2018年河南省普通高中招生考试数学试卷及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年河南省普通高中招生考试试卷
数 学
注意事项:
1. 本试卷共6页,三大题,满分120分,考试时间100分钟。
2. 本试卷上不要答题,按答题卡上注意事项的要求把答案填写在答题卡上。
答在试卷上的答案无效。
一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的。
1.5
2
-
的相反数是( ) A.52-
B. 52
C.25-
D.2
5 2.今年一季度,河南省对“一带一路”沿线国家进口总额达214.7亿元。
数据“214.7亿”用科学计数法表示为
A .210147.2×
B .3102147.0×
C .1010147.2×
D .11
102147.0×
3.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“国”字所在面相对的面上的汉子是( )
A.厉
B.害
C.了
D.我
4.下列运算正确的是( )
A.()
5
3
2--x x =
B.532x x x =+
C.743
x x x
= D.1-233=x x
5.河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为15.3%,12.7%,15.3%,14.5%,17.1%。
关于这组数据,下列说法正确的是( )
A .中位数是12.7%
B .众数是15.3%
B . C.平均数是15.98% D .方差是0
6.《九章算术》中记载:‘今有共买羊,人出五,不足四十五;人出七,不足三。
问人数、羊价各几何?’其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱。
问合伙人数、羊价各是多少?设合伙人数为x 人,羊价为y 钱,根据题意,可列方程组为( )
A 、⎩⎨
⎧+=+=37455x y x y B 、⎩⎨⎧+==3745-5x y x y C 、⎩⎨⎧=+=3-7455x y x y D 、⎩⎨⎧==3
-745
-5x y x y
7.下列一元二次方程中,有两个不相等的实数根是( )
A 、0962=++x x
B 、x x =2
C 、x x 232
=+ D 、()011-2
=+x
8.现有4张卡片,其中3张卡片正面上的图案是“”,1张卡片正面上的图案是“”,
它们除此之外完全相同,把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片正面图案相同的概率是( )
A.
169 B.43 C.83 D.2
1
9.如图,已知平行四边形AOBC 的顶点O (0,0),A (-1,2),点B 在x 轴正半轴上,按以下步骤作图:①以点O 为圆心,适当长度为半径作弧,分别交边OA ,OB 于点D,E ;②分别以点D,E 为圆心,大于
2
1
DE 的长
为半径作弧,两弧在∠AOB 内交于点F ;③作射线OF ,交边AC 于点G ,则点G 的坐标为( )
A.
(
)215,- B.
(
)2,5 C.()2,53- D.
(
)
225,-
10.如图1,点F 从菱形ABCD 的顶点A 出发,沿
B D A →→以1cm/s 的速度匀速运动到点B.图2
是点F 运动时,△FBC 的面积()
2
cm y 随时间()s x 变
化的关系图像,则a 的值为( )
A. 5
B.2
C.
2
5
D.52 二、填空题(每小题3分,共15分)
11. =9-5-
12.如图,直线AB ,CD 相交于点O ,EO ⊥AB 于点O ,∠EOD=50°,则∠BOC 的度数为
13.不等式组⎩⎨
⎧≥>+3
-42
5x x 的最小整数解是
14.如图,在△ABC 中,∠ACB=90°,AC=BC=2,将△ABC 绕AC 的中点D 逆时针旋转90°得到△A ’B ’C ’,其中点B 的运动路径为弧BB ’,则图中阴影部分的面积为
15.如图,∠MAN=90°,点C 在边AM 上,AC=4,点B 为边AN 上一动点,连接BC ,△A ’BC 与△ABC 关于BC 所在直线对称。
点D,E 分别为AC ,BC 的中点,连接DE 并延长交A ’B 所在直线于点F ,连接A ’E ,当△A ’EF 为直角三角形时,AB 的长为
三、解答题(本大题共8个小题,满分75分)
16.(8分)先化简,再求值:
11112-÷⎪⎭
⎫
⎝⎛-+x x x ,其中12+=x
17.(9分)每到春夏交替时节,雌性杨树会以漫天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰。
为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如图所示),并根据调查结果绘制了如下尚不完整的统计图
调查结果扇形统计图 调查结果条形统计图
根据以上统计图,解答下列问题
(1)本次接受调查的市民共有 人
(2)扇形统计图中,扇形E 的圆心角的度数是 ;
(3)请补全条形统计图;
(4)若该市约有90万人,请估计赞同选育无絮杨品种,并推广种植的人数 18.(9分)如图,反比例函数()0>=x x
k
y 的图像过格点(网格线的交点)P
(1)求反比例函数的解析式
(2)在图中用直尺和2B 铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:
①四个顶点均在格点上,且其中两个顶点分别是点O ,点P
②矩形的面积等于k 的值
19.(9分)如图,AB是圆O的直径,DO⊥AB于点O,连接DA
交圆O于点C,过点C作圆O的切线交DO于点E,连接BC交DO
于点F
(1)求证:CE=EF
(2)连接AF并延长,交圆O于点G。
填空
①∠D的度数为时,四边形ECFG为菱形
②∠D的度数为时,四边形ECOG为正方形
20.(9分)“高低杠”是女子体操持有的一个竞技项目,其比赛器材由高、低两根平行杠及若干支架组成,运动员可根据自己的身高和习惯在规定范围内调节高低两杠间的距离。
某兴趣小组根据高低杠器材的一种截面图编制了如下数学问题,请你解答
如图所示,座底上A、B两点间的距离为90cm,低杠上点C到直线AB的距离CE的长为155cm,高杠上点D到直线AB的距离DF的长为234cm,已知低杠的支架AC与直线AB的夹角∠CAE为82.4°,高杠的支架BD与直线AB的夹角∠DBF为80.3°,求高、低杠间的水平距离CH的长。
(结果精确到1cm,参考数据:sin82.4°≈0.991,cos82.4°≈0.132,tan82.4°≈7.500,sin80.3°≈0.983,cos80.3°≈0.168,tan80.3°≈5.850)
21.(10分)某公司推出一款新品,经市场调查发现,该产品的日销售量y(个)与销售单价x(元)之间满足一次函数关系。
关于销售单价,日销售量,日销售利润的几组对应值如下表:
(注:日销售利润=日销售量×(销售单价-成本单价))
(1)求y与x的函数解析式(不要求写出x的取值范围)即m的值;
(2)根据以上信息,填空:
该产品的成本单价是元,当销售单价x= 元时,日销售利润w最大,最大值是元
(3)公司计划开展科技创新,以降低该产品的成本,预计在今后的销售中,日销售量与销
售单价仍存在(1)中的关系,若想实现销售单价为90元时,日销售利润不低于3750元的销售目标,该产品的成品单价应不超过多少元?
22.(10分)(1)问题发现
如图1,在△OAB 和△OCD 中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC ,BD 交于点M 。
填空:
①
BD
AC
的值为 ②∠AMB 的度数为
(2)类比探究
如图2,在△OAB 和△OCD 中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC 交BD 的延长线交于点M 。
请判断
BD
AC
的值及∠AMB 的度数,并说明理由; (3)拓展延伸
在(2)的条件下,将△OCD 绕O 在平面内旋转,AC ,BD 所在直线交于点M ,若OD=1,OB=7,请直接写出当点C 与点M 重合时AC 的长
23. (11分)
如图,抛物线c x ax y ++=62
交x 轴于A 、B 两点,交y 轴于点C.直线5-=x y 经过点B 、
C
(1)求抛物线的解析式;
(2)过点A 的直线交直线BC 于点M.
①当AM ⊥BC ,过抛物线上一动点P (不与点B 、C 重合),作直线AM 的平行线交直线BC 于点Q ,若以点A,M,P ,Q 为顶点的四边形是平行四边形,求点P 的横坐标;
②连接AC ,当直线AM 与直线BC 的夹角等于∠ACB 的2倍时,请直接写出点M 的坐标
备用图
2018年河南省普通高中招生考试
数学试题参考答案
一、选择题
二、填空题
三、解答题
16. ()()x
x x x x 11111-+⋅+--=原式 =x -1 当()
212112-=+-=+=时,原式x 17. (1)2000
(2)28.8°
(3)按人数为500正确补全条形统计图
(4)90×40%=36(万)
即估计赞同“选育无絮杨品种,并推广种植”的人数约为36万人。
18. (1)∵点P (2,2)在反比例函数)0(>=x x
k y 的图像上 ∴22
=k ,即k=4 ∴反比例函数的解析式为x y 4=
(2)(答案不唯一,正确画出两个矩形即可)
19. (1)连接OC.
∵CE 是圆O 的切线,∴OC ⊥CE
∴∠FCO+∠ECF=90°
∵DO ⊥AB ,∴∠B+∠BFO=90°
∵∠CFE=∠BFO ,∴∠B+∠CFE=90°
∵OC=OB ,∴∠FCO=∠B
∴∠ECF=∠CFE ,∴CE=EF
(2)①30°
②22.5°
20. 在Rt △CAE 中,7.20500
.71554.82tan 155tan ≈≈=∠=οCAE CE AE 在Rt △DBF 中,40850
.52343.80tan 234tan ≈≈=∠=οDBF DF BF ∴EF=AE+AB+BF ≈20.7+90+40=150.7≈151.
∵四边形CEFH 是矩形,∴CH=EF ≈151.
即高低杠间水平距离CH 的长约是151cm
21. (1)设y 关于x 的函数解析式为y=kx+b,
由题意得⎩⎨⎧=+=+1259517585b k b k ,解得⎩
⎨⎧=-=6005b k ∴y 关于x 的函数解析式为6005=-=x y
当x=115时,m=-5×115+600=25
(2)80;100;2000
(3)设产品的成本价为a 元,
由题意得()()375090600905≥-⋅+⨯-a
解得65≤a
答:该产品的成本单价应不超过65元.
22.(1)①1
②40°
(2)ο903=∠=AMB BD
AC , 理由如下:
∵∠AOB=∠COD=90°,∠OAB=∠OCD=30°, ∴3==BO
AO DO CO ∠COD+∠AOD=∠AOB+∠AOD ,即∠AOC=∠BOD
∴△AOC ∽△BOD ∴DBO CAO DO
CO BD AC ∠=∠==,3 ∵∠AOB=90°,∴∠DBO+∠ABD+∠BAO=90°
∴∠ CAO+∠ABD+∠BAO=90°,∴∠AMB=90°
(3)AC 的长为3332或
【提示】在△OCD 旋转过程中,(2)中的结论仍成立,即3=BD
AC ,∠AMB=90°. 如图所示,当点C 与点M 重合时,21AC AC ,的长即为所求
23.(1)∵直线y=x-5交x 轴于点B ,交y 轴于点C ,∴B (5,0),C (0,-5) ∵抛物线c x ax y ++=62
过点B ,C ∴⎩⎨⎧=-++=c c a 530250∴⎩⎨⎧-=-=5
1c a ∴抛物线的解析式为56-2-+=x x y
(2)①∵OB=OC=5,∠BOC=90°,∴∠ABC=45°
∵抛物线56-2
-+=x x y 交x 轴于A ,B 两点 ∴A (1,0)∴AB=4,∵AM ⊥BC ,∴AM=22
∵PQ ∥AM ,∴PQ ⊥BC
若以点A,M,P ,Q 为顶点的四边形是平行四边形,则PQ=AM=22 过点P 作PD ⊥x 轴交直线BC 于点D ,则∠PDQ=45°
∴PD=42=PQ
设()
56,2-+-m m m P ,则D (m,m-5) 分两种情况讨论如下:
(ⅰ)当点P 在直线BC 上方时,
()4555622=+-=---+-=m m m m m PD ∴()
4121==m m ,舍去
(ⅱ)当点P 在直线BC 下方时,、 ()()
4556522=-=-+---=m m m m m PD ∴2
415,241543-=+=m m 综上,点P 的横坐标为4或
24152415-+或 ②⎪⎭⎫ ⎝
⎛⎪⎭⎫ ⎝⎛-67-623617,613,或M 【提示】作AC 的垂直平分线,交BC 于点1M ,连接1AM ,过点A 作BC AN ⊥于点N ,将1ANM ∆沿AN 翻折,得到2ANM ∆,点1M ,2M 的坐标即为所求。