有限元分析简介概述.
三维问题有限元分析(包括轴对称问题)
建立每个有限元的平衡方程,通过求解这些方程来得到近似解。
离散化
将连续的问题离散化,将整个求解域划分为有限个小的子域(称为有限元),每个子域上定义节点。
有限元方法的基本原理
解方程
通过求解整体矩阵的方程,得到各个节点的值,从整体矩阵,用于表示整个求解域上的问题。
详细描述
三维弹性力学问题的有限元分析
总结词
详细描述了三维热传导问题有限元分析的基本原理、方法和应用。
详细描述
三维热传导问题是有限元分析的另一个重要领域,主要研究热量在物体中的传递和分布。通过将连续的物体离散化为有限个小的单元,可以建立单元之间的热量传递关系,从而得到整个物体的温度分布。这种方法广泛应用于工程领域,如传热学、热能工程等。
边界条件处理
轴对称问题的有限元方法
轴对称问题有限元分析的实现流程
建立系统方程
根据有限元近似解法,将微分方程转化为离散化的系统方程。
划分网格
根据问题的几何形状和特点,将求解区域划分为一系列离散的网格单元。
建立数学模型
根据实际问题,建立相应的数学模型,包括物理方程、边界条件和初始条件。
求解系统方程
采用适当的数值方法(如直接法、迭代法等),求解离散化的系统方程,得到每个离散单元上的近似解。
轴对称问题具有旋转对称性,即其解在绕对称轴旋转时保持不变。
轴对称问题的定义和特性
特性
定义
将连续的物理问题离散化为有限个离散的单元,每个单元具有特定的形状和大小。
离散化
在每个离散单元上,使用近似函数来逼近真实解。常用的近似函数包括多项式、样条函数等。
近似解法
对于轴对称问题,边界条件通常与对称轴相关。需要对边界条件进行特殊处理,以确保离散化后的系统方程满足原始问题的约束。
有限元分析-动力学分析PPT课件
目录
• 引言 • 有限元分析基础 • 动力学分析基础 • 有限元分析在动力学中的应用 • 案例分析 • 结论与展望
01 引言
目的和背景
01
介绍有限元分析在动力学分析中 的应用和重要性。
02
阐述本课件的目标和内容,帮助 读者了解有限元分析在动力学分 析中的基本概念、方法和应用。
随着工程复杂性和精确度要求的提高,有限元分析在动力学分析中的 应用将更加重要和必要。
02
未来需要进一步研究有限元分析算法的改进和优化,以提高计算效率 和精度。
03
未来需要加强有限元分析与其他数值计算方法的结合,如有限差分、 有限体积等,以实现更复杂的动力学模拟和分析。
04
未来需要加强有限元分析在多物理场耦合和多尺度模拟中的应用,以 更好地解决工程实际问题。
有限元分析的优点和局限性
• 精确性:对于某些问题,可以得到相当精确的结 果。
有限元分析的优点和局限性
数值误差
由于离散化的近似性,结果存在一定的数值误 差。
计算成本
对于大规模问题,计算成本可能较高。
对模型简化的依赖
结果的准确性很大程度上依赖于模型的简化程度。
03 动力学分析基础
动力学简介
动力学是研究物体运 动过程中力与运动关 系的科学。
THANKS FOR WATCHING
感谢您的观看
ห้องสมุดไป่ตู้
求解等。
02 有限元分析基础
有限元方法概述
01
有限元方法是一种数值分析方法,通过将复杂的物理系统离散化为有 限个简单元(或称为元素)的组合,来模拟和分析系统的行为。
02
它广泛应用于工程领域,如结构分析、流体动力学、热传 导等领域。
1有限元分析概述
• 项目挑战
– 初始设计的扭转变形钢片几乎 没有信号输出,无法实现扭矩
传感
电子助力转向系统
• 解决方案
– 通过结构分析发现原始设计的 缺陷 – 第一次改进设计,效果很好, 但由于结构尺寸过大,基本不 实用 – 经过30多次方案改进,最后获 得了一个非常满意的设计(传 感器电路仿真也在ANSYS里一 起完成)
– 用于F-15飞机的弹射座椅改进设计 – 需要计算在弹射和前向碰撞两种最 大载荷状态下的座椅可靠性
• 项目挑战
– 100多个零部件,模型极其复杂 – 载荷施加非常困难
• 解决方案
– 在Workbench环境下使用 Mechanical软件,利用其双向参数 链接功能输入CAD模型,并自动创 建零部件的装配接触 – 利用Workbench高级网格处理能力 – 利用Workbench先进的加载功能 (如空间质量点、远程等效力等) – 与CAD协同进行结构改进和优化设 计
(3)
式中,F e 和 F e 分别为作用于单元e的结点i和结点j的结点力。 j i 式(3)写成矩阵形式为
xj x i x e L x xi j x e L
(2)
3.单元方程(单元结点位移与结点力的关系) 由等截面杆变形与拉力的关系(虎克定律)得到:
A e E e e e e i j Fi Le e e A E e e e j i Fj Le
最终设计
第一次 改进设计
第一次改进设计的应变分布状态非常良好(基 本上只有第一主应变,其它主应变很小),扭 转引起的电阻变化很大,传感效果好。但结构 宽度太大,无法集成在转向系统中,实用性差
常用CAE分析简介
常用CAE分析简介1. 有限元分析(FEA):有限元分析是一种将复杂结构分解为简单单元的方法,通过求解这些单元的力学行为,从而得到整个结构的力学性能。
有限元分析广泛应用于结构分析、热分析、流体分析等领域,可以帮助工程师评估设计的强度、刚度、稳定性等性能指标。
2. 计算流体动力学(CFD):计算流体动力学是一种利用数值方法模拟流体流动问题的方法。
通过CFD分析,工程师可以了解流体在特定条件下的速度、压力、温度等参数,从而优化设计,提高设备的性能。
CFD分析广泛应用于航空航天、汽车、化工、建筑等领域。
3. 多体动力学(MBD):多体动力学是一种模拟多个刚体之间相互作用的力学分析方法。
通过MBD分析,工程师可以研究机械系统的运动特性、动力学性能和振动特性,从而优化设计,提高设备的可靠性。
MBD分析广泛应用于汽车、、航天器等领域。
4. 优化设计:优化设计是一种在满足一定约束条件下,寻找最优设计方案的方法。
通过优化设计,工程师可以在保证产品质量的前提下,降低成本、提高性能。
优化设计方法包括线性规划、非线性规划、遗传算法等。
5. 可靠性分析:可靠性分析是一种评估产品在使用过程中发生故障的概率的方法。
通过可靠性分析,工程师可以了解产品的故障模式和故障原因,从而优化设计,提高产品的可靠性。
可靠性分析方法包括故障树分析、故障模式与影响分析等。
CAE分析在工程领域具有广泛的应用,可以帮助工程师在设计阶段发现潜在问题,优化设计,提高产品质量和降低成本。
随着计算机技术的不断发展,CAE分析将在未来发挥越来越重要的作用。
6. 热分析:热分析是一种评估产品在温度变化下的热传导、热对流和热辐射性能的方法。
通过热分析,工程师可以了解产品在不同温度条件下的热性能,从而优化设计,提高产品的热效率和热稳定性。
热分析广泛应用于电子设备、汽车、航空航天等领域。
7. 声学分析:声学分析是一种评估产品在声波作用下的声学性能的方法。
通过声学分析,工程师可以了解产品在不同频率下的声压级、声强级和声功率级等参数,从而优化设计,提高产品的声学性能。
有限元分析及应用课件
设置材料属性、单元类型等参数。
求解过程
刚度矩阵组装
根据每个小单元的刚度,组装成全局的刚度矩阵。
载荷向量构建
根据每个节点的外载荷,构建全局的载荷向量。
求解线性方程组
使用求解器(如雅可比法、高斯消元法等)求解线性方程组,得到节点的位移。
后处理
01
结果输出
将计算结果以图形、表格等形式输 出,便于观察和分析。
有限元分析广泛应用于工程领域,如结构力学、流体动力学、电磁场等领域,用于预测和优化结构的 性能。
有限元分析的基本原理
离散化
将连续的求解域离散化为有限 个小的单元,每个单元具有特
定的形状和属性。
数学建模
根据物理问题的性质,建立每 个单元的数学模型,包括节点 力和位移的关系、能量平衡等。
求解方程
通过建立和求解线性或非线性 方程组,得到每个节点的位移 和应力分布。
PART 05
有限元分析的工程应用实 例
桥梁结构分析
总结词
桥梁结构分析是有限元分析的重要应用之一,通过模拟桥梁在不同载荷下的响应,评估 其安全性和稳定性。
详细描述
桥梁结构分析主要关注桥梁在不同载荷(如车辆、风、地震等)下的应力、应变和位移 分布。通过有限元模型,工程师可以预测桥梁在不同工况下的行为,从而优化设计或进
刚性问题
刚性问题是有限元分析中的一种 特殊问题,主要表现在模型中某 些部分刚度过大,导致分析结果 失真
刚性问题通常出现在大变形或冲 击等动态分析中,由于模型中某 些部分刚度过高,导致变形量被 忽略或被放大。这可能导致分析 结果与实际情况严重不符。
解决方案:为避免刚性问题,可 以采用多种方法进行优化,如采 用更合适的材料模型、调整模型 中的参数设置、采用更精细的网 格等。同时,可以采用多种方法 对分析结果进行验证和校核,以 确保其准确性。
基于有限元分析的建筑结构抗震性能评估
基于有限元分析的建筑结构抗震性能评估建筑结构的抗震性能评估是设计和改善建筑物的地震安全性的重要手段。
其中,有限元分析作为一种常用的数值模拟方法,可以提供建筑结构在地震作用下的动力响应,并对结构的性能进行评估。
本文将重点介绍基于有限元分析的建筑结构抗震性能评估的原理和方法。
一、有限元分析简介有限元分析是一种基于数值计算的工程分析方法,通过将结构分割为有限数量的单元,对每个单元进行力学分析,并考虑单元之间的接触和相互作用,以获得结构的整体性能。
有限元分析可以模拟各种复杂的结构形态和加载条件,对结构的应力、应变、位移等参数进行准确计算。
二、建筑结构抗震性能评估的原理基于有限元分析的建筑结构抗震性能评估主要包括以下几个步骤:建立有限元模型、确定地震动输入、施加边界条件、进行动力时程分析、计算结构的响应参数、评估结构的抗震性能。
1. 建立有限元模型:建立精确的有限元模型是基于有限元分析的建筑结构抗震性能评估的前提。
模型应包括建筑物的几何尺寸、材料性质和连接方式等信息,并考虑地基效应和各个构件之间的相互作用。
2. 确定地震动输入:地震动是进行抗震性能评估的重要输入参数,应考虑地震活动区的地震参数和建筑结构所面临的设计地震动参数,如加速度、速度和位移等参数。
3. 施加边界条件:施加边界条件是指限制模型的自由度,模拟结构在动力荷载下的固有约束条件。
边界条件的选择应根据实际建筑结构进行合理确定。
4. 进行动力时程分析:动力时程分析是指将地震动作为外力施加到有限元模型上,通过求解结构的运动方程,得到结构的响应。
5. 计算结构的响应参数:在动力时程分析过程中,可以计算结构的位移、加速度、应力、应变等响应参数。
这些参数可以用来反映结构在地震作用下的性能。
6. 评估结构的抗震性能:根据结构的响应参数,可以通过对比设计要求或抗震规范中对于结构性能的要求,评估结构的抗震性能,并进行相应的结构改善和优化。
评估结果可用于指导结构设计和抗震改造。
第7章 有限元分析概述
3、变形体及受力情况的描述:
基本变量:
u
(位移)
ε
(应变)
ζ
(应力)
(如果考虑三个方向(xyz)的情况,则有对应的向量、张量描述:
ε ij
ζ ij
ui
)
基本方程: ①力的平衡方面 三大类变量 ②几何方面 三大类方程 ③材料方面
求解方法: ①经典解析 ②半解析法 ③传统数值求解 ④现代数值求解(计算机软硬件,规范化,标准化, 规模化,计算机化)
几个概念: 单元:把弹性体假想地分割成有限个离散体,这些离
散体称为单元。 节点:离散单元仅在其顶点处相互连接,连接点成为节点。 要求:这种连接必须满足变形协调条件, 既:不能出现裂缝,不能发生重叠。 节点力:单元之间只能通过节点传递内力,通过节点 传递的内力成为节点力。 节点载荷:作用在节点上的载荷为节点载荷。 节点位移:当弹性体受到外力作用发生变形时,组成它的 各个单元也将发生变形,因而各个节点将产生
在工程技术领域内,经常会遇到两类典型的问题。 第一类问题,可以归结为有限个已知单元体的组合。把这类 问题称为离散系统。
例如,材料力学中的连续梁、建筑结构框架和桁架结构。
平面桁架结构
ቤተ መጻሕፍቲ ባይዱ
双向拉索悬索桥
第二类问题,通常可以建立它们应遵循的基本方程,即微分方 程和相应的边界条件。这类问题称为连续系统。
例如弹性力学问题,热传导问题,电磁场问题等。
目前应用较多的通用有限元软件如下表所列:
软件名称 简介
MSC/Nastran
MSC/Dytran MSC/Marc ANSYS ADINA ABAQUS
著名结构分析程序,最初 由NASA研制 动力学分析程序 非线性分析软件 通用结构分析软件 非线性分析软件 非线性分析软件
应用有限元分析工程实例
结构稳定性分析
总结词
结构稳定性分析研究结构在各种载荷作用下的失稳临界状态,包括屈曲、后屈曲和流动 等。
详细描述
结构稳定性分析是评估结构在各种载荷作用下的稳定性的关键环节。通过结构稳定性分 析,可以确定结构的失稳临界点,预测结构的极限承载能力。在进行结构稳定性分析时, 需要考虑结构的形状、支撑条件、材料属性和外部载荷等因素,以准确评估结构的稳定
局限性
有限元分析需要耗费大量的计算资源 和时间,对于大规模系统可能存在计 算效率低下的问题,同时对于某些复 杂问题可能需要建立较为精细的模型, 导致计算成本增加。
有限元分析的应用领域
01
02
03
04
工程结构分析
广泛应用于机械、航空、土木 、交通等领域,用于分析结构 的强度、刚度、稳定性等。
流体动力学分析
工程实例应具有实际应用价值,能够为相关领域提 供参考和借鉴。
难度适中
工程实例的难度应适中,既不过于复杂也不过于简 单,能够保证分析过程的完整性和可靠性。
工程实例背景介绍
工程实例名称:某桥梁工程
工程背景:该桥梁位于高速公路上,是连接两个城市的交通要道。桥梁全长1000 米,主跨为300米,设计载荷为公路一级。由于该桥跨越峡谷,主跨跨度较大, 因此需要进行详细的有限元分析来确保结构安全。
工程实例问题描述
02
01
03
问题一
该桥梁在承受载荷时,各部分的应力分布情况如何?
问题二
该桥梁在不同载荷下的变形情况如何?
问题三
该桥梁的稳定性如何?
03
有限元模型的建立
模型建立的原则与步骤
模型建立的原则
真实反映实际结构、合理划分网 格、选择合适的边界条件和载荷 。
有限元分析法
2个移动自由度 1个转动自由度
3个移动自由度 (平面杆单元2个) 3个移动自由度(平面梁2个) 3个转动自由度(平面梁1个) 3个移动自由度(平面2个) 3个转动自由度(平面1个)
梁结构
弹簧结构
网格划分方法
. . .. . ..
线性
体(三维实体)
. . . . . ... .. .. . ..
二次
低阶单 元
更高阶单元
线单元
• 线单元: 用于螺栓(杆),弹簧,桁架或细长构件
面单元
• 壳单元: –Shell (壳)单元 每块面板的主尺寸不低于其厚度的10倍。
面单元
-平面应力 分析是用来分析诸如承受面内载荷的平 板、承受压力或远离中心载荷的薄圆盘等结构。
details ignored
Geometric model for FEA
单元类型选择
Element type:
3节点三角形平面应力单元
单元特性定义
Element properties:
材料特性:E, µ 单元厚度:t
网格划分
模型检查 • • • • 低质量单元 畸形单元 重合节点 重合单元
2 nodes
. .
A
. .
..
B
1 node
. .
. .
A
. .
B
具有公共节点的单元 之间存在信息传递
. .
分离但节点重叠的单元 A和B之间没有信息传递 (需进行节点合并处理)
第2节 有限元建模方法
Finite element model
Input data
有限元法概述
(2)MSC/NASTRAN。 MSC/NASTRAN是在原NAST RAN基础上进行大量改进后的系统软件,主要包括MS C.Patran并行框架式有限元前后处理及分析系统、 MS C.GS-Mesher快速有限元网格、 MSC.MARC非线性有 限元软件等。其中MSC.MARC具有较强的结构分析能
.
5.在产品制造或工程施工前预先发现潜在的问题; 6. 模拟各种试验方案,减少试验时间和经费; 7. 进行机械事故分析,查找事故原因。
轴承强度分析
.
汽车碰撞实验
.
刹车制动时地盘的应力分析
.
钢板精轧机热轧制分析
.
三维椭圆封头开孔补强
.
水轮机叶轮的受力分析模拟
.
人体股骨端受力分析
.
半导体芯片温度场的数值仿真
知量时称为混合法。 位移法易于实现计算自动化,所以,在有限单元法
中位移法应用范围最广。
.
2、有限元法的发展
有限单元法基本思想的提出,可以追溯到Courantl在1 943年的工作,他第一次尝试应用定义在三角形区域上的 分片连续函数和最小位能原理相结合,来求解St·Venant 扭转问题。相继一些应用数学家、物理学家和工程师由于 各种原因都涉足过有限单元的概念。
.
4、有限元的特点
(1) 概念清楚,容易理解。可以在不同的专业背景和水平 上建立起对该方法的理解。从使用的观点来讲,每个人的 理论基础不同,理解的深度也可以不同,既可以通过直观的 物理意义来学习,也可以从严格的力学概念和数学概念推 导。
《有限元分析概述》课件
PART 05
有限元分析的未来发展与 挑战
新技术与新方法的探索
人工智能与机器学
习
利用人工智能和机器学习技术, 自动构建有限元模型、优化求解 过程和提高分值算法和 求解技术,提高有限元分析的稳 定性和精度。
多物理场耦合
探索多物理场耦合的有限元分析 方法,以解决复杂工程问题中的 多物理场耦合问题。
边界条件的处理
在有限元分析中,边界条件的处理是重要的环节。边界条件通常通过在边界节点上施加约束或加载来实现,以模拟实际系统 的边界条件。
边界条件的处理方式需要根据具体问题进行分析和设定,以确保求解结果的准确性和可靠性。
求解与后处理
求解是有限元分析的核心步骤,涉及到建立方程组、求解方程组并得到离散化模型的结果。常用的求 解方法包括直接法、迭代法和优化算法等。
优化设计
03
根据计算结果,对结构进行优化设计,提高其性能或降低成本
。
PART 04
有限元分析的优缺点
有限元分析的优缺点
• 有限元分析(FEA)是一种数值 分析方法,用于解决各种工程问 题,如结构分析、热传导、流体 动力学等。它通过将复杂的物理 系统离散化为有限数量的简单单 元(或称为“有限元”)来模拟 系统的行为。这些单元通过节点 相互连接,形成一个离散化的模 型,可以用来预测系统的性能和 行为。
2023-2026
ONE
KEEP VIEW
有限元分析概述
REPORTING
CATALOGUE
目 录
• 有限元分析简介 • 有限元分析的基本原理 • 有限元分析的实现过程 • 有限元分析的优缺点 • 有限元分析的未来发展与挑战
PART 01
有限元分析简介
定义与背景
有限元分析报告
有限元分析报告简介:有限元分析是一种应用数学方法,用于工程设计和计算机模拟中的结构力学问题。
它将一个复杂的结构分割成许多小单元,通过数学计算方法求解每个小单元中的力学问题,最终得出整个结构的应力、变形等力学特性。
本报告将针对一座建筑结构进行有限元分析,以提供对该结构的性能和稳定性的评估。
1. 建筑结构的几何模型我们首先根据给定的建筑结构图纸,利用计算机辅助设计软件建立了该建筑结构的几何模型。
模型中包括建筑的各个构件、连接方式以及相关的材料参数。
通过这个模型,我们可以直观地了解到该建筑的整体结构和外形。
2. 材料特性和边界条件接下来,我们对建筑结构中所使用的材料进行了详细调查和测试,获得了相关的材料参数。
这些参数包括了材料的弹性模量、泊松比等力学特性。
同时,我们还确定了建筑结构的边界条件,即建筑结构与外界的固定连接方式。
3. 网格划分和单元选择为了进行有限元分析,我们将建筑结构模型划分成了许多小单元。
在划分时,我们考虑了结构的复杂性、力学特性的分布以及计算资源的限制。
同时,我们还选取了合适的单元类型,包括线单元、面单元和体单元,以确保对结构的各个方向都进行了准确的力学计算。
4. 边界条件和加载在有限元分析中,我们需要给定结构的边界条件和加载情况。
边界条件包括固定支撑和约束,加载则体现了外界对结构的作用力。
这些边界条件和加载方式都是根据实际情况进行的设定,并参考了相关的设计标准和规范。
5. 结果分析通过对建筑结构进行有限元分析,我们得到了结构中各个单元的应力、变形以及稳定性等力学特性。
这些结果可以用来评估结构的性能和安全性。
我们进行了详细的结果分析,并对结果进行了图表化和可视化展示,以方便用户理解和判断。
6. 结论和建议根据有限元分析的结果,我们对建筑结构的性能和稳定性进行了综合评估。
我们发现该结构在设计要求的荷载条件下能够满足安全性要求,具有较好的稳定性和刚度。
然而,我们也发现了一些潜在的问题和改进空间,例如某些结构部位的应力集中以及某些节点处的变形过大。
基于有限元分析的二维材料双轴拉伸性能预测
基于有限元分析的二维材料双轴拉伸性能预测引言在材料科学与工程领域中,了解材料的力学性能是至关重要的。
在设计和开发新材料时,研究人员需要对材料在各种条件下的性能进行预测和评估。
有限元分析作为一种有效的工具,能够帮助研究人员模拟和预测材料的机械行为。
本文将探讨基于有限元分析的二维材料双轴拉伸性能预测方法。
一、有限元分析简介有限元分析是一种数值计算方法,用于模拟和预测物体的力学行为。
它将复杂的连续体划分为许多离散的小单元,称为有限元。
通过对这些小单元进行求解和组合,得到了整个系统的力学响应。
有限元方法广泛应用于工程、数学、物理学和材料科学等领域。
二、二维材料概述二维材料是由单层或多层的原子薄片组成的新型材料。
其中最为著名的就是石墨烯,它由碳原子组成,并具有出色的力学、电子和光学性能。
由于其独特的结构和性质,二维材料在纳米电子学、光电子学和生物医学等领域具有广泛的应用前景。
三、双轴拉伸测试双轴拉伸测试是一种用于测量材料在同时承受两个相互垂直的拉伸载荷时的性能的试验方法。
该测试可以模拟复杂的现实应力状态,并提供全面的材料性能数据。
通过双轴拉伸测试,可以确定材料的强度、刚度以及内部结构的破坏机制。
四、双轴拉伸性能预测方法基于有限元分析的双轴拉伸性能预测方法包括以下几个步骤:1. 材料建模:首先,需要将二维材料的几何形状和微观结构以及实验中的加载条件输入到有限元软件中进行建模。
由于二维材料的微观结构很复杂,因此需要使用适当的微观模型对其进行描述。
2. 材料参数确定:在建模过程中,需要确定材料的物理和力学参数。
这些参数包括材料的弹性模量、杨氏模量、屈服强度等。
实验数据可以用来确定这些参数,也可以使用分子动力学模拟等方法进行估计。
3. 边界条件设置:在有限元模型中,需要定义适当的边界条件来模拟实验中的加载条件。
这些边界条件可以是应力、位移或界面的限制条件,以及加载速率等。
4. 求解和结果分析:通过对有限元模型进行求解,可以得到材料在给定加载条件下的应力和应变分布。
ANSYS有限元分析入门与应用指南
ANSYS有限元分析入门与应用指南第一章:ANSYS有限元分析概述ANSYS是一种常用于工程领域的有限元分析软件,主要用于对各种结构进行力学分析、流体动力学分析、热传导分析等。
本章将对ANSYS的基本原理、工作流程和应用领域进行介绍。
1.1 ANSYS的基本原理ANSYS基于有限元方法,将实际结构或系统离散为有限数量的单元,通过对单元进行各种物理特性的分析,最终得到整个结构的行为。
有限元方法是一种数值分析方法,可以有效解决传统方法难以处理的复杂问题。
1.2 ANSYS的工作流程ANSYS的工作流程包括几个关键步骤:前处理、求解和后处理。
前处理阶段主要负责模型的建立和单元网格的划分,求解阶段进行物理场的计算和求解,后处理阶段对结果进行可视化和分析。
1.3 ANSYS的应用领域ANSYS可应用于各个工程领域,如固体力学、流体力学、热传导、电磁场等。
在航空航天、汽车工程、建筑结构、电子设备等领域都有广泛的应用。
第二章:ANSYS建模与前处理在使用ANSYS进行有限元分析之前,需要对模型进行建模和前处理工作。
本章将介绍ANSYS建模的基本方法和前处理的必要步骤。
2.1 模型建立ANSYS提供了多种建模方法,包括几何建模、CAD导入、脚本编程等。
用户可以根据需要选择合适的建模方法,对模型进行几何设定。
2.2 材料定义和属性设置在进行有限元分析之前,需要为材料定义材料性质和属性。
ANSYS提供了多种材料模型,用户可以根据具体需求进行选择和设置。
2.3 网格划分网格划分是有限元分析中非常重要的一步,它决定了模型的离散精度和计算效果。
ANSYS提供了多种单元类型和划分算法,用户可以根据需要进行合理的网格划分。
第三章:ANSYS求解与后处理在进行前处理完成后,就可以进行有限元分析的求解和后处理了。
本章将介绍ANSYS的求解方法和后处理功能。
3.1 求解方法ANSYS提供了多种求解方法,如直接法、迭代法等。
根据模型的复杂程度和求解要求,用户可以选择合适的方法进行求解。
有限元分析法概述
第十一章 有限元分析方法概述1、基本概念有限元分析方法是随着电子计算机的发展而迅速发展起来的一种现代没计计算方法。
它是20世纪50年代首先在连续体力学领域—飞机结构静、动态特性分析中应用的一种有效的数值分析方法,随后很快就广泛地应用于求解热传导、电磁场、流体力学等连续性问题。
在工程分析和科学研究中,常常会遇到大量的由常微分方程、偏微分方程及相应的边界条件描述的场问题,如位移场、应力场和温度场等问题。
求解这类场问题的方法主要有两种:用解析法求得精确解;用数值解法求其近似解。
应该指出,能用解析法求出精确解的只是方程性质比较简单且几何边界相当规则的少数问题。
而对于绝大多数问题,则很少能得出解析解。
这就需要研究它的数值解法,以求出近似解。
目前工程中实用的数值解法主要有三种:有限差分法、有限元法和边界元法。
其中,以有限元法通用性最好,解题效率高,目前在工程中的应用最为广泛。
下面通过一个具体例子,分别采用解析法和数值解法进行求解,从而体会一下有限元分析方法的含义及其相关的一些基本概念。
如下图所示为一变横截面杆,杆的一端固定,另一端承受负荷P ,试求杆沿长度方向任一截面的变形大小。
其中,杆的上边宽度为1w ,下边宽度为2w ,厚度为t ,长度为L ,杆的材料弹性模量为E 。
已知P =4450N ,1w =50mm ,2w =25mm ,t =3mm ,L =250mm ,E =72GPa 。
① 采用解析法精确求解假设杆任一横截面面积为)(y A ,其上平均应力为σ,应变为ε。
根据静力平衡条件有:0)(=-y A P σ根据虎克定律有:εσE =而任一横截面面积为:t y L w w w y A )()(121-+= 任一横截面产生的应变为:dydu=ε将上述方程代入静力平衡条件,进行变换后有:dy y EA Pdu )(=沿杆的长度方向对上式两边进行积分,可得:⎰⎰⎰-+==y yudy y Lw w w Et P dy y EA P du 01210)()(将)(y A 表达式代入上式,并对两边进行积分,得杆沿长度方向任一横截面的变形量:]ln )[ln()()(112112w y Lw w w w w Et PL y u --+-=当y 分别取0、62.5、125、187.5、250值时,变截面杆相应横截面处的沿杆长方向的变形量分别为:m u m u m u m u m u 6564636211080.142 ;1083.96 ;1027.59 ;1051.27 ;0----⨯=⨯=⨯=⨯==② 采用数值解法近似求解将变横截面杆沿长度方向分成独立的4小段,每一小段采用等截面直杆近似,等截面直杆的横截面面积为相应的变截面杆横截面面积的平均面积表示,每一小段称为一个单元,小段之间通过节点连接起来。
第一节 有限元分析概述
第一节 有限元分析概述对于一般的工程受力问题,希望通过平衡微分方程、变形协调方程、几何方程和本构方程联立求解而获得整个问题的精确解是十分困难的,一般几乎是不可能的。
随着20世纪五六十年代计算机技术的出现和发展、以及工程实践中对数值分析要求的日益增长,并发展起来了有限元的分析方法。
有限元法自1960年由Clough首次提出后,获得了迅速的发展;虽然首先只是应用于结构的应力分析,但很快就广泛应用于求解热传导、电磁场、流体力学、成形工艺等连续问题。
一、有限元法的基本概念对于连续体的受力问题,既然作为一个整体获得精确求解十分困难;于是,作为近似求解,可以假想地将整个求解区域离散化,分解成为一定形状有限数量的小区域(即单元),彼此之间只在一定数量的指定点(即节点)处相互连接,组成一个单元的集合体以替代原来的连续体,如图7-1弯曲凹模的受力分析所示;只要先求得各节点的位移,即能根据相应的数值方法近似求得区域内的其他各场量的分布;这就是有限元法的基本思想。
从物理的角度理解,即将一个连续的凹模截面分割成图7-1所示的有限数量的小三角形单元,而单元之间只在节点处以铰链相连接,由单元组合成的结构近似代替原来的连续结构。
如果能合理地求得各单元的力学特性,也就可以求出组合结构的力学特性。
于是,该结构在一定的约束条件下,在给定的载荷作用下,各节点的位移即可以求得,进而求出单元内的其他物理场量。
这就是有限元方法直观的物理的解释。
从数学角度理解,是将图7-1所示的求解区域剖分成许多三角形子区域,子域内的位移可以由相应各节点的待定位移合理插值来表示。
根据原问题的控制方程(如最小势能原理)和约束条件,可以求解出各节点的待定位移,进而求得其他场量。
推广到其他连续域问题,节点未知量也可以是压力、温度、速度等物理量。
这就是有限元方法的数学解释。
从有限元法的解释可得,有限元法的实质就是将一个无限的连续体,理想化为有限个单元的组合体,使复杂问题简化为适合于数值解法的结构型问题;且在一定的条件下,问题简化后求得的近似解能够趋近于真实解。
《有限元分析概述》课件
如何生成适合于有限元分析的网格,并优 化网格结构。
如何进行杆件的有限元分析,包括轴力、 弯曲和扭转。
3 二维和三维模型的分析
4 不同单元的选择及其特点
如何进行二维和三维模型的有限元分析, 包括平面应力、平面应变和轴对称。
不同类型的有限元单元的选择和应用,以 及它们的特点和限制。
有限元分析软件
ANSYS
有限元分析的应用领域
工程结构分析
有限元分析广泛应用于工程领域,包括建筑、桥梁、船舶、管线等结构的设计和分析。
汽车、航空航天、机械等领域应用
有限元分析在汽车、航空航天、机械等行业中被广泛应用于产品设计和优化。
地震、爆炸等自然灾害分析
有限元分析可以用于模拟和预测地震、爆炸等自然灾害对结构的影响,进而提高结构的抗震 和防爆性能。
COMSOL Multiphysics是一款多物理场耦合的 有限元分析软件,适用于多领域的工程分析。
有限元分析的未来发展
1 超级计算机的运用 2 多物理场耦合
随着计算机性能的提升, 有限元分析可以应用于 更大规模、更复杂的问 题。
有限元分析将更多的物 理场耦合在一起,进行 更全面的分析。
3 计算效率的提高
有限元分析的基本流程
1
,将结构进行建模。
2
离散
将结构分割成小的、简单的单元。
3
材料定义
定义每个单元的材料性质和力学行为。
4
载荷约束条件
对结构施加边界条件和加载条件。
5
求解
通过数值计算方法求解结构的行为特性。
有限元分析的相关问题
1 网格生成及其优化
2 杆件的分析
随着算法和计算技术的 进步,有限元分析的计 算效率将得到提高。
车辆碰撞模拟中的有限元分析研究
车辆碰撞模拟中的有限元分析研究引言车辆碰撞是常见的交通事故形式之一,对车辆和乘员造成了严重的伤害和财产损失。
为了提高车辆的安全性能和减少交通事故的发生,有限元分析逐渐成为汽车工程中的重要工具。
本文将探讨车辆碰撞模拟中的有限元分析研究,并分析其应用前景。
一、有限元分析简介有限元分析是一种数值模拟方法,可以将实际的复杂结构离散成有限个简单的单元,通过有限元格子的变形来模拟结构的变化。
有限元分析既可以用于静力学问题,也可以用于动力学问题,包括车辆碰撞模拟。
在车辆碰撞模拟中,有限元分析可以准确地预测车辆在碰撞中的受力分布和变形情况,为安全性能的提升提供科学依据。
二、有限元分析在车辆碰撞模拟中的应用1. 车身刚度分析车辆碰撞时,车身的刚度将直接影响车辆的受力分布和变形情况。
有限元分析可以通过建立车身模型,计算车身在不同碰撞条件下的刚度,从而帮助车辆设计师优化车身结构,提高车辆的安全性能。
2. 碰撞部件优化设计碰撞部件是车辆碰撞中最容易受到冲击的部分,其设计和缺陷直接影响了车辆在碰撞中的安全性能。
有限元分析可以帮助车辆制造商在设计阶段评估并优化碰撞部件,以达到碰撞力分散和最大程度吸收冲击力的目的。
3. 安全气囊设计安全气囊是车辆碰撞中最重要的被动安全设备之一。
有限元分析可以模拟车辆在碰撞过程中安全气囊的展开和充气情况,准确预测安全气囊对乘员的保护效果。
基于有限元分析结果,可以对安全气囊的设计参数进行调整和优化,提高安全气囊的性能。
4. 碰撞模拟验证有限元分析可以将车辆碰撞模拟分为两个步骤:前处理和后处理。
前处理是指对碰撞模型的建立、网格划分和加载条件的设定。
有限元分析软件可以帮助工程师进行这些操作,从而创建可靠的碰撞模拟模型。
后处理是指对有限元分析结果的处理和解读。
工程师可以通过分析结果来评估碰撞模拟的效果,并与实际碰撞测试结果进行比对,以验证模型的准确性和可靠性。
三、有限元分析在车辆碰撞模拟中的优势和挑战1. 优势有限元分析在车辆碰撞模拟中有以下优势:- 可以准确预测车辆在碰撞中的受力分布和变形情况,为车辆设计师提供重要的参考依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
网 格 划 分
模 型 检 查
边 界 条 有限元模型 件 计算 定 义
结果比较
测试
模型修正
有限元分析过程
有限元模型
节 点 数 据
单 元 数 据
边界条件数据
节 坐 坐 位 节 单 点 标 标 移 点 元 参 参 编 考 考 总 编 值 系 系 数 号 号 代 代 码 码
单 元 节 点 编 号
单 元 材 料 特 性 码
载荷
有限元模型由一些简单形状的单元组成,单元之间通 过节点连接,并承受一定载荷。
网格划分方法
网格疏密 ( relative density)对结果影响
Elements: 132 Max.stress: 300.60MPa
Elements: 84 Max.stress: 296.36MPa
节点和单元
分析领域和目的
如果你要对一个物理系统进行有限元分析,就是这样 一个问题的答案:“利用FEA我想研究结构哪些方面的情 况?”
结构分析 热分析 磁分析 流体分析 …… 耦合分析
分析领域和目的
.实体运动,承受压力,或实体间存在接触 .施加热、高温或存在温度变化 .恒定的磁场或磁场 .电流(直流或交流) .气(液)体的运动,或受限制的气体/液体 .以上各种情况的耦合
单 元 物 理 特 性 值 码
单 元 截 ห้องสมุดไป่ตู้ 特 性
相 关 几 何 数 据
位 移 约 束 数 据
载 荷 条 件 数 据
热 边 界 条 件 数 据 码
其 它 边 界 条 件 数 据 码
Example of modeling
fixed
Calculation: stress, deformation,reaction
Node data
Shape and material
Element data
Boundary condition data Interaction with outside
建模分析的一般步骤
软件
单元库
实际结构 设计方案
分 析 问 题 定 义
几 何 模 型 建 立
单 元 类 型 选 择
单 元 特 性 定 义
信息是通过单元之间的公共节点传递的。
2 nodes
. .
A
. .
..
B
1 node
.
. .
A
. .
B
具有公共节点的单元 之间存在信息传递
. .
.
分离但节点重叠的单元 A和B之间没有信息传递 (需进行节点合并处理)
第二节 有限元建模方法
Finite element model
Input data
solvers
结构 热 磁 电
流体
耦合场
线性 / 非线性分析
“我的物理系统是在线性还是非线性状态下工作?线性 求解能满足我的需要吗?如果不能,必须考虑哪种非线性特 性?” 许多情况和物理现象都要求进行非线性计算。
细节处理
.对于分析不重要的细节不应当包含在 .
分析模型中。当从 CAD 系统传一个模 型到 CAE 软件中时往往可以作大量的 简化处理。 然而,诸如倒角或孔等细节可以是最 大应力出现的位置,这些细节对于你 的分析目的是十分重要的。
边界条件定义
集中力 固定约束
Modeling
Solving
Post-processing
deformation
Stress distribution
第三节 制订分析方案
通常考虑的分析因素
. . . .
分析领域和目的 线性/非线性问题 分析细节的考虑 模型对称性
• • •
单元类型 材料特性 载荷
带倒角
不带倒角
对称性模型
对称 — 当物理系统的形状、材料和载荷具有对 称性时,就可以只对实际结构中具有代表性的部 分或截面进行建模分析,再将结果映射到整个模 型上,就能获得相同精度的结果。
定义
单元类型
点 (质量)
.
.
... .. . . .
二次
线(弹簧,梁,杆)
.
. . . .
线性
面 (壳)
. . .. . ..
有限元分析简介
艾瑞汽车排气系统有限公司 2016年6月27日
第一节
有限元分析法基本概念
有限元分析法(Finite Element Analysis,FEA)
有限元分析是利用数学近似的方法对真实物理系
定义
统(几何和载荷工况)进行模拟。还利用简单而 又相互作用的元素,即单元,就可以用有限数量 的未知量去逼近无限未知量的真实系统。
有限元分析作用
简单说包括评估设计和优化设计。 比如:通过有限元分析,可以在设计阶段对可能出现 的问题进行安全评判和设计参数修改,据有关资料,一个 新产品的问题有60%以上可以在设计阶段消除。
有限元分析不能代替试验,需要后期的试验验证。
物理系统举例
几何体 载荷 物理系统
结构
热
有限元分析基本思路
将一个连续体的求解区域离散(剖分)成有限个形 状简单的子区域(单元),各子区域相互连接在有限个 节点上,承受等效节点载荷(应力载荷、温度载荷、流 动载荷、磁载荷等);根据“平衡 ”条件分析并建立 各节点的载荷场方程,然后将它们组合起来进行综合求 解,以获得对复杂工程问题的近似数值解。
有限元建模概述
CAD model
details ignored
Geometric model for FEA
单元类型选择
Element type:
3节点三角形平面应力单元
单元特性定义
Element properties:
材料特性:E, µ,ρ 单元厚度:t
网格划分
模型检查 • • • • 低质量单元 畸形单元 重合节点 重合单元
即:
离散化处理
单元分析
整体分析
有限元分析基本思路
有限元模型
有限元模型 是真实系统理想化的数学抽象。
定义
真实系统
有限元模型
节点和单元
载荷
节点: 空间中的坐标位置,具有一定自由度 和存在相互物理作用。
单元:
一组节点自由度间相互作用的数值、矩阵 描述(称为刚度或系数矩阵)。单元有线、 面或实体以及二维或三维的单元等种类。
线性
体(三维实体)
. . . . . ... .. .. . ..
二次
线单元
• 线单元: 用于螺栓(杆),弹簧,桁架或细长构件
面单元
• 壳单元: –Shell (壳)单元 每块面板的主尺寸不低于其厚度的10倍。
体单元
L
–用于那些由于几何、材 料、载荷或分析结果要 求考虑的细节等原因造 成无法采用更简单单元 进行建模的结构。
–四面体模型使用CAD建 模往往比使用专业的 FEA分析建模更容易, 也偶尔得到使用。
Y
R Q O Z I M J N K