着一条高投入、高耗能、低产出、低回报的粗放型的经济增长道路,安全问题特别突出,经常发生矿难事故,国家安全生产监督管理总局近日称:近年我国平均每7.4天发生一起特大煤矿事故,远远高出世界平均水平,2003年我国煤矿产量约占全球产量的35%,事故死亡人数则占近80%,我国采煤效率仅为美国的2.2%,南非的8.1%。

百万吨死亡率是美国的100倍,南非的30倍。

据统计2001——2004年10月共发生一次死亡10人以上的特大煤矿事故188起。

频繁发生的矿难事故与我国建设社会主义和谐社会的政治大背景是极不协调的,与以人为本的科学发展观是不相符合的,与党的执政目标是完全背离的,因此着力解决和处理好这个问题已经迫在眉睫。

否则就有可能面临积重难返的危险。

二、安全问题频现的原因分析1、某些行业投资过热导致需求的激增市场经济条件下,每个经济人都在追求自身利益的最大化,煤矿生产者同样如此,去年电解铝、钢铁、水泥等高耗能行业的投资过热,使得去年的煤炭供应特别紧张,尽管各地生产者不遗余力地超负荷生产,但在现有的生产能力和生产条件下,也一度出现了煤荒现象,在煤炭行业市场化的情况下,需求的激增必然导致煤炭价格的急剧上涨。

刍议煤矿开采下的环境问题及治理工作

刍议煤矿开采下的环境问题及治理工作

刍议煤矿开采下的环境问题及治理工作摘要:煤炭是我国主要能源,对经济建设和社会发展具有重要的作用,是我国可持续发展战略实施的资源保证。

但是,长期以来,由于我们对煤炭资源保护熟悉不足,对环境和生态保护重视不够,从而带来了一系列的环境问题。

本文主要分析了煤矿开采对生态环境的影响以及煤矿环境污染的治理措施,仅供参考。

关键词:煤矿开采;环境问题;对策Abstract:Coal is the mainenergy in China,plays an important role in the economicconstruction and social development,isthe implementation of sustainable developmentstrategy of our countryresource guarantee. However,for a long time,because of ourcoal resources protectionknows inadequacy,do not pay enough attention to theprotection of environment and ecology,whichbrings a series of environmental problems.This paper analyzes theimpact on the ecological environmentof coal mining andcontrol measuresof environmental pollutionin coal mine,for reference only.Key words:coal mining;environmental problems; countermeasures1 煤炭资源开发的现状近年来,在国家的政策扶持和煤炭企业自身加快改革的作用下,我国煤炭工业取得了长足的发展,煤炭市场总体上表现出供需平衡的局面。

我国露天煤矿开采环境问题及防治对策研究论文__外文翻译中英文(可编辑)

我国露天煤矿开采环境问题及防治对策研究论文__外文翻译中英文(可编辑)

我国露天煤矿开采环境问题及防治对策研究论文__外文翻译中英文附录A译文我国露天煤矿开采环境问题及防治对策研究世界各采煤国家都将优先发展露天采煤作为增加煤产量的主要途径,只要有条件,尽量实现集中开采,以提高劳动生产率,降低成本。

我国也是这样,无论是建国初期扩建和建设的抚顺西露天矿和海州露天矿,20世纪60年代建设的平庄、义马、哈密等露天矿,80年代大规模建设的伊敏、霍林河、准格尔、安太堡等几大露天矿,都为我国煤炭产量的增长、国民经济的建设做出了巨大的贡献,也取得了巨大的经济效益。

??但是基于历史原因,认识自然的局限性及法制法规的不完善,露天采煤业迅猛发展的同时,也带来了一系列的矿山环境问题和生态破坏,已严重影响地区的生态环境质量和经济持续发展。

这是我们亟待解决而又要认真对待的大问题。

? 1.露天煤矿开采引发的环境问题??露天采煤形成的凹坑,由于地质构造、边坡岩体、地表水地下水作用等原因诱发滑坡、塌陷、水土流失、泥石流等一系列地质灾害,又引起地面变形而危及周边地区的工业企业和居民建筑的安全。

既造成巨大的经济损失又破坏了原来的生态地质环境。

2.露天煤矿开采引发环境问题的原因??我国露天煤矿开采环境问题复杂、多样、特殊、敏感,由于特定历史因素影响对矿业城市地质环境和生态环境的影响和破坏非常巨大。

随着国家环保意识增强,80年代以来建的新矿区环境状况有所改善,有的矿区达到了较好水平,如平朔安太堡露天矿就比较好地解决了露天开采中环境恢复和治理问题。

因此总结这方面的经验教训意义是重大的,对搞好露天煤矿开采环境问题的防治是非常必要的。

在计划经济时期,煤矿企业利润都上缴国家而很少投入由开采造成的环境问题治理经费。

如抚顺西露天矿、阜新海州露天矿这样的国有大型矿山企业,所产煤炭、所创利润和效益基本上均上缴国家,而几十年来开采带来的严重的环境危害却留给了地方;露天煤矿开采初期和中期环境危害的范围与烈度均较小,没有引起决策者、管理者和采矿者的注意。

浅析露天采矿存在的环境问题及解决对策

浅析露天采矿存在的环境问题及解决对策

浅析露天采矿存在的环境问题及解决对策露天采矿是一种常见的矿产开采方式,其存在的环境问题已经逐渐引起人们的关注。

随着矿产资源的日益枯竭以及环境保护意识的增强,如何解决露天采矿存在的环境问题成为当前亟需解决的重要议题。

本文将从环境问题的角度出发,对露天采矿存在的环境问题进行浅析,并探讨一些可能的解决对策。

一、露天采矿存在的环境问题1. 土地破坏:露天采矿需要大面积的土地来布置矿场和设备,这不仅会破坏原有的植被,还会对土壤进行破坏。

特别是在开采过程中,大量的废矿石堆积在地表,导致土壤的肥沃度不断下降,甚至发生土地沙漠化现象。

2. 水资源污染:露天采矿过程中会产生大量的废水和尾矿,其中含有大量的重金属和有害物质,一旦排放到自然水体中,会对水质造成污染。

尤其是在降雨过程中,废水和尾矿会被冲刷到附近的水域中,严重影响水资源的质量和生态系统的平衡。

3. 空气污染:露天采矿中的爆破作业和矿石的破碎、输送过程会产生大量的粉尘和有害气体,对周边环境造成严重的空气污染。

这些粉尘和有害气体一旦飘散到周边的居民区和农田中,还会对人类的健康和农作物的生长产生负面影响。

4. 生态破坏:露天采矿会破坏原有的生态系统,导致植被丧失、野生动物丧失栖息地,进而影响生态平衡。

特别是在山区和森林地带进行的露天采矿活动,往往会造成范围更为广泛和严重的生态破坏。

二、解决对策1. 强化环境监测和治理:针对露天采矿存在的环境问题,需要建立完善的环境监测体系,及时对环境污染情况进行监测和评估。

加强环境治理力度,对废水、废渣和污染气体进行有效治理,防止其对周边环境造成污染。

2. 优化矿产开采技术:采用高效、清洁的矿产开采技术,尽量减少对环境的影响。

采用绿色开采技术、高效节能的设备和工艺,减少废水和废气的排放,降低露天采矿对周边环境的破坏程度。

3. 加强环境保护投入:政府和企业应加大环境保护投入,推动企业加大环保设施建设和运行维护力度,确保露天采矿活动对环境的影响得到有效控制。

露天采矿存在的环境问题和应对措施

露天采矿存在的环境问题和应对措施

露天采矿存在的环境问题和应对措施摘要:目前,在我国经济发展中,矿产资源在我国发展中占重要地位,但矿产资源因人类的过度开采和不正确的开采方式对赖以生存的环境造成了破坏。

露天采矿活动虽然开采简单,但是对环境造成的影响不容小觑,对地貌、植被、水源等都造成了很严重的伤害,在一定程度上制约了社会经济的快速发展。

为了长远发展,实现矿产资源的可持续发展,基于矿产对我国发展的重要性,对露天采矿矿山的地质环境进行了分析,并且提出了恢复治理措施,以实现我国矿产资源的合理开发利用,环境的保护,促进社会的可持续发展,为国家做出贡献。

关键词:露天采矿;采矿问题;环境问题;环境治理引言随着我国煤矿能源开采的深入发展,露天采矿技术的应用不断扩大,由于开采对周边环境造成一定的污染和破坏,采用合理的方法做好露天采矿环境治理工作具有重要意义。

文章以此为基础从环境问题出发,探讨相应的解决对策。

1露天开采相关概述露天开采技术主要是直接从地表剥离矿物,依据开采所用动力的不同将其分为水力开采和机械开采两种。

开采流程为:先做好地面准备工作,而后疏干矿床,做好基建工程建设,剥离矿产及采矿,最后进行地表恢复。

但因露天开采的方向是由上至下的,加上矿产埋深低,所以可以在开采中应用大型机械设备,提高其运输及开采效率。

应用露天开采时经常会应用很多大型操作设备,这种设备能够更好地提高煤炭的开采量,同时保证矿产的实际开采速度。

整个露天煤矿开采技术的施工安全性能相比于地下开采较高。

自身的煤炭损失量也较少,受到了行业内工作者的广泛喜爱。

2露天采矿存在的环境问题2.1边坡失稳边坡失稳与露天采矿区的开挖角度、高度和岩土性质密切相关,在矿山开采过程中开挖斜坡,人为形成高陡的边坡,使原本稳定的山坡变得很不稳定,并且加快了矿体围岩节理的发育程度,严重影响边坡的稳定程度,还会导致危石的形成。

并且开挖过后的浅层土层在经过雨水冲刷过后会产生失稳现象,极易发生坠石、崩塌等灾害,危害了采场作业的工作人员,同时影响了正常的采矿活动。

露天采矿存在的环境问题及其解决措施

露天采矿存在的环境问题及其解决措施

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载露天采矿存在的环境问题及其解决措施地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容露天采矿存在的环境问题及其解决措施贵州大学矿业学院采矿工程王继远摘要: 矿产资源是重要的自然资源,是社会生产发展的重要物质基础,现代社会人们的生产和生活都离不开矿产资源。

矿产资源的开发造成矿山环境问题严重影响了矿区周围群众的正常生活和社会稳定,也使得矿山环境恢复治理工作十分艰巨繁重。

同时,我国国民经济发展正处于快速、持续、稳定的阶段,对矿产资源的需要将持续增加,由此引发的矿山环境问题日益严重,因此加强矿山环境的保护和治理已刻不容缓。

关键词:露天;采矿;环境Abstract: the mineral resources are important natural resources,is an important material foundation of the development of social production, people's production and life in modern society cannot do without mineral resources. Exploitation of mineral resources causedenvironmental problems seriously affect the mining area around the people's normal life and social stability, but also makes the mineenvironmental recovery and management work is very arduous. Atthe same time, the development of China's national economy is in a rapid, sustained, stable stage, the need for mineral resources will continue to increase, the mine environment problems caused by theincreasingly serious, therefore, to strengthen the protection andmanagement of mine environment has been crunch time.Keywords: open pit mining; environment;HYPERLINK "/translate###"HYPERLINK "/gettts?lan=en&text=Abstract:the mineral resources are important natural resources, is animportant material foundation of the development of social production, people's production and life in modern society cannot do without mineral resources. Exploitation of mineral resources causedenvironmental problems seriously affect the mining area around the people's normal life and social stability, but also makes the mine environmental recovery and management work is very arduous. At the same time, the development of China's national economy is in a rapid, sustained, stable stage, the need for mineral resources will continue to increase, the mine environment problems caused by the increasingly serious, therefore, to strengthen the protection and management of mine environment has been crunch time.Keywords: open pit mining; environment;&spd=2&source=web"一、矿山地质环境存在的问题1、地质灾害频繁发生。

采矿专业外文文献翻译----煤矿瓦斯预防和治理

采矿专业外文文献翻译----煤矿瓦斯预防和治理

原文Control and prevention of gas outbursts in coal mines,Riosa–Olloniego coalfield, SpainMaría B. Díaz Aguado C. González Nicieza AbstractUnderground coal mines have always had to control the presence of different gases in the mining environment. Among these gases, methane is the most important one, since it is inherent to coal. Despite of the technical developments in recent decades, methane hazards have not yet been fully avoided. This is partly due to the increasing depths of modern mines, where methane emissions are higher, and also to other mining-related circumstances, such as the increase in production rates and its consequences: difficulties in controlling the increasing methane levels, increasing mechanization, the use of explosives and not paying close attention to methane control systems.The main purposes of this paper are to establish site measurements using some critical parameters that are not part of the standard mining-control methods for risk assessment and to analyze the gas behavior of subvertical coal seams in deep mines in order to prevent gas incidents from occurring. The ultimate goal is the improvement in mining conditions and therefore in safety conditions.For this purpose, two different mines were instrumented for mine control and monitoring. Both mines belong to the Riosa–Olloniego coalfield, in the Asturias Central Basin, Spain and the areas instrumented are mined via subhorizontal sublevels at an actual depth of around 1000 m under the overburden of Mount Lusorio.During this research, a property favoring gas outbursts was site measured for the first time in an outburst-prone coal (8th Coalbed), gas pressure and its variations, which contributed to complete the data available from previous characterizations and to set some guidelines for assessing the potential outburst-prone areas. A gas-measurement-tube set has been designed for measuring gas pressure as well as its variation over time as a result of nearby workings and to calculate permeability.The paper establishes the effect of overlapping of works, but it also shows the efficacy of two preventive measures to be applied: high pressure water infusion and the exploitation of a protective coal seam (7th Coalbed), that must be mined preferably two complete sublevels before commencing the advance in the outburst-prone coalbed. Both measures constitute an improvement in the mining sequence and therefore in safety, and should be completed with a systematic measurement to control the risk: gas pressure in the 8th Coalbed in the area of influence of other workings, to establish the most suitable moment to renew the advance. Further researches could focus on ascertaining thepermeability, not only in mined areas but also in areas of the mine that are still not affected by mining work and on tuning more finely the ranges of influence of overstress time and overlap distance of the workings of the 7th Coalbed in the 8th Coalbed.1. IntroductionCoalbed and coal mine methane research is thriving due to the fact that power generation from coal mine methane will continue to be a growing industry over the coming years in certaincountries. For instance, China, where 790 Mm3 of CH4 were drained off in 1999 (Huang, 2000), has 30 Tm3 of estimated CBM potential in the developed mining areas (Zhu, 2000). The estimate by Tyler et al. (1992) of the in-place gas in the United States is about 19 Tm3, while Germany's total estimated coalbed methane resources are 3 Tm3, very similar to Polish or English resources (World Coal Institute, 1998).This increase in the CBM commerce has opened up new lines of research and has allowed the scientific community to increase its knowledge of some of the propertiesof coal and of methane gas, above all with respect to the properties that determine gas flow, which until now had not been sufficiently analyzed. Some of these parameters are the same ones that affect the occurrence of coal mining hazards, as methane has the potential to become a source of different fatal or non-fatal disastrous events.2. Description of the Asturian Central basin and of the 8th CoalbedThe 8th Coalbed of the Riosa–Olloniego unit, located in the Southwest of the Asturian Central Coal Basin (the largest coal basin in the Cantabrian Mountains, IGME, 1985), has CBM potential of about 4.81 Gm3. This is around 19.8% of the estimated resources of the Asturian Central Basin and 12.8 % of the total assessed CBM resources in Spain (Zapatero et al., 2004). 3.84 Gm3 of the CBM potential of the 8th Coalbed belongs to San Nicolás and Montsacro: 1.08 Gm3 to San Nicolás area and 2.76Gm3 to Riosa, down to the −800m level (IGME, 2002).The minable coalbeds of this unit are concentrated in Westphalian continental sediments (Suárez-Ruiz and Jiménez, 2004). The Riosa–Olloniego geological unit consists of three seams series: Esperanza, with a total thickness of 350 m, contains 3–6 coalbeds with a cumulative coal thickness of 3.5 to 6.5 m; Pudingas, which is 700 m thick, has 3–5 coalbeds with a thickness of 5–7m; whereas the Canales series, the most important one, I 800 m thick, with 8–12 coalbeds that sum up to 12–15 m thick. This series, which contains the 8th Coalbed, the coalbed of interest in this study, has a total thickness of 10.26mat SanNicolás and 15.13matMontsacro (Pendás et al., 2004). Fig. 1 shows the geological map of the two coal mines, whereas Fig. 2represents a front view of both mines and the location of the instrumented areas. In this particular study, the 8th Coalbed is situated at a depth of between 993 and 1017 m, in an area of low seismi intensity.Instantaneous outbursts pose a hazard to safe, productive extraction of coal in both mines. The mechanisms of gas outbursts are still unresolved but include the effect of stress, gas content and properties of the coal. Other factors such as geological features, mining methods, bord and pillarworkings or increase in rate of advance may combine to exacerbate the problem (Beamish and Crosdale, 1998). Some of the main properties of the 8th Coalbed favoring gas outbursts (Creedy and Garner, 2001; Díaz Aguado, 2004) had been previously studied by the mining company, in their internal reportsM.B. Díaz Aguado, C. González Nicieza / International Journal of Coal Geology 69 (2007) 253–266255Fig. 1. Geological map.as well as in the different research studies cited in Section1: the geological structure of the basin, the stress state of the coalbed and its surrounding wall rock and some properties of both coal-bearing strata and the coalbed itself. The next paragraphs summarize the state of the research when this project started.Many researchers have studied relationships between coal outbursts and geological factors. Cao et al. (2001), found that, in the four mining districts analyzed, outbursts occurred within tectonically altered zones surrounding reverse faults; this could help to delimit outburst-prone zones. In the 8th Coalbed, some minor outbursts in the past could be related to faults or changes in coal seam thickness. Hence, general geological inspections are carried out systematically, as well as daily monitoring of any possible anomalies. But, in any case, some other outbursts could be related neither to local nor general faults.Fig. 2. General location of the study area.M.B. Díaz Aguado, C. González Nicieza / International Journal of Coal Geology 69 (2007) 253–266 For some years now, the technical experts in charge of the mine have been studying the stress state of the coalbed by means of theoretical calculations of face end or residual rock mass projections that indicated potential risk areas, based on Russian standards (Safety Regulations for Coal and Oil Shale Miners, 1973).Assuming that there was an initial approach to the stress state, this parameter was therefore not included in the research study presented in this paper. In the Central Asturian Coal Basin, both the porosity and permeability of the coal-bearing strata are very low,the cleat structure is poorly developed and cleats are usually water-filled or even mineralized. Consequently, of 5.10 m3/t. In some countries, such as Australia (Beamish and Crosdale, 1998) or Germany, a gas outburst risk value has been established when methane concentration exceeds 9 m3/t (although close to areas of over-pressure, this risk value descends to 5.5 m3/t). As the average gas contents in the coalbed are comparable with those of the Ruhr Basin (which according to Freudenberg et al., 1996, vary from 0 to 15 m3/t), the values in the 8th Coalbed would be close to the risk values.Desorption rate was considered the most important parameter by Williams and Weissmann (1995), in conjunction with the gas pressure gradient ahead of the face. Gas desorption rate (V1) has been defined as the volume of methane, expressed in cm3, that is desorbed from a 10 g coal sample, with a grain size between 0.5 and 0.8 mm, during a period of time of 35 s (fromsecond 35 to 70 of the test). Desorption rates have been calculated from samples taken at 2 m, 3 m and 7 m, following the proceedings of the Technical Specification 0307-2-92 of the Spanish Ministry of Industry. The average values obtained during the research are: 0.3 cm3 / (10 g·35 s) at 2 m depth, 0.5 cm3 / (10 g·35 s) at 3 m and 1.6 cm3 / (10 g·35 s) at the only paths for methane flow are open fractures. Coal gas content is one of the main parameters that had been previously analyzed. The methane concentration in the Central Asturian Basin varies between 4 and 14 m3/t of coal (Suárez Fernández,1998). Particularly, in the Riosa–Olloniego unit, the gas content varies from 3.79 to 9.89 m3/t of coal (Pendás et al., 2004). During the research, the measured values in the area of study have varied between 4.95 and 8.10 m3/t, with an average value7m.Maximumvalues were of 1.7 cm3 / (10 g·35 s) at 2m depth, 3.3 at 3 m and up to 4.3 cm3 / (10 g·35 s) at 7 m.The initial critical safety value to avoid gas outbursts in the 8th Coalbed was 2 cm3 / (10 g·35 s). Due to incidents detected during this research study, the limit value was reduced to 1.5 cm3 / (10 g·35 s).But other properties, such as coal gas pressure, the structure of the coal itself and permeability, had beeninsufficiently characterized in the Riosa Olloniego unit before this research study.Two methods had been previously employed to determine the gas pressure in the mine: the Russian theoretical calculations for the analysis of the stress state and the indirect measurements of the gas pressure obtained by applying criteria developed for the coalbeds of the Ruhr Basin (Germany), Poland and the former Soviet Union. These indirect measurements were the Jahns or borehole fines test (Braüner, 1994), which establishes a potential hazard when the fines exceed a limiting value. Although there are tabulated values for the coalbeds of the Ruhr Basin, it is not the case for the coals of the Riosa–Olloniego unit. Therefore, in this paper an improvement to the gas pressure measurement technique is proposed by developing a method and a device capable of directly measuring in situ pressures.The 8th Coalbed is a friable bituminous coal, high in vitrinite content, locally transformed into foliated fabrics which, when subjected to abutment pressure, block methane migration intoworking faces (Alpern, 1970). With low-volatile content, it was formed during the later stages of coalification and, as stated by Flores (1998) this corresponds to a large amount of methane generated. Moreover, the coal is subject to sudden variations in thickness (that result in unpredictable mining conditions) and to bed-parallel shearing within the coalbed, that has been considered an influence on gas outbursts (Li, 2001). Its permeability had never been quantified before in this mining area. Thus, during research in the 8th Coalbed it was decided to perform in situ tests to measure pressure transients, to obtain site values that will allow future calculations of site permeability, in order to verify if it is less than 5 mD, limit value which, after Lama and Bodziony (1998), makes a coalbed liable to outbursts.Therefore, in this study we attempted to characterize gas pressure and pressure transients, for their importance in the occurrence of gas outbursts or events in which a violent coal outburst occurs due to the sudden release of energy, accompanied by the release of significant amount of gas (González Nicieza et al.,2001), either in breaking or in development of the coalbed (Hardgraves, 1983).3. ConclusionsCoalbed is still a major hazard affecting safety andproductivity in some underground coal mines. This paper highlights the propensity of the 8th Coalbed to give rise to gas outbursts, due to fulfilling a series of risk factors, that have been quantified for 8th Coalbed for the first time and that are very related to mining hazards: gas pressure and its variation, with high valuesmeasured in the coalbed,obtaining lower registers at Montsacro than at San Nicolás (where 480 kPa were reached in the gas pressure measurements at the greatest depth). These parameters, together with the systematic measurement of concentration and desorption rate that were already being carried out by the mine staff, require monitoring and control. A gas-measurement-tube set was designed, for measuring gas pressure and its variations as well as the influence of nearby workings to determine outburstprone areas. The efficacy of injection as a preventative measure was shown by means of these measurement tubes. Injection decreases the gas pressure in the coalbed, althoughthe test must be conducted maximizing all the precautionary measures, because gas outbursts may occur during the process itself.The instrumentation results indicated the convenienceof mining the 7th Coalbed at least one sublevel ahead of the 8th Coalbed. This means having completed longwall caving of the corresponding sublevel both eastward and westward, and having allowed the necessary time to elapse for distention to take effect. This distention time was estimated between two and three months.The constructed instrumentation likewise allowed the effect of overlapping of workings to be measured: as the longwall caving of the coalbed situated to the roof of the instrumented coalbed approaches the area of advance of the 8th Coalbed, an increase in the pressure of the gas is produced in the 8th Coalbed. This may even triplicate the pressure of the gas and is more pronounced as the longwall caving approaches the position of the measuring equipment. A spatial range of the influence of longwall caving of some 55–60 m was estimated and a time duration of 2–3 months. The main contribution of this article resides in theproposal of measures of control and risk of gas outbursts that complement the systematic measurements in the mine itself, with the aim of improving safety in mining work. This proposal, apart from certain practical improvements in mining work, above all regarding the exploitation sequence, would involve the installation of gas measurement tubes before initiating the advance or at the overlap of workings. It would consist intemporarily detaining the advance in the 8th Coalbed when an overlap of workings may occur or prior to the commencement of an advance in the 8th Coalbed, installing measurement tubes in the face. The values and the trend of the measured gas pressures, together with the values obtained from gas concentration tests, would enable control of the conditions of the coalbed and the establishing of what moment would be appropriate to renew the advance. The gas measurement tubes would hence be a reliable, economic control and evaluation measure of the risk of gas outbursts. Furthermore, this equipment would enable the openingof other lines of research, both for calibrating the time and range of influence of mining work in each advance, as well as for calculating the permeability of the coal. By means of the designed test (gas flow between two gasmeasurement-tube sets), permeability could be estimated by numerical models calibrated with site data, both in areas of the mine that have still to be affected by mining work and in those already subject to mining works. These calibrations would also allow the variation in permeability with the depth of the coalbed itself to be analyzed.References[1] Alexeev, A.D., Revva, V.N., Alyshev, N.A., Zhitlyonok, D.M., 2004.[2] True triaxial loading apparatus and its application to coal outburst prediction. Int. J. Coal Geol. 58, 245–250.[3] Alpern, B., 1970. Tectonics and gas deposit in coalfields: a bibliographical study and examples of application. Int. J. Rock Mech. Min. Sci. 7, 67–76.[4] Beamish, B.B., Crosdale, J.P., 1998. Instantaneous outbursts in underground coal mines: an overview and association with coal type. Int. J. Coal Geol. 35, 27–55.[5] Braüner, G., 1994. Rockbursts in Coal Mines and Their Prevention. Balkema, Rotterdam, Netherlands. 137 pp.[6] Cao, Y., He, D., Glick, D.C., 2001. Coal and gas outbursts in footwalls of reverse faults. Int. J. Coal Geol. 48, 47–63.[7] Creedy, D., Garner, K., 2001. UK-China Coalbed Technology Transfer. Report N° Coal R207 DTI/Pub URN 01/584, 24 pp.[8] Díaz Aguado, M.B., 2004. Análisis, Control y Evaluación de Riesgo de Fenómenos Gaseodinámicos en Minas de Carbón, PhD Thesis, University of Oviedo (Spain) Publishing Service,I.S.B.N.: 84-8317-434-0, 301 pp. (in Spanish, with English Abstract).[9] Durucan, S., Edwards, J.S., 1986. The effects of stress and fracturing on permeability of coal Min. Sci. Technol. 3, 205–216.[10] Flores, R.M., 1998. Coalbed methane: from hazard to resource. Int. J.Coal Geol. 35, 3–26西班牙Riosa–Olloniego煤矿瓦斯预防和治理María B. Díaz Aguado C. González NiciezaAbstract Department of Mining Exploitation, University of Oviedo, School of Mines,Independencia, 13, 33004 Oviedo, Spain摘要在煤矿井下开采环境中必须控制着不同气体的存在。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

我国露天煤矿开采环境问题及防治对策研究论文__外文翻译中英文附录A译文我国露天煤矿开采环境问题及防治对策研究世界各采煤国家都将优先发展露天采煤作为增加煤产量的主要途径,只要有条件,尽量实现集中开采,以提高劳动生产率,降低成本。

我国也是这样,无论是建国初期扩建和建设的抚顺西露天矿和海州露天矿,20世纪60年代建设的平庄、义马、哈密等露天矿,80年代大规模建设的伊敏、霍林河、准格尔、安太堡等几大露天矿,都为我国煤炭产量的增长、国民经济的建设做出了巨大的贡献,也取得了巨大的经济效益。

??但是基于历史原因,认识自然的局限性及法制法规的不完善,露天采煤业迅猛发展的同时,也带来了一系列的矿山环境问题和生态破坏,已严重影响地区的生态环境质量和经济持续发展。

这是我们亟待解决而又要认真对待的大问题。

? 1.露天煤矿开采引发的环境问题??露天采煤形成的凹坑,由于地质构造、边坡岩体、地表水地下水作用等原因诱发滑坡、塌陷、水土流失、泥石流等一系列地质灾害,又引起地面变形而危及周边地区的工业企业和居民建筑的安全。

既造成巨大的经济损失又破坏了原来的生态地质环境。

2.露天煤矿开采引发环境问题的原因??我国露天煤矿开采环境问题复杂、多样、特殊、敏感,由于特定历史因素影响对矿业城市地质环境和生态环境的影响和破坏非常巨大。

随着国家环保意识增强,80年代以来建的新矿区环境状况有所改善,有的矿区达到了较好水平,如平朔安太堡露天矿就比较好地解决了露天开采中环境恢复和治理问题。

因此总结这方面的经验教训意义是重大的,对搞好露天煤矿开采环境问题的防治是非常必要的。

在计划经济时期,煤矿企业利润都上缴国家而很少投入由开采造成的环境问题治理经费。

如抚顺西露天矿、阜新海州露天矿这样的国有大型矿山企业,所产煤炭、所创利润和效益基本上均上缴国家,而几十年来开采带来的严重的环境危害却留给了地方;露天煤矿开采初期和中期环境危害的范围与烈度均较小,没有引起决策者、管理者和采矿者的注意。

加上环保意识薄弱而使环境隐患越积越多,几十年后造成了环境的恶化和灾害的发生。

?无法回避的是,历史沉淀这些环境问题,只有依靠各级政府加大投入或积极组织才能逐步地治理和恢复。

??以往传统的地质、采矿,管理学科没有或很少将矿山环境勘查、评价、预测、管理、立法、执法与露天煤矿勘查、露天煤矿建设、设计、生产、闭坑有机地贯穿始终结合起来。

各学科均有自己的侧重点,如露天采矿学就追求剥离最少,采煤最多,只要不滑坡,边坡越陡越好,很少考虑地面变形或闭坑后灾害,很少以综合的长远的经济效益、社会效益和环境效益作为本学科研究追求的出发点。

??露天煤矿开采环境问题根本上说是人类采矿工程活动使环境发生变化或恶化。

这就需要决策者、管理者、生产者有战略眼光和战略胸怀,不仅仅关注自身的、近期的经济效益和繁荣,还应从保持社会经济可持续发展、爱护人类居住的家园的高度去从事露天煤矿开采,主动地、积极地利用开采工程改善、美化周边环境,变有害为无害,变不利为有利,实现资源开发和环境保护的协调发展。

安太堡露天煤矿开采就在防止水土流失、改变土壤成份、实现废弃地植被、绿化、复垦、生物治理方面取得巨大成绩,使矿区的生态环境比开采前好。

这方面的经验值得研究推广。

3.露天煤矿开采环境问题的治理对策??露天煤矿开采所诱发和种种环境问题及灾害的防治是一项复杂的、综合的、庞大的系统工程。

要应用环境地质学、采矿学、系统工程、工程经济学等学科的原理和思路研究防治对策。

从注重分析性思维向分析性、协调性、综合性思维转化;从单项技术、分科发展,常规观测向复合技术、现代信息手段、多学科综合系统发展转化。

追求最优的经济效益、社会效益和环境效益。

实现煤炭开采与环境保护协调发展,实现社会经济可持续发展。

在此露天煤矿开采引发的环境问题治理提出几点看法。

(1) 区分环境问题历史旧账和新账,从而明确环境恢复治理的主体和责任人。

要由目前的矿山企业来承担历史遗留的环境问题的治理显然是不现实的。

因此尽早区分历史旧账和新账,是明确环境恢复治理责任、内容、资金来源和实施主体的重要前提。

历史旧账和新账的划分,建议以企业由计划经济转为市场经济即企业利润基本上缴国家转为企业自负盈亏的年份为界。

对于历史旧账,应主要由政府承担,主要依靠国家、省市政府投资、组织治理。

而新账必须主要由企业承担,严格执行谁破坏谁治理、谁负责的原则。

抚顺西露天矿、海州露天矿这样的老矿,由于历史原因造成的环境问题主要由国家、政府承担治理恢复;而进入市场经济后由于露天开采引发的新的环境问题则必须由企业承担,进入企业生产成本,负责治理恢复;而新建矿山,则必须从勘察、立项、建设、设计、生产开始就从法制上、管理上明确责任人,并负责到矿山闭坑。

确保环境得到恢复和改善。

(2) 完善、修改的制定包括露天煤矿开采在内的有关标准、规范,使矿山开采的环境管理和治理具有可操作性、规范,使矿山环境管理和治理具有可操作性、针对性和科学性。

实现露天煤矿开采从勘查、建设、生产、闭坑全过程的管理和监督有法可依。

实现露天煤矿开采环境的改变一破坏一恢复一重建的良性循环。

促进可持续发展。

这就从源头避免、减少了环境问题的危害和地质灾害的发生。

(3) 露天煤矿建设开采的规划要充分考虑开采至最终境界可能带来的环境问题和灾变。

规划和设计中要充分考虑不要在可能的环境灾变区设计民用与工业建筑。

这一条对新建露天煤矿是必要的。

(4) 在地质环境问题较严重的露天矿,建立环境地质监测网站和地质灾害预警系统。

主要针对已经建设和正在生产的露天煤矿,且环境灾变问题已经存在并影响、危害地面建筑和人民生命财产安全情况下建立。

如抚顺发电厂及地面兴平路等均建有地面变形监测线网,实时监测并预测变形趋势,为及时采取灾害防治措施,避免损失提供依据。

(5) 老的露天煤矿,开采已几十年,造成的环境地质灾害已成事实的情况下,防治对策建议遵循两条原则:一是避让原则,不要有灾害区内布置工程建设和居民建筑,已有的尽量考虑搬迁;二是针对性治理原则,对不宜搬迁的重要设置和建筑,采对针对性治理原则,对不宜搬迁的重要设置和建筑,采取针对性治理,如加固、屏蔽、采矿回填、边坡压脚等。

宜进行几个方案的技术经济比较,要综合考虑技术可行性、经济合理性和安全风险性。

(6) 对于新建露天煤矿,决策者、管理者、采矿者应站在保护生态环境的战略高度,主动的通过采矿工程活动改善和重建周边地区的环境。

如平朔安太堡露天煤矿就做出了有益可喜的成绩。

通过开露天矿、修水库、改河道、改变地形和地层层位、调整土壤结构、防止水土流失、复垦种植等,不但避免了环境的恶化,而且通过露天煤矿开采,建设一生态环境更好的新矿区。

3.露天矿区污、废水水质及处理工艺现状由于露天矿区的自身特点不尽相同,矿区污、废水处理厂所接纳的水质也不相同。

随着水处理技术的不断发展,矿区污、废水处理所采取的处理工艺不断发展,各种水处理工艺在实践中不断的接受检验,有成功的经验,也有失败的教训.由于露天矿区工业场地与居住区规划格局的不同,矿区污水处理厂的规模和污水水质浓度也不一样,分析,霍林河、准格尔、伊敏河矿区进入污水处理厂的水质为生活与工业废水混合,其余矿区为仅处理工业废水;从污水处理厂规模上分析,矿区处理厂规模小,尤其是工业场地污水处理厂规模很小,与矿区大规模用水量比较反差相当大,平朔矿区不含生活区总用水量为27000m3/d,而污水处理厂规模仅为1300 m3/d,这是由于供水大量消耗于矿山公路洒水及选煤补充水,没有进入排水系统的原因;从污水处理厂进水水质分析,矿区污水浓度与城市污水浓度相比偏低,SS值相对较高,BOD及COD绝对值较低,仅对工业场地而言,污水可生化性较差。

1污水处理工艺分析从污水处理现状分析,矿区污水处理与城市污水处理工艺同步发展,在统计调查的五大露天矿区中,污水处理工艺分别采用了一级处理+污水库、普通活性污泥法+深度处理、生物膜法、SBR+深度处理等处理工艺,从实际的运行效果分析,一级处理+污水库处理工艺、生化处理+深度处理工艺处理效果较好,生物法工艺由于不适应矿区含油的水质特点,实践证明是失败的。

2污水处理工艺选择及发展趋势矿区污水水质浓度偏低,SS偏高、BOD值较低安家岭露天矿例外,与城市污水相比可生化性差。

由于矿区污水水质的行业特点,污水处理工艺选择必须切合矿区水质的实际特点。

通过对水质及污水处理的实际运行效果分析,笔者认为一级处理+污水库工艺、二级生化处理+深度处理工艺为露天矿区污水处理的首选工艺。

污水库工艺为工业场地污水处理厂的首选工艺,其优越性为a:充分适合矿区污水水质特点,工艺流程合理b:适应矿区污水资源化复用。

其缺点为a:污水库水质不易保证b:受到地形限制,理想的是利用自然地形修建污水库,人工开挖污水库基建投资大。

二级生化处理+深度处理工艺为混合污水处理厂的首选工艺,其优越性为处理效果好、出水水质可达到复用于绿化、道路洒水、选煤补充水的要求,适合矿区实现污水资源化。

其缺点为投资高,配套污水资源化工程造价高。

4.边坡稳定性研究?边坡稳定技术的研究始于20世纪50年代中期。

1953年海州露天煤矿投产,抚顺西露天煤矿完成改造后,不久在非工作帮就多次出现边坡滑落现象,严重影响正常生产和设备安全。

针对上述2矿的滑坡开始了边坡稳定性研究工作,主要研究内容为非工作帮的工程地质条件、岩石物理力学性质、滑坡形成的条件和稳定性分析方法、确定边坡失稳的范围及防治措施。

?1961年抚顺西露天矿发生了4次百万立方米的大滑坡,其中3号滑坡体危及西大巷提升煤道的安全。

我所科研人员参加多部组成的治理工作组,完成了削坡、减重、疏干、加固等措施的设计和施工,确保了提升系统的正常生产。

经过这一阶段的研究工作,建立了一套露天矿边坡稳定性研究理论及工作方法,培养了一支科研队伍,并建立了岩石力学试验室。

边坡工程研究已成为露天开采安全研究所的主导专业,也是国内最早开展边坡工程研究的专业单位之一。

并多次参加非煤露天矿山和长江三峡滑坡的治理论证。

随着我国露天采煤的发展,先后承担了国家、煤炭部的重大研究课题,完成了抚顺、阜新、平庄、安太堡、准格尔、小龙潭、义马等露天煤矿的边坡稳定性研究和滑坡防治工作。

至今共完成各类科研课题共60余项,其中12项成果分别获得省、部及国家一、二、三等奖。

1基础研究:工程地质勘察技术。

地质构造和岩层赋存条件,特别是软弱岩层的状况是形成滑坡的内在因素,查清地质构造是确定滑坡体的规模、滑动模式、稳定分析和防治措施的依据。

常规的方法是地表地质结构调查、钻探、巷探。

随着雷达探测技术和地震波探测技术的发展,无钻勘察地层及地质构造的目标得以实现。

1993年在研究抚顺西露天矿西南帮边坡稳定项目中,用浅层地质雷达仪成功地确定了影响该地区边坡稳定的软质凝灰岩的赋存状态及分布规律。

相关文档
最新文档